JP4191159B2 - Titanium copper with excellent press workability - Google Patents

Titanium copper with excellent press workability Download PDF

Info

Publication number
JP4191159B2
JP4191159B2 JP2005072006A JP2005072006A JP4191159B2 JP 4191159 B2 JP4191159 B2 JP 4191159B2 JP 2005072006 A JP2005072006 A JP 2005072006A JP 2005072006 A JP2005072006 A JP 2005072006A JP 4191159 B2 JP4191159 B2 JP 4191159B2
Authority
JP
Japan
Prior art keywords
mass
less
copper
phase particles
titanium copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005072006A
Other languages
Japanese (ja)
Other versions
JP2006249565A (en
Inventor
保孝 菅原
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005072006A priority Critical patent/JP4191159B2/en
Priority to TW095107129A priority patent/TW200632114A/en
Priority to US11/371,469 priority patent/US20060204396A1/en
Priority to KR1020060023330A priority patent/KR100808432B1/en
Priority to CNB2006100679003A priority patent/CN100406597C/en
Publication of JP2006249565A publication Critical patent/JP2006249565A/en
Priority to KR1020070101592A priority patent/KR20070106944A/en
Application granted granted Critical
Publication of JP4191159B2 publication Critical patent/JP4191159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B9/00Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B9/00Details
    • A45B2009/005Shafts
    • A45B2009/007Shafts of adjustable length, e.g. telescopic shafts
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45BWALKING STICKS; UMBRELLAS; LADIES' OR LIKE FANS
    • A45B2200/00Details not otherwise provided for in A45B
    • A45B2200/05Walking sticks

Description

本発明は、コネクタ材等に使用する銅合金に関するものであり、高強度を有しつつ、優れたプレス打抜き性と曲げ加工性を両立させたチタン銅の製造技術を提供するものである。   The present invention relates to a copper alloy used for a connector material and the like, and provides a technique for producing titanium copper having both high press strength and bending workability while having high strength.

チタン銅は、溶体化処理によって過飽和固溶体を形成させ、その状態から低温にて時効を施すと、準安定相である変調構造が発達し、その発達段階の或る時期において著しく硬化することにより、銅合金中ベリリウム銅に次ぐ強度を有し、ベリリウム銅を凌ぐ応力緩和特性を有していることからコネクタ材等に使用されている。チタン銅は、近年その需要が益々増大の傾向にあるが、優れた曲げ加工性化を有しつつ、更なる高強度化が求められている。このニーズに対処すべく、チタン銅のさらなる高強度化に関する研究開発が種々行われている。
例えば、特許文献1では、チタン銅にCr、Zr、NiおよびFeを添加する技術が提案されている。また、特許文献2では、チタン銅にZn、Cr、Zr、Fe、Ni、Sn、In、PおよびSiを添加する技術も提案されている。
Titanium copper forms a supersaturated solid solution by solution treatment, and when it is aged at low temperature from that state, a modulated structure that is a metastable phase develops and hardens significantly at some stage of its development stage It is used for connector materials and the like because it has strength next to beryllium copper in copper alloys and has stress relaxation properties that surpass beryllium copper. In recent years, the demand for titanium copper has been increasing, but there is a demand for higher strength while having excellent bending workability. In order to meet this need, various researches and developments related to further strengthening of titanium copper have been conducted.
For example, Patent Document 1 proposes a technique of adding Cr, Zr, Ni, and Fe to titanium copper. Patent Document 2 also proposes a technique of adding Zn, Cr, Zr, Fe, Ni, Sn, In, P, and Si to titanium copper.

特開平6−248375号公報JP-A-6-248375 特開2002−356726号公報JP 2002-356726 A

しかしながら、チタン銅は、銅合金の中にあって特に金型が摩耗しやすい合金であるにもかかわらず、チタン銅に第3元素群(Fe、Co、Ni、Si、Cr、V、Nb、Zr、BまたはP)を添加し、それらの成分を含んだ第2相の析出による高強度化を狙った従来技術では、析出物自体が硬くなるために、このような材料をプレス加工すると、よりいっそう金型を摩耗させやすいという欠点が浮き彫りとなる。即ち、このようにして高強度化したチタン銅をプレス加工し続けると、金型が早く摩耗し、加工精度が低下してしまうこととなる。そのため、狭ピッチコネクタ等の精密部品の加工においては、金型の交換頻度を増やすか、このような用途への材料の使用を避けるかの対応をせざるをえない。   However, despite the fact that titanium copper is an alloy that is particularly susceptible to wear of the mold among copper alloys, the third element group (Fe, Co, Ni, Si, Cr, V, Nb, Zr, B or P) is added, and in the prior art aiming at high strength by precipitation of the second phase containing those components, the precipitate itself becomes hard. The drawback is that the mold is more easily worn. That is, if the titanium copper thus strengthened is continuously pressed, the mold is worn quickly, and the processing accuracy is lowered. For this reason, in the processing of precision parts such as narrow pitch connectors, it is necessary to increase the frequency of changing the mold or avoid the use of materials for such applications.

そこで、本発明の目的は、第3元素を添加して高強度化したチタン銅において、プレス加工性を改良することであり、さらに、優れた曲げ加工性を実現することでプレス加工性に優れたチタン銅を提供することである。   Therefore, an object of the present invention is to improve the press workability in titanium copper enhanced by adding a third element, and further, excellent press workability by realizing excellent bending workability. It is to provide titanium copper.

発明者らは、剪断加工中の素材の応力分布が、素材の結晶方位に影響されることに着眼して鋭意研究した結果、結晶方位を制御し、プレス打抜き性改善させることができることを見出した。また、粗大な第2相粒子の存在や、組織の不均一さが、曲げ加工性の悪化を招いていることに着眼して、適正な第2相粒子の分布形態を調査した結果、強度の向上に寄与しながら曲げ加工性を悪化させないためには、第2相粒子が粒界ではなく粒内に出来るだけ細かく均等に分布している必要があることを見出した。
さらに、その組成が第3元素を含んだCu-Ti-X系(Xは第三元素)であれば、その成長が抑制され、微細分散しやすくなることも突き止めた。
The inventors have intensively studied that the stress distribution of the material during shearing is affected by the crystal orientation of the material, and as a result, found that the crystal orientation can be controlled and press punchability can be improved. . In addition, as a result of investigating the appropriate distribution form of the second phase particles, focusing on the presence of coarse second phase particles and the non-uniformity of the structure causing the deterioration of the bending workability, It has been found that in order not to deteriorate the bending workability while contributing to the improvement, the second phase particles need to be distributed as finely and evenly as possible within the grains, not at the grain boundaries.
Furthermore, if the composition is a Cu—Ti—X system containing a third element (where X is a third element), it has been found that the growth is suppressed and the fine dispersion is facilitated.

即ち、本発明は、以下の通りである。
(1)Tiを2.0〜4.0質量%及びFeを0.05〜0.50質量%含有し、残部がCuである銅基合金において、他の不純物元素が合計で0.01質量%以下であり、X線回折強度比がI(311)/I(111)≧0.5であることを特徴とするチタン銅。
That is, the present invention is as follows.
(1) In a copper-based alloy containing 2.0 to 4.0% by mass of Ti and 0.05 to 0.50% by mass of Fe with the balance being Cu, the other impurity elements are 0.01% in total. %, And the X-ray diffraction intensity ratio is I (311) / I (111) ≧ 0.5.

(2)Tiを2.0〜4.0質量%及びFeと、さらにCo、Ni、Si、Cr、V、Nb、Zr、B、Pのなかから1種以上との合計を0.05〜0.50質量%含有し、残部がCuである銅基合金において、他の不純物元素が合計で0.01質量%以下であり、X線回折強度比がI(311)/I(111)≧0.5であることを特徴とする銅合金。 (2) A total of 0.05 to 4.0% by mass of Ti and Fe, and one or more of Co, Ni, Si, Cr, V, Nb, Zr, B, and P is 0.05 to In the copper base alloy containing 0.50% by mass and the balance being Cu, the other impurity elements are 0.01% by mass or less in total, and the X-ray diffraction intensity ratio is I (311) / I (111) ≧ A copper alloy characterized by being 0.5.

(3)Tiを2.0〜4.0質量%及びCo、Ni、Si、Cr、V、Nb、Zr、B、Pの中から1種以上を0.05〜0.50質量%含有し、残部がCuである銅基合金において、他の不純物元素が合計で0.01質量%以下であり、X線回折強度比がI(311)/I(111)≧0.5であることを特徴とする銅合金。 (3) 2.0 to 4.0% by mass of Ti and 0.05 to 0.50% by mass of one or more of Co, Ni, Si, Cr, V, Nb, Zr, B, and P In the copper-based alloy with the balance being Cu, the other impurity elements are 0.01% by mass or less in total, and the X-ray diffraction intensity ratio is I (311) / I (111) ≧ 0.5 Characteristic copper alloy.

(4)断面検鏡にて観察される面積0.01μm以上の第2相粒子のうち、その組成がCu−Ti−Fe系である割合が50%以上であることを特徴とする上記(1)に記載のプレス加工性に優れたチタン銅。 (4) Of the second phase particles having an area of 0.01 μm 2 or more observed by a cross-sectional microscope, the proportion of the composition being Cu—Ti—Fe based is 50% or more ( Titanium copper excellent in press workability as described in 1).

(5)断面検鏡にて観察される面積0.01μm以上の第2相粒子のうち、その組成がCu−Ti−X系である割合が50%以上であることを特徴とする上記(2)〜(3)に記載のプレス加工性に優れたチタン銅、
ここでXとは、Fe、Co、Ni、Si、Cr、V、Nb、Zr、B、Pのうちの何れかの元素とする。
(5) Of the second phase particles having an area of 0.01 μm 2 or more observed by a cross-sectional microscope, the ratio of the composition being Cu-Ti-X based is 50% or more ( Titanium copper excellent in press workability according to 2) to (3),
Here, X is any element of Fe, Co, Ni, Si, Cr, V, Nb, Zr, B, and P.

(6)断面検鏡にて観察される面積0.01μm以上である第2相粒子の平均粒径が2.0μm以下であることを特徴とする上記(1)〜(5)に記載のプレス加工性に優れたチタン銅。 (6) The average particle diameter of the second phase particles having an area of 0.01 μm 2 or more observed by a cross-sectional microscope is 2.0 μm or less, as described in (1) to (5) above Titanium copper with excellent press workability.

(7)断面検鏡にて各結晶粒内に観察される面積0.01μm以上の第2相粒子の平均数密度について結晶粒間における変動係数Cv(標準偏差/平均値)が0.3以下であることを特徴とする上記(1)〜(6)に記載のプレス加工性に優れたチタン銅。 (7) The coefficient of variation Cv (standard deviation / average value) between the crystal grains of the average number density of the second phase particles having an area of 0.01 μm 2 or more observed in each crystal grain by a cross-sectional microscope is 0.3. Titanium copper excellent in press workability according to the above (1) to (6), characterized in that:

本発明によれば、チタン銅において、第3元素群の含有量の適正化及び結晶方位の適正化を図ることで、高強度を有しつつ、優れたプレス打抜き性を実現させると同時に、第2相粒子分布の制御することで、良好な曲げ加工性も実現することができる。よって本発明のチタン銅は、コネクタ材等に用いられる銅合金として高強度を有しつつ、プレス打抜き性と曲げ加工性が両立したプレス加工性に優れた銅合金である。   According to the present invention, in titanium copper, by optimizing the content of the third element group and optimizing the crystal orientation, it is possible to achieve excellent press punchability while having high strength, By controlling the two-phase particle distribution, good bending workability can also be realized. Therefore, the titanium copper of the present invention is a copper alloy that has high strength as a copper alloy used for a connector material and the like, and has excellent press workability in which press punchability and bending workability are compatible.

(1)合金組成について
本発明では、Tiを2〜4質量%としているが、Tiが2質量%未満では、十分な強度が得られず、逆に4質量%を超えると析出物が粗大化し易いので曲げ加工性が劣化する。Tiの最も好ましい範囲は、2.5〜3.5質量%である。
(1) Alloy composition In the present invention, Ti is 2 to 4% by mass. However, if Ti is less than 2% by mass, sufficient strength cannot be obtained. Conversely, if Ti exceeds 4% by mass, precipitates become coarse. Since it is easy, bending workability deteriorates. The most preferable range of Ti is 2.5 to 3.5% by mass.

本発明では、第3元素群の添加を規定しているが、これらの元素の効果は微量の添加によりTiが十分に固溶する高温度で溶体化処理をしても結晶粒が容易に粗大化せず、微細な組織が得られることである。チタン銅においてこの効果が最も高いのがFeである。そして、Co、Ni、Si、Cr、V、Nb、Zr、B、Pにおいても、Feに準じた効果が期待でき、添加されるFeの一部をCo、Ni、Si、Cr、V、Nb、Zr、B、Pに置き換えることができる。さらには、これらの元素を単独の添加でも同様の効果が見られ、また、2種以上を複合添加してもよい。Fe及びこれらの元素は、合計で、0.01質量%以上含有するとその効果が現れ出す。一方、0.5質量%を超えると、Tiの固溶限を狭くし、粗大な第2相粒子を析出し易くなり、強度は向上するが、曲げ加工性が劣化するという弊害が顕著になる。これら第3元素のより好ましい含有範囲は、Feにおいて0.17〜0.23質量%であり、Co、Ni、Cr、Si、V、Nbにおいて0.15〜0.25質量%、Zr、B、Pにおいて0.05〜0.10質量%である。   In the present invention, the addition of the third element group is specified, but the effect of these elements is that the crystal grains easily become coarse even if solution treatment is performed at a high temperature at which Ti is sufficiently dissolved by addition of a small amount. That is, a fine structure is obtained. In titanium copper, Fe has the highest effect. Co, Ni, Si, Cr, V, Nb, Zr, B, and P can also be expected to have an effect similar to Fe, and some of the added Fe may be Co, Ni, Si, Cr, V, Nb. , Zr, B, P can be substituted. Furthermore, the same effect can be seen by adding these elements alone, or two or more of these elements may be added in combination. When Fe and these elements are contained in a total of 0.01% by mass or more, the effect appears. On the other hand, if it exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second phase particles are easily precipitated, and the strength is improved, but the adverse effect that the bending workability is deteriorated becomes remarkable. . A more preferable content range of these third elements is 0.17 to 0.23 mass% in Fe, 0.15 to 0.25 mass% in Co, Ni, Cr, Si, V, and Nb, Zr, B , P is 0.05 to 0.10% by mass.

(2)結晶方位について
一般に、延性が高いほど曲げ加工性が良好になり、延性が低いとプレス打抜き性が良好になる。よって、曲げ加工性とプレス打抜き性を両立させることは難しいとされていた。
一方、銅合金の製造工程において、高い加工度で冷間圧延すると圧延集合組織が発達し、I(110)が強くなる。そしてその状態で、再結晶焼鈍をすると、再結晶集合組織が発達し、I(100)が強くなる。冷間圧延上がりの素材は延性に乏しく、逆に再結晶焼鈍後の素材は柔らかく伸びやすい。この関係から、従来技術においては、I(100)とI(110)の関係に注目した例が多く、曲げ加工性を良好にするにはI(110)に対してI(100)を強く規定し、逆にプレス打抜き性を良好にするにはI(100)に対してI(110)を強く規定したものが提案されていた。
(2) Crystal orientation Generally, the higher the ductility, the better the bending workability, and the lower the ductility, the better the press punchability. Therefore, it has been considered difficult to achieve both bendability and press punchability.
On the other hand, when cold rolling is performed at a high workability in the copper alloy manufacturing process, a rolling texture develops and I (110) becomes strong. If recrystallization annealing is performed in this state, a recrystallization texture develops and I (100) becomes stronger. The material after cold rolling has poor ductility, and conversely, the material after recrystallization annealing is soft and easy to stretch. From this relationship, in the prior art, there are many examples that pay attention to the relationship between I (100) and I (110), and in order to improve the bending workability, I (100) is strongly defined with respect to I (110). On the other hand, in order to improve the press punchability, one that strongly defines I (110) with respect to I (100) has been proposed.

本発明では、I(311)とI(111)の関係に注目し、以下の知見を見出した。なお、I(311)とI(111)の関係に注目した従来例はない。
I(111)に比較してI(311)が発達すると、図1(a)のように、剪断加工時の亀裂の発生角度が素材面に対して90°に近くなり、これによって破断に至るまでの亀裂の発達がスムースになる。この現象は、I(311)/I(111)≧0.5になると効果が現れるが、素材の強度や延性には全く影響を及ぼさない。一方、図1(b)のように、亀裂の発生角度が90°からずれてくると、亀裂の発達中において素材の塑性歪域が広がってしまい、抜きが悪くなってしまう。またそれによって2次剪断面を生じることも重なって、金型が摩耗しやすくなる。延性を下げずにプレス打抜き性のみを高める関係を見出した。
In the present invention, focusing on the relationship between I (311) and I (111), the following findings have been found. There is no conventional example that focuses on the relationship between I (311) and I (111).
When I (311) develops compared to I (111), as shown in FIG. 1A, the crack generation angle at the time of shearing is close to 90 ° with respect to the material surface, which leads to fracture. The development of cracks up to is smooth. This phenomenon is effective when I (311) / I (111) ≧ 0.5, but does not affect the strength and ductility of the material. On the other hand, as shown in FIG. 1B, when the crack generation angle deviates from 90 °, the plastic strain region of the material is expanded during the development of the crack, and the removal becomes worse. In addition, a secondary shear surface is also formed thereby, and the mold is likely to be worn. The present inventors have found a relationship in which only press punchability is improved without lowering ductility.

本発明の合金系においてI(311)/I(111)≧0.5であり、より好ましくは、I(311)/I(111)≧1.0であり、更に好ましくは、I(311)/I(111)≧1.5である。
なお、I(311)/I(111)≧0.5の所定の結晶方位を得る方法については、溶質原子を完全に固溶した状態で冷間圧延することにより、最終的に(311)面が発達するので、中間工程における溶体化処理をこの第2相粒子が完全に固溶する熱処理条件で行うことである。
In the alloy system of the present invention, I (311) / I (111) ≧ 0.5, more preferably I (311) / I (111) ≧ 1.0, and even more preferably I (311). /I(111)≧1.5.
In addition, about the method of obtaining the predetermined crystal orientation of I (311) / I (111) ≧ 0.5, the (311) plane is finally obtained by cold rolling in a state where solute atoms are completely dissolved. Therefore, the solution treatment in the intermediate process is performed under the heat treatment conditions in which the second phase particles are completely dissolved.

(3)第2相粒子の組成構成及び分布形態
本発明は、良好な曲げ加工性が得られるための必要条件として、第2相粒子の組成構成、平均粒径、数密度の結晶粒間のばらつきを規定する。
一般的には、第2相粒子には、炉材等の外来性の介在物、溶解中に生成する反応生成物、凝固中に生成する晶出物、焼鈍中に形成される析出物があるが、本発明が対象とする合金系では、第2相粒子はほとんどが熱処理中に形成される析出物である。
(3) Composition composition and distribution form of second phase particles In the present invention, as a necessary condition for obtaining good bending workability, composition composition of second phase particles, average grain size, and number density between crystal grains Define variation.
In general, the second-phase particles include foreign inclusions such as furnace materials, reaction products generated during melting, crystallized products generated during solidification, and precipitates formed during annealing. However, in the alloy system targeted by the present invention, the second phase particles are mostly precipitates formed during the heat treatment.

第2相粒子は、結晶粒内に細かくかつ均等に分散している状態であれば強度の向上に寄与し、また、曲げ加工性も向上する。粗大化したり、局所的に偏った分布をしてしたりすると曲げ加工性を害するようになる。具体的には、第2相粒子の平均粒径が2μmを超えていたり、第2相粒子の平均数密度における結晶粒間の変動係数(標準偏差/平均値)が0.3を超えるような分布をしていたりすると、曲げ加工性に著しく支障をきたすようになる。ここで、「粒径」とは、断面観察したときの円相当径を指す。「円相等径」とは、同じ面積をもつ真円の直径である。   If the second phase particles are finely and evenly dispersed in the crystal grains, the second phase particles contribute to the improvement of the strength and the bending workability is also improved. If it becomes coarse or has a locally biased distribution, bending workability will be impaired. Specifically, the average particle size of the second phase particles exceeds 2 μm, or the coefficient of variation (standard deviation / average value) between crystal grains in the average number density of the second phase particles exceeds 0.3. If it is distributed, the bending workability will be significantly impaired. Here, the “particle diameter” refers to the equivalent circle diameter when the cross section is observed. “Circular equivalent diameter” is the diameter of a perfect circle having the same area.

そこで、結晶粒内に、微細な第2相粒子が均等に分散している状態を得るには、溶質原子が完全に固溶している状態で加熱し、第2相粒子組成の固溶限直上の温度で最終の溶体化処理を行うことが有効である。一般に均質なα相を、第2相との境界線の温度まで加熱すると、平衡状態であっても実際の空間には揺らぎがあるので、至る所で頻繁に第2相の核生成と消滅が起こる。この現象が起こっている温度では、再結晶しても結晶粒が成長しにくい。従って、Cu−Ti−X相(Xは第三元素)の固溶限直上であれば、Cu−Ti−X系の第2相粒子が微細に分散した状態が得られ、これにより再結晶粒も微細化する。   Therefore, in order to obtain a state in which fine second phase particles are uniformly dispersed in the crystal grains, heating is performed in a state where solute atoms are completely dissolved, and the solid solubility limit of the second phase particle composition is obtained. It is effective to perform the final solution treatment at a temperature immediately above. In general, when the homogeneous α phase is heated to the temperature of the boundary line with the second phase, the actual space fluctuates even in the equilibrium state, so the nucleation and annihilation of the second phase frequently occurs everywhere. Occur. At a temperature at which this phenomenon occurs, crystal grains are difficult to grow even if recrystallization occurs. Therefore, if the Cu-Ti-X phase (X is the third element) is just above the solid solubility limit, a Cu-Ti-X-based second phase particle is finely dispersed, whereby recrystallized grains are obtained. Also refines.

さらに、Cu−Ti−X系の第2相粒子自体が、Cu−Ti系の第2相粒子よりも、粗大化しにくいという性質があるため、第2相粒子のうち、Cu−Ti−X系の第2相粒子の個数が、第2相粒子全体の個数の50%以上であれば、第2相粒子サイズ及びその分布形態において、上述の所望な状態が得られ、微細な再結晶粒も得られる。Cu−Ti−X系の第2相粒子が、Cu−Ti系の第2相粒子よりも、粗大化しにくい性質は、第2相粒子の成長において、後者はTiの拡散のみで起こるのに対し、前者はTiとX両方の拡散を必要とすることによるものである。この性質は低温でも有効であり、Cu−Ti−X系の第2相粒子は最終工程の時効処理においても粗大化しにくい。このことからも、最終の溶体化処理では、第2相粒子組成をできるだけ多くCu−Ti−X系としておくことが好ましい。   Further, since the Cu-Ti-X second phase particles themselves are less likely to be coarser than the Cu-Ti second phase particles, among the second phase particles, the Cu-Ti-X type If the number of the second phase particles is 50% or more of the total number of the second phase particles, the above-mentioned desired state can be obtained in the second phase particle size and its distribution form, and fine recrystallized grains can get. The Cu-Ti-X second phase particles are less likely to be coarser than the Cu-Ti second phase particles, whereas the latter occurs only in the diffusion of Ti in the growth of the second phase particles. The former is due to the need for diffusion of both Ti and X. This property is effective even at a low temperature, and the Cu—Ti—X-based second phase particles are not easily coarsened even in the aging treatment in the final step. For this reason as well, it is preferable to make the second phase particle composition as much as possible in the Cu—Ti—X system in the final solution treatment.

しかし、既に第2相粒子が析出している状態にて、最終溶体化処理をどのような条件で行っても、既存の第2相が成長するだけで、微細なものだけが均一に分散した状態は得られない。
従って、最終溶体化処理の前の熱処理工程において、溶質原子を全て固溶させておかなくてはいけない。なお、この時点では、結晶粒は粗大化してもよく、最終の結晶粒径には影響しない。溶質原子を完全に固溶させた状態で冷間圧延後、最終の溶体化処理で、再結晶と第2相粒子の析出とを同時に進行させることによって、微細で均質な結晶組織が得られるのである。
However, in the state where the second phase particles are already precipitated, no matter what the final solution treatment is performed, the existing second phase only grows and only fine ones are uniformly dispersed. A state cannot be obtained.
Therefore, in the heat treatment step before the final solution treatment, all solute atoms must be dissolved. At this point, the crystal grains may be coarsened and do not affect the final crystal grain size. After cold rolling in a state where solute atoms are completely in solid solution, a fine and homogeneous crystal structure can be obtained by simultaneously proceeding with recrystallization and precipitation of second phase particles in the final solution treatment. is there.

(4)製造方法
以上から本発明の合金を作りこむための基本工程は、
「十分な溶体化処理(第1次溶体化処理)→冷間圧延(中間圧延)→析出させる第2相粒子成分の固溶限の直上での溶体化処理(最終(第2次)溶体化処理)→調質圧延(最終圧延)→時効」
である。
「第1次溶体化処理」は、最終圧延前の中間圧延前の溶体化処理をいう。規定の成分に溶製後、鋳造し、熱延を経て、所定の厚みまでになるまで、冷間圧延、焼鈍を適当に繰り返し、第1次溶体化処理を行うが、熱延後すぐに第1次溶体化処理を行っても良い。
また、「第2次溶体化処理」は最終圧延前の溶体化処理をいうが、上述の最終の溶体化処理に該当し、以下においても最終の溶体化処理と表現する。
(4) The basic process for making the alloy of the present invention from the above manufacturing method is as follows:
“Sufficient solution treatment (primary solution treatment) → cold rolling (intermediate rolling) → solution treatment immediately above the solid solution limit of the second phase particle component to be precipitated (final (secondary) solution treatment Processing) → temper rolling (final rolling) → aging ”
It is.
“Primary solution treatment” refers to a solution treatment before intermediate rolling before final rolling. After melting to the specified components, casting, hot rolling, and cold rolling and annealing are appropriately repeated until the thickness reaches a predetermined thickness, and the first solution treatment is performed. A primary solution treatment may be performed.
Further, “secondary solution treatment” refers to a solution treatment before the final rolling, and corresponds to the above-mentioned final solution treatment, and is hereinafter also expressed as a final solution treatment.

以下に本発明の実施の形態として、その工程を順次説明する。
1)インゴット製造工程
適当量のCuに第3元素群としてFe、Co、Ni、Si、Cr、V、Nb、Zr、B、Pの中から1種以上を0.01〜0.50質量%添加し、十分保持した後にTiを2〜4質量%添加する。
第3元素群を有効に作用させるに溶け残りをなくすため、十分に保持する必要があり、また、Tiは第3元素群よりCu中に溶け易いので第3元素群の溶解後に添加すればよい。
ここで酸化物系の介在物が発生すると、素材の強度及び曲げ加工性にも悪影響を及ぼすので、これを防ぐために、溶解及び鋳造は、真空中または、不活性ガス雰囲気で行うのがよい。
The steps will be sequentially described as embodiments of the present invention.
1) Ingot production process 0.01 to 0.50 mass% of one or more of Fe, Co, Ni, Si, Cr, V, Nb, Zr, B, and P as a third element group in an appropriate amount of Cu After adding and maintaining sufficiently, 2-4 mass% of Ti is added.
In order to eliminate the undissolved residue in order for the third element group to act effectively, it is necessary to keep it sufficiently, and since Ti is more easily dissolved in Cu than the third element group, it may be added after the third element group is dissolved. .
Oxide inclusions generated here adversely affect the strength and bending workability of the material. Therefore, in order to prevent this, melting and casting are preferably performed in a vacuum or in an inert gas atmosphere.

2)インゴット製造工程以降の工程
このインゴット製造工程後には、900℃以上で3時間以上の均質化焼鈍を行うことが望ましい。この時点で凝固偏析や鋳造中に発生した晶出物を完全に無くすことが望ましく、それは、後述する溶体化処理において、第2相粒子の析出を、微細かつ均一に分散させるためであり、混粒の防止にも効果がある。その後、熱間圧延を行い、冷間圧延と焼鈍を繰り返して、溶体化処理を行う。途中の焼鈍でも温度が低いと第2相粒子が形成されるので、この第2相粒子が完全に固溶する温度で行う。第3元素群を添加していない通常のチタン銅であれば、その温度は800℃でよいが、第3元素群を添加したチタン銅はその温度を900℃以上とすることが望ましい。そのときの昇温速度及び冷却速度においても極力速くし、第2相粒子が析出しないようにする。溶質原子を完全に固溶した状態で冷間圧延することにより、最終的に(311)面が発達するのである。さらに、溶体化処理直前の冷間圧延においては、その加工度が高いほど、溶体化処理における第2相粒子の析出が均一かつ微細なものになる。
2) Process after the ingot manufacturing process After this ingot manufacturing process, it is desirable to perform homogenization annealing for 3 hours or more at 900 degreeC or more. At this time, it is desirable to completely eliminate solidification segregation and crystallized substances generated during casting, in order to finely and uniformly disperse the precipitation of the second phase particles in the solution treatment described later. It is also effective in preventing grain. Thereafter, hot rolling is performed, and cold rolling and annealing are repeated to perform a solution treatment. Since the second phase particles are formed when the temperature is low even during annealing, the second phase particles are formed at a temperature at which they are completely dissolved. If it is normal titanium copper to which the third element group is not added, the temperature may be 800 ° C., but the titanium copper to which the third element group is added preferably has a temperature of 900 ° C. or higher. At that time, the heating rate and the cooling rate are increased as much as possible so that the second phase particles are not precipitated. By cold rolling in a state where the solute atoms are completely dissolved, the (311) plane is finally developed. Furthermore, in cold rolling immediately before the solution treatment, the higher the degree of processing, the more uniform and fine the precipitation of the second phase particles in the solution treatment.

3)最終溶体化処理
第2相粒子組成の固溶限の温度まで急速に加熱し、冷却速度も速くすれば粗大な第2相粒子の発生が抑制される。また、固溶温度での加熱時間は短いほうが結晶粒を微細化することができる。この時点で粒界に発生した第2相粒子が最終の時効で成長するので、この時点での第2相粒子はなるべく少なく、小さいほうがよい。
3) Final solution treatment If the solution is rapidly heated to the temperature of the solid solution limit of the second phase particle composition and the cooling rate is increased, the generation of coarse second phase particles is suppressed. Further, the shorter the heating time at the solid solution temperature, the finer the crystal grains can be made. Since the second phase particles generated at the grain boundary at this point grow with the final aging, the second phase particles at this point are as small as possible and preferably smaller.

4)最終の冷間圧延・最終の時効処理
上記溶体化処理後、冷間圧延及び時効処理を行う。冷間圧延については、加工度25%以下が望ましい。加工度が高いほど次の時効処理で粒界析出が起こり易いからである。
時効処理については、低温ほど粒界への析出を抑制することができる。同じ強度が得られる条件であっても、高温短時間側より低温長時間側の方が、粒界析出を抑制できるのである。従来技術において適正範囲とされていた420〜450℃では、時効が進むにつれて強度は向上するが、粒界析出が生じやすく、僅かな過時効でも曲げ加工性を低下させてしまう。添加元素によっても適正な時効条件は異なってくるが、高くとも380℃×3hとし、低い温度であれば、360℃×24hと加熱時間は長くてもよい。
4) Final cold rolling / final aging treatment After the solution treatment, cold rolling and aging treatment are performed. For cold rolling, a working degree of 25% or less is desirable. This is because the higher the degree of processing, the easier the grain boundary precipitation occurs in the next aging treatment.
About aging treatment, precipitation to a grain boundary can be suppressed, so that it is low temperature. Even under conditions where the same strength can be obtained, grain boundary precipitation can be suppressed on the low temperature long time side than on the high temperature short time side. At 420 to 450 ° C., which is an appropriate range in the prior art, the strength is improved as aging progresses, but grain boundary precipitation is likely to occur, and bending workability is reduced even by slight overaging. Although the appropriate aging conditions vary depending on the additive element, the heating time may be as long as 360 ° C. × 24 h at a temperature as low as 380 ° C. × 3 h.

次に実施例を説明する。
本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されることから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。
Next, examples will be described.
When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

まず、実施例1〜7および比較例8〜12について、表1に示す組成となるように、主原料CuとTi及び添加元素(Fe、Co、Ni、Cr、Si、V、Nb、Zr、BおよびP)を配合し、溶解した。第3元素群を有効に作用させるに溶け残りをなくすため、十分に保持し、その後Tiを添加した。これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, for Examples 1 to 7 and Comparative Examples 8 to 12, the main raw materials Cu and Ti and additive elements (Fe, Co, Ni, Cr, Si, V, Nb, Zr, B and P) were blended and dissolved. In order to eliminate the undissolved residue in order for the third element group to act effectively, Ti was added sufficiently. These were poured into a mold in an Ar atmosphere to produce about 2 kg of ingots.

上記インゴットに酸化防止剤を塗布して24時間の常温乾燥後、950℃×12時間の加熱をして熱間圧延をして、板厚10mmの板を得た。次に偏析を抑制するために再び酸化防止剤を塗布後950℃×2時間の加熱をして水冷した。ここで水冷したのは、可能な限り溶体化させるためであり、酸化防止剤を塗布したのは、粒界酸化及び表面から進入してきた酸素が添加元素成分と反応して介在物化する内部酸化を可能な限り防止するためである。各熱延板は、それぞれ機械研摩及び酸洗による脱スケール後、板厚0.2mmまで冷間圧延した。その後、急速加熱が可能な焼鈍炉に挿入して、昇温速度50℃/秒で第2相粒子組成の固溶限の温度(例えば、TiとFeの添加量がそれぞれ3質量%、0.2質量%では800℃)まで加熱し、2分間保持後水冷した。その後、酸洗して脱スケール後冷間圧延して板厚0.15mmとし、不活性ガス雰囲気中で時効して発明例の試験片とした。比較例の試験片については、No.8〜11は成分調整、No.12〜14は、本発明において重要な工程である中間溶体化処理工程の条件を調整し、得られたものである。   An antioxidant was applied to the ingot, dried at room temperature for 24 hours, heated at 950 ° C. for 12 hours and hot-rolled to obtain a plate having a thickness of 10 mm. Next, in order to suppress segregation, after applying an antioxidant again, it was heated at 950 ° C. for 2 hours and cooled with water. The reason for water cooling here is to make the solution as much as possible, and the reason why the antioxidant is applied is that the grain boundary oxidation and the internal oxidation in which the oxygen entering from the surface reacts with the additive element component to become inclusions are performed. This is to prevent as much as possible. Each hot-rolled sheet was cold-rolled to a thickness of 0.2 mm after being descaled by mechanical polishing and pickling. Thereafter, it is inserted into an annealing furnace capable of rapid heating, and the temperature of the second phase particle composition at the rate of temperature rise of 50 ° C./second (for example, the addition amount of Ti and Fe is 3% by mass, 0.00%, respectively). It was heated to 800 ° C. at 2% by mass, held for 2 minutes and then cooled with water. Then, pickling, descaling, and cold rolling to a plate thickness of 0.15 mm, aging in an inert gas atmosphere, to obtain a test piece of the invention example. For the test piece of the comparative example, no. 8-11 are component adjustment, No.8. Nos. 12 to 14 are obtained by adjusting the conditions of the intermediate solution treatment step which is an important step in the present invention.

Figure 0004191159
Figure 0004191159

まず、それぞれの試験片について、XRDにより、(111)と(311)の回折強度を求め、I(311)/I(111)を求めた。
また、第2相粒子の分布形態については、電界放出型オージェ電子分光分析装置(FE−AES)とそれに連動する画像処理装置を用いて評価した。すなわち単位走査視野に存在する面積0.01μm2以上の第2相粒子全ての個数を測定し、その総数(S)と組成がCu−Ti−Fe系若しくはCu−Ti−X系である第2相粒子の合計(Sx)とから、A値(Sx÷S×100)を求めた。同様に任意の第2相粒子5000個の面積を平均し、その円相当径を第2相粒子の平均粒径Dとした。更に、結晶粒の母集団から任意の結晶粒100個について、それぞれの粒内に存在する第2相粒子の個数をそれぞれの結晶粒の面積で除した値(平均数密度)を求め、その変動係数Cv(標準偏差÷平均値)を求めた。表2にそれぞれの試験片のI(311)/I(111)、A値、D、Cvを示す。
First, for each test piece, the diffraction intensities of (111) and (311) were determined by XRD, and I (311) / I (111) was determined.
Further, the distribution form of the second phase particles was evaluated using a field emission Auger electron spectroscopy analyzer (FE-AES) and an image processing apparatus linked thereto. That is, the number of all second phase particles having an area of 0.01 μm2 or more existing in the unit scanning field is measured, and the total number (S) and the composition of the second phase are Cu—Ti—Fe system or Cu—Ti—X system. The A value (Sx ÷ S × 100) was determined from the total of the particles (Sx). Similarly, the area of 5000 arbitrary second phase particles was averaged, and the equivalent circle diameter was defined as the average particle diameter D of the second phase particles. Further, for any 100 crystal grains from the population of crystal grains, a value (average number density) obtained by dividing the number of second phase grains present in each grain by the area of each crystal grain is obtained, and the variation The coefficient Cv (standard deviation ÷ average value) was determined. Table 2 shows I (311) / I (111), A value, D, and Cv of each test piece.

Figure 0004191159
Figure 0004191159

次に引っ張り試験を行って、0.2%耐力を測定し、W曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
金型磨耗性については、実際に連続プレス機で一定回数の打抜きを行い、金型の磨耗状況によって変化する切断部のバリ高さと破断面比率を測定して評価した。ここで、バリ高さとは図2に示す突起部の高さであり、金型が磨耗するにしたがってバリが高くなってくる。また金型が磨耗するにしたがって、図2に示す剪断面の割合が多くなり、即ち破断面比率h/(h+h)は小さくなる。
なお、他のプレス条件は以下の通りであった。
金型工具材料:SKD11、クリアランス:10μm、ストローク:200rpm 図2に評価に用いた金型セット形状を示す。1辺約5mmの正方形で4つの角の曲率が異なっており、それぞれの曲率半径は、0.05mm、0.1mm、0.2mm、0.3mmである。曲率半径が小さい程、剪断加工時に応力集中が生じるので磨耗し易い。しかし、曲率半径が小さい程切断面形状がばらついて観察しにくくなる。また、プレス加工後の孔部と抜き落とし部とでは、抜き落とし側の方が観察し易い。以上を考慮し、今回の評価は抜き落とし側の曲率半径が0.1mmの角を観察した。プレス打抜き性に及ぼす素材以外の因子を避けるために、無潤滑で打抜き、十万回打ちぬいたときに素材間の差異が顕著となったので、そのときの値を評価値として採用した。バリ高さはレーザー変位計で測定し、破断面比率は光学顕微鏡による断面観察で測定した。
Next, a tensile test was performed to measure a 0.2% proof stress, and a W bending test was performed to measure an MBR / t value, which is a ratio of the minimum radius (MBR) at which cracks do not occur to the plate thickness (t).
The die wearability was evaluated by actually punching a fixed number of times with a continuous press and measuring the burr height and fracture surface ratio of the cut part, which varies depending on the wear state of the die. Here, the burr height is the height of the protrusion shown in FIG. 2, and the burr becomes higher as the mold is worn. Further, as the mold wears, the ratio of the shear plane shown in FIG. 2 increases, that is, the fracture surface ratio h 2 / (h 1 + h 2 ) decreases.
Other press conditions were as follows.
Mold tool material: SKD11, clearance: 10 μm, stroke: 200 rpm FIG. 2 shows a mold set shape used for evaluation. The curvature of four corners is different in a square of about 5 mm on a side, and the curvature radii are 0.05 mm, 0.1 mm, 0.2 mm, and 0.3 mm, respectively. The smaller the radius of curvature, the easier it is to wear because stress concentration occurs during shearing. However, the smaller the radius of curvature is, the more difficult it is to observe because the cut surface shape varies. In addition, it is easier to observe the punched-out side and the punched-out side of the punched-out side. Considering the above, in this evaluation, the corner having a radius of curvature of 0.1 mm on the removal side was observed. In order to avoid factors other than the material affecting the press punchability, the difference between the materials became remarkable when punched without lubrication and punched 100,000 times, and the value at that time was adopted as the evaluation value. The burr height was measured with a laser displacement meter, and the fracture surface ratio was measured by cross-sectional observation with an optical microscope.

Figure 0004191159
Figure 0004191159

表3から明らかなように、各発明例においては、いずれも0.2%耐力が850MPa以上でMBR/t値が2.0以下、無潤滑で10万回打抜き後の破断面比率が0.10以上、バリ高さが40μm以下となっており、高い強度と優れた曲げ加工性更にプレス打抜き性とを同時に実現していることが判る。発明例No.3〜7ではTiの添加量が特に好ましい範囲(2.5〜3.5質量%)としたことにより、0.2%耐力が著しく向上し、900MPa以上となっている。発明例No.5以外は、第2相粒子の分布形態において、Cu−Ti−X系粒子の存在比率を表すA値、平均粒径D、分布位置の均一性を表すCvが、好ましい値になっているので、曲げ加工性が向上している。発明例1〜2及び5〜7は、I(311)/I(111)が、更に好ましい範囲になっているので、プレス加工性が更に向上している。
発明例No.5は、第2相粒子の分布形態において、第三元素の添加量が少ないため、Cu−Ti−X系粒子の存在比率が50%以下となってため、他の発明例より曲げ加工性より劣っている。
As is apparent from Table 3, in each of the inventive examples, the 0.2% yield strength is 850 MPa or more, the MBR / t value is 2.0 or less, and the fracture surface ratio after punching 100,000 times without lubrication is 0. 10 or more and the burr height is 40 μm or less, and it can be seen that high strength, excellent bending workability and press punchability are realized at the same time. Invention Example No. In 3-7, when the addition amount of Ti was within a particularly preferable range (2.5-3.5 mass%), the 0.2% proof stress was remarkably improved and became 900 MPa or more. Invention Example No. Other than 5, in the distribution form of the second phase particles, the A value representing the abundance ratio of the Cu—Ti—X-based particles, the average particle diameter D, and Cv representing the uniformity of the distribution position are preferable values. Bending workability is improved. In Invention Examples 1-2 and 5-7, since I (311) / I (111) is in a more preferable range, press workability is further improved.
Invention Example No. No. 5, since the addition amount of the third element is small in the distribution form of the second phase particles, the abundance ratio of the Cu—Ti—X-based particles is 50% or less, which is more than the bending workability than the other invention examples. Inferior.

一方、比較例No.8は、Tiの添加量が2.0質量%未満であるため、十分な0.2%耐力が得られていない。逆に、比較例No.9は、Tiの添加量が4.0質量%以上を超えているため、曲げ加工性が悪化している。比較例No.10は、本発明で規定した第3元素群が添加されていないので、強度及び曲げ加工性が劣っている。逆に、比較例No.11においては、第3元素群の添加量の合計値が0.5質量%を超えているために、第2相粒子が必要以上に析出してしまい、曲げ加工性が悪化している。そして中間冷延前に行う溶体化処理において、比較例No.12は均熱温度を低くし、No.13は昇温速度を遅くし、No.14は冷却速度を遅くしたものである。具体的には、No.12の均熱温度は800℃、No.13の昇温速度は5℃/sec、No.14の冷却速度は30℃/secで行った。何れもCu−Ti−X系の析出物が残存した状態で中間冷延をすることになり、最終的にI(311)/I(111)が0.5未満となって、プレス打抜き性が低下している。 On the other hand, Comparative Example No. In No. 8, since the addition amount of Ti is less than 2.0% by mass, sufficient 0.2% yield strength is not obtained. Conversely, Comparative Example No. In No. 9, since the addition amount of Ti exceeds 4.0% by mass or more, bending workability is deteriorated. Comparative Example No. No. 10 is inferior in strength and bending workability because the third element group defined in the present invention is not added. Conversely, Comparative Example No. In No. 11, since the total value of the added amount of the third element group exceeds 0.5 mass%, the second phase particles are precipitated more than necessary, and the bending workability is deteriorated. And in the solution treatment performed before intermediate cold rolling, comparative example No. No. 12 lowers the soaking temperature. No. 13 slows the heating rate. No. 14 is a slow cooling rate. Specifically, no. No. 12 has a soaking temperature of 800 ° C. The heating rate of No. 13 is 5 ° C./sec. The cooling rate of 14 was 30 ° C./sec. In any case, intermediate cold rolling is performed with Cu-Ti-X-based precipitates remaining, and finally, I (311) / I (111) is less than 0.5, and press punchability is improved. It is falling.

プレス打抜き加工において発生する亀裂の入り方の概念図である。It is a conceptual diagram of the method of entering the crack which generate | occur | produces in press punching. プレス打抜きにおいて発生するバリの説明図である。It is explanatory drawing of the burr | flash which generate | occur | produces in press punching. 評価に用いた金型セット形状を示す。The mold set shape used for evaluation is shown.

Claims (6)

Tiを2.0〜4.0質量%及びFeを0.05〜0.50質量%含有し、残部がCuである銅基合金において、他の不純物元素が合計で0.01質量%以下であり、X線回折強度比がI(311)/I(111)≧0.5、かつW曲げ試験で割れの発生しない最小半径(MBR)の板厚(t)に対する比(MBR/t値)が2以下であることを特徴とする耐金型摩耗性に優れたチタン銅。 In a copper-based alloy containing 2.0 to 4.0% by mass of Ti and 0.05 to 0.50% by mass of Fe with the balance being Cu, the other impurity elements are 0.01% by mass or less in total. Yes, X-ray diffraction intensity ratio is I (311) / I (111) ≧ 0.5 , and the ratio (MBR / t value) of the minimum radius (MBR) at which cracks do not occur in the W bending test to the thickness (t) Titanium copper excellent in mold wear resistance , characterized in that is 2 or less . Tiを2.0〜4.0質量%及びFe、さらにCo、Ni、Si、Cr、V、Nb、Zr、B、Pの中から1種以上との合計を0.05〜0.50質量%含有し、残部がCuである銅基合金において、他の不純物元素が合計で0.01質量%以下であり、X線回折強度比がI(311)/I(111)≧0.5、かつW曲げ試験で割れの発生しない最小半径(MBR)の板厚(t)に対する比(MBR/t値)が2以下であることを特徴とする耐金型摩耗性に優れたチタン銅。 0.05-0.50 mass in total with 2.0-4.0 mass% of Ti and Fe, and also 1 or more types out of Co, Ni, Si, Cr, V, Nb, Zr, B, P In the copper-based alloy containing Cu and the balance being Cu, the other impurity elements are 0.01% by mass or less in total, and the X-ray diffraction intensity ratio is I (311) / I (111) ≧ 0.5 , Titanium copper excellent in mold wear resistance , characterized in that the ratio (MBR / t value) of the minimum radius (MBR) at which cracks do not occur in the W bending test to the plate thickness (t) is 2 or less . 断面検鏡にて観察される面積0.01μm2以上の第2相粒子のうち、その組成がCu−Ti−Fe系である割合が50%以上であることを特徴とする請求項1又は2に記載の耐金型摩耗性に優れたチタン銅。 Of the second phase particles area 0.01 [mu] m 2 or more is observed in cross-section speculum, according to claim 1 or 2 percentage the composition is Cu-Ti-Fe system is characterized in that 50% or more Titanium copper excellent in mold wear resistance described in 1 . 断面検鏡にて観察される面積0.01μm2以上である第2相粒子の平均粒径が2.0μm以下であることを特徴とする請求項1〜3いずれか1項に記載の耐金型摩耗性に優れたチタン銅。 The gold resistance according to any one of claims 1 to 3, wherein an average particle diameter of the second phase particles having an area of 0.01 µm 2 or more observed by a cross-sectional microscope is 2.0 µm or less. Titanium copper with excellent mold wear . 断面検鏡にて各結晶粒内に観察される面積0.01μm2以上の第2相粒子の平均数密度について結晶粒間における変動係数Cv(標準偏差/平均値)が0.3以下であることを特徴とする第1〜4いずれか1項に記載の耐金型摩耗性に優れたチタン銅。 The coefficient of variation Cv (standard deviation / average value) between crystal grains is 0.3 or less with respect to the average number density of second phase particles having an area of 0.01 μm 2 or more observed in each crystal grain by a cross-sectional microscope. 5. Titanium copper excellent in mold wear resistance according to any one of items 1 to 4 . Tiを2.0〜4.0質量%及びFeを0.05〜0.50質量%含有し、残部がCuであり、他の不純物元素が合計で0.01質量%以下である銅基合金を、完全固溶状態とする溶体化処理(第1次溶体化処理)、冷間圧延、析出する第2相粒子成分の固溶限の直上での溶体化処理(最終溶体化処理)、加工度25%以下の最終圧延、及び時効処理を行うことにより、請求項1又は2の耐金型摩耗性に優れたチタン銅を製造する方法 Copper-based alloy containing 2.0 to 4.0% by mass of Ti and 0.05 to 0.50% by mass of Fe, the balance being Cu, and other impurity elements being 0.01% by mass or less in total Solution treatment (primary solution treatment), cold rolling, solution treatment (final solution treatment) immediately above the solid solution limit of the precipitated second phase particle component, processing A method for producing titanium copper having excellent mold wear resistance according to claim 1 or 2 by performing final rolling and aging treatment at a degree of 25% or less .
JP2005072006A 2005-03-14 2005-03-14 Titanium copper with excellent press workability Active JP4191159B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005072006A JP4191159B2 (en) 2005-03-14 2005-03-14 Titanium copper with excellent press workability
TW095107129A TW200632114A (en) 2005-03-14 2006-03-03 Titanium copper alloy having excellent punchability
US11/371,469 US20060204396A1 (en) 2005-03-14 2006-03-09 Titanium copper alloy having excellent punchability
KR1020060023330A KR100808432B1 (en) 2005-03-14 2006-03-14 Titanium copper alloy with exellent press formability
CNB2006100679003A CN100406597C (en) 2005-03-14 2006-03-14 Titanium copper alloy having excellent punchability
KR1020070101592A KR20070106944A (en) 2005-03-14 2007-10-09 Titanium copper alloy with exellent press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072006A JP4191159B2 (en) 2005-03-14 2005-03-14 Titanium copper with excellent press workability

Publications (2)

Publication Number Publication Date
JP2006249565A JP2006249565A (en) 2006-09-21
JP4191159B2 true JP4191159B2 (en) 2008-12-03

Family

ID=36971140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072006A Active JP4191159B2 (en) 2005-03-14 2005-03-14 Titanium copper with excellent press workability

Country Status (5)

Country Link
US (1) US20060204396A1 (en)
JP (1) JP4191159B2 (en)
KR (2) KR100808432B1 (en)
CN (1) CN100406597C (en)
TW (1) TW200632114A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP2008248355A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Titanium copper for electronic parts, and electronic parts using the same
JP4563480B2 (en) 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
EP2196548B1 (en) 2008-12-02 2012-05-16 Dowa Metaltech Co., Ltd. Cu-Ti based copper alloy sheet material and method of manufacturing same
US8097102B2 (en) 2008-12-08 2012-01-17 Dowa Metaltech Co., Ltd. Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP5261582B2 (en) 2010-08-31 2013-08-14 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP5393629B2 (en) * 2010-09-30 2014-01-22 Jx日鉱日石金属株式会社 Titanium copper and copper products, electronic parts and connectors using the same
JP5611773B2 (en) 2010-10-29 2014-10-22 Jx日鉱日石金属株式会社 Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP5226057B2 (en) * 2010-10-29 2013-07-03 Jx日鉱日石金属株式会社 Copper alloys, copper products, electronic components and connectors
JP6214126B2 (en) * 2011-10-07 2017-10-18 Jx金属株式会社 Titanium copper and method for producing the same, as well as copper products and electronic device parts using titanium copper
JP6247812B2 (en) * 2012-03-30 2017-12-13 Jx金属株式会社 Titanium copper and method for producing the same
JP5470483B1 (en) * 2012-10-22 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6368518B2 (en) * 2014-03-28 2018-08-01 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP2016188435A (en) * 2016-06-22 2016-11-04 Jx金属株式会社 Titanium copper and method for producing the same, and drawn copper article and electronic equipment component using the titanium copper
JP2017014625A (en) * 2016-09-06 2017-01-19 Jx金属株式会社 Titanium copper and manufacturing method therefor
CN113802026B (en) * 2021-09-18 2022-06-14 宁波博威合金板带有限公司 Titanium bronze strip and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248375A (en) * 1992-10-26 1994-09-06 Nikko Kinzoku Kk High strength and conductive copper alloy
KR100513947B1 (en) * 2002-03-29 2005-09-09 닛코 킨조쿠 가부시키가이샤 A copper alloy having good pressing workability and manufacturing method therefor
KR100559814B1 (en) * 2002-11-29 2006-03-10 닛꼬 긴조꾸 가꼬 가부시키가이샤 Copper alloy and method for producing the same

Also Published As

Publication number Publication date
CN1834273A (en) 2006-09-20
TW200632114A (en) 2006-09-16
TWI317762B (en) 2009-12-01
JP2006249565A (en) 2006-09-21
KR100808432B1 (en) 2008-02-29
KR20070106944A (en) 2007-11-06
CN100406597C (en) 2008-07-30
KR20060100947A (en) 2006-09-21
US20060204396A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4191159B2 (en) Titanium copper with excellent press workability
JP4634955B2 (en) High strength copper alloy with excellent bending workability and dimensional stability
KR101808469B1 (en) Copper-titanium alloy for electronic component
KR101793854B1 (en) Copper-titanium alloy for electronic component
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
KR20090094458A (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP2006283142A (en) High-strength copper alloy superior in bending workability
JP2011208243A (en) Copper alloy, method for producing copper alloy and method for manufacturing electronic parts
JP7202121B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
JP5208555B2 (en) Titanium copper for electronic parts
JP2015127438A (en) Titanium copper for electronic component
JP2008081767A (en) Titanium-copper for electronic part
KR100525024B1 (en) Copper alloy having excellent bendability and manufacturing method therefor
JP4663031B1 (en) Titanium copper, wrought copper products, electronic components and connectors
JP2005097638A (en) High-strength copper alloy superior in bending workability
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP2004231985A (en) High strength copper alloy with excellent bendability
JP5393629B2 (en) Titanium copper and copper products, electronic parts and connectors using the same
JP4663030B1 (en) Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP4313136B2 (en) High strength copper alloy with excellent bending workability
JPWO2020004034A1 (en) Copper alloy plate material, method for manufacturing copper alloy plate material, and connector using copper alloy plate material
JP5378286B2 (en) Titanium copper and method for producing the same
CN110573635B (en) Copper alloy sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250