JP6368518B2 - Cu-Ti copper alloy sheet, method for producing the same, and energized component - Google Patents

Cu-Ti copper alloy sheet, method for producing the same, and energized component Download PDF

Info

Publication number
JP6368518B2
JP6368518B2 JP2014070326A JP2014070326A JP6368518B2 JP 6368518 B2 JP6368518 B2 JP 6368518B2 JP 2014070326 A JP2014070326 A JP 2014070326A JP 2014070326 A JP2014070326 A JP 2014070326A JP 6368518 B2 JP6368518 B2 JP 6368518B2
Authority
JP
Japan
Prior art keywords
crystal grain
section
cross
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014070326A
Other languages
Japanese (ja)
Other versions
JP2015190044A (en
Inventor
今井 雄一
雄一 今井
崇 木村
崇 木村
佐々木 史明
史明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2014070326A priority Critical patent/JP6368518B2/en
Publication of JP2015190044A publication Critical patent/JP2015190044A/en
Application granted granted Critical
Publication of JP6368518B2 publication Critical patent/JP6368518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクタ、リードフレーム、リレー、スイッチなどの通電部品に適したCu−Ti系銅合金板材であって、特に曲げ加工性のバラツキを改善した板材、およびその製造方法に関する。また、その銅合金板材を材料に用いた通電部品に関する。   The present invention relates to a Cu—Ti-based copper alloy plate material suitable for current-carrying parts such as connectors, lead frames, relays, and switches, and more particularly to a plate material with improved variation in bending workability, and a method for manufacturing the same. Moreover, it is related with the electricity supply component which used the copper alloy board | plate material for the material.

電気・電子部品を構成するコネクタ、リードフレーム、リレー、スイッチなどの通電部品に使用される材料には、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い「強度」が要求される。また、電気・電子部品は一般に曲げ加工により成形されることから優れた「曲げ加工性」が要求される。更に、電気・電子部品間の接触信頼性を確保するために、接触圧力が時間とともに低下する現象(応力緩和)に対する耐久性、すなわち「耐応力緩和性」に優れることも要求される。   Materials used for current-carrying parts such as connectors, lead frames, relays, and switches that make up electrical and electronic parts must have high strength to withstand the stress applied during assembly and operation of electrical and electronic equipment. Is done. Moreover, since electric / electronic parts are generally formed by bending, excellent “bending workability” is required. Furthermore, in order to ensure contact reliability between electrical and electronic components, it is also required to have excellent durability against a phenomenon (stress relaxation) in which the contact pressure decreases with time, that is, “stress relaxation resistance”.

Cu−Ti系銅合金は、銅合金中でCu−Be系銅合金に次ぐ高強度を有し、Cu−Be系銅合金を凌ぐ耐応力緩和性を有する。また、コストと環境負荷の点でCu−Be系銅合金より有利である。このためCu−Ti系銅合金(例えばC1990;Cu−3.2質量%Ti合金)は、一部のCu−Be系銅合金の代替材としてコネクタ材などに使用されている。   The Cu—Ti based copper alloy has the second highest strength in the copper alloy after the Cu—Be based copper alloy, and has a stress relaxation resistance surpassing that of the Cu—Be based copper alloy. Moreover, it is more advantageous than Cu-Be-based copper alloys in terms of cost and environmental load. For this reason, Cu-Ti type | system | group copper alloy (for example, C1990; Cu-3.2 mass% Ti alloy) is used for the connector material etc. as a substitute material of some Cu-Be type | system | group copper alloys.

特開2004−52008号公報Japanese Patent Laid-Open No. 2004-52008 特開2008−308734号公報JP 2008-308734 A 特開2011−202218号公報JP 2011-202218 A 特開2012−12631号公報JP 2012-12431 A

Cu−Ti系銅合金はTiの変調構造(スピノーダル構造)を利用して強度を向上させることができる合金である。変調構造によって材料は著しく硬化するが、それによる耐疲労特性や曲げ加工性の損失が比較的少ないという長所を有する。その一方で、この合金系の板材には部分的に粗大結晶粒や粗大第二相粒子が存在しやすく、それに起因して曲げ加工性のバラツキが大きくなりやすいという欠点がある。Cu−Ni−Si系銅合金などでは第二相析出粒子のピン留め効果を利用して結晶粒径の均一化を図ることができる。しかし、Cu−Ti系銅合金では第二相の生成機構が異なるため、そのようなピン留め効果を利用することは困難である。   A Cu—Ti-based copper alloy is an alloy that can improve the strength by utilizing a modulation structure (spinodal structure) of Ti. Although the material hardens significantly due to the modulation structure, it has the advantage of relatively little loss of fatigue resistance and bending workability. On the other hand, this alloy-based plate material has a drawback that coarse crystal grains and coarse second-phase particles are likely to be present partially, resulting in large variations in bending workability. In a Cu—Ni—Si based copper alloy or the like, the crystal grain size can be made uniform by utilizing the pinning effect of the second phase precipitated particles. However, since the formation mechanism of the second phase is different in the Cu—Ti based copper alloy, it is difficult to utilize such a pinning effect.

特許文献1には、溶体化処理中のβ相析出の制御によりCu−Ti系銅合金の結晶粒径の均一化を図る技術が開示されている。また、熱間鍛造と熱間圧延を組み合わせた熱間加工工程が開示されている。この文献の製造方法によれば、粒径偏差/平均粒径の比が0.6以下という、結晶粒径バラツキの少ない板材が得られている。しかし、粗大第二相粒子に関しては特別の配慮がなされておらず、90°曲げによるBWの曲げ加工性はR/tが3.5程度であり、厳しい加工が要求される通電部品の用途では更なる改善が望まれる。   Patent Document 1 discloses a technique for making the crystal grain size of a Cu—Ti-based copper alloy uniform by controlling β phase precipitation during solution treatment. Moreover, the hot working process which combined hot forging and hot rolling is disclosed. According to the manufacturing method of this document, a plate material with a small variation in crystal grain size in which the ratio of grain size deviation / average grain size is 0.6 or less is obtained. However, no special consideration has been given to the coarse second phase particles, and the BW bending workability by 90 ° bending is about R / t of about 3.5. Further improvement is desired.

特許文献2〜4には、結晶粒径、結晶方位、析出物の個数密度などを規定することによりCu−Ti系銅合金の曲げ加工性を改善する手法が開示されている。しかし、曲げ加工性のバラツキについては考慮されていない。   Patent Documents 2 to 4 disclose techniques for improving the bending workability of Cu—Ti based copper alloys by defining the crystal grain size, crystal orientation, number density of precipitates, and the like. However, the bending workability variation is not considered.

本発明はCu−Ti系銅合金の板材において、特許文献1よりも曲げ加工性を向上させ、かつそのバラツキを改善することを目的とする。   An object of the present invention is to improve the bending workability and improve the variation in the Cu-Ti-based copper alloy plate material as compared with Patent Document 1.

発明者らは詳細な研究の結果、仕上冷間圧延前の段階での最大側平均結晶粒径/平均結晶粒径の比を一定以下に小さく制御するとともに、粗大第二相粒子の個数密度を低減することが、曲げ加工性のレベルを向上させ、かつバラツキを低減する上で重要であることを知見した。また、そのような組織状態を得るためには、鋳片に対して通常より低温域での熱間鍛造を施して加工歪を十分に導入しておくことが極めて有効であることを見出した。   As a result of detailed studies, the inventors have controlled the ratio of the maximum side average crystal grain size / average crystal grain size to a certain level or less before the final cold rolling, and the number density of coarse second-phase particles. It has been found that reduction is important for improving the level of bending workability and reducing variation. Moreover, in order to obtain such a structure state, it has been found that it is extremely effective to sufficiently introduce processing strain by performing hot forging in a lower temperature range than usual for the slab.

上記目的を達成するために、本発明では、質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%であり、必要に応じて更にSn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる化学組成を有する熱間圧延後の板材であって、板の圧延方向をL方向、圧延方向と板厚方向に直角の方向をT方向、L方向に垂直な断面をC断面と呼ぶとき、C断面の顕微鏡観察において下記(A)に従う方法で求めた粗大結晶粒面積率が5.0%以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が500個/mm2以下である熱間圧延後のCu−Ti系銅合金板材が提供される。
(A)C断面に、T方向を一辺に持つ1.25mm×1.25mmの正方形観察領域を設け、その観察領域を81個の正方形からなるマス目に分割して各マス目の頂点である合計100個の格子点を設定し、当該観察領域の顕微鏡観察画像上の格子点のうち長径100μm以上の粗大結晶粒の内部(結晶粒界上を含む)に位置する格子点の合計数n1を求め、n1個/100個×100により算出される値を粗大結晶粒面積率(%)と定める。ただし、双晶境界は結晶粒界とみなさない。また、結晶粒の一部が観察領域の外に出ている長径100μm以上の結晶粒は当該観察領域内の部分をn1のカウント対象とする。
ここで、長径は、当該観察画像においてその結晶粒を取り囲む最小円の直径である。
In order to achieve the above object, in the present invention, in mass%, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1 0.5%, B: 0 to 0.07%, further Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1.0%, Zr: 0 as necessary. -1.0%, Al: 0-1.0%, Si: 0-1.0%, P: 0-0.1%, Cr: 0-1.0%, Mn: 0-1.0% V: 0 to 1.0%, and among these elements, the total content of Sn, Zn, Mg, Zr, Al, Si, P, Cr, Mn and V is 3.0% or less, and the balance Cu And a sheet material after hot rolling having a chemical composition composed of inevitable impurities, the rolling direction of the plate being the L direction, the direction perpendicular to the rolling direction and the plate thickness direction being the T direction, and the cross section perpendicular to the L direction being C When called a cross-section, Coarse grains area ratio determined by the method according to (A) is not more than 5.0%, hot after rolling number density of diameter 1μm or more coarse second-phase particles in the C section is 500 / mm 2 or less A Cu—Ti based copper alloy sheet is provided.
(A) A 1.25 mm × 1.25 mm square observation area having a T direction on one side is provided on the C cross section, and the observation area is divided into 81 square squares to be the vertices of each square. A total of 100 lattice points are set, and the total number n 1 of lattice points located inside coarse crystal grains having a major axis of 100 μm or more (including on the grain boundaries) among the lattice points on the microscope observation image of the observation region. look, determine n 1 piece / 100 × 100 coarse grains area ratio of the value calculated by the (%). However, twin boundaries are not regarded as grain boundaries. In addition, a crystal grain having a major axis of 100 μm or more in which a part of the crystal grain is out of the observation region is targeted for counting n 1 in the observation region.
Here, the major axis is the diameter of the smallest circle surrounding the crystal grain in the observed image.

また、上記化学組成を有する時効処理後された板材であって、板の圧延方向をL方向、圧延方向と板厚方向に直角の方向をT方向、L方向に垂直な断面をC断面と呼ぶとき、C断面の顕微鏡観察において下記(B)に従う方法で求めた平均結晶粒径が7.0〜40.0μm、最大側平均結晶粒径/平均結晶粒径の比が2.5以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が1000個/mm2以下である時効処理されたCu−Ti系銅合金板材が提供される。この場合、時効処理後に冷間圧延されたもの、あるいは時効処理後に冷間圧延および低温焼鈍が施されたものであっても構わない。
(B)C断面の観察視野内に、長さ0.125mmのT方向線分を0.0125mm間隔で平行に10本設定し、各線分についてJIS H0501−1986に規定の切断法に従い、線分によって完全に切られる結晶粒(以下「切断結晶粒」という)の数と各切断長さ(以下「個々の切断結晶粒径」という)を測定する。この測定を無作為に設定した異なる10視野について行い、10本×10視野=計100本の線分による個々の切断結晶粒径の合計値を切断結晶粒の総数で除した値(μm)を「平均結晶粒径」と定め、前記100本の線分による個々の切断結晶粒径の最大値(μm)のものから大きい順に5個選び、その5個の平均を「最大側平均結晶粒径」と定める。
なお、本明細書において、直径1μm以上の粗大第二相粒子とは、第二相粒子を取り囲む最小円の直径が1μm以上である第二相粒子を意味する。
Further, it is a plate material after aging treatment having the above chemical composition, in which the rolling direction of the plate is called the L direction, the direction perpendicular to the rolling direction and the plate thickness direction is the T direction, and the cross section perpendicular to the L direction is called the C cross section. When the average crystal grain size obtained by the method according to the following (B) in the microscopic observation of the C section is 7.0 to 40.0 μm, the ratio of the maximum side average crystal grain size / average crystal grain size is 2.5 or less. An aging-treated Cu—Ti-based copper alloy sheet is provided in which the number density of coarse second-phase particles having a diameter of 1 μm or more in the C cross section is 1000 / mm 2 or less. In this case, it may be cold-rolled after the aging treatment, or may be subjected to cold rolling and low-temperature annealing after the aging treatment.
(B) Ten T-direction line segments with a length of 0.125 mm are set in parallel at an interval of 0.0125 mm in the observation field of the C cross section, and each line segment is line segment according to the cutting method specified in JIS H0501-1986. The number of crystal grains (hereinafter referred to as “cut crystal grains”) that are completely cut by the above and the length of each cut (hereinafter referred to as “individual cut crystal grain sizes”) are measured. This measurement was performed on 10 different fields set at random, and the value (μm) obtained by dividing the total value of individual cut crystal grain sizes by 10 lines × 10 fields = total of 100 line segments by the total number of cut crystal grains. The average grain size is defined as “average crystal grain size”, and five pieces are selected in descending order from the maximum value (μm) of the individual cut crystal grain sizes of the 100 line segments. "
In the present specification, the coarse second phase particles having a diameter of 1 μm or more mean second phase particles having a diameter of a minimum circle surrounding the second phase particles of 1 μm or more.

上記Cu−Ti系銅合金熱間圧延材の製造方法として、上記化学組成を有する鋳片に熱間鍛造を施して板状のスラブを得るに際し、熱間鍛造の全ての圧下を850〜700℃の温度範囲で行い、1打当たりの最大圧下率をいずれの方向の圧下についても20%以下とし、スラブ板厚方向の圧下については材料全体にわたって1打当たりの圧下率が15〜20%の圧下を少なくとも1打以上付与し、スラブ板厚方向のトータル厚さ減少率を25%以上とする熱間鍛造工程、
前記鍛造後のスラブに対して、圧延開始温度950℃以下、950〜920℃での圧延率55%以上の条件で熱間圧延を施す熱間圧延工程、
を有する製造方法が提供される。上記熱間圧延によって、C断面の顕微鏡観察において上記(A)に従う方法で求めた粗大結晶粒面積率が5.0%以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が500個/mm2である組織状態とすることが好ましい。
When producing a plate-shaped slab by hot forging the slab having the chemical composition as a method for producing the Cu-Ti-based copper alloy hot-rolled material, all the hot forging reductions are performed at 850 to 700 ° C. The maximum reduction rate per stroke is 20% or less in any direction, and the reduction in the slab thickness direction is a reduction of 15 to 20% per stroke over the entire material. At least one stroke, and a hot forging process in which the total thickness reduction rate in the slab thickness direction is 25% or more,
A hot rolling step in which hot rolling is performed on the slab after forging at a rolling start temperature of 950 ° C. or less and a rolling rate of 55% or more at 950 to 920 ° C.,
A manufacturing method is provided. The number density of coarse second-phase particles having a coarse crystal grain area ratio of 5.0% or less obtained by the method according to (A) in the microscopic observation of the C cross section by the hot rolling and having a diameter of 1 μm or more in the C cross section. Is preferably in a tissue state of 500 pieces / mm 2 .

この熱間鍛造工程および熱間圧延工程を経て製造された銅合金板材に対して、1回の冷間圧延または中間焼鈍を挟んだ複数回の冷間圧延、溶体化処理、時効処理、仕上冷間圧延、低温焼鈍を施すことにより曲げ加工性およびそのバラツキを顕著に改善したCu−Ti系銅合金板材が得られる。この板材は曲げ加工を施して製造される通電部品用の素材として好適である。   Multiple times of cold rolling, solution treatment, aging treatment, finish cooling with one cold rolling or intermediate annealing performed on the copper alloy sheet produced through this hot forging process and hot rolling process By performing hot rolling and low-temperature annealing, a Cu—Ti-based copper alloy sheet material in which bending workability and variations thereof are remarkably improved can be obtained. This plate material is suitable as a material for a current-carrying part manufactured by bending.

本発明によれば、Cu−Ti系銅合金板材において、優れた曲げ加工性を有し、かつ材料内での曲げ加工性のバラツキが顕著に改善された。従って本発明は、コネクタをはじめとする通電部品の加工度増大や設計自由度向上に寄与するものである。   According to the present invention, the Cu—Ti-based copper alloy sheet has excellent bending workability, and the variation in bending workability within the material is remarkably improved. Accordingly, the present invention contributes to an increase in the degree of processing of energized parts such as connectors and an improvement in design flexibility.

本発明に従う熱間圧延材のC断面の金属組織写真。The metal structure photograph of the C cross section of the hot-rolled material according to the present invention. 熱間鍛造を施していない従来法による熱間圧延材のC断面の金属組織写真。The metal structure photograph of C section of the hot-rolled material by the conventional method which has not performed hot forging. 本発明に従う時効処理された板材(仕上冷間圧延後に低温焼鈍されたもの)についてのC断面の金属組織写真。The metal structure photograph of the C cross section about the board | plate material (what was low-temperature-annealed after finishing cold rolling) according to this invention. 熱間鍛造を施していない従来の工程による時効処理された板材(仕上冷間圧延後に低温焼鈍されたもの)についてのC断面の金属組織写真。The metal structure photograph of the C cross section about the plate material (what was low-temperature-annealed after finishing cold rolling) by the aging treatment by the conventional process which has not performed hot forging.

《合金組成》
本発明ではCu−Tiの2元系基本成分に、必要に応じてNi、Co、Feや、その他の合金元素を配合したCu−Ti系銅合金を採用する。以下、合金組成に関する「%」は特に断らない限り「質量%」を意味する。
<Alloy composition>
In the present invention, a Cu—Ti based copper alloy in which Ni, Co, Fe, and other alloy elements are blended as necessary with a binary basic component of Cu—Ti is employed. Hereinafter, “%” regarding the alloy composition means “mass%” unless otherwise specified.

Tiは、Cuマトリックスにおいて時効硬化作用が高い元素で、強度上昇および耐応力緩和性向上に寄与する。これらの作用を十分に引き出すためには1.0%以上のTi含有量を確保することが有利であり、2.5%以上とすることがより好ましい。一方、Ti含有量が過剰になると、熱間加工あるいは冷間加工過程中に割れが発生しやすくなる。また、溶体化処理が可能な温度域が狭くなる。種々検討の結果、Ti含有量は5.0%以下とする必要がある。4.0%以下あるいは3.5%以下の範囲に管理してもよい。   Ti is an element having a high age hardening effect in the Cu matrix, and contributes to an increase in strength and resistance to stress relaxation. In order to sufficiently bring out these effects, it is advantageous to secure a Ti content of 1.0% or more, and more preferably 2.5% or more. On the other hand, if the Ti content is excessive, cracks are likely to occur during hot working or cold working. Moreover, the temperature range in which solution treatment can be performed becomes narrow. As a result of various studies, the Ti content needs to be 5.0% or less. You may manage in the range of 4.0% or less or 3.5% or less.

Fe、Co、Niは、Tiとの金属間化合物を形成して強度の向上に寄与する元素であり、必要に応じてこれらの1種以上を添加することができる。これらの金属間化合物は溶体化処理で結晶粒の粗大化を抑制する作用があるので、より高温域での溶体化処理が可能になり、Tiを十分に固溶させる上で有利となる。Fe、Co、Niの1種以上を添加する場合の個々の元素の含有量は、Fe:0.05%以上、Co:0.05%以上、Ni:0.05%以上とすることがより効果的であり、Fe:0.1%以上、Co:0.1%以上、Ni:0.1%以上とすることが更に効果的である。ただし、Fe、Co、Niを過剰に含有させると、それらの金属間化合物の生成によって消費されるTiの量が多くなるので、固溶Ti量が必然的に少なくなる。この場合、逆に強度低下を招きやすい。また、Fe、Ni、CoはTiと化合物を形成するため、過剰な含有は粗大粒子の増加を招く。従ってFe、Co、Niの1種以上を添加する場合は、Fe:0.5%以下、Co:1.0%以下、Ni:1.5%以下、の範囲とする。Fe:0.30%以下、Co:0.25%以下、Ni:0.25%以下の範囲に管理してもよい。   Fe, Co, and Ni are elements that contribute to improvement in strength by forming an intermetallic compound with Ti, and one or more of these can be added as necessary. Since these intermetallic compounds have the effect of suppressing the coarsening of crystal grains by solution treatment, solution treatment at a higher temperature is possible, which is advantageous in sufficiently dissolving Ti. When one or more of Fe, Co, and Ni are added, the content of each element is preferably Fe: 0.05% or more, Co: 0.05% or more, and Ni: 0.05% or more. It is effective, and it is more effective to set Fe: 0.1% or more, Co: 0.1% or more, and Ni: 0.1% or more. However, when Fe, Co, and Ni are contained excessively, the amount of Ti consumed by the production of these intermetallic compounds increases, so the amount of solid solution Ti inevitably decreases. In this case, the strength tends to decrease. Moreover, since Fe, Ni, and Co form a compound with Ti, excessive inclusion causes an increase in coarse particles. Therefore, when adding one or more of Fe, Co, and Ni, the ranges are Fe: 0.5% or less, Co: 1.0% or less, and Ni: 1.5% or less. You may manage in the range of Fe: 0.30% or less, Co: 0.25% or less, Ni: 0.25% or less.

Bは、鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。Bを添加する場合、0.01%以上とすることがより効果的であり、0.03%以上とすることが更に効果的である。ただし、過剰のB添加は不経済であり、通常0.07%以下の範囲で添加すればよい。   B has an effect of refining the cast structure and can contribute to improvement of hot workability. When adding B, it is more effective to set it as 0.01% or more, and it is still more effective to set it as 0.03% or more. However, excessive addition of B is uneconomical, and usually may be added in a range of 0.07% or less.

Snは、固溶強化作用と耐応力緩和性の向上作用を有する。Snを含有させる場合、0.1%以上の含有量を確保することがより効果的である。ただし、鋳造性と導電率確保の観点からSn含有量は1.2%以下に制限され、0.5%以下あるいは0.25%以下の範囲に管理してもよい。   Sn has a solid solution strengthening action and an effect of improving stress relaxation resistance. When Sn is contained, it is more effective to secure a content of 0.1% or more. However, from the viewpoint of ensuring castability and electrical conductivity, the Sn content is limited to 1.2% or less, and may be controlled within a range of 0.5% or less or 0.25% or less.

Znは、はんだ付け性および強度を向上させる作用を有する他、鋳造性を改善させる作用もある。これらの作用を十分に得るには0.1%以上のZn含有量を確保することが望ましく、特に0.3以上とすることが一層効果的である。ただし、過剰のZn含有は導電性や耐応力腐食割れ性の低下要因となりやすい。このため、Znを含有させる場合は2.0%以下とする必要があり、1.0%以下あるいは0.5%以下に管理してもよい。   Zn has the effect of improving solderability and strength, and also has the effect of improving castability. In order to obtain these functions sufficiently, it is desirable to secure a Zn content of 0.1% or more, and it is particularly effective to set it to 0.3 or more. However, excessive Zn content tends to be a cause of a decrease in conductivity and stress corrosion cracking resistance. For this reason, when it contains Zn, it is necessary to set it as 2.0% or less, and you may manage to 1.0% or less or 0.5% or less.

Mgは、耐応力緩和性の向上作用と脱S作用を有する。これらの作用を十分に発揮させるには、0.01%以上のMg含有量を確保することが好ましく、0.05%以上とすることがより効果的である。ただし、Mgは酸化されやすいので、鋳造性確保の観点からMgを含有させる場合は1.0%以下の含有量とする。0.5%以下とすることが一層好ましい。通常、0.1%以下とすればよい。   Mg has an effect of improving stress relaxation resistance and a de-S action. In order to sufficiently exhibit these functions, it is preferable to secure an Mg content of 0.01% or more, and it is more effective to set the content to 0.05% or more. However, since Mg is easily oxidized, when Mg is contained from the viewpoint of ensuring castability, the content is 1.0% or less. More preferably, it is 0.5% or less. Usually, it may be 0.1% or less.

その他の元素として、Zr:1.0%以下、Al:1.0%以下、Si:1.0%以下、P:0.1%以下、Cr:1.0%以下、Mn:1.0%以下、V:1.0%以下の1種以上を含有させることができる。例えば、ZrとAlはTiとの金属間化合物を形成することができ、SiはTiとの析出物を生成できる。Cr、Zr、Mn、Vは不可避的不純物として存在するS、Pbなどと高融点化合物を形成しやすく、また、Cr、P、Zrは鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。Zr、Al、Si、P、Cr、Mn、Vの1種以上を含有させる場合は、各元素の作用を十分に得るためにこれらの総量が0.01%以上となるように含有させることが効果的である。   As other elements, Zr: 1.0% or less, Al: 1.0% or less, Si: 1.0% or less, P: 0.1% or less, Cr: 1.0% or less, Mn: 1.0 % Or less and V: 1.0% or less can be contained. For example, Zr and Al can form an intermetallic compound with Ti, and Si can produce a precipitate with Ti. Cr, Zr, Mn, and V easily form a high melting point compound with S, Pb, etc. present as unavoidable impurities, and Cr, P, and Zr have a refinement effect on the cast structure and have hot workability. Can contribute to improvement. When one or more of Zr, Al, Si, P, Cr, Mn, and V are contained, in order to sufficiently obtain the action of each element, the total content of these elements may be 0.01% or more. It is effective.

ただし、Zr、Al、Si、P、Cr、Mn、Vを多量に含有させると、熱間または冷間加工性に悪影響を与える要因となる。前述のSn、Zn、Mgと、Zr、Al、Si、P、Cr、Mn、Vの合計含有量は3.0%以下に抑えることが望ましく、2.0%以下あるいは1.0%以下の範囲に規制することができ、0.5%以下の範囲に管理しても構わない。経済性を加味したより合理的な上限規制としては、例えばZr:0.2%以下、Al:0.15%以下、Si:0.2%以下、P:0.05%以下、B:0.03%以下、Cr:0.2%以下、Mn:0.1%以下、V:0.2%以下の規制を設けることができる。   However, if a large amount of Zr, Al, Si, P, Cr, Mn, and V is contained, it becomes a factor that adversely affects hot or cold workability. The total content of Sn, Zn, Mg and Zr, Al, Si, P, Cr, Mn, V is preferably 3.0% or less, and is preferably 2.0% or less or 1.0% or less. The range can be regulated and may be managed within a range of 0.5% or less. More reasonable upper limit regulations considering economics are, for example, Zr: 0.2% or less, Al: 0.15% or less, Si: 0.2% or less, P: 0.05% or less, B: 0 Restrictions of 0.03% or less, Cr: 0.2% or less, Mn: 0.1% or less, and V: 0.2% or less can be provided.

《熱間圧延材の金属組織》
熱間圧延後の段階で粗大結晶粒および粗大第二相粒子の存在が十分に抑制されているとき、その後の工程を経て製造された最終的な板材において結晶粒径の不均一性および粗大第二相粒子の存在に起因する曲げ加工性のバラツキが顕著に抑制されることがわかった。そのような有用性の高い板材中間製品として、本発明では以下の組織状態を有する熱間圧延材を開示する。
<Metallic structure of hot-rolled material>
When the presence of coarse crystal grains and coarse second-phase particles is sufficiently suppressed at the stage after hot rolling, non-uniformity of crystal grain size and coarseness in the final plate produced through the subsequent steps It was found that the variation in bending workability due to the presence of the two-phase particles was significantly suppressed. As such a highly useful sheet material intermediate product, the present invention discloses a hot rolled material having the following structure.

板の圧延方向をL方向、圧延方向と板厚方向に直角の方向をT方向、L方向に垂直な断面をC断面と呼ぶとき、C断面の顕微鏡観察において下記(A)に従う方法で求めた粗大結晶粒面積率が5.0%以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が500個/mm2以下であるCu−Ti系銅合金熱間圧延材。上記直径1μm以上の粗大第二相粒子の個数密度は300個/mm2以下であることがより好ましい。
(A)C断面に、T方向を一辺に持つ1.25mm×1.25mmの正方形観察領域を設け、その観察領域を81個の正方形からなるマス目に分割して各マス目の頂点である合計100個の格子点を設定し、当該観察領域の顕微鏡観察画像上の格子点のうち長径100μm以上の粗大結晶粒の内部(結晶粒界上を含む)に位置する格子点の合計数n1を求め、n1個/100個×100により算出される値を粗大結晶粒面積率(%)と定める。ただし、双晶境界は結晶粒界とみなさない。また、結晶粒の一部が観察領域の外に出ている長径100μm以上の結晶粒は当該観察領域内の部分をn1のカウント対象とする。
When the rolling direction of the plate is referred to as the L direction, the direction perpendicular to the rolling direction and the thickness direction is referred to as the T direction, and the cross section perpendicular to the L direction is referred to as the C cross section, the C cross section is obtained by the method according to (A) below under the microscope observation. A Cu—Ti-based copper alloy hot-rolled material having a coarse crystal grain area ratio of 5.0% or less and a number density of coarse second-phase particles having a diameter of 1 μm or more in the C cross section of 500 particles / mm 2 or less. The number density of coarse second phase particles having a diameter of 1 μm or more is more preferably 300 particles / mm 2 or less.
(A) A 1.25 mm × 1.25 mm square observation area having a T direction on one side is provided on the C cross section, and the observation area is divided into 81 square squares to be the vertices of each square. A total of 100 lattice points are set, and the total number n 1 of lattice points located inside coarse crystal grains having a major axis of 100 μm or more (including on the grain boundaries) among the lattice points on the microscope observation image of the observation region. look, determine n 1 piece / 100 × 100 coarse grains area ratio of the value calculated by the (%). However, twin boundaries are not regarded as grain boundaries. In addition, a crystal grain having a major axis of 100 μm or more in which a part of the crystal grain is out of the observation region is targeted for counting n 1 in the observation region.

《時効処理材の金属組織》
また、時効処理後の板材(時効処理材)において、結晶粒径の粒度分布および粗大第二相粒子の存在量が特定の条件を満たすとき、その時効処理材およびそれを加工してなる板材は、結晶粒径の不均一性に起因する曲げ加工性のバラツキが顕著に抑制される。そのような有用性の高い板材として、本発明では以下の組織状態を有する板材を開示する。
時効処理後に仕上冷間圧延や更に低温焼鈍を施した製品板材においても、以下の組織状態が維持される。
《Metallic structure of aging treatment material》
In addition, in the plate material after aging treatment (aging treatment material), when the grain size distribution of the crystal grain size and the abundance of coarse second phase particles satisfy specific conditions, the aging treatment material and the plate material obtained by processing it are: Further, the variation in bending workability due to the nonuniformity of the crystal grain size is remarkably suppressed. As such a highly useful plate material, the present invention discloses a plate material having the following textured state.
The following structure state is maintained also in the product plate material which has been subjected to finish cold rolling and further low temperature annealing after the aging treatment.

C断面の顕微鏡観察において下記(B)に従う方法で求めた平均結晶粒径が7.0〜40.0μm、最大側平均結晶粒径/平均結晶粒径の比が2.5以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が1000個/mm2以下であるCu−Ti系銅合金板材。上記直径1μm以上の粗大第二相粒子の個数密度は700個/mm2以下であることがより好ましい。
(B)C断面の観察視野内に、長さ0.125mmのT方向線分を0.0125mm間隔で平行に10本設定し、各線分についてJIS H0501−1986に規定の切断法に従い、線分によって完全に切られる結晶粒(以下「切断結晶粒」という)の数と各切断長さ(以下「個々の切断結晶粒径」という)を測定する。この測定を無作為に設定した異なる10視野について行い、10本×10視野=計100本の線分による個々の切断結晶粒径の合計値を切断結晶粒の総数で除した値(μm)を「平均結晶粒径」と定め、前記100本の線分による個々の切断結晶粒径の最大値(μm)のものから大きい順に5個選び、その5個の平均を「最大側平均結晶粒径」と定める。
The average crystal grain size determined by the method according to the following (B) in the microscopic observation of the C cross section is 7.0 to 40.0 μm, and the ratio of the maximum side average crystal grain size / average crystal grain size is 2.5 or less. A Cu—Ti-based copper alloy plate material in which the number density of coarse second-phase particles having a diameter of 1 μm or more in a cross section is 1000 / mm 2 or less. The number density of the coarse second phase particles having a diameter of 1 μm or more is more preferably 700 particles / mm 2 or less.
(B) Ten T-direction line segments with a length of 0.125 mm are set in parallel at an interval of 0.0125 mm in the observation field of the C cross section, and each line segment is line segment according to the cutting method specified in JIS H0501-1986. The number of crystal grains (hereinafter referred to as “cut crystal grains”) that are completely cut by the above and the length of each cut (hereinafter referred to as “individual cut crystal grain sizes”) are measured. This measurement was performed on 10 different fields set at random, and the value (μm) obtained by dividing the total value of individual cut crystal grain sizes by 10 lines × 10 fields = total of 100 line segments by the total number of cut crystal grains. The average grain size is defined as “average crystal grain size”, and five pieces are selected in descending order from the maximum value (μm) of the individual cut crystal grain sizes of the 100 line segments. "

これらの組織状態を有する板材は、以下の工程に従って得ることができる。   The board | plate material which has these structure | tissue states can be obtained according to the following processes.

《製造方法》
曲げ加工性バラツキの小さいCu−Ti系銅合金板材は、例えば下記のような製造工程により製造することができる。
「溶解・鋳造→熱間鍛造→熱間圧延→冷間圧延→(中間焼鈍→冷間圧延)→溶体化処理→時効処理→仕上冷間圧延→低温焼鈍」
ここでは、熱間圧延前に特定条件下での熱間鍛造を行い、加工歪を付与しておくことが重要である。熱間圧延前には必要に応じてスラブ表面の切削が行われる。また熱間圧延では高温域で十分に圧下を稼ぎ、動的再結晶化を促進させることが重要である。熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。用途に応じて時効処理後の「仕上冷間圧延」と「低温焼鈍」を省略してもよい。以下、各工程について説明する。
"Production method"
A Cu-Ti-based copper alloy sheet material with small bending workability variation can be manufactured, for example, by the following manufacturing process.
"Melting / Casting-> Hot Forging-> Hot Rolling-> Cold Rolling-> (Intermediate Annealing-> Cold Rolling)-> Solution Treatment->Aging-> Finish Cold Rolling-> Low Temperature Annealing"
Here, it is important to perform hot forging under a specific condition before hot rolling to give a working strain. Prior to hot rolling, the slab surface is cut as necessary. In hot rolling, it is important to obtain sufficient reduction in a high temperature range and promote dynamic recrystallization. After hot rolling, chamfering is performed as necessary, and after each heat treatment, pickling, polishing, or further degreasing is performed as necessary. Depending on the application, “finish cold rolling” and “low temperature annealing” after aging treatment may be omitted. Hereinafter, each step will be described.

〔溶解・鋳造〕
連続鋳造、半連続鋳造等により鋳片を製造すればよい。Tiの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting / Casting]
The slab may be manufactured by continuous casting, semi-continuous casting, or the like. In order to prevent oxidation of Ti, it is preferable to carry out in an inert gas atmosphere or a vacuum melting furnace.

〔熱間鍛造〕
本発明では、熱間圧延に供する前に熱間鍛造を行い、加工歪を付与することが重要である。銅合金の製造における熱間鍛造は、一般に900〜850℃程度の温度域で行われる。しかし、Cu−Ti系銅合金の場合、そのような温度域では歪エネルギーを十分に蓄積できないことがわかった。種々検討の結果、850℃以下の温度域で熱間鍛造を行うことが有効となる。ただし、鋳造組織は脆弱であるため、熱間鍛造温度が低いと割れやすくなる。そのため700℃以上で熱間鍛造を行う必要がある。
[Hot forging]
In the present invention, it is important to perform hot forging and apply processing strain before subjecting to hot rolling. Hot forging in the production of a copper alloy is generally performed in a temperature range of about 900 to 850 ° C. However, in the case of a Cu—Ti based copper alloy, it has been found that the strain energy cannot be sufficiently accumulated in such a temperature range. As a result of various studies, it is effective to perform hot forging in a temperature range of 850 ° C. or lower. However, since the cast structure is fragile, cracking tends to occur when the hot forging temperature is low. Therefore, it is necessary to perform hot forging at 700 ° C. or higher.

発明者らの検討によれば、熱間鍛造工程で歪エネルギーを十分に蓄積させるために、熱間鍛造では以下の条件に従うことが有効であることがわかった。
(a)熱間鍛造温度を850℃以下の比較的低温域とする。
(b)スラブ板厚方向の圧下については材料全体にわたって1打当たりの圧下率が15〜20%の圧下を少なくとも1打以上付与する。
(c)スラブの板厚方向のトータル厚さ減少率を25%以上とする。
また、熱間鍛造中に割れが生じないようにするためには以下の条件に従う必要がある。
(d)熱間鍛造温度を700℃以上とする。
(e)1打当たりの最大圧下率を20%以下とする。
なお、鍛造温度は、鍛造時の材料表面温度である。
According to the study by the inventors, it has been found that it is effective to follow the following conditions in hot forging in order to sufficiently accumulate strain energy in the hot forging process.
(A) The hot forging temperature is set to a relatively low temperature range of 850 ° C. or lower.
(B) Regarding the reduction in the slab thickness direction, at least one or more reductions with a reduction rate of 15 to 20% per application are applied over the entire material.
(C) The total thickness reduction rate in the plate thickness direction of the slab is set to 25% or more.
In order to prevent cracking during hot forging, it is necessary to follow the following conditions.
(D) The hot forging temperature is set to 700 ° C. or higher.
(E) The maximum rolling reduction per shot is 20% or less.
The forging temperature is the material surface temperature during forging.

1打当たりの圧下率(%)は、下記(1)式により定まる。
1打当たりの圧下率(%)=(t0−t1)/t0×100 …(1)
ここで、t0は、その1打の圧下を付与する前の材料における、ハンマーが当たる部分のハンマー進行方向肉厚(その部分の肉厚が不均一の場合は平均肉厚)(mm)、t1は、その1打の圧下を付与した後の材料における、ハンマーが当たった部分のハンマー進行方向肉厚(その部分の肉厚が不均一の場合は平均肉厚)(mm)を意味する。
例えば材料の同じ位置に続けて3打の圧下を付与する場合、その3打のうち少なくとも1打において圧下率15〜20%の圧下を付与することにより、そのハンマー打面をぶつけた位置において「1打当たりの圧下率が15〜20%の圧下を少なくとも1打以上付与する」という要件が満たされる。板状スラブを得るに際して、上記(b)の条件を満たすためには、例えば、1打当たりの圧下率が15〜20%の打撃を、板状スラブの板面(広面)となる材料表面のすべての部分について、材料の位置を変えながら順次付与していく方法が採用できる。ただし、熱間鍛造での割れの発生を防止するために、1打当たりの最大圧下率を20%以下とする(上記(e))。
The rolling reduction per shot (%) is determined by the following equation (1).
Rolling rate per stroke (%) = (t 0 −t 1 ) / t 0 × 100 (1)
Here, t 0 is the thickness in the hammer traveling direction of the portion where the hammer hits in the material before applying the one-stroke reduction (average thickness when the thickness of the portion is not uniform) (mm), t 1 means the thickness in the hammering direction of the portion hit by the hammer in the material after applying the one-stroke reduction (average thickness when the thickness of the portion is not uniform) (mm) .
For example, in the case of applying a reduction of 3 strokes continuously at the same position of the material, by applying a reduction with a reduction ratio of 15 to 20% in at least one of the 3 strokes, a position where the hammer hitting surface is hit “ The requirement that at least one or more rolling reductions with a rolling reduction rate of 15 to 20% per stroke is given. In obtaining the plate-like slab, in order to satisfy the above condition (b), for example, an impact with a rolling reduction of 15 to 20% per shot is applied to the surface of the material that becomes the plate surface (wide surface) of the plate-like slab. For all the parts, it is possible to adopt a method of sequentially applying the material while changing the position of the material. However, in order to prevent the occurrence of cracks during hot forging, the maximum rolling reduction per shot is set to 20% or less (above (e)).

鋳片から板状スラブを得る熱間鍛造では、通常、板状スラブ厚さ方向(ND)と、それに直角の板状スラブ幅方向(TD)の2軸について、交互に変形を加える方法がとられる。十分に歪エネルギーを蓄積させるためには材料に加えるトータルの変形量を一定以上に確保する必要がある。種々検討の結果、少なくともND軸の肉厚減少率が25%以上となるように変形を加えること、すなわち上記(c)の条件に従うことが極めて有効である。この場合、板状スラブの幅(TDの肉厚)は、例えば元の鋳片に対して同等に維持することができる。
上記(c)のスラブの板厚方向のトータル厚さ減少率は、下記(2)式により定まる。
スラブの板厚方向のトータル厚さ減少率(%)=(t2−t3)/t2×100 …(2)
ここで、t2は、板状スラブ厚さ方向に対応する鋳片の厚さ(その厚さが場所により一定でない場合は平均厚さ)(mm)、t3は、得られる板状スラブの厚さ(その厚さが場所により一定でない場合は平均厚さ)(mm)を意味する。
In hot forging to obtain a plate-like slab from a slab, there is usually a method of alternately deforming the two axes of the plate-like slab thickness direction (ND) and the plate-like slab width direction (TD) perpendicular thereto. It is done. In order to accumulate sufficient strain energy, it is necessary to secure a total amount of deformation applied to the material above a certain level. As a result of various studies, it is extremely effective to add deformation so that at least the thickness reduction rate of the ND axis is 25% or more, that is, to comply with the above condition (c). In this case, the width of the plate-shaped slab (the thickness of TD) can be maintained equivalent to that of the original slab, for example.
The total thickness reduction rate in the plate thickness direction of the slab (c) is determined by the following equation (2).
Total thickness reduction rate in slab thickness direction (%) = (t 2 −t 3 ) / t 2 × 100 (2)
Here, t 2 is the thickness of the slab corresponding to the thickness direction of the plate slab (average thickness if the thickness is not constant depending on the location) (mm), and t 3 is the plate slab obtained. Thickness (mean thickness if the thickness is not constant depending on location) (mm).

熱間鍛造前の鋳片の加熱は、鋳片の肉厚中心部と表面の温度差が20℃以下となるまで、在炉時間を確保することが望ましい。加熱温度は800〜850℃とし、在炉時間は例えば厚さ200mm程度の鋳片であれば、8〜16hとすればよい。熱間鍛造温度は850℃以下とする(上記(a))。840℃以下の範囲に制限することがより効果的である。ただし、温度が低下しすぎると割れが生じやすくなるので、熱間鍛造の終了温度は700℃以上とする(上記(d))。この850〜700℃、より好ましくは840〜700℃という比較的低温の温度域で上記(b)(c)に従う条件で熱間鍛造を行うと、歪エネルギーが十分に導入され、後述の熱間圧延工程で再結晶粒の粗大化防止効果および粗大第二相粒子の個数密度低減効果が発揮される。   The heating of the slab prior to hot forging is preferably to ensure the in-furnace time until the temperature difference between the thickness center of the slab and the surface is 20 ° C. or less. The heating temperature is set to 800 to 850 ° C., and the in-furnace time may be set to 8 to 16 h for a cast piece having a thickness of about 200 mm, for example. The hot forging temperature is 850 ° C. or less (above (a)). It is more effective to limit the range to 840 ° C. or lower. However, if the temperature is too low, cracking is likely to occur, so the end temperature of hot forging is set to 700 ° C. or higher ((d) above). When hot forging is performed under the conditions according to the above (b) and (c) in a relatively low temperature range of 850 to 700 ° C., more preferably 840 to 700 ° C., strain energy is sufficiently introduced, In the rolling process, the effect of preventing coarsening of recrystallized grains and the effect of reducing the number density of coarse second phase particles are exhibited.

〔熱間圧延〕
発明者らの検討によれば、Cu−Ti系銅合金の場合、溶解鋳造後のTi偏析に起因して熱間圧延時に、粗大な結晶粒および粗大な第二相粒子が生成しやすく、これが後の工程を経て得られる板材最終製品の曲げ加工性を低下させる要因となることがわかった。従って、溶解鋳造で形成されたTi偏析を緩和し、熱間圧延時に粗大な結晶粒および粗大な第二相粒子が生じないように製造条件を工夫する必要がある。その工夫の一つが、上述の熱間鍛造工程での歪みエネルギーの導入である。さらにもう一つ、熱間圧延工程において、できるだけ高温域で圧下率を稼ぎ、熱間圧延前の加熱段階での拡散による均質化を促進するとともに熱間圧延中の動的再結晶を促進させることが重要である。
(Hot rolling)
According to the study by the inventors, in the case of a Cu-Ti-based copper alloy, coarse crystal grains and coarse second-phase particles are easily generated during hot rolling due to Ti segregation after melting and casting. It turned out that it becomes a factor which reduces the bending workability of the board | plate material final product obtained through a subsequent process. Therefore, it is necessary to devise manufacturing conditions so as to alleviate Ti segregation formed by melt casting and prevent generation of coarse crystal grains and coarse second phase particles during hot rolling. One of the ideas is the introduction of strain energy in the hot forging process described above. Furthermore, in the hot rolling process, increase the rolling reduction in the highest possible temperature range, promote homogenization by diffusion in the heating stage before hot rolling and promote dynamic recrystallization during hot rolling. is important.

熱間圧延時のスラブ加熱温度は930〜950℃とすることが望ましい。熱間圧延開始温度(最初の圧延パスにおける材料温度)は950℃以下とする。それより高いと合金成分の偏析箇所など融点が低下している箇所で割れが生じる場合がある。950〜920℃での圧延率55%以上とする。この高温域での圧延率が小さくなると動的再結晶による微細化効果が低減し、粗大な再結晶粒が存在する場合がある。また、Ti偏析の緩和が不十分となり粗大第二相粒子が多く形成される。熱間圧延終了温度(最後の圧延パスにおける材料温度)は700℃以上とすることが好ましい。熱間圧延後は水冷などによって急冷することが望ましい。
なお、ある板厚t4(mm)からある板厚t5(mm)までの圧延率は、下記(3)式により定まる。後述の各工程における圧延率も同様である。
圧延率(%)=(t4−t5)/t4×100 …(3)
なお、熱間圧延温度は、熱間圧延時の材料表面温度である。
The slab heating temperature during hot rolling is preferably 930 to 950 ° C. The hot rolling start temperature (material temperature in the first rolling pass) is 950 ° C. or lower. If it is higher than that, cracks may occur at a location where the melting point is lowered, such as a segregation location of the alloy component. The rolling rate at 950 to 920 ° C. is 55% or more. If the rolling rate in this high temperature range is reduced, the effect of refining by dynamic recrystallization is reduced, and coarse recrystallized grains may be present. In addition, the relaxation of Ti segregation is insufficient and a large number of coarse second-phase particles are formed. The hot rolling end temperature (material temperature in the final rolling pass) is preferably 700 ° C. or higher. It is desirable to cool rapidly after hot rolling by water cooling or the like.
The rolling rate from a certain sheet thickness t 4 (mm) to a certain sheet thickness t 5 (mm) is determined by the following equation (3). The same applies to the rolling rate in each step described later.
Rolling ratio (%) = (t 4 −t 5 ) / t 4 × 100 (3)
The hot rolling temperature is the material surface temperature during hot rolling.

〔冷間圧延〕
溶体化処理前に行う冷間圧延では、圧延率を80%以上とすることが望ましい。圧延で導入される歪が再結晶の核として機能し、結晶粒径の均一化に有効となる。冷間圧延率の上限はミルパワー等により制約を受けるが、通常、99%以下の範囲で設定すればよい。必要に応じて、中間焼鈍を挟んだ複数回の冷間圧延工程を実施してもよい。その場合、最終の中間焼鈍後に行う冷間圧延工程が、上記「溶体化処理前に行う冷間圧延」に相当する。
(Cold rolling)
In the cold rolling performed before the solution treatment, the rolling rate is desirably 80% or more. The strain introduced by rolling functions as a nucleus for recrystallization, and is effective in making the crystal grain size uniform. Although the upper limit of the cold rolling rate is limited by mill power or the like, it is usually set within a range of 99% or less. If necessary, a plurality of cold rolling processes with intermediate annealing interposed therebetween may be performed. In that case, the cold rolling process performed after the final intermediate annealing corresponds to the above “cold rolling performed before the solution treatment”.

〔溶体化処理〕
溶体化処理温度は700〜950℃とすることができる。750〜900℃とすることがより好ましい。加熱時間は5sec〜5minの範囲で設定すればよい。冷却は通常の溶体化処理と同様、水冷などにより急冷すればよい。例えば、700℃から200℃までの平均冷却速度が100℃/sec以上となるような冷却が望ましい。
[Solution treatment]
The solution treatment temperature can be 700 to 950 ° C. It is more preferable to set it as 750-900 degreeC. The heating time may be set in the range of 5 sec to 5 min. Cooling may be performed rapidly by water cooling or the like, as in a normal solution treatment. For example, it is desirable that the average cooling rate from 700 ° C. to 200 ° C. be 100 ° C./sec or more.

〔時効処理〕
時効処理温度は300〜550℃、時効時間は60〜600minの範囲で設定すればよい。
[Aging treatment]
The aging treatment temperature may be set in the range of 300 to 550 ° C., and the aging time may be set in the range of 60 to 600 min.

〔仕上冷間圧延〕
用途に応じて仕上冷間圧延を行い、強度レベルの向上を図ることができる。仕上冷間圧延率は70%以下とすることが望ましい。最終的な板厚は例えば0.05〜1.0mmとすることができ、特に0.05〜0.3mmの薄板材は通電部品の小型化に有用である。
[Finish cold rolling]
Depending on the application, finish cold rolling can be performed to improve the strength level. The finish cold rolling rate is desirably 70% or less. The final plate thickness can be set to, for example, 0.05 to 1.0 mm. Particularly, a thin plate material having a thickness of 0.05 to 0.3 mm is useful for reducing the size of the current-carrying component.

〔低温焼鈍〕
仕上冷間圧延後には、板材の残留応力の低減や曲げ加工性の向上、空孔やすべり面上の転位の低減による耐応力緩和特性向上を目的として、低温焼鈍を施すことができる。加熱温度150〜600℃、加熱時間5〜3600secの範囲で条件設定すればよい。仕上冷間圧延を省略した場合は、通常、この低温焼鈍も省略される。
[Low temperature annealing]
After finish cold rolling, low-temperature annealing can be performed for the purpose of reducing the residual stress of the plate material, improving the bending workability, and improving the stress relaxation resistance by reducing the dislocations on the pores and the sliding surface. What is necessary is just to set conditions in the range of heating temperature 150-600 degreeC and heating time 5-3600 sec. When the finish cold rolling is omitted, this low temperature annealing is usually also omitted.

《板材の特性》
〔曲げ加工性〕
本発明に従えば、JIS H3110に従う90°W曲げ試験において、BW(Bad Way)のMBR/tが安定して0.60以下となる優れた曲げ加工性が実現できる。BWの曲げ試験は、曲げ試験片の長手方向が圧延直角方向(T方向)、曲げ軸が圧延方向(L方向)となる条件で行われる。
〔引張強さ〕
本発明に従えば、JIS Z2241に従う板材の圧延方向(L方向)の引張試験において、引張強さが880MPa以上、好ましくは900MPa以上、さらには920MPa以上のものが得られ、前記曲げ加工性と強度の両立を図ることができる。
<Characteristics of plate>
[Bending workability]
According to the present invention, in the 90 ° W bending test according to JIS H3110, it is possible to realize an excellent bending workability in which MBR / t of BW (Bad Way) is stably 0.60 or less. The BW bending test is performed under the condition that the longitudinal direction of the bending test piece is the rolling perpendicular direction (T direction) and the bending axis is the rolling direction (L direction).
〔Tensile strength〕
According to the present invention, in the tensile test in the rolling direction (L direction) of the plate material according to JIS Z2241, a tensile strength of 880 MPa or more, preferably 900 MPa or more, and further 920 MPa or more is obtained. Can be achieved.

表1に示す銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を切断して、長さ約3000mm、厚さ150mm、幅270mmのサイズの鍛造実験用の鋳片とした。鍛造実験用鋳片は、長さ方向全長にわたって断面形状は均等である。以下、特に断らない限り、「鋳片」と言うときはこの鍛造実験用鋳片を意味する。一部の例を除き、鋳片を炉中で4h加熱したのち抽出して熱間鍛造を施し、板状スラブを得た。鍛造開始温度、鍛造終了温度は表2中に示してある。鋳片の厚さ方向と得られた板状スラブの板厚方向は一致するので、以下これらの方向を一括してNDと表記する。同様に鋳片の幅方向と得られた板状スラブの幅方向も一致するので、以下これらを一括してTDと表記する。   The copper alloys shown in Table 1 were melted and cast using a vertical semi-continuous casting machine. The obtained slab was cut into a slab for forging experiments having a length of about 3000 mm, a thickness of 150 mm, and a width of 270 mm. The slab for forging experiment has a uniform cross-sectional shape over the entire length in the length direction. Hereinafter, unless otherwise specified, the term “slab” means the slab for forging experiment. Except for some examples, the slab was heated in a furnace for 4 hours and then extracted and hot forged to obtain a plate slab. The forging start temperature and forging end temperature are shown in Table 2. Since the thickness direction of the slab coincides with the plate thickness direction of the obtained plate-shaped slab, these directions are hereinafter collectively referred to as ND. Similarly, since the width direction of the slab and the width direction of the obtained plate-shaped slab coincide with each other, these are collectively referred to as TD hereinafter.

熱間鍛造では、NDおよびTDの2軸方向について圧下を付与した。ここでは、TD(鋳片の側面)の圧下をスラブ全体にわたって行い、次いでND(鋳片の板面)の圧下をスラブ全体にわたって行うという方法で、TD、NDの鍛造を交互に行った。その際、NDの1打目が最大圧下率となるように鍛造した。ND、TDとも、1箇所につきそれぞれ合計3〜4打の圧下を付与して、それぞれの方向の肉厚を所定の厚さに整えた。材料の板面のどの部分についても「1打当たりの最大圧下率」および「スラブの板厚方向のトータル厚さ減少率」は均等とした。これらの数値を表2中に示す。得られた板状スラブの幅は約270mmであり、各スラブにおいて長手方向のスラブ幅は均等である。熱間鍛造後、スラブ表面の凹凸を研削により平滑化した。   In hot forging, reduction was applied in the biaxial directions of ND and TD. Here, TD and ND were forged alternately by a method in which TD (side surface of the slab) was reduced over the entire slab, and then ND (plate surface of the slab) was reduced over the entire slab. At that time, forging was performed so that the first stroke of ND had the maximum reduction ratio. For both ND and TD, a total of 3 to 4 reductions were applied to each location, and the thickness in each direction was adjusted to a predetermined thickness. The “maximum rolling reduction per strike” and the “total thickness reduction rate in the thickness direction of the slab” were uniform for any part of the plate surface of the material. These numbers are shown in Table 2. The width of the obtained plate-shaped slab is about 270 mm, and the slab width in the longitudinal direction is uniform in each slab. After hot forging, the irregularities on the slab surface were smoothed by grinding.

熱間鍛造時に割れが生じた例を除き、上記各熱間鍛造スラブを、炉中で4h加熱した後、熱間圧延を施し、板厚15mmの熱間圧延材を得た。いずれも700℃以上の温度域で熱間圧延を終了し、直ちに水冷した。一部の例では熱間鍛造を省略して、鋳片を切削にて厚さ約115mmとしたのち、直接熱間圧延に供した。熱間圧延開始温度、および950℃から920℃までの圧延率を表2中に示す。また、熱間圧延時に割れが生じて次工程へ進めることができなかった例を除き、熱間圧延材からサンプルを切り出して、前述(A)に従う方法でC断面の粗大結晶粒面積率を測定した。測定値の再現性を確認するため、各熱間圧延材につき無作為に選択した10視野の観察を行ったが、いずれも粗大結晶粒面積率(%)の測定値(%表示の数値)の変動幅は1.5以内に収まっていた。表3中には10視野で得られた数値の平均値を粗大結晶粒面積率(%)として表示した。また、熱間圧延材のC断面を電解研磨して、SEM観察を行い、直径1μm以上の粗大第二相粒子の個数密度を求めた。電解研磨はElectroMet4(BUEHLER社製)を用い、φ10mmの領域に電圧15Vで20秒間電解研磨を行った。電解研磨液は、体積比で、蒸留水:10、リン酸:5、エタノール:5、2−プロパノール:1の混合液とした。SEM観察は倍率3000倍にて10視野で観察を行った。   Except for the case where cracking occurred during hot forging, each of the hot forging slabs was heated in a furnace for 4 h, and then hot rolled to obtain a hot rolled material having a plate thickness of 15 mm. In either case, the hot rolling was finished in a temperature range of 700 ° C. or higher and immediately water-cooled. In some examples, hot forging was omitted and the slab was cut to a thickness of about 115 mm and then directly subjected to hot rolling. Table 2 shows the hot rolling start temperature and the rolling rate from 950 ° C to 920 ° C. In addition, except for the case where cracks occurred during hot rolling and the process could not proceed to the next process, a sample was cut out from the hot rolled material, and the coarse crystal grain area ratio of the C cross section was measured by the method according to (A) above. did. In order to confirm the reproducibility of the measured values, 10 fields of view randomly selected for each hot-rolled material were observed, and all of the measured values of the coarse grain area ratio (%) (numerical values in% display) The fluctuation range was within 1.5. In Table 3, the average value of the numerical values obtained in 10 fields of view is displayed as the coarse crystal grain area ratio (%). Further, the C cross section of the hot rolled material was electropolished and subjected to SEM observation to determine the number density of coarse second phase particles having a diameter of 1 μm or more. For electropolishing, ElectroMet4 (manufactured by BUEHLER) was used, and electropolishing was performed in a region of φ10 mm at a voltage of 15 V for 20 seconds. The electropolishing liquid was a mixed solution of distilled water: 10, phosphoric acid: 5, ethanol: 5, 2-propanol: 1 by volume ratio. SEM observation was performed in 10 fields of view at a magnification of 3000 times.

熱間圧延時に割れが生じた例を除き、熱間圧延材に約92.8%の冷間圧延を施して板厚1mm以下としたのち、水素、窒素またはアルゴン雰囲気下で溶体化処理を施した。溶体化処理では、保持温度700〜900℃、保持時間1minで条件を調整して、溶体化処理後の平均結晶粒径をコントロールした。各例の溶体化処理の保持温度は表2に記載した。   Except for the case where cracking occurred during hot rolling, the hot-rolled material was subjected to cold rolling of about 92.8% to a thickness of 1 mm or less, and then subjected to solution treatment in a hydrogen, nitrogen or argon atmosphere. did. In the solution treatment, conditions were adjusted at a holding temperature of 700 to 900 ° C. and a holding time of 1 min to control the average crystal grain size after the solution treatment. The holding temperature of the solution treatment in each example is shown in Table 2.

得られた溶体化処理材からサンプルを採取して、時効条件を設定するための予備実験として、300〜500℃で最大10hまでに時効処理試験を行い、合金組成に応じて最大硬さとなる時効温度Tm(℃)および最大硬さHm(Hv)を把握した。前記溶体化処理材に対して、時効温度をTm±10℃とし、時効時間を時効後の硬さが0.08Hm以上1.0Hm以下となる時間に設定して、時効処理を施した。ここでは各例とも450℃×6hの条件とした。   As a preliminary experiment to set the aging conditions by taking a sample from the solution-treated material obtained, an aging treatment test is conducted at 300 to 500 ° C. for a maximum of 10 hours, and the aging is the maximum hardness according to the alloy composition. The temperature Tm (° C.) and the maximum hardness Hm (Hv) were determined. The solution treatment material was subjected to an aging treatment with an aging temperature of Tm ± 10 ° C. and an aging time set to a time at which the hardness after aging was 0.08 Hm to 1.0 Hm. Here, the conditions were 450 ° C. × 6 h in each example.

時効処理後、圧延率70%以下の範囲での仕上冷間圧延を行い、最終板厚を0.1mmに揃えた。その後、水素、窒素またはアルゴン雰囲気下、300〜600℃の範囲で低温焼鈍を施した。   After the aging treatment, finish cold rolling was performed at a rolling rate of 70% or less, and the final plate thickness was adjusted to 0.1 mm. Then, low temperature annealing was performed in the range of 300-600 degreeC in hydrogen, nitrogen, or argon atmosphere.

このようにして得られた板厚0.1mmの板材(供試材)について、上述(B)に従う方法で平均結晶粒径、最大側平均結晶粒径/平均結晶粒径の比を求めた。また、そのデータを用いて結晶粒径についての標準偏差/平均結晶粒径の比を算出した。供試材のC断面について、上記と同様の手法でSEM観察を行い、直径1μm以上の粗大第二相粒子の個数密度を求めた。
また、JIS Z2241に従ってL方向の引張試験を行い、試験数n=3の平均値にて引張強さを求めた。また、JIS H3110:2012に従って曲げ半径Rと板厚tの比R/tが0.6となる一定の条件でBWの90°W曲げ試験を試験数n=10にて行い、試験後の曲げ加工部の表面を光学顕微鏡によって100倍の倍率で観察して、割れの発生有無を調べた。この曲げ試験において、10個の試験片のうち割れが発生した試験片の割合を「割れ発生率(%)」として表示し、全てについて割れの発生が認められなかった場合(すなわち、割れ発生率=0%)を合格、それ以外を不合格とした。この厳しい評価方法で合格評価が得られた板材は、優れた曲げ加工性を有し、かつ曲げ加工性のバラツキが極めて小さいと判断できる。表3にこれらの試験結果を示す。
With respect to the plate material (test material) having a thickness of 0.1 mm obtained in this way, the ratio of average crystal grain size and maximum side average crystal grain size / average crystal grain size was determined by the method according to (B) above. In addition, the ratio of standard deviation / average crystal grain size with respect to the crystal grain size was calculated using the data. SEM observation was performed on the C cross section of the test material in the same manner as described above, and the number density of coarse second phase particles having a diameter of 1 μm or more was determined.
Moreover, the tensile test of the L direction was done according to JISZ2241, and the tensile strength was calculated | required by the average value of the test number n = 3. Further, in accordance with JIS H3110: 2012, a 90 ° W bending test of BW was performed at a test number n = 10 under a fixed condition where the ratio R / t of the bending radius R to the sheet thickness t was 0.6, and the bending after the test was performed. The surface of the processed part was observed with an optical microscope at a magnification of 100 times to examine whether or not cracking occurred. In this bending test, the ratio of the specimens where cracks occurred among the ten specimens was displayed as “crack occurrence rate (%)”, and no cracks were observed in all cases (that is, crack occurrence rate) = 0%) was accepted and the others were rejected. It can be judged that the plate material which has passed the strict evaluation method by this strict evaluation method has excellent bending workability and extremely small variation in bending workability. Table 3 shows the results of these tests.

表2、表3からわかるように、本発明に従う銅合金板材はいずれも熱間圧延材において粗大結晶粒の面積率が小さく、かつ時効処理材では最大側平均結晶粒径/平均結晶粒径の比が小さく抑えられた。その結果、曲げ加工性が良好であり、そのバラツキも顕著に改善された。   As can be seen from Tables 2 and 3, the copper alloy sheets according to the present invention each have a small area ratio of coarse crystal grains in the hot-rolled material, and the maximum side average crystal grain size / average crystal grain size in the aging-treated material. The ratio was kept small. As a result, the bending workability was good and the variation was remarkably improved.

これに対し、比較例No.31は熱間鍛造での1打当たりの最大圧下率が小さく、またNo.32は熱間鍛造でのスラブ板厚方向のトータル厚さ減少率が小さかったので、それぞれ歪みエネルギーの蓄積が不十分となり、得られた板材は粗大な結晶粒の存在する混粒組織となり、粗大第二相粒子の個数密度も高くなった。その結果、曲げ加工性のバラツキが大きかった。No.33は熱間圧延で高温域での圧延率が不足したので粗大な結晶粒の存在する混粒組織となり、曲げ加工性のバラツキが大きかった。No.34は熱間圧延温度が高すぎたので熱間圧延材に割れが生じ、それ以降の工程を中止した。No.35は熱間鍛造での1打当たりの最大圧下率が大きすぎ、No.36は熱間鍛造温度が高すぎ、No.37は熱間鍛造温度が低すぎたので、それぞれ熱間鍛造時に材料に割れが生じ、いずれもそれ以降の工程を中止した。No.38〜41は熱間鍛造を実施しなかったので、得られた板材は粗大な結晶粒の存在する混粒組織となり、粗大第二相粒子の個数密度も増大し、曲げ加工性のバラツキは改善されなかった。   On the other hand, Comparative Example No. 31 had a small maximum rolling reduction per shot in hot forging, and No. 32 had a small total thickness reduction rate in the slab plate thickness direction in hot forging. In each case, accumulation of strain energy became insufficient, and the obtained plate material became a mixed grain structure in which coarse crystal grains existed, and the number density of coarse second-phase particles also increased. As a result, the variation in bending workability was large. No. 33 was a hot-rolled and the rolling rate in a high temperature range was insufficient, so that it became a mixed grain structure in which coarse crystal grains existed, and the bending workability varied greatly. In No. 34, since the hot rolling temperature was too high, the hot rolled material was cracked, and the subsequent steps were stopped. No. 35 has a maximum maximum reduction rate per one shot in hot forging, No. 36 has a hot forging temperature too high, and No. 37 has a hot forging temperature too low. Occasionally, the material cracked, and all subsequent processes were discontinued. Nos. 38 to 41 were not subjected to hot forging, so that the obtained plate material had a mixed grain structure in which coarse crystal grains existed, the number density of coarse second-phase particles was increased, and variation in bending workability was observed. Was not improved.

参考のため、図1に本発明に従う熱間圧延材(本発明例No.2)のC断面の金属組織写真を例示する。図2に熱間鍛造を施していない従来法による熱間圧延材(比較例No.38)のC断面の金属組織写真を例示する。図3に、本発明に従う時効処理された板材(No.2の低温焼鈍材)のC断面の金属組織写真を例示する。図4に、熱間鍛造を施していない従来の工程による時効処理された板材(No.38の低温焼鈍材)のC断面の金属組織写真を例示する。   For reference, FIG. 1 illustrates a metallographic photograph of the C cross section of a hot-rolled material according to the present invention (Invention Example No. 2). FIG. 2 illustrates a metallographic photograph of the C cross section of a hot-rolled material (Comparative Example No. 38) by a conventional method not subjected to hot forging. In FIG. 3, the metal structure photograph of the C cross section of the board | plate material (No.2 low-temperature annealing material) age-treated according to this invention is illustrated. FIG. 4 illustrates a metallographic photograph of the C cross-section of a plate material (No. 38 low-temperature annealed material) that has been aged by a conventional process that has not been hot forged.

Claims (9)

質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%、残部Cuおよび不可避的不純物からなる化学組成を有する熱間圧延後の板材であって、板の圧延方向をL方向、圧延方向と板厚方向に直角の方向をT方向、L方向に垂直な断面をC断面と呼ぶとき、C断面の顕微鏡観察において下記(A)に従う方法で求めた粗大結晶粒面積率が5.0%以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が500個/mm2以下である熱間圧延後のCu−Ti系銅合金板材。
(A)C断面に、T方向を一辺に持つ1.25mm×1.25mmの正方形観察領域を設け、その観察領域を81個の正方形からなるマス目に分割して各マス目の頂点である合計100個の格子点を設定し、当該観察領域の顕微鏡観察画像上の格子点のうち長径100μm以上の粗大結晶粒の内部(結晶粒界上を含む)に位置する格子点の合計数n1を求め、n1個/100個×100により算出される値を粗大結晶粒面積率(%)と定める。ただし、双晶境界は結晶粒界とみなさない。また、結晶粒の一部が観察領域の外に出ている長径100μm以上の結晶粒は当該観察領域内の部分をn1のカウント対象とする。
In mass%, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1.5%, B: 0 to 0.07% A sheet material after hot rolling having a chemical composition consisting of the balance Cu and inevitable impurities, the rolling direction of the sheet being the L direction, the direction perpendicular to the rolling direction and the sheet thickness direction being the T direction, and perpendicular to the L direction When the cross section is referred to as the C cross section, the coarse crystal grain area ratio determined by the method according to the following (A) in the microscopic observation of the C cross section is 5.0% or less, and the coarse second phase particles having a diameter of 1 μm or more in the C cross section A Cu—Ti-based copper alloy sheet after hot rolling having a number density of 500 pieces / mm 2 or less.
(A) A 1.25 mm × 1.25 mm square observation area having a T direction on one side is provided on the C cross section, and the observation area is divided into 81 square squares to be the vertices of each square. A total of 100 lattice points are set, and the total number n 1 of lattice points located inside coarse crystal grains having a major axis of 100 μm or more (including on the grain boundaries) among the lattice points on the microscope observation image of the observation region. look, determine n 1 piece / 100 × 100 coarse grains area ratio of the value calculated by the (%). However, twin boundaries are not regarded as grain boundaries. In addition, a crystal grain having a major axis of 100 μm or more in which a part of the crystal grain is out of the observation region is targeted for counting n 1 in the observation region.
化学組成が、質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、B、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなるものである請求項1に記載のCu−Ti系銅合金板材。   Chemical composition is mass%, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1.5%, B: 0 0.07%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1.0%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Si: 0 to 1.0%, P: 0 to 0.1%, Cr: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%. The total content of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V is 3.0% or less, and the balance is composed of the balance Cu and inevitable impurities. The Cu-Ti-based copper alloy sheet according to the description. 質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%、残部Cuおよび不可避的不純物からなる化学組成を有する時効処理された板材であって、板の圧延方向をL方向、圧延方向と板厚方向に直角の方向をT方向、L方向に垂直な断面をC断面と呼ぶとき、C断面の顕微鏡観察において下記(B)に従う方法で求めた平均結晶粒径が7.0〜40.0μm、最大側平均結晶粒径/平均結晶粒径の比が2.5以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が1000個/mm2以下である時効処理されたCu−Ti系銅合金板材。
(B)C断面の観察視野内に、長さ0.125mmのT方向線分を0.0125mm間隔で平行に10本設定し、各線分についてJIS H0501−1986に規定の切断法に従い、線分によって完全に切られる結晶粒(以下「切断結晶粒」という)の数と各切断長さ(以下「個々の切断結晶粒径」という)を測定する。この測定を無作為に設定した異なる10視野について行い、10本×10視野=計100本の線分による個々の切断結晶粒径の合計値を切断結晶粒の総数で除した値(μm)を「平均結晶粒径」と定め、前記100本の線分による個々の切断結晶粒径の最大値(μm)のものから大きい順に5個選び、その5個の平均を「最大側平均結晶粒径」と定める。
In mass%, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1.5%, B: 0 to 0.07% An aging-treated plate material having a chemical composition consisting of the remainder Cu and inevitable impurities, the rolling direction of the plate being the L direction, the direction perpendicular to the rolling direction and the plate thickness direction being the T direction, and a cross section perpendicular to the L direction Is referred to as the C cross section, the average crystal grain size determined by the method according to the following (B) in the microscopic observation of the C cross section is 7.0 to 40.0 μm, and the ratio of the maximum side average crystal grain size / average crystal grain size is 2 An aging-treated Cu—Ti-based copper alloy sheet in which the number density of coarse second-phase particles having a diameter of 1 μm or more in the C cross section is 1000 / mm 2 or less.
(B) Ten T-direction line segments with a length of 0.125 mm are set in parallel at an interval of 0.0125 mm in the observation field of the C cross section, and each line segment is line segment according to the cutting method specified in JIS H0501-1986. The number of crystal grains (hereinafter referred to as “cut crystal grains”) that are completely cut by the above and the length of each cut (hereinafter referred to as “individual cut crystal grain sizes”) are measured. This measurement was performed on 10 different fields set at random, and the value (μm) obtained by dividing the total value of individual cut crystal grain sizes by 10 lines × 10 fields = total of 100 line segments by the total number of cut crystal grains. The average grain size is defined as “average crystal grain size”, and five pieces are selected in descending order from the maximum value (μm) of the individual cut crystal grain sizes of the 100 line segments. "
化学組成が、質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、B、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなるものである請求項3に記載の時効処理されたCu−Ti系銅合金板材。   Chemical composition is mass%, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1.5%, B: 0 0.07%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1.0%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Si: 0 to 1.0%, P: 0 to 0.1%, Cr: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%. 4. The total content of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn and V is 3.0% or less, and the balance is composed of the balance Cu and inevitable impurities. The Cu-Ti type | system | group copper alloy plate material by which the aging treatment of description was carried out. 時効処理後に冷間圧延されたものである請求項3または4に記載のCu−Ti系銅合金板材。   The Cu-Ti-based copper alloy sheet according to claim 3 or 4, which has been cold-rolled after aging treatment. 質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%、残部Cuおよび不可避的不純物からなる化学組成を有する鋳片に熱間鍛造を施して板状のスラブを得るに際し、熱間鍛造の全ての圧下を850〜700℃の温度範囲で行い、1打当たりの最大圧下率をいずれの方向の圧下についても20%以下とし、スラブ板厚方向の圧下については材料全体にわたって1打当たりの圧下率が15〜20%の圧下を少なくとも1打以上付与し、スラブ板厚方向のトータル厚さ減少率を25%以上とする熱間鍛造工程、
前記鍛造後のスラブに対して、圧延開始温度950℃以下、950〜920℃での圧延率55%以上の条件で熱間圧延を施すことにより、C断面の顕微鏡観察において下記(A)に従う方法で求めた粗大結晶粒面積率が5.0%以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が500個/mm 2 以下である板材を得る熱間圧延工程、
を有するCu−Ti系銅合金板材の製造方法。
(A)C断面に、T方向を一辺に持つ1.25mm×1.25mmの正方形観察領域を設け、その観察領域を81個の正方形からなるマス目に分割して各マス目の頂点である合計100個の格子点を設定し、当該観察領域の顕微鏡観察画像上の格子点のうち長径100μm以上の粗大結晶粒の内部(結晶粒界上を含む)に位置する格子点の合計数n 1 を求め、n 1 個/100個×100により算出される値を粗大結晶粒面積率(%)と定める。ただし、双晶境界は結晶粒界とみなさない。また、結晶粒の一部が観察領域の外に出ている長径100μm以上の結晶粒は当該観察領域内の部分をn 1 のカウント対象とする。
ここで、C断面は板の圧延方向に垂直な断面、T方向は板の圧延方向と板厚方向に直角の方向を意味する。
In mass%, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1.5%, B: 0 to 0.07% When a plate-shaped slab is obtained by hot forging a slab having a chemical composition composed of the remaining Cu and inevitable impurities, all the hot forging is reduced in a temperature range of 850 to 700 ° C. The maximum reduction rate per hit is 20% or less in any direction of reduction, and for reduction in the slab thickness direction, a reduction with a reduction rate of 15 to 20% per shot is applied over the entire material. A hot forging process in which the total thickness reduction rate in the slab thickness direction is 25% or more,
A method according to the following (A) in the microscopic observation of the C section by subjecting the slab after forging to hot rolling at a rolling start temperature of 950 ° C. or lower and a rolling rate of 55% or higher at 950 to 920 ° C. A hot rolling step of obtaining a plate material having a coarse crystal grain area ratio of 5.0% or less determined in step 1 and a number density of coarse second-phase particles having a diameter of 1 μm or more in the C cross section of 500 particles / mm 2 or less ;
The manufacturing method of the Cu-Ti type copper alloy board | plate material which has this.
(A) A 1.25 mm × 1.25 mm square observation area having a T direction on one side is provided on the C cross section, and the observation area is divided into 81 square squares to be the vertices of each square. A total of 100 lattice points are set, and the total number n 1 of lattice points located inside coarse crystal grains having a major axis of 100 μm or more (including on the grain boundaries) among the lattice points on the microscope observation image of the observation region. look, determine n 1 piece / 100 × 100 coarse grains area ratio of the value calculated by the (%). However, twin boundaries are not regarded as grain boundaries. In addition, a crystal grain having a major axis of 100 μm or more in which a part of the crystal grain is out of the observation region is targeted for counting n 1 in the observation region .
Here, the C cross section means a cross section perpendicular to the rolling direction of the plate, and the T direction means a direction perpendicular to the rolling direction of the plate and the thickness direction.
鋳片の化学組成が、質量%で、Ti:1.0〜5.0%、Fe:0〜0.5%、Co:0〜1.0%、Ni:0〜1.5%、B:0〜0.07%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなるものである請求項に記載のCu−Ti系銅合金板材の製造方法。 The chemical composition of the slab is, by mass, Ti: 1.0 to 5.0%, Fe: 0 to 0.5%, Co: 0 to 1.0%, Ni: 0 to 1.5%, B : 0 to 0.07%, Sn: 0 to 1.2%, Zn: 0 to 2.0%, Mg: 0 to 1.0%, Zr: 0 to 1.0%, Al: 0 to 1. 0%, Si: 0 to 1.0%, P: 0 to 0.1%, Cr: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, Sn of the elements, Zn, Mg, Zr, Al , Si, P, Cr, the total content of Mn and V are 3.0% or less, claim in which the balance Cu and unavoidable impurities 6 The manufacturing method of Cu-Ti type | system | group copper alloy board | plate material of description. 請求項6または7に記載の熱間鍛造工程および熱間圧延工程を経て製造された銅合金板材に対して、1回の冷間圧延または中間焼鈍を挟んだ複数回の冷間圧延、溶体化処理、時効処理、仕上冷間圧延、加熱温度150〜600℃の低温焼鈍を施すことにより、C断面の顕微鏡観察において下記(B)に従う方法で求めた平均結晶粒径が7.0〜40.0μm、最大側平均結晶粒径/平均結晶粒径の比が2.5以下であり、C断面における直径1μm以上の粗大第二相粒子の個数密度が1000個/mm 2 以下である板材を得る、Cu−Ti系銅合金板材の製造方法。
(B)C断面の観察視野内に、長さ0.125mmのT方向線分を0.0125mm間隔で平行に10本設定し、各線分についてJIS H0501−1986に規定の切断法に従い、線分によって完全に切られる結晶粒(以下「切断結晶粒」という)の数と各切断長さ(以下「個々の切断結晶粒径」という)を測定する。この測定を無作為に設定した異なる10視野について行い、10本×10視野=計100本の線分による個々の切断結晶粒径の合計値を切断結晶粒の総数で除した値(μm)を「平均結晶粒径」と定め、前記100本の線分による個々の切断結晶粒径の最大値(μm)のものから大きい順に5個選び、その5個の平均を「最大側平均結晶粒径」と定める。
ここで、C断面は板の圧延方向に垂直な断面を意味する。
A plurality of cold rolling and solution forming with one cold rolling or intermediate annealing between the copper alloy sheet material produced through the hot forging step and the hot rolling step according to claim 6 or 7 . The average crystal grain size determined by the method according to the following (B) in the microscopic observation of the C cross section by performing treatment, aging treatment, finish cold rolling, and low temperature annealing at a heating temperature of 150 to 600 ° C. is 7.0 to 40. A plate material is obtained in which the ratio of the maximum side average crystal grain size / average crystal grain size is 2.5 μm or less and the number density of coarse second-phase particles having a diameter of 1 μm or more in the C cross section is 1000 particles / mm 2 or less. The manufacturing method of a Cu-Ti type copper alloy board | plate material.
(B) Ten T-direction line segments with a length of 0.125 mm are set in parallel at an interval of 0.0125 mm in the observation field of the C cross section, and each line segment is line segment according to the cutting method specified in JIS H0501-1986. The number of crystal grains (hereinafter referred to as “cut crystal grains”) that are completely cut by the above and the length of each cut (hereinafter referred to as “individual cut crystal grain sizes”) are measured. This measurement was performed on 10 different fields set at random, and the value (μm) obtained by dividing the total value of individual cut crystal grain sizes by 10 lines × 10 fields = total of 100 line segments by the total number of cut crystal grains. The average grain size is defined as “average crystal grain size”, and five pieces are selected in descending order from the maximum value (μm) of the individual cut crystal grain sizes of the 100 line segments. "
Here, the C cross section means a cross section perpendicular to the rolling direction of the plate.
請求項3〜のいずれか1項に記載のCu−Ti系銅合金板材を加工してなる通電部品。 The electricity supply component formed by processing the Cu-Ti type | system | group copper alloy board | plate material of any one of Claims 3-5 .
JP2014070326A 2014-03-28 2014-03-28 Cu-Ti copper alloy sheet, method for producing the same, and energized component Active JP6368518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070326A JP6368518B2 (en) 2014-03-28 2014-03-28 Cu-Ti copper alloy sheet, method for producing the same, and energized component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070326A JP6368518B2 (en) 2014-03-28 2014-03-28 Cu-Ti copper alloy sheet, method for producing the same, and energized component

Publications (2)

Publication Number Publication Date
JP2015190044A JP2015190044A (en) 2015-11-02
JP6368518B2 true JP6368518B2 (en) 2018-08-01

Family

ID=54424804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070326A Active JP6368518B2 (en) 2014-03-28 2014-03-28 Cu-Ti copper alloy sheet, method for producing the same, and energized component

Country Status (1)

Country Link
JP (1) JP6368518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512115A (en) * 2019-09-29 2019-11-29 宁波金田铜业(集团)股份有限公司 High strength and high flexibility conductive copper titanium alloy rod bar and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310131B1 (en) 2017-09-22 2018-04-11 Jx金属株式会社 Titanium copper for electronic parts
JP6310130B1 (en) 2017-09-22 2018-04-11 Jx金属株式会社 Titanium copper for electronic parts
JP6907282B2 (en) * 2019-09-25 2021-07-21 Jx金属株式会社 Titanium-copper alloy plate for vapor chamber and vapor chamber
CN112725654B (en) * 2020-12-23 2021-12-24 无锡日月合金材料有限公司 High-strength, high-conductivity and high-toughness copper-titanium alloy for integrated circuit and preparation method thereof
JP7038879B1 (en) * 2021-07-20 2022-03-18 Dowaメタルテック株式会社 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts
CN116694953B (en) * 2023-08-04 2023-10-31 中铝科学技术研究院有限公司 Copper alloy plate strip for electromagnetic shielding and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942505B2 (en) * 2002-07-16 2007-07-11 ヤマハメタニクス株式会社 Titanium copper alloy material and manufacturing method thereof
JP4191159B2 (en) * 2005-03-14 2008-12-03 日鉱金属株式会社 Titanium copper with excellent press workability
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP5873618B2 (en) * 2009-08-18 2016-03-01 新日鐵住金株式会社 Method for producing copper alloy
JP4663030B1 (en) * 2010-06-25 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP4663031B1 (en) * 2010-06-29 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper products, electronic components and connectors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512115A (en) * 2019-09-29 2019-11-29 宁波金田铜业(集团)股份有限公司 High strength and high flexibility conductive copper titanium alloy rod bar and preparation method thereof
CN110512115B (en) * 2019-09-29 2021-08-17 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive copper-titanium alloy bar and preparation method thereof

Also Published As

Publication number Publication date
JP2015190044A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
KR102249605B1 (en) Aluminum alloy material suitable for manufacturing of automobile sheet, and preparation method therefor
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
CN106164306B (en) Copper alloy wire and method for producing same
EP2319947A1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
WO2011068121A1 (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JPWO2011068135A1 (en) Copper alloy sheet and manufacturing method thereof
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
CN108699641B (en) Al-Mg-Si alloy material, Al-Mg-Si alloy sheet, and method for producing Al-Mg-Si alloy sheet
JP5011586B2 (en) Copper alloy sheet with improved bending workability and fatigue characteristics and its manufacturing method
JP2017179553A (en) Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
CN112739838B (en) Cu-Ni-Al based copper alloy sheet material, method for producing same, and conductive spring member
JP2018070908A (en) Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER
CN110872664A (en) Al-Mg-Si alloy plate
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
JP2017179442A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2004292875A (en) 70/30 brass with crystal grain refined, and production method therefor
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
CN110872665B (en) Al-Mg-Si alloy plate
JP6317966B2 (en) Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
CN103154285B (en) Copper alloy hot-forged part and process for producing copper alloy hot-forged part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250