JP7038879B1 - Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts - Google Patents

Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts Download PDF

Info

Publication number
JP7038879B1
JP7038879B1 JP2021119492A JP2021119492A JP7038879B1 JP 7038879 B1 JP7038879 B1 JP 7038879B1 JP 2021119492 A JP2021119492 A JP 2021119492A JP 2021119492 A JP2021119492 A JP 2021119492A JP 7038879 B1 JP7038879 B1 JP 7038879B1
Authority
JP
Japan
Prior art keywords
copper alloy
plate material
heat treatment
area
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021119492A
Other languages
Japanese (ja)
Other versions
JP2023015605A (en
Inventor
婉青 姜
宏 兵藤
久 須田
宏治 渡辺
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2021119492A priority Critical patent/JP7038879B1/en
Priority to CN202111268406.4A priority patent/CN115637350B/en
Application granted granted Critical
Publication of JP7038879B1 publication Critical patent/JP7038879B1/en
Publication of JP2023015605A publication Critical patent/JP2023015605A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】絞り加工性が良好で、より好ましくは曲げ加工性も高く維持された高強度のCu-Ti系銅合金板材を提供する。【解決手段】質量%で、Ti:1.0~5.0%であり、Ag、Al、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、Zn、Zrの1種以上を適量含有する組成を有し、板面に平行な観察面のEBSD(電子線後方散乱回折法)により測定されるS方位{231}<3-46>から方位差10°以内の領域の面積AS、R方位{132}<4-21>から方位差10°以内の領域の面積AR、P方位{011}<1-11>から方位差10°以内の領域の面積AP、Cube方位{001}<100>から方位差が10°以内の領域の面積ACにより、次式、A=(AS+AR)/(AP+AC)で定まるA値が0.5~20である銅合金板材。【選択図】なしPROBLEM TO BE SOLVED: To provide a high-strength Cu—Ti copper alloy plate material having good drawability and more preferably maintained with high bending workability. SOLUTION: The mass is Ti: 1.0 to 5.0%, and Ag, Al, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S, Si, Sn, V. , Zn, Zr having an appropriate amount of one or more, and an orientation from the S orientation {231} <3-46> measured by EBSD (electron backscatter diffraction method) of the observation surface parallel to the plate surface. Area of area within 10 ° difference AS, area of area within 10 ° orientation difference from AS and R orientation {132} <4-21> Area within 10 ° orientation difference from AR and P orientation {011} <1-11> The A value determined by the following equation, A = (AS + AR) / (AP + AC) is 0.5 to 20 depending on the area AC of the area AP and the area AC in the region where the orientation difference is within 10 ° from the Cube orientation {001} <100>. Copper alloy plate material. [Selection diagram] None

Description

本発明は、絞り加工性を改善したCu-Ti系銅合金板材、その製造方法、および前記板材を材料に用いた通電部品に関する。 The present invention relates to a Cu—Ti copper alloy plate material having improved drawability, a method for producing the same, and an energizing component using the plate material as a material.

Cu-Ti系銅合金(チタン銅)は、各種銅合金の中でも強度レベルが高く、耐応力緩和性も良好である。その高い強度を維持しながら延性、曲げ加工性、疲労特性などを改善する技術も開発されてきたことから、Cu-Ti系銅合金はコネクタ、リレー、スイッチ等の通電部品やばね部品として広く使用されるに至っている。 The Cu—Ti copper alloy (titanium copper) has a high strength level and good stress relaxation resistance among various copper alloys. Since technologies for improving ductility, bending workability, fatigue characteristics, etc. have been developed while maintaining the high strength, Cu-Ti copper alloys are widely used as energizing parts such as connectors, relays, switches, and spring parts. Has come to be done.

特許文献1、2には、Cu-Ti系銅合金において、粒界反応相の面積率や形態を所定範囲にすることにより強度と延性のバランスを改善する技術が開示されている。その延性の評価は引張試験での破断伸びによって行われている。 Patent Documents 1 and 2 disclose a technique for improving the balance between strength and ductility by setting the area ratio and morphology of the grain boundary reaction phase in a predetermined range in a Cu—Ti copper alloy. The ductility is evaluated by the elongation at break in the tensile test.

特許文献3には、Cu-Ti系銅合金において、Cube方位の集積割合を特定範囲に制御することにより強度と曲げ加工性を改善する技術が開示されている。 Patent Document 3 discloses a technique for improving the strength and bending workability of a Cu—Ti copper alloy by controlling the accumulation ratio of the Cube orientation within a specific range.

特許文献4には、Cu-Ti系銅合金において、板面における{200}結晶面のX線回折強度が高いCube方位の集合組織に制御することにより強度と曲げ加工性を改善する技術が開示されている。 Patent Document 4 discloses a technique for improving the strength and bending workability of a Cu—Ti copper alloy by controlling the texture of the {200} crystal plane on the plate surface to have a high X-ray diffraction intensity in the Cube orientation. Has been done.

特許文献5には、Cu-Ti系銅合金において、比較的粗大な粒界反応相を有する結晶粒界の存在割合を制限することにより疲労特性を改善する技術が開示されている。 Patent Document 5 discloses a technique for improving fatigue characteristics in a Cu—Ti copper alloy by limiting the abundance ratio of crystal grain boundaries having relatively coarse grain boundary reaction phases.

一方、近年ではスマートフォンをはじめとする電子端末機器などの高性能化、高機能化に伴い、それに用いる通電部品やばね部品の材料には、従来にも増して、優れた加工性が要求されるようになっている。例えば、曲げ加工性の他、絞り加工性や張出し加工性についても重要視されるケースが増えている。特許文献6には、Cu-Co-Si系銅合金において、ランクフォード値を高めることによって絞り加工性を改善する技術が開示されている。 On the other hand, in recent years, with the increasing performance and functionality of electronic terminal devices such as smartphones, the materials for energizing parts and spring parts used for them are required to have better workability than before. It has become like. For example, in addition to bending workability, there are increasing cases where drawing workability and overhanging workability are also regarded as important. Patent Document 6 discloses a technique for improving drawability by increasing the Rankford value in a Cu—Co—Si based copper alloy.

特開2015-140476公報JP 2015-140476A 特開2015-140477公報JP 2015-140477 WO2012/029717号公報WO2012 / 029717 Gazette 特開2011-26635号公報Japanese Unexamined Patent Publication No. 2011-26635 特開2017-39959号公報Japanese Unexamined Patent Publication No. 2017-39959 特開2015-28201公報JP-A-2015-28201

上述のように、Cu-Ti系銅合金は本来高い強度レベルを有し、比較的良好な曲げ加工性を付与することも可能な銅合金であるが、絞り加工性に関しては改善の余地がある。特許文献1~5に記載の技術では、Cu-Ti系銅合金の強度と、延性、曲げ加工性あるいは疲労特性との両立を図ることは可能であるが、絞り加工性を十分に改善することは困難である。特に、優れた曲げ加工性を維持しながら絞り加工性を安定して改善することは、一層難しい。一方、特許文献6のCu-Co-Si系銅合金に関する技術は、Cu-Ti系銅合金の絞り加工性の改善手段には利用できない。Cu-Co-Si系銅合金とCu-Ti系銅では合金系が異なるので、絞り加工に適した集合組織に制御する条件が異なる可能性があると考えている。 As described above, Cu—Ti copper alloys are copper alloys that originally have a high strength level and can be provided with relatively good bending workability, but there is room for improvement in draw workability. .. With the techniques described in Patent Documents 1 to 5, it is possible to achieve both the strength of the Cu—Ti copper alloy and the ductility, bending workability or fatigue characteristics, but the drawing workability should be sufficiently improved. It is difficult. In particular, it is more difficult to stably improve the drawability while maintaining excellent bending workability. On the other hand, the technique relating to the Cu—Co—Si copper alloy of Patent Document 6 cannot be used as a means for improving the drawability of the Cu—Ti copper alloy. Since the alloy system is different between the Cu—Co—Si copper alloy and the Cu—Ti copper, it is considered that the conditions for controlling the texture suitable for drawing may be different.

以上の問題に鑑み、本発明では絞り加工性が改善されたCu-Ti系銅合金板材を提供する。特に、高強度と優れた曲げ加工性を具備しながら絞り加工性が改善されたCu-Ti系銅合金板材を提供する。 In view of the above problems, the present invention provides a Cu—Ti copper alloy plate material having improved drawability. In particular, a Cu—Ti copper alloy plate material having high strength and excellent bending workability and improved drawability is provided.

発明者らは詳細な検討の結果、Cu-Ti系銅合金板材の結晶配向を厳密にコントロールすることによって、絞り加工性を改善することが可能であることを見出した。具体的には、本明細書では以下の発明を開示する。 As a result of detailed studies, the inventors have found that it is possible to improve the drawability by strictly controlling the crystal orientation of the Cu—Ti copper alloy plate material. Specifically, the present specification discloses the following inventions.

[1]質量%で、Ti:1.0~5.0%、Ag:0~0.30%、Al:0~1.0%、B:0~0.20%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.5%、P:0~0.20%、S:0~0.20%、Si:0~1.0%、Sn:0~1.2%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%であり、前記元素のうちAg、Al、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、ZnおよびZrの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有し、板面に平行な観察面に設けた測定領域についてのEBSD(電子線後方散乱回折法)測定において、S方位{2 3 1}<3 -4 6>からの結晶方位差が10°以内である領域の面積をAS、R方位{1 3 2}<4 -2 1>からの結晶方位差が10°以内である領域の面積をAR、P方位{0 1 1}<1 -1 1>からの結晶方位差が10°以内である領域の面積をAP、Cube方位{0 0 1}<1 0 0>からの結晶方位差が10°以内である領域の面積をACとするとき、下記(1)式に従うA値が0.5~20である銅合金板材。
A=(AS+AR)/(AP+AC) …(1)
[2]板面に平行な観察面の前記EBSD測定において、結晶方位差が5°を超える境界を結晶粒界とみなした場合のArea Fraction法による平均結晶粒径が2.0~30.0μmである上記[1]に記載の銅合金板材。
[3]日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tが2.5以下である上記[1]または[2]に記載の銅合金板材。
[4]マトリックス(金属素地)中に存在する粒子径0.1μm以上の第二相粒子の個数密度が5×10個/mm以下である上記[1]~[3]のいずれかに記載の銅合金板材。
[5]圧延方向の引張強さが850MPa以上である上記[1]~[4]のいずれかに記載の銅合金板材。
[6]板厚が0.02~0.50mmである上記[1]~[5]のいずれかに記載の銅合金板材。
[7]上記[1]~[6]のいずれかに記載の銅合金板材を材料に用いた通電部品。
[8]上記[1]に記載した組成を有する熱間加工材に、圧延率50~99%の冷間圧延を施す工程と、
380~620℃で1~20時間保持する第1熱処理を施した後、180~420℃で1~20時間保持する第2熱処理を下記(3)式に従う条件で施す工程と、
圧延率10~99%の冷間圧延を施す工程と、
板材の圧延方向に12.5~20.0N/mmの張力を付与した状態で700~950℃に加熱する条件で、溶体化処理を施す工程と、
300~600℃で1時間以上保持する条件で、時効処理を施す工程と、
を上記の順に有する、上記[1]~[6]のいずれかに記載の銅合金板材の製造方法。
T1≧T2+40℃ …(3)
ここで、T1は第1熱処理の保持温度(℃)、T2は第2熱処理の保持温度(℃)である。
[9]前記第1熱処理と前記第2熱処理の間で、圧延率70%以下の冷間圧延を施す、上記[8]に記載の銅合金板材の製造方法。
[10]前記溶体化処理と前記時効処理の間で、圧延率60%以下の冷間圧延を施す、上記[8]または[9]に記載の銅合金板材の製造方法。
[11]前記時効処理の後に、
圧延率60%以下の冷間圧延を施す工程と、
300~620℃で600秒以下の時間保持する低温焼鈍を施す工程と、
を上記の順に有する、上記[8]~[10]のいずれかに記載の銅合金板材の製造方法。
[1] In terms of mass%, Ti: 1.0 to 5.0%, Ag: 0 to 0.30%, Al: 0 to 1.0%, B: 0 to 0.20%, Be: 0 to 0. .15%, Co: 0 to 1.0%, Cr: 0 to 1.0%, Fe: 0 to 1.0%, Mg: 0 to 1.0%, Mn: 0 to 1.0%, Ni : 0 to 1.5%, P: 0 to 0.20%, S: 0 to 0.20%, Si: 0 to 1.0%, Sn: 0 to 1.2%, V: 0 to 1. 0%, Zn: 0 to 2.0%, Zr: 0 to 1.0%, and among the above elements, Ag, Al, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S , Si, Sn, V, Zn and Zr total content is 3.0% or less, has a composition consisting of the balance Cu and unavoidable impurities, and has a measurement region provided on an observation surface parallel to the plate surface. In EBSD (Electron Backscatter Diffraction) measurement, the area of the region where the crystal orientation difference from the S orientation {2 3 1} <3 -4 6> is within 10 ° is the AS, R orientation {1 3 2} < The area of the region where the crystal orientation difference from 4-2 1> is within 10 ° is the area of the region where the crystal orientation difference from the AR and P orientation {0 1 1} <1-1 1> is within 10 °. When the area of the region where the crystal orientation difference from AP and Cube orientation {0 0 1} <1 0 0> is within 10 ° is AC, the A value according to the following equation (1) is 0.5 to 20. Copper alloy plate material.
A = (AS + AR) / (AP + AC) ... (1)
[2] In the EBSD measurement of the observation surface parallel to the plate surface, the average crystal grain size by the Area Fraction method is 2.0 to 30.0 μm when the boundary where the crystal orientation difference exceeds 5 ° is regarded as the grain boundary. The copper alloy plate material according to the above [1].
[3] The ratio MBR / t of the minimum bending radius MBR that does not cause cracking and the plate thickness t is 2.5 or less according to the W bending test at BW according to the technical standard JCBA T307: 2007 of the Japan Copper and Brass Association. The copper alloy plate material according to the above [1] or [2].
[4] Any of the above [1] to [3] in which the number density of the second phase particles having a particle diameter of 0.1 μm or more existing in the matrix (metal base) is 5 × 10 5 particles / mm 2 or less. The copper alloy plate material described.
[5] The copper alloy plate material according to any one of the above [1] to [4], wherein the tensile strength in the rolling direction is 850 MPa or more.
[6] The copper alloy plate material according to any one of the above [1] to [5], which has a plate thickness of 0.02 to 0.50 mm.
[7] An energizing component using the copper alloy plate material according to any one of the above [1] to [6] as a material.
[8] A step of cold-rolling a hot-worked material having the composition described in the above [1] with a rolling ratio of 50 to 99%.
After the first heat treatment held at 380 to 620 ° C. for 1 to 20 hours, the second heat treatment held at 180 to 420 ° C. for 1 to 20 hours is performed under the conditions according to the following formula (3).
The process of cold rolling with a rolling ratio of 10 to 99% and
A step of performing solution treatment under the condition of heating to 700 to 950 ° C. with a tension of 12.5 to 20.0 N / mm 2 applied in the rolling direction of the plate material.
The process of aging treatment under the condition of holding at 300 to 600 ° C for 1 hour or more, and
The method for producing a copper alloy plate according to any one of the above [1] to [6], which comprises the above in the above order.
T1 ≧ T2 + 40 ℃… (3)
Here, T1 is the holding temperature (° C.) of the first heat treatment, and T2 is the holding temperature (° C.) of the second heat treatment.
[9] The method for producing a copper alloy plate material according to the above [8], wherein cold rolling with a rolling ratio of 70% or less is performed between the first heat treatment and the second heat treatment.
[10] The method for producing a copper alloy plate material according to the above [8] or [9], wherein cold rolling with a rolling ratio of 60% or less is performed between the solution treatment and the aging treatment.
[11] After the aging process,
The process of cold rolling with a rolling ratio of 60% or less, and
The process of low-temperature annealing that is held at 300 to 620 ° C for a time of 600 seconds or less, and
The method for producing a copper alloy plate according to any one of the above [8] to [10], which comprises the above in the above order.

本明細書において、「板材」とは金属の展性を利用して成形されたシート状の金属材料を意味する。薄いシート状の金属材料は「箔」と呼ばれることもあるが、そのような「箔」もここでいう「板材」に含まれる。コイル状に巻き取られた長尺のシート状金属材料も「板材」に含まれる。本明細書ではシート状の金属材料の厚さを「板厚」と呼んでいる。また、「板面」とは板材の板厚方向に対して垂直な表面である。「板面」は「圧延面」と呼ばれることもある。 In the present specification, the "plate material" means a sheet-shaped metal material formed by utilizing the malleability of the metal. A thin sheet-shaped metal material is sometimes called a "foil", and such a "foil" is also included in the "plate material" here. A long sheet-like metal material wound into a coil is also included in the "plate material". In the present specification, the thickness of the sheet-shaped metal material is referred to as "plate thickness". Further, the "plate surface" is a surface perpendicular to the plate thickness direction of the plate material. The "plate surface" is sometimes called the "rolled surface".

結晶方位{hkl}<uvw>の表記は、結晶の{hkl}面が板面(圧延面)に平行であり、かつ結晶の<uvw>方向が圧延方向に平行であることを意味する。本発明で対象とする銅合金の結晶構造はfcc(面心立方格子)である。上記h、k、l、およびu、v、wの指数は、fcc構造のユニットセルに基づく結晶の指数である。EBSD(電子線後方散乱回折法)による平均結晶粒径および上記の面積AS、AR、AP、ACは以下のようにして求めることができる。 The notation of the crystal orientation {hkl} <uvw> means that the {hkl} plane of the crystal is parallel to the plate surface (rolled plane) and the <uvw> direction of the crystal is parallel to the rolling direction. The crystal structure of the copper alloy targeted in the present invention is fcc (face-centered cubic lattice). The exponents of h, k, l, and u, v, w are indices of crystals based on a unit cell having an fcc structure. The average crystal grain size and the above areas AS, AR, AP, and AC by EBSD (electron backscatter diffraction method) can be obtained as follows.

[EBSDによる平均結晶粒径および面積AS、AR、AP、ACの求め方]
測定対象である板材試料の板面(圧延面)をバフ研磨仕上げとし、その後イオンミリングにより平滑化した観察面を得る。その観察面内に観察倍率500倍に相当する視野の観察領域(例えば240×180μmの矩形領域)を無作為に設定し、その観察領域についてEBSD(電子線後方散乱回折法)によりステップサイズ0.5μmで電子線を照射して、隣接する測定点の結晶方位差が5°を超える境界を結晶粒界とみなした場合のArea Fraction法による平均結晶粒径の測定を試みる(これを「初期倍率での測定」という。)。その際、結晶粒の一部が測定領域の境界線からはみ出している結晶粒についてはその境界線が結晶粒界の一部であるとみなして結晶粒径の測定対象に含める。双晶境界も結晶粒界として扱う。また、EBSDデータ解析用ソフトウェアを用いて、測定領域の中に、S方位{2 3 1}<3 -4 6>からの結晶方位差が10°以内である領域の面積をAS、R方位{1 3 2}<4 -2 1>からの結晶方位差が10°以内である領域の面積をAR、P方位{0 1 1}<1 -1 1>からの結晶方位差が10°以内である領域の面積をAP、Cube方位{0 0 1}<1 0 0>からの結晶方位差が10°以内である領域の面積ACを、それぞれ算出する。
初期倍率での測定によって求めた平均結晶粒径が5.0μmを超え20.0μm未満の範囲にある場合は、初期倍率での測定によって上記のステップサイズで求めた平均結晶粒径および面積AS、AR、AP、ACの値を、それぞれ当該試料についての平均結晶粒径および面積AS、AR、AP、ACとして採用する。
[How to obtain average crystal grain size and area AS, AR, AP, AC by EBSD]
The plate surface (rolled surface) of the plate material sample to be measured is buffed and then smoothed by ion milling to obtain an observation surface. An observation area (for example, a rectangular area of 240 × 180 μm) having a visual field corresponding to an observation magnification of 500 times is randomly set in the observation surface, and the step size of the observation area is set to 0 by EBSD (electron backscatter diffraction method). An electron beam is irradiated at 5 μm, and an attempt is made to measure the average crystal grain size by the Area Fraction method when the boundary where the crystal orientation difference between adjacent measurement points exceeds 5 ° is regarded as the grain boundary (this is the “initial magnification”. Measurement at ".). At that time, for crystal grains in which a part of the crystal grains protrudes from the boundary line of the measurement region, the boundary line is regarded as a part of the crystal grain boundary and included in the measurement target of the crystal grain size. The twin boundary is also treated as a grain boundary. In addition, using the EBSD data analysis software, the area of the region where the crystal orientation difference from the S orientation {2 3 1} <3 -4 6> is within 10 ° in the measurement region is AS and R orientation { The area of the region where the crystal orientation difference from 1 3 2} <4-2 1> is within 10 ° is the AR, and the crystal orientation difference from P orientation {0 1 1} <1-1 1> is within 10 °. The area of a certain region is AP, and the area AC of the region where the crystal orientation difference from the Cube orientation {0 0 1} <1 0 0> is within 10 ° is calculated.
If the average crystal grain size determined by measurement at the initial magnification is in the range of more than 5.0 μm and less than 20.0 μm, the average crystal grain size and area AS determined by the above step size by measurement at the initial magnification, The values of AR, AP, and AC are adopted as the average crystal grain size and area AS, AR, AP, and AC for the sample, respectively.

(修正倍率での測定)
上記の初期倍率での測定において平均結晶粒径が5.0μm以下となった場合は、ステップサイズを0.5μmから0.1μmに変更して観察倍率2500倍に相当する視野の観察領域(例えば36×48μmの矩形領域)について同様の方法で平均結晶粒径の再測定を試みるとともに、各測定点のデータから面積AS、AR、AP、ACを再度算出する。
その結果、平均結晶粒径が3.0μm以下となった場合は、ステップサイズを更に0.1μmから0.05μmに変更して観察倍率5000倍に相当する視野の観察領域(例えば18×24μmの矩形領域)について同様の方法で平均結晶粒径の再測定を行うとともに、各測定点のデータから面積AS、AR、AP、ACを再度算出する。
一方、上記の初期倍率での測定において平均結晶粒径が20.0μm以上となった場合は、ステップサイズを0.5μmから1.0μmに変更して観察倍率200倍に相当する視野の観察領域(例えば450×600μmの矩形領域)について同様の方法で平均結晶粒径の再測定を行うとともに、各測定点のデータから面積AS、AR、AP、ACを再度算出する。
初期倍率での測定によって求めた平均結晶粒径が5.0μmを超え20.0μm未満の範囲になかった場合には、以上のようにして、最後に設定した倍率での測定によって、そのときに設定したステップサイズで求めた平均結晶粒径および面積AS、AR、AP、ACの値を、それぞれ当該試料についての平均結晶粒径および面積AS、AR、AP、ACとして採用する。
(Measurement at correction magnification)
If the average crystal grain size is 5.0 μm or less in the above measurement at the initial magnification, the step size is changed from 0.5 μm to 0.1 μm and the observation area of the visual field corresponding to the observation magnification of 2500 times (for example). The average crystal grain size is remeasured in the same manner for a rectangular region of 36 × 48 μm), and the areas AS, AR, AP, and AC are recalculated from the data at each measurement point.
As a result, when the average crystal grain size is 3.0 μm or less, the step size is further changed from 0.1 μm to 0.05 μm, and the observation region of the visual field corresponding to the observation magnification of 5000 times (for example, 18 × 24 μm). The average crystal grain size is remeasured in the same manner for the rectangular region), and the areas AS, AR, AP, and AC are recalculated from the data at each measurement point.
On the other hand, when the average crystal grain size is 20.0 μm or more in the measurement at the above initial magnification, the step size is changed from 0.5 μm to 1.0 μm and the observation area of the visual field corresponding to the observation magnification of 200 times. The average crystal grain size is remeasured in the same manner for (for example, a rectangular region of 450 × 600 μm), and the areas AS, AR, AP, and AC are recalculated from the data at each measurement point.
If the average crystal grain size obtained by measurement at the initial magnification is not in the range of more than 5.0 μm and less than 20.0 μm, then by the measurement at the last set magnification as described above, at that time. The average crystal grain size and area AS, AR, AP, and AC values obtained at the set step size are adopted as the average crystal grain size and area AS, AR, AP, and AC for the sample, respectively.

以上の手法によるEBSD測定を、上記観察面内に無作為に設定した互いに重複しない異なる5以上の観察領域について行い、それら合計5以上の観察領域で求めたそれぞれの平均結晶粒径および面積AS、AR、AP、ACの値についての相加平均値を算出し、その相加平均値を当該板材試料の平均結晶粒径(μm)および面積AS、AR、AP、ACとする。ここで、面積AS、AR、AP、ACの単位は、実際の面積(例えばμm)の値を観察領域総面積に占める割合に換算した面積率(%)で表示しても構わない。なお、面積AS、AR、AP、ACそれぞれに該当するマッピング領域に重複部分が生じる場合は、その重複部分についても、それぞれ単独に面積の算出に加える。 EBSD measurement by the above method was performed for 5 or more different observation regions randomly set in the observation plane that do not overlap with each other, and the average crystal grain size and area AS of each of the 5 or more observation regions obtained in total. The arithmetic mean values for the AR, AP, and AC values are calculated, and the arithmetic mean values are defined as the average crystal grain size (μm) and area AS, AR, AP, and AC of the plate material sample. Here, the unit of the area AS, AR, AP, and AC may be expressed as an area ratio (%) obtained by converting the value of the actual area (for example, μm 2 ) into the ratio of the total area of the observation area. If an overlapping portion occurs in the mapping area corresponding to each of the areas AS, AR, AP, and AC, the overlapping portion is also independently added to the calculation of the area.

[第二相粒子の個数密度の求め方]
板面(圧延面)を電解研磨してCu素地のみを溶解させて、第二相粒子を露出させた観察面を調製し、その観察面をSEMにより10,000倍の倍率で観察し、SEM画像上に観測される長径0.1μm以上の第二相粒子の総個数を観察総面積(mm)で除した値を第二相粒子個数密度(個/mm)とする。ただし、観察総面積は、無作為に設定した重複しない複数の観察視野により合計0.001mm以上とする。観察視野から一部がはみ出している第二相粒子は、観察視野内に現れている部分の長径が0.05μm以上であればカウント対象とする。ここで、ある粒子の「長径」とは、SEM画像上の当該粒子の外縁上の任意の2点を結ぶ線分の中で、最も長い線分の長さである。
[How to find the number density of second phase particles]
The plate surface (rolled surface) is electropolished to dissolve only the Cu substrate to prepare an observation surface on which the second phase particles are exposed, and the observation surface is observed by SEM at a magnification of 10,000 times, and SEM. The value obtained by dividing the total number of second-phase particles with a major axis of 0.1 μm or more observed on the image by the total observed area (mm 2 ) is defined as the second-phase particle number density (pieces / mm 2 ). However, the total observation area shall be 0.001 mm 2 or more in total based on a plurality of non-overlapping observation fields set at random. The second phase particles partially protruding from the observation field of view are counted if the major axis of the part appearing in the observation field of view is 0.05 μm or more. Here, the "major axis" of a certain particle is the length of the longest line segment among the line segments connecting arbitrary two points on the outer edge of the particle on the SEM image.

図1に、上記の観察面についてのSEM画像を例示する。この画像下部に表示される白のスケールバーの長さが1μmに相当する。第二相粒子には「粒状析出物」と「粒界反応相」の2つのタイプがある。粒界反応相は、隣接する一群の層状粒子によって形成されている。観察面が一群の層状粒子を切断する角度によって、観察面に現れる粒界反応相の見え方は異なってくる。粒界反応相タイプの第二相粒子の場合は、一群の層状粒子が存在する画像上の領域を1つの粒子とみなし、上記「第二相粒子の個数密度の求め方」に従う方法で長径を定める。図1の例では、符号Aで示す楕円の中にある一群の粒子の存在範囲を1つの第二相粒子とみなす。 FIG. 1 illustrates an SEM image of the above observation surface. The length of the white scale bar displayed at the bottom of this image corresponds to 1 μm. There are two types of second phase particles, "granular precipitates" and "grain boundary reaction phases". The grain boundary reaction phase is formed by a group of adjacent layered particles. The appearance of the grain boundary reaction phase that appears on the observation surface differs depending on the angle at which the observation surface cuts a group of layered particles. In the case of grain boundary reaction phase type second phase particles, the region on the image where a group of layered particles exists is regarded as one particle, and the major axis is determined by the method according to the above "How to determine the number density of second phase particles". stipulate. In the example of FIG. 1, the existence range of a group of particles in the ellipse indicated by reference numeral A is regarded as one second phase particle.

本発明によれば、高強度のCu-Ti系銅合金板材において、絞り加工性を改善したものが提供可能である。このCu-Ti系銅合金板材は、曲げ加工性にも優れる。したがって本発明は、複雑な形状への優れた加工性が要求される通電部品やばね部品の素材として、Cu-Ti系銅合金の工業的普及に寄与しうる。 According to the present invention, it is possible to provide a high-strength Cu—Ti copper alloy plate material with improved drawability. This Cu—Ti copper alloy plate material is also excellent in bending workability. Therefore, the present invention can contribute to the industrial spread of Cu—Ti copper alloys as materials for energizing parts and spring parts that require excellent workability into complicated shapes.

Cu-Ti系合金板材の板面を電解研磨調製した観察面における粒界反応相が生成している箇所のSEM写真。An SEM photograph of a portion where a grain boundary reaction phase is generated on an observation surface prepared by electropolishing the plate surface of a Cu—Ti alloy plate material.

[化学組成]
本発明の板材には、Cu-Ti系銅合金を適用する。以下、合金成分に関する「%」は、特に断らない限り「質量%」を意味する。
[Chemical composition]
A Cu—Ti copper alloy is applied to the plate material of the present invention. Hereinafter, "%" regarding the alloy component means "mass%" unless otherwise specified.

Tiは、スピノーダル分解によるTiの変調構造の形成や、析出による微細第二相粒子の形成をもたらし、強度上昇に寄与する元素である。また、耐応力緩和性向上にも寄与する。ここではTi含有量1.0%以上の合金を対象とする。2.0%以上であることがより好ましい。過剰なTi含有は、熱間加工性や冷間加工性を低下させる要因となる他、溶体化処理の適正温度域を狭める要因ともなるので、Ti含有量は5.0%以下とする。4.0%以下、あるいは3.5%以下に管理してもよい。 Ti is an element that contributes to an increase in strength by forming a modulated structure of Ti by spinodal decomposition and forming fine second-phase particles by precipitation. It also contributes to the improvement of stress relaxation resistance. Here, alloys having a Ti content of 1.0% or more are targeted. More preferably, it is 2.0% or more. Excessive Ti content is a factor that lowers hot workability and cold workability, and also causes a factor that narrows the appropriate temperature range for solution treatment. Therefore, the Ti content is set to 5.0% or less. It may be controlled to 4.0% or less, or 3.5% or less.

Ag、Al、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、Zn、Zrは任意元素である。必要に応じてこれらの1種以上を含有させることができる。例えば、Ni、Co、Feは、Tiとの金属間化合物を形成して強度の向上に寄与する。また、これらの元素の金属間化合物が結晶粒の粗大化を抑制するので、より高温域での溶体化処理が可能になり、Tiを十分に固溶させる上で有利となる。Snは、固溶強化作用と耐応力緩和性の向上作用を有する。Znは、はんだ付け性および強度を向上させる他、鋳造性の改善にも有効である。Mgは、耐応力緩和性の向上作用と脱S作用を有する。Al、Siは、Tiとの化合物を形成できる。Cr、Zrは分散強化、結晶粒の粗大化抑制に有効である。Mn、Vは、Sなどと高融点化合物を形成しやすく、またB、Pは鋳造組織の微細化効果を有するので、それぞれ熱間加工性の改善に寄与しうる。 Ag, Al, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S, Si, Sn, V, Zn and Zr are arbitrary elements. One or more of these can be contained as needed. For example, Ni, Co, and Fe form an intermetallic compound with Ti and contribute to the improvement of strength. In addition, since the intermetallic compounds of these elements suppress the coarsening of crystal grains, solution treatment in a higher temperature range becomes possible, which is advantageous in sufficiently solid-solving Ti. Sn has a solid solution strengthening action and a stress relaxation resistance improving action. Zn not only improves solderability and strength, but is also effective in improving castability. Mg has an action of improving stress relaxation resistance and an action of removing S. Al and Si can form a compound with Ti. Cr and Zr are effective in strengthening dispersion and suppressing coarsening of crystal grains. Since Mn and V easily form a refractory compound with S and the like, and B and P have the effect of refining the cast structure, they can each contribute to the improvement of hot workability.

上記任意元素の含有量は、Ag:0~0.30%、Al:0~1.0%、B:0~0.20%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.5%、P:0~0.20%、S:0~0.20%、Si:0~1.0%、Sn:0~1.2%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%の範囲とすることが望ましい。また、前記元素のうちAg、Al、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、ZnおよびZrの合計含有量は3.0%以下とすることが望ましく、1.0%以下とすることがより好ましく、0.5%以下に管理してもよい。 The contents of the above optional elements are Ag: 0 to 0.30%, Al: 0 to 1.0%, B: 0 to 0.20%, Be: 0 to 0.15%, Co: 0 to 1. 0%, Cr: 0 to 1.0%, Fe: 0 to 1.0%, Mg: 0 to 1.0%, Mn: 0 to 1.0%, Ni: 0 to 1.5%, P: 0 to 0.20%, S: 0 to 0.20%, Si: 0 to 1.0%, Sn: 0 to 1.2%, V: 0 to 1.0%, Zn: 0 to 2.0 %, Zr: preferably in the range of 0 to 1.0%. Further, the total content of Ag, Al, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S, Si, Sn, V, Zn and Zr among the above elements is 3.0% or less. It is preferably 1.0% or less, and may be controlled to 0.5% or less.

[結晶配向]
発明者らの詳細な検討によれば、Cu-Ti系銅合金板材の集合組織を厳密にコントロールすることによって絞り加工性を改善することが可能になることがわかった。具体的には、下記(1)式で表されるA値が0.5~20である結晶配向とすることが、Cu-Ti系銅合金板材の絞り加工性を顕著に向上させる上で極めて有効である。
A=(AS+AR)/(AP+AC) …(1)
ここで、AS、AR、AP、ACは、板面に平行な観察面に設けた測定領域についてのEBSD(電子線後方散乱回折法)測定によって定まる以下の面積である。
AS:S方位{2 3 1}<3 -4 6>からの結晶方位差が10°以内である領域
AR:R方位{1 3 2}<4 -2 1>からの結晶方位差が10°以内である領域
AP:P方位{0 1 1}<1 -1 1>からの結晶方位差が10°以内である領域
AC:Cube方位{0 0 1}<1 0 0>からの結晶方位差が10°以内である領域
[Crystal orientation]
According to a detailed study by the inventors, it has been found that the drawability can be improved by strictly controlling the texture of the Cu—Ti copper alloy plate material. Specifically, the crystal orientation in which the A value represented by the following equation (1) is 0.5 to 20 is extremely good for significantly improving the drawability of the Cu—Ti copper alloy plate material. It is valid.
A = (AS + AR) / (AP + AC) ... (1)
Here, AS, AR, AP, and AC have the following areas determined by EBSD (Electron Backscatter Diffraction) measurement for the measurement region provided on the observation surface parallel to the plate surface.
AS: Region where the crystal orientation difference from S orientation {2 3 1} <3 -4 6> is within 10 ° AR: Crystal orientation difference from R orientation {1 3 2} <4-2 1> is 10 ° Area within 10 ° Crystal orientation difference from AP: P orientation {0 1 1} <1-1 1> AC: Crystal orientation difference from Cube orientation {0 0 1} <1 0 0> Area within 10 °

EBSD測定は上掲の「EBSDによる平均結晶粒径および面積AS、AR、AP、ACの求め方」に記載した方法に従う。上記のA値が0.5~20である結晶配向によって、絞り加工性の改善において重要な加工要素である「張出し性」が顕著に向上する。A値は0.5~10であることがより好ましく、0.5~5であることが更に好ましい。 The EBSD measurement follows the method described in "How to determine the average crystal grain size and area AS, AR, AP, AC by EBSD" above. The crystal orientation in which the A value is 0.5 to 20 significantly improves the "overhangability", which is an important processing element in improving the drawability. The A value is more preferably 0.5 to 10, and even more preferably 0.5 to 5.

[平均結晶粒径]
結晶粒の微細化はCu-Ti系銅合金板材の曲げ加工性や耐疲労特性の改善に有利となることが知られているが、上述の結晶配向に調整された板材では絞り加工性の一層の改善にも有利となることがわかった。ここでは、板面に平行な観察面についての前記EBSD測定において、結晶方位差が5°を超える境界(双晶境界も含む)を結晶粒界とみなした場合のArea Fraction法による平均結晶粒径を採用する。その平均結晶粒径は2.0~30.0μmであることが好ましく、2.0~15.0μmであることがより好ましく、3.0~10.0μmであることが更に好ましい。EBSD測定は上掲の「EBSDによる平均結晶粒径および面積AS、AR、AP、ACの求め方」に記載した方法に従う。
[Average crystal grain size]
It is known that the refinement of crystal grains is advantageous for improving the bending workability and fatigue resistance of Cu—Ti copper alloy plate materials, but the plate material adjusted to the above-mentioned crystal orientation has further drawing workability. It turned out to be advantageous for the improvement of. Here, in the EBSD measurement for the observation surface parallel to the plate surface, the average crystal grain size by the Area Fraction method when the boundary (including the twin boundary) where the crystal orientation difference exceeds 5 ° is regarded as the grain boundary. Is adopted. The average crystal grain size is preferably 2.0 to 30.0 μm, more preferably 2.0 to 15.0 μm, and even more preferably 3.0 to 10.0 μm. The EBSD measurement follows the method described in "How to determine the average crystal grain size and area AS, AR, AP, AC by EBSD" above.

[第二相粒子]
Cu-Ti系銅合金の金属組織に観察される析出相には、結晶粒内あるいは結晶粒界に存在する粒状析出物と、結晶粒界から結晶粒内に向かって層状に成長する粒界反応相とがある。ここでいう第二相粒子には、粒状析出物と粒界反応相の両方が含まれる。粒界反応相の場合は、前述のように、一群の層状粒子が存在する画像上の領域を1つの粒子とみなす。発明者らの検討によれば、上述の結晶配向に調整されたCu-Ti系銅合金板材では、粒子径(長径)が0.1μm以上である第二相粒子の存在量を低減することも絞り加工性の一層の改善に有効であることがわかった。また、絞り加工性を改善しながら、曲げ加工性を高いレベルにまで引き上げるためにも、粒子径(長径)が0.1μm以上である第二相粒子の存在量を低減することが有効である。種々検討の結果、絞り加工性と優れた曲げ加工性の両立を重視する場合には、粒子径(長径)が0.1μm以上である第二相粒子の個数密度が、5×10個/mm以下である組織状態とすることが望ましい。粒子径(長径)が0.1μm以上である第二相粒子の個数密度は、1×10個/mm以下であることがより好ましく、2×10個/mm以下であることが更に好ましい。
[Second phase particles]
The precipitation phase observed in the metal structure of the Cu—Ti copper alloy is a grain boundary reaction that grows in layers from the crystal grain boundaries to the inside of the crystal grains with the granular precipitates existing in the crystal grains or at the grain boundaries. There is a phase. The second phase particles referred to here include both granular precipitates and intergranular reaction phases. In the case of the grain boundary reaction phase, as described above, the region on the image in which a group of layered particles is present is regarded as one particle. According to the studies by the inventors, in the Cu—Ti copper alloy plate material adjusted to the above-mentioned crystal orientation, the abundance of second-phase particles having a particle diameter (major axis) of 0.1 μm or more can be reduced. It was found to be effective in further improving the drawability. Further, in order to improve the drawability and raise the bending workability to a high level, it is effective to reduce the abundance of the second phase particles having a particle diameter (major diameter) of 0.1 μm or more. .. As a result of various studies, when it is important to achieve both drawability and excellent bending workability, the number density of the second phase particles having a particle diameter (major diameter) of 0.1 μm or more is 5 × 10 5 particles / It is desirable to have a tissue state of mm 2 or less. The number density of the second phase particles having a particle diameter (major diameter) of 0.1 μm or more is more preferably 1 × 10 5 particles / mm 2 or less, and more preferably 2 × 10 4 particles / mm 2 or less. More preferred.

なお、第二相粒子を構成する析出物としては、Cu-Ti系金属間化合物の他、添加する合金元素の種類に応じてNi-Ti系、Co-Ti系、Fe-Ti系などの金属間化合物が存在しうる。 The precipitates constituting the second phase particles include Cu-Ti intermetallic compounds and metals such as Ni-Ti, Co-Ti, and Fe-Ti depending on the type of alloying element to be added. Intermetallic compounds may be present.

[曲げ加工性]
通電部品等への加工に際しては曲げ加工を伴うことが多い。Cu-Ti系合金においては、日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tが2.5以下である曲げ加工性を有することが好ましい。B.W.(Bad Way)は、曲げ軸が圧延平行方向となることを意味する。上記MBR/tは1.5以下であることがより好ましく、0.5以下であることが更に好ましい。
[Bending workability]
Bending is often involved in processing current-carrying parts. For Cu-Ti alloys, the ratio MBR / t of the minimum bending radius MBR that does not cause cracking and the plate thickness t is 2 by the W bending test at BW according to the Japan Copper and Brass Association technical standard JCBA T307: 2007. It is preferable to have bending workability of .5 or less. B.W. (Bad Way) means that the bending axis is in the direction parallel to rolling. The MBR / t is more preferably 1.5 or less, and further preferably 0.5 or less.

JCBA T307:2007には「本標準は、厚さ0.1mm以上0.8mm以下の銅および銅合金薄板条の曲げ加工性評価に適用する。」と記載され、曲げ半径については、0、0.05、0.1、0.15、0.2、0.25、0.3、0.4、0.5、0.6、0.8、1.0、1.2、1.4、1.6、1.8、2.0(mm)の標準曲げ半径の中から選択することが望ましいと記載されている。発明者らの検討によれば、板厚が0.1mm未満のCu-Ti系銅合金板材においても、上記の標準曲げ半径によるW曲げ試験によって、曲げ加工性の評価が可能であることが確認された。したがって、本発明ではJCBA T307:2007に示されるB.W.でのW曲げ試験方法を、板厚が0.1mm未満(例えば0.02mm以上0.1mm未満)の場合にも拡張して、そのまま適用する。 JCBA T307: 2007 states that "this standard applies to the evaluation of bending workability of copper and copper alloy thin strips with a thickness of 0.1 mm or more and 0.8 mm or less." The bending radius is 0,0. .05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4 It is stated that it is desirable to select from standard bending radii of 1.6, 1.8 and 2.0 (mm). According to the studies by the inventors, it has been confirmed that even in a Cu—Ti copper alloy plate having a plate thickness of less than 0.1 mm, the bending workability can be evaluated by the W bending test using the above standard bending radius. Was done. Therefore, in the present invention, the W bending test method in BW shown in JCBA T307: 2007 is extended even when the plate thickness is less than 0.1 mm (for example, 0.02 mm or more and less than 0.1 mm). Apply as it is.

[引張強さ]
圧延方向の引張強さは、850MPa以上であることが好ましく、950MPa以上であることがより好ましい。圧延方向の引張強さが1100MPa以上である強度レベルに調整することも可能である。
[Tensile strength]
The tensile strength in the rolling direction is preferably 850 MPa or more, more preferably 950 MPa or more. It is also possible to adjust the tensile strength in the rolling direction to a strength level of 1100 MPa or more.

[製造方法]
以上説明した銅合金板材は、例えば以下のような製造工程により製造することができる。
溶解・鋳造→熱間加工→冷間圧延1→第1熱処理→(冷間圧延2)→第2熱処理→冷間圧延3→溶体化処理→(冷間圧延4)→時効処理→(冷間圧延5)→(低温焼鈍)
上記において、括弧を付した工程は省略可能である。なお、上記工程中には記載していないが、熱間加工後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。以下、上述の結晶配向を有し、かつ曲げ加工性にも優れるCu-Ti系銅合金板材を製造するために適した製造方法を開示する。
[Production method]
The copper alloy plate material described above can be manufactured by, for example, the following manufacturing process.
Melting / casting-> hot working-> cold rolling 1-> first heat treatment-> (cold rolling 2)-> second heat treatment-> cold rolling 3-> solution treatment-> (cold rolling 4)-> aging treatment-> (cold) Rolling 5) → (low temperature annealing)
In the above, the steps in parentheses can be omitted. Although not described in the above steps, surface milling is performed as necessary after hot working, and pickling, polishing, or further degreasing is performed as necessary after each heat treatment. Hereinafter, a manufacturing method suitable for manufacturing a Cu—Ti copper alloy plate having the above-mentioned crystal orientation and excellent bending workability will be disclosed.

[溶解・鋳造]
るつぼ炉などを用いて鋳片を製造すればよい。Tiの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting / Casting]
The slab may be manufactured using a crucible furnace or the like. In order to prevent the oxidation of Ti, it is preferable to carry out in an inert gas atmosphere or a vacuum melting furnace.

[熱間加工、冷間圧延1]
熱間加工前の鋳片加熱は例えば900~960℃で1~5時間保持とすることができる。熱間加工の方法は特に限定されない。通常、熱間鍛造や熱間圧延が採用される。熱間圧延の場合、トータルの熱間圧延率は例えば60~97%とすればよい。熱間加工終了後には、水冷などにより急冷することが好ましい。次いで、冷間圧延を行う。この段階での冷間圧延を本明細書では「冷間圧延1」と呼ぶ。冷間圧延1での圧延率は例えば50~99%とすることができる。
ここで、圧延率は下記(2)式によって表される。
圧延率(%)=100×(t-t)/t …(2)
:圧延前の板厚(mm)
:圧延後の板厚(mm)
[Hot working, cold rolling 1]
The slab heating before hot working can be held at, for example, 900 to 960 ° C. for 1 to 5 hours. The method of hot working is not particularly limited. Usually, hot forging and hot rolling are adopted. In the case of hot rolling, the total hot rolling ratio may be, for example, 60 to 97%. After the completion of hot working, it is preferable to quench by water cooling or the like. Then, cold rolling is performed. Cold rolling at this stage is referred to as "cold rolling 1" in the present specification. The rolling ratio in cold rolling 1 can be, for example, 50 to 99%.
Here, the rolling ratio is expressed by the following equation (2).
Rolling rate (%) = 100 × (t 0 − t 1 ) / t 0 … (2)
t 0 : Plate thickness before rolling (mm)
t 1 : Plate thickness after rolling (mm)

[第1熱処理、冷間圧延2、第2熱処理]
溶体化処理に先がけ、2段階の熱処理を行う。その前段の熱処理を「第1熱処理」、後段の熱処理を「第2熱処理」と呼ぶ。第1熱処理と第2熱処理の間で、必要に応じて冷間圧延を行ってもよい。この段階での冷間圧延を本明細書では「冷間圧延2」と呼ぶ。これら各工程は以下の条件で行う。
第1熱処理:380~620℃で1~20時間保持する。
冷間圧延2:必要に応じて圧延率70%以下の冷間圧延を行う。その場合、圧延率は10%以上を確保することがより効果的である。
第2熱処理:180~420℃で1~20時間保持する。
ただし、第1熱処理の保持温度T1(℃)と第2熱処理の保持温度T2(℃)が下記(3)式の条件を満たすようにする。
T1≧T2+40℃ …(3)
中間での冷間圧延を省略する場合は、第1熱処理と第2熱処理を、同じバッチ式熱処理炉において途中で温度を下げるヒートパターンを採用することによって連続的に実施することができる。その場合、T1(℃)からT2(℃)までの平均冷却速度は0.5℃/min以上とすることが好ましい。
[1st heat treatment, cold rolling 2, 2nd heat treatment]
Prior to the solution treatment, a two-step heat treatment is performed. The heat treatment in the first stage is called "first heat treatment", and the heat treatment in the second stage is called "second heat treatment". Cold rolling may be performed between the first heat treatment and the second heat treatment, if necessary. Cold rolling at this stage is referred to as "cold rolling 2" in the present specification. Each of these steps is performed under the following conditions.
First heat treatment: Hold at 380 to 620 ° C. for 1 to 20 hours.
Cold rolling 2: If necessary, cold rolling with a rolling ratio of 70% or less is performed. In that case, it is more effective to secure a rolling ratio of 10% or more.
Second heat treatment: Hold at 180 to 420 ° C. for 1 to 20 hours.
However, the holding temperature T1 (° C.) of the first heat treatment and the holding temperature T2 (° C.) of the second heat treatment satisfy the condition of the following equation (3).
T1 ≧ T2 + 40 ℃… (3)
When the cold rolling in the middle is omitted, the first heat treatment and the second heat treatment can be continuously carried out by adopting a heat pattern in which the temperature is lowered in the middle in the same batch heat treatment furnace. In that case, the average cooling rate from T1 (° C.) to T2 (° C.) is preferably 0.5 ° C./min or more.

上記の条件での2段階熱処理によって析出物のサイズと個数を制御することができる。また、最終的に上述の(1)式を満たす結晶配向を実現することができる。したがって、この2段階熱処理は、強度、曲げ加工性、絞り加工性を高いレベルで具備するCu-Ti系銅合金板材を得るために極めて有効な工程である。 The size and number of precipitates can be controlled by the two-step heat treatment under the above conditions. Further, finally, the crystal orientation satisfying the above-mentioned equation (1) can be realized. Therefore, this two-step heat treatment is an extremely effective step for obtaining a Cu—Ti copper alloy plate material having high levels of strength, bending workability, and draw workability.

[冷間圧延3]
溶体化処理の前に冷間圧延を行い、格子ひずみを導入しておく。この段階での冷間圧延を本明細書では「冷間圧延3」と呼ぶ。冷間圧延3での圧延率は10~99%の範囲とすることができ、70%以上とすることが好ましい。
[Cold rolling 3]
Cold rolling is performed before the solution treatment to introduce lattice strain. Cold rolling at this stage is referred to as "cold rolling 3" in the present specification. The rolling ratio in the cold rolling 3 can be in the range of 10 to 99%, preferably 70% or more.

[溶体化処理、冷間圧延4]
溶体化処理は、板材の圧延方向に12.5~20.0N/mmの張力を付与した状態で、700~950℃に加熱する条件で行う。700~950℃での保持時間は10~300秒とすることが好ましい。前記の2段階熱処理を経た板材においては、溶体化処理で上記の張力を付与して適度な応力を導入することによって、最終的に(1)式を満たす結晶配向を実現することができる。張力は、例えば連続焼鈍炉を通板させながら加熱ゾーンの両端にあるブライドルロールの駆動力によって制御することができる。
[Soluble treatment, cold rolling 4]
The solution treatment is performed under the condition of heating to 700 to 950 ° C. with a tension of 12.5 to 20.0 N / mm 2 applied in the rolling direction of the plate material. The holding time at 700 to 950 ° C. is preferably 10 to 300 seconds. In the plate material that has undergone the above-mentioned two-step heat treatment, the crystal orientation that finally satisfies the equation (1) can be realized by applying the above tension in the solution heat treatment and introducing an appropriate stress. The tension can be controlled, for example, by the driving force of the bridle rolls at both ends of the heating zone while passing through a continuous annealing furnace.

溶体化処理後には必要に応じて圧延率60%以下の範囲で冷間圧延を施すことができる。その場合、圧延率は10%以上を確保することがより効果的である。この段階での冷間圧延を本明細書では「冷間圧延4」と呼ぶ。 After the solution treatment, cold rolling can be performed in a rolling ratio of 60% or less, if necessary. In that case, it is more effective to secure a rolling ratio of 10% or more. Cold rolling at this stage is referred to as "cold rolling 4" in the present specification.

[時効処理]
次いで、300~600℃で1時間以上保持する条件での時効処理を施す。通常、24時間以内の保持時間において、最適な時効処理条件を設定することができる。
[Aging process]
Next, aging treatment is performed under the condition of holding at 300 to 600 ° C. for 1 hour or more. Usually, the optimum aging processing conditions can be set within a holding time of 24 hours or less.

[冷間圧延5、低温焼鈍]
時効処理後には必要に応じて冷間圧延および低温焼鈍を施すことができる。この段階での冷間圧延を本明細書では「冷間圧延5」と呼ぶ。冷間圧延5(仕上冷間圧延)では、圧延率を60%以下とする必要があり、50%以下、あるいは30%以下の範囲に管理してもよい。また、冷間圧延5での圧延率は10%以上を確保することがより効果的である。低温焼鈍は、300~620℃で600秒以下の時間保持する条件で行うことができる。上記温度域での保持時間は15秒以上を確保することがより効果的である。
最終的な板厚は、例えば0.02~0.50mmの範囲とすることができる。
[Cold rolling 5, low temperature annealing]
After the aging treatment, cold rolling and low temperature annealing can be performed as needed. Cold rolling at this stage is referred to as "cold rolling 5" in the present specification. In cold rolling 5 (finish cold rolling), the rolling ratio needs to be 60% or less, and may be controlled within the range of 50% or less, or 30% or less. Further, it is more effective to secure a rolling ratio of 10% or more in the cold rolling 5. The low temperature annealing can be performed under the condition of holding at 300 to 620 ° C. for a time of 600 seconds or less. It is more effective to secure a holding time of 15 seconds or more in the above temperature range.
The final plate thickness can be, for example, in the range of 0.02 to 0.50 mm.

表1に示す化学組成の銅合金を溶製し、鋳造した。得られた鋳片を940℃で1時間加熱したのち抽出して、熱間圧延を施し、水冷した。トータルの熱間圧延率は80~95%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)し、板厚10mmの熱延材を得た。各熱延材に表2、表3の「冷間圧延1」の欄に記載した条件で冷間圧延を施した。 A copper alloy having the chemical composition shown in Table 1 was melted and cast. The obtained slab was heated at 940 ° C. for 1 hour, extracted, hot-rolled, and water-cooled. The total hot rolling ratio is 80 to 95%. After hot rolling, the oxide layer on the surface was removed (face-cut) by mechanical polishing to obtain a hot-rolled material having a plate thickness of 10 mm. Each hot-rolled material was cold-rolled under the conditions described in the column of "cold rolling 1" in Tables 2 and 3.

その後、一部の例(比較例34、43~45)を除き、表2、表3に示す条件で第1熱処理と第2熱処理を施した。第1熱処理と第2熱処理の間には必要に応じて表2、表3の「冷間圧延2」の欄に記載した条件で冷間圧延を施した。圧延率の欄が「-」(ハイフン)表示の例は、その冷間圧延を省略したことを意味する(以下の「冷間圧延4」、「冷間圧延5」において同じ。)。比較例34では第1熱処理と第2熱処理を省略した。比較例43~45では第2熱処理を省略した。第1熱処理および第2熱処理は、一部の例(比較例42~44)を除き、バッチ式熱処理炉を用いて窒素雰囲気下で行った。比較例42~44では連続焼鈍炉を用いた。このうち比較例44における第1熱処理では、材料温度が700℃に到達したのち、直ちに冷却するヒートパターンを採用した。第1熱処理と第2熱処理の間の中間冷間圧延(冷間圧延2)を省略したものでは、一部の例(比較例31)を除き、第1熱処理と第2熱処理を同じ炉内で継続して行った。その場合、第1熱処理の保持温度から第2熱処理の保持温度まで、平均冷却速度を0.5~10℃/minとするヒートパターンを採用した。比較例31では第1熱処理後に材料を炉から一旦取り出し、その後、再び炉に装入して同じ保持温度(300℃)での2回の熱処理を試みた。 Then, except for some examples (Comparative Examples 34, 43 to 45), the first heat treatment and the second heat treatment were performed under the conditions shown in Tables 2 and 3. Between the first heat treatment and the second heat treatment, cold rolling was performed under the conditions described in the column of "cold rolling 2" in Tables 2 and 3 as necessary. The example in which the column of rolling ratio is displayed as "-" (hyphen) means that the cold rolling is omitted (the same applies to "cold rolling 4" and "cold rolling 5" below). In Comparative Example 34, the first heat treatment and the second heat treatment were omitted. In Comparative Examples 43 to 45, the second heat treatment was omitted. The first heat treatment and the second heat treatment were performed in a nitrogen atmosphere using a batch heat treatment furnace, except for some examples (Comparative Examples 42 to 44). In Comparative Examples 42 to 44, a continuous annealing furnace was used. Of these, in the first heat treatment in Comparative Example 44, a heat pattern was adopted in which the material temperature reached 700 ° C. and then immediately cooled. In the case where the intermediate cold rolling (cold rolling 2) between the first heat treatment and the second heat treatment is omitted, the first heat treatment and the second heat treatment are performed in the same furnace except for some examples (Comparative Example 31). I went on. In that case, a heat pattern was adopted in which the average cooling rate was 0.5 to 10 ° C./min from the holding temperature of the first heat treatment to the holding temperature of the second heat treatment. In Comparative Example 31, the material was once taken out of the furnace after the first heat treatment, and then charged into the furnace again to attempt two heat treatments at the same holding temperature (300 ° C.).

次いで、表2、表3の「冷間圧延3」の欄に記載した条件で冷間圧延を施した。その後、表2、表3に記載の条件で溶体化処理を施した。溶体化処理は連続焼鈍炉を用いて行った。その際、連続熱処理炉の加熱ゾーンの両端にあるブライドルロールの駆動力によって張力を制御した。 Then, cold rolling was performed under the conditions described in the column of "cold rolling 3" in Tables 2 and 3. Then, the solution treatment was performed under the conditions shown in Tables 2 and 3. The solution treatment was carried out using a continuous annealing furnace. At that time, the tension was controlled by the driving force of the bridle rolls at both ends of the heating zone of the continuous heat treatment furnace.

溶体化処理後に、必要に応じて表2、表3の「冷間圧延4」の欄に記載した条件で冷間圧延を施した。その後、表2、表3に記載の条件で時効処理を施した。時効処理はバッチ式熱処理炉を用いて窒素雰囲気下で行った。 After the solution treatment, cold rolling was performed under the conditions described in the column of "cold rolling 4" in Tables 2 and 3, if necessary. Then, the aging treatment was performed under the conditions shown in Tables 2 and 3. The aging treatment was carried out in a nitrogen atmosphere using a batch heat treatment furnace.

時効処理後に、一部の例(本発明例2、比較例36)を除き、表2、表3の「冷間圧延5」の欄に記載した条件で冷間圧延を施し、次いで表2、表3に記載の条件で低温焼鈍を施した。
以上のようにして、表2、表3に記載の最終板厚を有するCu-Ti系銅合金板材を得た。これらの板材を供試材として、以下の調査を行った。
After the aging treatment, except for some examples (Example 2 of the present invention, Comparative Example 36), cold rolling was performed under the conditions described in the column of "cold rolling 5" in Tables 2 and 3, and then Table 2 and Table 3. Low temperature annealing was performed under the conditions shown in Table 3.
As described above, Cu—Ti copper alloy plate materials having the final plate thicknesses shown in Tables 2 and 3 were obtained. The following investigations were conducted using these plate materials as test materials.

(平均結晶粒径、結晶配向)
供試材から採取したサンプルの板面(圧延面)をバフ研磨仕上げとし、その後イオンミリング装置(サンユー電子株式会社製、SVM-741)により加速電圧4kVで処理することによって、EBSD測定用の観察面を作製した。その試料表面をFE-SEM(日本電子株式会社製JSM-7200F)により加速電圧15kVで観察し、FE-SEMに設置されているEBSD装置(Oxford Instruments社製、Symmetry)を用いて、上掲の「EBSDによる平均結晶粒径および面積AS、AR、AP、ACの求め方」に従い、平均結晶粒径と結晶配向を求めた。結晶配向を評価するA値については、上述の面積AS、AR、AP、ACを観察領域総面積に占める割合に換算した面積率(%)で表し、それらの値を用いて上述の(1)式により求めた。初期の観察倍率は500倍(観察範囲は240×180μmに相当)とし、測定ステップサイズは0.5μmとした。観察視野は無作為に選択した重複しない5視野とした。初期倍率での測定によって求めた平均結晶粒径が5.0μmを超え20.0μm未満の範囲から外れた場合は、上掲の「修正倍率での測定」に示した方法に従い、平均結晶粒径および面積AS、AR、AP、ACを定めた。クリーンアップ処理はGrain Dilationをズレ角5°、最小結晶粒径2ピクセルとして、1回だけ行った。EBSDデータ解析用ソフトウェアとして、株式会社TSLソリューションズ製OIM-Analysis7.3.1を利用した。
(Average crystal grain size, crystal orientation)
Observation for EBSD measurement by buffing the plate surface (rolled surface) of the sample collected from the test material and then treating it with an ion milling device (SVM-741, manufactured by Sanyu Electronics Co., Ltd.) at an acceleration voltage of 4 kV. A surface was made. The surface of the sample was observed with an FE-SEM (JSM-7200F manufactured by Nippon Denshi Co., Ltd.) at an acceleration voltage of 15 kV, and the EBSD device (Symmetery manufactured by Oxford Instruments) installed in the FE-SEM was used to observe the above. Average crystal grain size and area by EBSD The average crystal grain size and crystal orientation were determined according to "How to determine AS, AR, AP, AC". The A value for evaluating the crystal orientation is expressed as an area ratio (%) converted into the ratio of the above-mentioned areas AS, AR, AP, and AC to the total area of the observation area, and these values are used to represent the above-mentioned (1). It was calculated by the formula. The initial observation magnification was 500 times (the observation range corresponds to 240 × 180 μm), and the measurement step size was 0.5 μm. The observation field of view was 5 randomly selected non-overlapping fields of view. If the average crystal grain size obtained by measurement at the initial magnification exceeds 5.0 μm and falls outside the range of less than 20.0 μm, the average crystal grain size is according to the method shown in “Measurement at modified magnification” above. And the areas AS, AR, AP, AC were defined. The cleanup treatment was performed only once with the Grain Dilation at a deviation angle of 5 ° and a minimum crystal grain size of 2 pixels. As software for EBSD data analysis, OIM-Anysis 7.1.1 manufactured by TSL Solutions Co., Ltd. was used.

(第二相粒子の個数密度)
上掲の「第二相粒子の個数密度の求め方」に従って粗大第二相粒子の個数密度を求めた。観察面調製のための電解研磨液として蒸留水、リン酸、エタノール、2-プロパノールを2:1:1:1で混合した液を使用した。電解研磨は、BUEHLER社製の電解研磨装置(エレクトロメット4)を用いて、電圧15V、時間20秒の条件で行った。その試料表面をFE-SEM(日本電子株式会社製、JSM-7200F)により倍率10,000倍で観察した。観察視野は無作為に選択した重複しない10視野とした。10視野の観察総面積は0.001038mmである。各観察視野でカウントされた長径0.1μm以上の第二相粒子の合計数を観察総面積で除することにより、第二相粒子の個数密度(個/mm)を求めた。
(Number density of second phase particles)
The number density of coarse second-phase particles was determined according to the above-mentioned "Method of determining the number density of second-phase particles". Distilled water, phosphoric acid, ethanol, and 2-propanol were mixed at a ratio of 2: 1: 1: 1 as the electrolytic polishing liquid for preparing the observation surface. The electropolishing was carried out using an electropolishing apparatus (Electromet 4) manufactured by BUEHLER under the conditions of a voltage of 15 V and a time of 20 seconds. The sample surface was observed by FE-SEM (JSM-7200F, manufactured by JEOL Ltd.) at a magnification of 10,000 times. The observation field of view was 10 randomly selected non-overlapping fields of view. The total observation area of 10 fields of view is 0.001038 mm 2 . The number density (pieces / mm 2 ) of the second phase particles was obtained by dividing the total number of the second phase particles having a major axis of 0.1 μm or more counted in each observation field by the total observation area.

(曲げ加工性)
日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tを求めた。試験片サイズは圧延直角方向長さ30mm、圧延方向長さ10mmとした。曲げ半径はJCBA T307:2007に記載の標準曲げ半径を採用した。1つの曲げ半径について試験数n=3で試験を行い、3本の試験片の全てにおいて曲げ部表面に割れが認められなかった最小の標準曲げ半径をその供試材についてのMBRとした。曲げ部表面の割れ有無の判定はJCBA T307:2007に従って行った。曲げ部表面の外観観察において「しわ:大」と判定されたサンプルについては、最も深いしわの部分について曲げ軸方向に垂直に切断した試料を作製し、その研磨断面を光学顕微鏡で観察することによって板厚内部へ進展するクラックが生じていないかどうかを確認し、そのようなクラックが生じていない場合に「割れが認められない」と判定した。
結果を以下の評価記号で表し、△評価以上のものを合格と判断した。
評価記号 MBR/tの範囲
◎ 0.5以下
○ 0.5を超え1.5以下
△ 1.5を超え2.5以下
× 2.5を超える
(Bending workability)
The ratio MBR / t of the minimum bending radius MBR without cracking and the plate thickness t was determined by the W bending test in BW according to the technical standard JCBA T307: 2007 of the Japan Copper and Brass Association. The size of the test piece was 30 mm in the direction perpendicular to the rolling direction and 10 mm in the rolling direction. For the bending radius, the standard bending radius described in JCBA T307: 2007 was adopted. The test was performed for one bending radius with the number of tests n = 3, and the minimum standard bending radius in which no crack was observed on the surface of the bent portion in all three test pieces was defined as the MBR for the test material. The presence or absence of cracks on the surface of the bent portion was determined according to JCBA T307: 2007. For the sample judged to be "wrinkle: large" in the appearance observation of the bent part surface, prepare a sample cut perpendicular to the bending axis direction for the deepest wrinkle part, and observe the polished cross section with an optical microscope. It was confirmed whether or not cracks extending to the inside of the plate thickness had occurred, and if such cracks did not occur, it was determined that "no cracks were observed".
The results are represented by the following evaluation symbols, and those with a △ evaluation or higher were judged to be acceptable.
Evaluation symbol MBR / t range ◎ 0.5 or less ○ More than 0.5 and 1.5 or less △ More than 1.5 and 2.5 or less × More than 2.5

(引張強さ)
各供試材から圧延方向(LD)の引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241に準拠した引張試験行い、引張強さを測定した。n=3の平均値を当該供試材の成績値とした。
(Tensile strength)
Tensile test pieces (JIS No. 5) in the rolling direction (LD) were collected from each test material, and a tensile test was performed in accordance with JIS Z2241 with the number of tests n = 3, and the tensile strength was measured. The average value of n = 3 was used as the performance value of the test material.

(導電率)
各供試材の導電率をJIS H0505に準拠してダブルブリッジ、平均断面積法により測定した。
(conductivity)
The conductivity of each test material was measured by a double bridge and average cross-sectional area method according to JIS H0505.

(エリクセン値)
Cu-Ti系銅合金板材の絞り加工性を改善するには、絞り加工の張出し要素を向上させることが極めて重要である。ここでは、日本伸銅協会技術標準JCBA T319:2003に準ずるエリクセン試験により張出し加工性がどの程度向上しているかを調べることによって、絞り加工性を評価した。JCBA T319:2003には「この規格は、厚さ0.1~2mmの金属薄板のエリクセン値を測定する試験方法、試験機について規定する。」と記載されている。発明者らの検討によれば、板厚が0.1mm未満のCu-Ti系銅合金板材においても、当該規格に準ずるエリクセン試験によって、Cu-Ti系銅合金板材の絞り加工性を評価することが可能であることが、確認された。試験数n=3で試験を行い、3回のエリクセン値の平均値を、その供試材の成績値とし、結果を以下の評価記号で表し、○評価以上のものを合格と判断した。
評価記号 エリクセン値の範囲
◎ 6.0以上
○ 3.0以上6.0未満
× 1.5以上3.0未満
×× 1.5未満
以上の結果を表4、表5に示す。
(Eriksen value)
In order to improve the drawability of the Cu—Ti copper alloy plate, it is extremely important to improve the overhanging element of the draw. Here, the drawability was evaluated by investigating how much the overhang workability was improved by the Eriksen test according to the technical standard JCBA T319: 2003 of the Japan Copper and Brass Association. JCBA T319: 2003 states, "This standard specifies a test method and a testing machine for measuring the Eriksen value of a thin metal plate having a thickness of 0.1 to 2 mm." According to the study by the inventors, even for Cu—Ti copper alloy plates with a plate thickness of less than 0.1 mm, the drawability of Cu—Ti copper alloy plates should be evaluated by the Ericssen test according to the standard. Was confirmed to be possible. The test was carried out with the number of tests n = 3, the average value of the Eriksen values of 3 times was used as the grade value of the test material, the results were represented by the following evaluation symbols, and those with ○ evaluation or higher were judged to be acceptable.
Evaluation symbol Eriksen value range ◎ 6.0 or more ○ 3.0 or more and less than 6.0 × 1.5 or more and less than 3.0 × × Less than 1.5 The results of Table 4 and Table 5 are shown.

Figure 0007038879000001
Figure 0007038879000001

Figure 0007038879000002
Figure 0007038879000002

Figure 0007038879000003
Figure 0007038879000003

Figure 0007038879000004
Figure 0007038879000004

Figure 0007038879000005
Figure 0007038879000005

化学組成および製造条件を上述の規定に従って厳密にコントロールした本発明例の板材はいずれも、A値が本発明の規定範囲を満たす結晶配向を有し、エリクセン値による絞り加工性の評価が良好であった。また、強度レベルも高く、曲げ加工性にも優れていた。これに対し、A値が本発明の規定範囲を外れる比較例の板材は、絞り加工性の改善効果が認められなかった。 All of the plate materials of the present invention in which the chemical composition and the production conditions are strictly controlled according to the above-mentioned regulations have a crystal orientation in which the A value satisfies the specified range of the present invention, and the evaluation of drawability by the Elixin value is good. there were. In addition, the strength level was high and the bending workability was excellent. On the other hand, the plate material of the comparative example in which the A value was out of the specified range of the present invention was not found to have an effect of improving the drawability.

各比較例においてA値が本発明の規定範囲を外れた主な要因は、以下の通りである。
No.31:第1熱処理の保持温度が低すぎた。
No.32:第2熱処理の保持温度が高すぎた。
No.33:第2熱処理の保持温度が低すぎた。
No.34:第1熱処理および第2熱処理を実施しなかった。
No.35:溶体化処理での張力が高すぎた。
No.36:第1熱処理の保持温度が高すぎた。
No.37:第1熱処理の保持温度が高すぎた。
No.38:Ti含有量が高すぎた。
No.39:Ti含有量が低すぎた。
No.40:溶体化処理での張力が低すぎた。
No.41:溶体化処理の温度が高すぎた。
No.42:第1熱処理の保持時間が短すぎた。第2熱処理の保持温度が高すぎ、保持時間が短すぎた。溶体化処理での張力が低すぎた。
No.43:第1熱処理の保持温度が高すぎ、保持時間が短すぎた。第2熱処理を実施しなかった。溶体化処理での張力が低すぎた。
No.44:第1熱処理の保持温度が高すぎ、保持時間が短すぎた。第2熱処理を実施しなかった。溶体化処理での張力が低すぎた。
No.45:第2熱処理を実施しなかった。溶体化処理での張力が低すぎた。
No.46:溶体化処理での張力が低すぎた。
No.47:第1熱処理の保持温度が高すぎた。溶体化処理での張力が低すぎた。
The main factors that the A value is out of the specified range of the present invention in each comparative example are as follows.
No.31: The holding temperature of the first heat treatment was too low.
No. 32: The holding temperature of the second heat treatment was too high.
No.33: The holding temperature of the second heat treatment was too low.
No. 34: The first heat treatment and the second heat treatment were not performed.
No.35: The tension in the solution treatment was too high.
No. 36: The holding temperature of the first heat treatment was too high.
No.37: The holding temperature of the first heat treatment was too high.
No.38: The Ti content was too high.
No.39: The Ti content was too low.
No.40: The tension in the solution treatment was too low.
No. 41: The temperature of the solution treatment was too high.
No. 42: The holding time of the first heat treatment was too short. The holding temperature of the second heat treatment was too high and the holding time was too short. The tension in the solution treatment was too low.
No.43: The holding temperature of the first heat treatment was too high, and the holding time was too short. No second heat treatment was performed. The tension in the solution treatment was too low.
No.44: The holding temperature of the first heat treatment was too high, and the holding time was too short. No second heat treatment was performed. The tension in the solution treatment was too low.
No.45: The second heat treatment was not performed. The tension in the solution treatment was too low.
No.46: The tension in the solution treatment was too low.
No. 47: The holding temperature of the first heat treatment was too high. The tension in the solution treatment was too low.

Claims (11)

質量%で、Ti:1.0~5.0%、Ag:0~0.30%、Al:0~1.0%、B:0~0.20%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.5%、P:0~0.20%、S:0~0.20%、Si:0~1.0%、Sn:0~1.2%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%であり、前記元素のうちAg、Al、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、ZnおよびZrの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有し、板面に平行な観察面に設けた測定領域についてのEBSD(電子線後方散乱回折法)測定において、S方位{2 3 1}<3 -4 6>からの結晶方位差が10°以内である領域の面積をAS、R方位{1 3 2}<4 -2 1>からの結晶方位差が10°以内である領域の面積をAR、P方位{0 1 1}<1 -1 1>からの結晶方位差が10°以内である領域の面積をAP、Cube方位{0 0 1}<1 0 0>からの結晶方位差が10°以内である領域の面積をACとするとき、下記(1)式に従うA値が0.5~20である銅合金板材。
A=(AS+AR)/(AP+AC) …(1)
By mass%, Ti: 1.0 to 5.0%, Ag: 0 to 0.30%, Al: 0 to 1.0%, B: 0 to 0.20%, Be: 0 to 0.15%. , Co: 0 to 1.0%, Cr: 0 to 1.0%, Fe: 0 to 1.0%, Mg: 0 to 1.0%, Mn: 0 to 1.0%, Ni: 0 to 1.5%, P: 0 to 0.20%, S: 0 to 0.20%, Si: 0 to 1.0%, Sn: 0 to 1.2%, V: 0 to 1.0%, Zn: 0 to 2.0%, Zr: 0 to 1.0%, and among the above elements, Ag, Al, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S, Si, The total content of Sn, V, Zn and Zr is 3.0% or less, the composition is composed of the balance Cu and unavoidable impurities, and the EBSD (electron) for the measurement region provided on the observation surface parallel to the plate surface. In the electron backscatter diffraction method) measurement, the area of the region where the crystal orientation difference from the S orientation {2 3 1} <3 -4 6> is within 10 ° is the AS, and the R orientation {1 3 2} <4-2. The area of the region where the crystal orientation difference from 1> is within 10 ° is AR, and the area of the region where the crystal orientation difference from P orientation {0 1 1} <1-1 1> is within 10 ° is AP, Cube. A copper alloy plate material having an A value of 0.5 to 20 according to the following equation (1), where AC is the area of the region where the crystal orientation difference from the orientation {0 0 1} <1 0 0> is within 10 °. ..
A = (AS + AR) / (AP + AC) ... (1)
板面に平行な観察面の前記EBSD測定において、結晶方位差が5°を超える境界を結晶粒界とみなした場合のArea Fraction法による平均結晶粒径が2.0~30.0μmである請求項1に記載の銅合金板材。 Claimed that the average crystal grain size by the Area Fraction method is 2.0 to 30.0 μm when the boundary where the crystal orientation difference exceeds 5 ° is regarded as the grain boundary in the EBSD measurement of the observation surface parallel to the plate surface. Item 1. The copper alloy plate material according to Item 1. 日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tが2.5以下である請求項1または2に記載の銅合金板材。 Claim 1 in which the ratio MBR / t of the minimum bending radius MBR without cracking and the plate thickness t is 2.5 or less according to the W bending test in BW according to the technical standard JCBA T307: 2007 of the Japan Copper and Brass Association. Or the copper alloy plate material according to 2. マトリックス(金属素地)中に存在する粒子径0.1μm以上の第二相粒子の個数密度が5×10個/mm以下である請求項1~3のいずれか1項に記載の銅合金板材。 The copper alloy according to any one of claims 1 to 3, wherein the number of second-phase particles having a particle diameter of 0.1 μm or more present in the matrix (metal substrate) is 5 × 10 5 particles / mm 2 or less. Plate material. 圧延方向の引張強さが850MPa以上である請求項1~4のいずれか1項に記載の銅合金板材。 The copper alloy plate material according to any one of claims 1 to 4, wherein the tensile strength in the rolling direction is 850 MPa or more. 板厚が0.02~0.50mmである請求項1~5のいずれか1項に記載の銅合金板材。 The copper alloy plate material according to any one of claims 1 to 5, wherein the plate thickness is 0.02 to 0.50 mm. 請求項1~6のいずれか1項に記載の銅合金板材を材料に用いた通電部品。 An energizing component using the copper alloy plate material according to any one of claims 1 to 6 as a material. 質量%で、Ti:1.0~5.0%、Ag:0~0.30%、Al:0~1.0%、B:0~0.20%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~1.0%、Mn:0~1.0%、Ni:0~1.5%、P:0~0.20%、S:0~0.20%、Si:0~1.0%、Sn:0~1.2%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%であり、前記元素のうちAg、Al、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、ZnおよびZrの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有する熱間加工材に、圧延率50~99%の冷間圧延を施す工程と、
380~620℃で1~20時間保持する第1熱処理を施した後、180~420℃で1~20時間保持する第2熱処理を下記(3)式に従う条件で施す工程と、
圧延率10~99%の冷間圧延を施す工程と、
板材の圧延方向に12.5~20.0N/mmの張力を付与した状態で700~950℃に加熱する条件で、溶体化処理を施す工程と、
300~600℃で1時間以上保持する条件で、時効処理を施す工程と、
を上記の順に有する、請求項1~6のいずれか1項に記載の銅合金板材の製造方法。
T1≧T2+40℃ …(3)
ここで、T1は第1熱処理の保持温度(℃)、T2は第2熱処理の保持温度(℃)である。
By mass%, Ti: 1.0 to 5.0%, Ag: 0 to 0.30%, Al: 0 to 1.0%, B: 0 to 0.20%, Be: 0 to 0.15%. , Co: 0 to 1.0%, Cr: 0 to 1.0%, Fe: 0 to 1.0%, Mg: 0 to 1.0%, Mn: 0 to 1.0%, Ni: 0 to 1.5%, P: 0 to 0.20%, S: 0 to 0.20%, Si: 0 to 1.0%, Sn: 0 to 1.2%, V: 0 to 1.0%, Zn: 0 to 2.0%, Zr: 0 to 1.0%, and among the above elements, Ag, Al, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S, Si, A step of cold rolling a hot-worked material having a total content of Sn, V, Zn and Zr of 3.0% or less and a composition consisting of the balance Cu and unavoidable impurities with a rolling ratio of 50 to 99%. When,
After the first heat treatment held at 380 to 620 ° C. for 1 to 20 hours, the second heat treatment held at 180 to 420 ° C. for 1 to 20 hours is performed under the conditions according to the following formula (3).
The process of cold rolling with a rolling ratio of 10 to 99% and
A step of performing solution treatment under the condition of heating to 700 to 950 ° C. with a tension of 12.5 to 20.0 N / mm 2 applied in the rolling direction of the plate material.
The process of aging treatment under the condition of holding at 300 to 600 ° C for 1 hour or more, and
The method for producing a copper alloy plate material according to any one of claims 1 to 6, further comprising the above-mentioned order.
T1 ≧ T2 + 40 ℃… (3)
Here, T1 is the holding temperature (° C.) of the first heat treatment, and T2 is the holding temperature (° C.) of the second heat treatment.
前記第1熱処理と前記第2熱処理の間で、圧延率70%以下の冷間圧延を施す、請求項8に記載の銅合金板材の製造方法。 The method for producing a copper alloy plate material according to claim 8, wherein cold rolling with a rolling ratio of 70% or less is performed between the first heat treatment and the second heat treatment. 前記溶体化処理と前記時効処理の間で、圧延率60%以下の冷間圧延を施す、請求項8または9に記載の銅合金板材の製造方法。 The method for producing a copper alloy plate material according to claim 8 or 9, wherein cold rolling with a rolling ratio of 60% or less is performed between the solution treatment and the aging treatment. 前記時効処理の後に、
圧延率60%以下の冷間圧延を施す工程と、
300~620℃で600秒以下の時間保持する低温焼鈍を施す工程と、
を上記の順に有する、請求項8~10のいずれか1項に記載の銅合金板材の製造方法。
After the aging process,
The process of cold rolling with a rolling ratio of 60% or less, and
The process of low-temperature annealing that is held at 300 to 620 ° C for a time of 600 seconds or less, and
The method for producing a copper alloy plate material according to any one of claims 8 to 10, further comprising the above items in the above order.
JP2021119492A 2021-07-20 2021-07-20 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts Active JP7038879B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021119492A JP7038879B1 (en) 2021-07-20 2021-07-20 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts
CN202111268406.4A CN115637350B (en) 2021-07-20 2021-10-29 Cu-Ti-based copper alloy sheet, method for producing same, and energizing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021119492A JP7038879B1 (en) 2021-07-20 2021-07-20 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts

Publications (2)

Publication Number Publication Date
JP7038879B1 true JP7038879B1 (en) 2022-03-18
JP2023015605A JP2023015605A (en) 2023-02-01

Family

ID=81213714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021119492A Active JP7038879B1 (en) 2021-07-20 2021-07-20 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts

Country Status (2)

Country Link
JP (1) JP7038879B1 (en)
CN (1) CN115637350B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029717A1 (en) * 2010-08-31 2012-03-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
JP2014015679A (en) * 2012-06-15 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy sheet material and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357548B2 (en) * 2007-06-14 2009-11-04 Dowaメタルテック株式会社 Cu-Ti-based copper alloy sheet and method for producing the same
CN101748308B (en) * 2008-11-28 2013-09-04 同和金属技术有限公司 CU-Ti system copper alloy plate and manufacture method thereof
JP4889801B2 (en) * 2009-11-25 2012-03-07 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts
JP6263333B2 (en) * 2013-03-25 2018-01-17 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP6368518B2 (en) * 2014-03-28 2018-08-01 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP6573460B2 (en) * 2015-02-26 2019-09-11 国立大学法人東北大学 Cu-Ti copper alloy sheet, manufacturing method, current-carrying component and spring material
JP6639147B2 (en) * 2015-08-17 2020-02-05 Dowaメタルテック株式会社 Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part
CN111733372B (en) * 2020-08-27 2020-11-27 宁波兴业盛泰集团有限公司 Elastic copper-titanium alloy and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029717A1 (en) * 2010-08-31 2012-03-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
JP2014015679A (en) * 2012-06-15 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy sheet material and method for producing the same

Also Published As

Publication number Publication date
CN115637350B (en) 2023-11-24
JP2023015605A (en) 2023-02-01
CN115637350A (en) 2023-01-24

Similar Documents

Publication Publication Date Title
JP5158911B2 (en) Copper alloy sheet and manufacturing method thereof
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4761586B1 (en) High-strength titanium copper plate and manufacturing method thereof
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
US9514856B2 (en) Copper alloy
WO2011068121A1 (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
KR20230107381A (en) Methods of continuously casting new 6xxx aluminum alloys, and products made from the same
WO2011068134A1 (en) Copper alloy sheet material having low young&#39;s modulus and method for producing same
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP2009242890A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP6125410B2 (en) Titanium copper for electronic parts
JP3748859B2 (en) High-strength copper alloy with excellent bendability
JPWO2015099098A1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP7038879B1 (en) Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JP2019056163A (en) Aluminum alloy plate and method of producing the same
JP5470497B1 (en) Copper alloy sheet with excellent stress relaxation properties
JP6192552B2 (en) Titanium copper for electronic parts
JP6165071B2 (en) Titanium copper for electronic parts
JP7534883B2 (en) Cu-Ni-Al copper alloy sheet material, its manufacturing method and conductive spring member
JP2023152264A (en) Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREOF, ENERGIZATION MEMBER AND HEAT DISSIPATION COMPONENT
TW202338108A (en) Cu-ti-based copper alloy plate, method of manufacturing the same, current-carrying parts, and heat-radiating parts
CN116891960A (en) Cu-Ti-based copper alloy sheet, method for producing same, current-carrying member, and heat-dissipating member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7038879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150