JP6639147B2 - Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part - Google Patents

Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part Download PDF

Info

Publication number
JP6639147B2
JP6639147B2 JP2015160722A JP2015160722A JP6639147B2 JP 6639147 B2 JP6639147 B2 JP 6639147B2 JP 2015160722 A JP2015160722 A JP 2015160722A JP 2015160722 A JP2015160722 A JP 2015160722A JP 6639147 B2 JP6639147 B2 JP 6639147B2
Authority
JP
Japan
Prior art keywords
grain boundary
copper alloy
less
rolling
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160722A
Other languages
Japanese (ja)
Other versions
JP2017039959A (en
Inventor
久 須田
久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2015160722A priority Critical patent/JP6639147B2/en
Publication of JP2017039959A publication Critical patent/JP2017039959A/en
Application granted granted Critical
Publication of JP6639147B2 publication Critical patent/JP6639147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コネクタ、リレー、スイッチなどの通電部品に適した耐疲労特性に優れるCu−Ti系銅合金板材であって、特に従来のCu−Ti系銅合金板材の耐疲労特性レベルでは103〜104回で疲労限に達してしまうような厳しい条件下での耐疲労特性を改善し、かつ電子部品の小型化にも対応可能な優れた180°曲げ加工性を有する板材、およびその製造方法に関する。また、その銅合金板材を材料に用いた通電部品に関する。 The present invention relates to a Cu—Ti-based copper alloy sheet having excellent fatigue resistance characteristics suitable for current-carrying parts such as connectors, relays, and switches. In particular, the conventional Cu—Ti-based copper alloy sheet has a fatigue resistance level of 10 3. A plate material having improved 180 ° bending workability capable of improving fatigue resistance characteristics under severe conditions where the fatigue limit is reached in 〜1010 4 times and capable of responding to miniaturization of electronic components, and production thereof About the method. The present invention also relates to a current-carrying part using the copper alloy sheet as a material.

電気・電子部品を構成する通電部品に使用される材料には、「強度」、「曲げ加工性」、「耐応力緩和特性」に優れることが要求される。また、特にコネクタ、リレー、スイッチなどの可動部を有する通電部品には繰り返しの応力負荷に耐え得る「耐疲労特性」も重要となる。   Materials used for current-carrying parts constituting electric / electronic parts are required to have excellent "strength", "bendability", and "stress relaxation resistance". Also, especially for current-carrying parts having movable parts such as connectors, relays, and switches, “fatigue resistance characteristics” that can withstand repeated stress loads are important.

Cu−Ti系銅合金は、銅合金中でCu−Be系銅合金に次ぐ高強度を有し、Cu−Be系銅合金を凌ぐ耐応力緩和性を有する。また、コストと環境負荷の点でCu−Be系銅合金より有利である。このためCu−Ti系銅合金(例えばC1990;Cu−3.2質量%Ti合金)は、一部のCu−Be系銅合金の代替材としてコネクタ材などに使用されている。   The Cu-Ti-based copper alloy has the second highest strength among the copper alloys next to the Cu-Be-based copper alloy, and has a stress relaxation resistance superior to that of the Cu-Be-based copper alloy. Further, it is more advantageous than a Cu-Be-based copper alloy in terms of cost and environmental load. For this reason, a Cu-Ti based copper alloy (for example, C1990; Cu-3.2 mass% Ti alloy) is used as a substitute for some Cu-Be based copper alloys for connector materials and the like.

Cu−Ti系銅合金では、Tiの変調構造(スピノーダル構造)を利用して強度を向上させることができる反面、板材の製造過程で粗大な粒状析出物が生成しやすく、また結晶粒界から粒界反応相が生成しやすいという問題がある。図1に、従来一般的なCu−Ti系銅合金板材の圧延方向に垂直な断面の金属組織写真(SEM写真)を例示する。記号Aで示すような粒状析出物と、記号Bで示すような層状の粒界反応相が多く見られる。これらの第二相のうち特に粒界反応相は、疲労特性や曲げ加工性に大きな影響を及ぼす。   In a Cu—Ti-based copper alloy, although the strength can be improved by utilizing the modulated structure (spinodal structure) of Ti, coarse granular precipitates are easily formed in the manufacturing process of the sheet material, and the grain boundaries are formed from the grain boundaries. However, there is a problem that an interfacial reaction phase is easily generated. FIG. 1 illustrates a metallographic photograph (SEM photograph) of a cross section perpendicular to the rolling direction of a conventional general Cu—Ti-based copper alloy sheet. A large number of granular precipitates represented by symbol A and a layered grain boundary reaction phase represented by symbol B are observed. Among these second phases, the grain boundary reaction phase has a great influence on fatigue properties and bending workability.

これまでCu−Ti系銅合金の特性を改善するために、上記粒状析出物や粒界反応相などの第二相の生成状態を制御する研究が行われている。例えば、特許文献1には、直径1μm以上の介在物が2〜41個/1000μm2(2×103〜41×103個/mm2)であるCu−Ti系銅合金が示されている。特許文献2には、直径1μm以上の第二相粒子の面積率が0〜0.16%であるCu−Ti系銅合金が示されている。特許文献3には、粒内に存在するCu−Ti系化合物の面積率が、粒界に存在するCu−Ti系化合物の面積率よりも大きいCu−Ti系銅合金が示されている。特許文献4には、直径0.5μm以上の第二相粒子が0.04〜0.11個/μm2(4×104〜11×104個/mm2)であるCu−Ti系銅合金が示されている。特許文献5には、板厚方向に垂直な断面において、粒界反応型析出物の最大幅が0.5μm以下であり、直径100nm以上の粒状析出物の密度が105個/mm2以下であるCu−Ti系銅合金板材が示されている。 In order to improve the properties of Cu-Ti based copper alloys, studies have been made on controlling the state of formation of the second phase such as the above-mentioned granular precipitates and grain boundary reaction phases. For example, Patent Literature 1 discloses a Cu-Ti-based copper alloy in which inclusions having a diameter of 1 µm or more are 2 to 41 pieces / 1000 µm 2 (2 × 10 3 to 41 × 10 3 pieces / mm 2 ). . Patent Document 2 discloses a Cu—Ti-based copper alloy in which the area ratio of second phase particles having a diameter of 1 μm or more is 0 to 0.16%. Patent Document 3 discloses a Cu-Ti-based copper alloy in which the area ratio of the Cu-Ti-based compound present in the grains is larger than the area ratio of the Cu-Ti-based compound existing in the grain boundaries. Patent Document 4 discloses a Cu—Ti-based copper in which the number of second phase particles having a diameter of 0.5 μm or more is 0.04 to 0.11 / μm 2 (4 × 10 4 to 11 × 10 4 / mm 2 ). The alloy is shown. Patent Document 5 discloses that in a cross section perpendicular to the plate thickness direction, the maximum width of the grain boundary reaction type precipitate is 0.5 μm or less, and the density of the granular precipitate having a diameter of 100 nm or more is 10 5 / mm 2 or less. A certain Cu-Ti-based copper alloy sheet is shown.

特開2005−187885号公報JP 2005-187885 A 特開2011−202218号公報JP 2011-202218 A 特開2011−195881号公報JP 2011-195883 A 特開2012−97308号公報JP 2012-97308 A 特開2014−185370号公報JP 2014-185370A

コネクタなどのばね材に用いられる銅合金板材は180°U字曲げを施して使用されることが多い。特に民生用電子機器では抜き挿しの動作が繰り返される場合の耐久性向上ニーズが高まっており、180°U字曲げを施した実装部品に近い形状の試験片による耐疲労特性の評価が望まれている。しかし、これまで銅合金板材の耐疲労特性の評価は、プーリー試験やナイフエッジ式試験など、平板状試料による評価が主流であり、上記のような実装形状を反映した耐久性は十分に把握されていないのが現状である。また今後は、部品の一層の小型化に対応できるよう、曲げ加工性の更なる改善も望まれる。   A copper alloy plate material used for a spring material such as a connector is often used after being subjected to a 180 ° U-shaped bending. Particularly in consumer electronic devices, there is a growing need for improved durability when repeated insertion / extraction operations are repeated, and it is desired to evaluate fatigue resistance characteristics using a test piece having a shape close to a mounted component subjected to 180 ° U-shaped bending. I have. However, the evaluation of fatigue resistance properties of copper alloy sheet materials has so far been mainly based on evaluation of flat samples such as pulley tests and knife edge tests, and the durability reflecting the mounting shape as described above is sufficiently understood. It is not at present. In the future, further improvement in bending workability is also desired so as to cope with further downsizing of components.

発明者らの検討によれば、180°U字曲げ部を有する実装部品に近い形状の試験片において、従来のCu−Ti系銅合金板材の耐久性レベルでは103回から104回程度で疲労限を迎えるような負荷を付与する厳しい条件での評価手法が、上記耐久性向上ニーズに応えるために有効であることがわかった。また、曲げ加工性についても細い幅の小型部品に加工したときの曲げ加工性をより適切に評価できる180°曲げ試験方法を実施することが必要であると考えられた。特許文献1〜5をはじめとする従来の第二相制御技術では、上記耐久性向上ニーズおよび曲げ加工性向上ニーズに十分に応えることはできない。本発明は、Cu−Ti系銅合金において、上述のような実装部品に近い形状の試験片で把握される厳しい評価基準での耐久性を改善し、かつ部品の小型化に対応し得る曲げ加工性を改善することを目的とする。 According to the study of the inventors, in the test pieces having a shape close to a mounting component having a 180 ° U-shaped bent portion, the durability level of the conventional sheet materials of Cu-Ti alloys with approximately 10 4 times from 10 3 times It has been found that an evaluation method under a severe condition of applying a load such that the fatigue limit is reached is effective to meet the above-mentioned need for improving durability. Also, it was considered necessary to implement a 180 ° bending test method capable of more appropriately evaluating the bending workability when processing into a small component having a small width. Conventional second-phase control techniques including Patent Literatures 1 to 5 cannot sufficiently meet the above-described needs for improving durability and bending workability. The present invention relates to a bending process capable of improving the durability of a Cu—Ti-based copper alloy based on a strict evaluation criterion grasped by a test piece having a shape close to the mounted component as described above and capable of responding to miniaturization of the component. The purpose is to improve the performance.

発明者らの詳細な研究によれば、上述のような厳しい耐久性および曲げ加工性を同時に付与するためには、生成する粒界反応相の最大幅を制限すること、および特定の方位差を有する結晶の粒界に析出する粒界反応相の生成量を制限することが極めて有効であることがわかった。また、それを実現するための製造方法として、以下の手法が極めて有効であることを見出した。
(i)熱間圧延において920℃以上の高温域で60%以上の圧下率を稼ぐとともに、その高温域で材料とロールの摩擦を高めて材料全体に大きなせん断力を加えることにより、鋳造組織中の偏析相の破壊・分断を促進させ、かつ、できるだけ高温状態から水冷する。
(ii)時効処理の最高材料到達温度を400〜700℃の範囲とし、時効処理時間を、時効処理温度に応じて厳密にコントロールする。
本発明はこのような知見に基づいて完成したものである。
According to the inventors' detailed research, in order to simultaneously provide the above-described severe durability and bending workability, it is necessary to limit the maximum width of a generated grain boundary reaction phase and to set a specific orientation difference. It has been found that it is extremely effective to limit the amount of the generated grain boundary reaction phase precipitated at the grain boundaries of the crystals. In addition, they have found that the following method is extremely effective as a manufacturing method for realizing it.
(I) In the hot rolling, a rolling reduction of 60% or more is obtained in a high temperature region of 920 ° C. or more, and a large shear force is applied to the entire material by increasing the friction between the material and the roll in the high temperature region to thereby increase the casting structure. Promotes the destruction / separation of the segregated phase and water-cools from the highest possible temperature.
(Ii) The maximum material reaching temperature of the aging treatment is set in the range of 400 to 700 ° C., and the aging treatment time is strictly controlled according to the aging treatment temperature.
The present invention has been completed based on such findings.

すなわち本発明では、質量%で、Ti:2.0〜4.0%、Ni:0〜1.5%、Co:0〜1.0%、Fe:0〜0.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、B:0〜0.05%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、B、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有する銅合金板材であって、板面に平行な観察面において、平均結晶粒径が3.0〜25.0μm、粒界反応相の最大幅が1.5μm以下であり、かつ結晶粒界の1つの交点からその隣の交点までの粒界部分を1つの「粒界セグメント」と定義するとき、方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合が10%以上60%以下である金属組織を有し、圧延方向の0.2%耐力が800MPa以上、導電率が11.0%IACS以上である銅合金板材が提供される。板厚は例えば0.03〜1.0mmとすることができ、特に0.05〜0.3mmの薄板材は通電部品の小型化に有用である。 That is, in the present invention, Ti: 2.0 to 4.0%, Ni: 0 to 1.5%, Co: 0 to 1.0%, Fe: 0 to 0.5%, and Sn: 0% by mass. -1.2%, Zn: 0-2.0%, Mg: 0-1.0%, Zr: 0-1.0%, Al: 0-1.0%, Si: 0-1.0% , P: 0 to 0.1%, B: 0 to 0.05%, Cr: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%. Copper alloy sheet material having a total content of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn, and V of 3.0% or less, and a balance of Cu and unavoidable impurities In the observation plane parallel to the plate surface, the average crystal grain size is 3.0 to 25.0 μm, the maximum width of the grain boundary reaction phase is 1.5 μm or less, and from one intersection of the crystal grain boundaries. The grain boundary part up to the next intersection is defined as one “grain boundary seg When defining the bets ", the heading difference is not more than 60% the number ratio of the grain boundary segments 10% or more of the grain boundary reaction phases are present in excess of the width 0.5μm of grain boundary segments of the crystal is 35 to 55 ° A copper alloy sheet having a certain metal structure, a 0.2% proof stress in a rolling direction of 800 MPa or more, and a conductivity of 11.0% IACS or more is provided. The plate thickness can be, for example, 0.03 to 1.0 mm. In particular, a thin plate having a thickness of 0.05 to 0.3 mm is useful for reducing the size of the current-carrying parts.

上記銅合金板材は優れた180°曲げ性を有する。具体的には、長手方向が圧延方向(LD)および圧延直角方向(TD)である1mm幅の曲げ試験片をそれぞれ採取してJIS Z2248:2014の巻付け法に従い180°曲げ試験を行ったとき、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値がLD、TDとも1.0以下となる曲げ加工性を有するものが好適な対象となる。   The copper alloy sheet has excellent 180 ° bendability. Specifically, when a bending test piece having a width of 1 mm whose longitudinal direction is the rolling direction (LD) and the direction perpendicular to the rolling direction (TD) is sampled and subjected to a 180 ° bending test according to the winding method of JIS Z2248: 2014. A material having a bending workability in which the value of the ratio MBR / t between the minimum bending radius MBR and the plate thickness t at which cracking does not occur is 1.0 or less for both LD and TD is a suitable object.

隣接する結晶粒の方位差は、後方散乱電子回折像(Electron Backscatter diffraction Pattern:EBSP)に基づく結晶粒方位分布マップ(OIM像)の測定(以下、EBSP法という。)によって求めることができる。具体的には、板面(圧延面)に平行な観察面について、電界放出形走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)によりEBSP法で結晶粒方位分布マップを測定し、結晶方位差が35〜55°である結晶粒の境界線をSEM像の上に重ねて表示させることにより、当該SEM視野中の個々の粒界セグメントがそれぞれ「方位差が35〜55°である結晶の粒界セグメント」に該当するかどうかを判別することができる。
粒界反応相は、Cu母相の結晶粒界から結晶粒内に向かって、Cu相と互いに層を形成しながら層状に成長するCu−Ti系金属間化合物の析出相であり、β−Cu4Ti相を主体とするものであると考えられる。この粒界反応相は結晶粒界に沿って存在し、かつCu相と交互に層状構造を形成しているので、金属組織観察において他のタイプの第二相と識別することができる。
粒界反応相の最大幅、および方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合は、以下のようにして定めることができる。
The azimuth difference between adjacent crystal grains can be obtained by measuring a crystal grain orientation distribution map (OIM image) based on an electron backscatter diffraction pattern (EBSP) (hereinafter, referred to as an EBSP method). Specifically, a grain orientation distribution map of an observation surface parallel to the plate surface (rolled surface) is measured by an EBSP method using a field emission scanning electron microscope (FESEM), and the crystal orientation difference is determined. By superimposing and displaying the boundaries of the crystal grains of 35 to 55 ° on the SEM image, the individual grain boundary segments in the SEM field of view are “grain boundaries of the crystal with a misorientation of 35 to 55 °”. Segment ".
The grain boundary reaction phase is a precipitation phase of a Cu-Ti-based intermetallic compound that grows in a layer form while forming a layer with the Cu phase from the crystal grain boundary of the Cu mother phase to the inside of the crystal grain, and β-Cu It is considered that the main component is the 4 Ti phase. Since the grain boundary reaction phase exists along the crystal grain boundaries and alternately forms a layered structure with the Cu phase, it can be distinguished from other types of second phases in metallographic observation.
The maximum width of the grain boundary reaction phase and the number ratio of the number of the grain boundary segments in which the grain boundary reaction phase exceeding 0.5 μm exists among the grain boundary segments of the crystal having the misorientation of 35 to 55 ° are as follows. Can be determined.

〔粒界反応相の最大幅の特定方法〕
板面に平行な観察面のSEM観察において200μm×200μm(40000μm2)の矩形領域が設定できる観察視野を無作為に12視野選択する。各観察視野において、矩形領域内(境界を含む)に観察される全ての粒界反応相について、結晶粒界に対して直角方向の長さを測定し、全12視野での上記測定値の最大値を、粒界反応相の最大幅(μm)とする。
(Specification method of maximum width of grain boundary reaction phase)
In SEM observation of an observation surface parallel to the plate surface, 12 observation visual fields in which a rectangular area of 200 μm × 200 μm (40000 μm 2 ) can be set are randomly selected. In each observation visual field, for all the grain boundary reaction phases observed in the rectangular area (including the boundary), the length in the direction perpendicular to the crystal grain boundary was measured, and the maximum of the above measured values in all 12 visual fields was measured. The value is defined as the maximum width (μm) of the grain boundary reaction phase.

〔方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合の特定方法〕
板面に平行な観察面のSEM観察において200μm×200μm(40000μm2)の矩形領域が設定できる観察視野を無作為に12視野選択する。1つの観察視野において、矩形領域内(境界を含む)に全部または一部が存在する粒界セグメントのうち、方位差が35〜55°である結晶の粒界セグメントをEBSP法により抽出し、それらを「35〜55°粒界セグメント」と呼び、その数をn0(個)とする。35〜55°粒界セグメントのうち、結晶粒界に対して直角方向の長さが0.5μmを超えるサイズの粒界反応相を矩形領域内(境界を含む)に有している粒界セグメントの数n1(個)をカウントする。この作業を上記12視野について行い、全12視野における前記n0の総和をN0(個)、前記n1の総和をN1(個)とするとき、N1/N0×100で表される値を「方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合(%)」とする。
[Method of Identifying Number Ratio of Grain Boundary Segments in Which Grain Boundary Reaction Phase Exceeding 0.5 μm in Width Among Grain Boundary Segments with Orientation Difference of 35 to 55 °]
In SEM observation of an observation surface parallel to the plate surface, 12 observation visual fields in which a rectangular area of 200 μm × 200 μm (40000 μm 2 ) can be set are randomly selected. In one observation visual field, among grain boundary segments that are wholly or partially present in a rectangular area (including a boundary), crystal grain boundary segments whose orientation difference is 35 to 55 ° are extracted by the EBSP method. Are referred to as “35-55 ° grain boundary segments”, and the number thereof is n 0 (number). Among the 35 to 55 ° grain boundary segments, a grain boundary segment having a grain boundary reaction phase having a size exceeding 0.5 μm in a direction perpendicular to a crystal grain boundary in a rectangular region (including a boundary). The number n 1 (pieces) is counted. This operation is performed for the above 12 visual fields, and when the total sum of n 0 in all 12 visual fields is N 0 (number) and the total sum of n 1 is N 1 (number), it is expressed as N 1 / N 0 × 100. This value is defined as "the number ratio (%) of grain boundary segments having a grain boundary reaction phase exceeding 0.5 [mu] m in grain boundary segments of a crystal having a misorientation of 35 to 55 [deg.].

上記銅合金板材の製造方法として、上記化学組成の銅合金板材を、熱間圧延、冷間圧延、溶体化処理、時効処理の工程を上記の順に有する工程にて製造するに際し、
熱間圧延工程において、加熱温度を960℃以下とし、920℃以上で行う圧延パスで水分含有量97.0質量%以上の潤滑液を使用し、920℃以上での合計圧延率を60%以上とし、熱間圧延最終パス温度を下記(1)式のTs(℃)以上とし、その最終パス後にTs−100℃で表される温度以上の高温から水冷を開始し、
溶体化処理工程において、加熱保持温度を750〜900℃の範囲とし、
時効処理工程において、最高到達材料温度TMAX(℃)を400〜700℃の範囲内とし、400℃以上TMAX以下の温度域での保持時間tA(min)と下記(2)式で定義されるX値の関係が下記(3)式を満たす条件で時効処理を施す、
銅合金板材の製造方法が提供される。
Ts=151.5×ln[Ti]+620.5 …(1)
ここで、lnは自然対数、[Ti]は質量%で表される当該合金のTi含有量である。
X=exp((694−TMAX)/28) …(2)
0.20≦tA/X≦1.0 …(3)
As a method of manufacturing the copper alloy sheet, a copper alloy sheet having the above chemical composition, when hot-rolling, cold-rolling, solution treatment, when producing in the step having the steps of aging treatment in the above order,
In the hot rolling step, the heating temperature is set to 960 ° C or lower, and a lubricating liquid having a water content of 97.0% by mass or more is used in a rolling pass performed at 920 ° C or higher, and the total rolling ratio at 920 ° C or higher is 60% or more. And the final pass temperature of the hot rolling is set to Ts (° C.) or more in the following formula (1), and after the final pass, water cooling is started from a high temperature equal to or higher than Ts−100 ° C.
In the solution treatment step, the heating and holding temperature is in a range of 750 to 900 ° C,
In the aging treatment step, the maximum attained material temperature T MAX (° C.) is set in the range of 400 to 700 ° C., and the holding time t A (min) in the temperature range of 400 ° C. or more and T MAX or less is defined by the following equation (2). Aging treatment is performed under the condition that the relationship of the X values to be satisfied satisfies the following equation (3).
A method for manufacturing a copper alloy sheet is provided.
Ts = 151.5 × ln [Ti] +620.5 (1)
Here, ln is the natural logarithm, and [Ti] is the Ti content of the alloy expressed in mass%.
X = exp ((694−T MAX ) / 28) (2)
0.20 ≦ t A /X≦1.0 (3)

また本発明では、上記銅合金板材を材料に用いた通電部品が提供される。   Further, the present invention provides a current-carrying component using the above-mentioned copper alloy sheet as a material.

本発明によれば、Cu−Ti系銅合金板材において、180°U字曲げ部を有する試料を用いた厳しい評価手法で判定される耐久性を向上させることができた。また、幅1mmの試験片で評価される厳しい180°曲げ試験にてR/t=1の180°曲げがLD、TDいずれの方向においても可能であるという、優れた曲げ加工性を付与することができた。従って本発明は、特にコネクタ、スイッチ、リレー等の可動部分を有する通電部品の耐久性向上および小型化に寄与するものである。   ADVANTAGE OF THE INVENTION According to this invention, in the Cu-Ti-type copper alloy sheet material, the durability judged by the severe evaluation method using the sample which has a 180-degree U-shaped bending part was able to be improved. In addition, to provide excellent bending workability that 180 ° bending with R / t = 1 can be performed in both LD and TD directions in a severe 180 ° bending test evaluated with a 1 mm wide test piece. Was completed. Therefore, the present invention contributes to improving the durability and reducing the size of current-carrying parts having movable parts such as connectors, switches and relays.

一般的なCu−Ti系銅合金板材の金属組織を例示したSEM写真。5 is an SEM photograph illustrating the metal structure of a general Cu—Ti-based copper alloy sheet. 耐久性を評価するための試験片の形状を例示した図。The figure which illustrated the shape of the test piece for evaluating durability. 荷重付与回数と荷重低下率の関係を例示したグラフ。4 is a graph illustrating the relationship between the number of times of applying a load and the rate of decrease in load.

《合金組成》
本発明ではCu−Tiの2元系基本成分に、必要に応じてNi、Co、Feや、その他の合金元素を配合したCu−Ti系銅合金を採用する。以下、合金組成に関する「%」は特に断らない限り「質量%」を意味する。
《Alloy composition》
In the present invention, a Cu-Ti-based copper alloy in which Ni, Co, Fe, and other alloy elements are blended as necessary with the binary basic component of Cu-Ti is employed. Hereinafter, “%” regarding the alloy composition means “% by mass” unless otherwise specified.

Tiは、強度上昇および耐応力緩和性向上に寄与する元素であり、ここではTi含有量2.0%以上の合金を対象とする。2.5%以上であることがより好ましい。過剰なTi含有は、熱間加工性や冷間加工性を低下させる要因となる他、溶体化処理の適正温度域を狭める要因ともなるので、Ti含有量は4.0%以下とする。3.5%以下に管理してもよい。   Ti is an element that contributes to an increase in strength and an improvement in stress relaxation resistance. Here, an alloy having a Ti content of 2.0% or more is targeted. More preferably, it is 2.5% or more. Excessive Ti content lowers the hot workability and cold workability, and also narrows the appropriate temperature range of the solution treatment. Therefore, the Ti content is set to 4.0% or less. It may be controlled to 3.5% or less.

Ni、Co、Feは、Tiとの金属間化合物を形成して強度の向上に寄与するので、必要に応じてこれらの1種以上を添加することができる。特に、Cu−Ti系銅合金の溶体化処理においては、これらの元素の金属間化合物が結晶粒の粗大化を抑制するので、より高温域での溶体化処理が可能になり、Tiを十分に固溶させる上で有利となる。これら1種以上を添加する場合の含有量は、Ni:0.05%以上、Co:0.05%以上、Fe:0.05%以上とすることがより効果的であり、Ni:0.1以上、Co:0.1%以上、Fe:0.1%以上とすることが更に効果的である。ただし、Fe、Co、Niを過剰に含有させると、粗大な粒状析出物が形成しやすくなり、耐久性の低下を招く。したがってNi、Co、Feの1種以上を添加する場合は、Ni:1.5%以下、Co:1.0%以下、Fe:0.5%以下の範囲とする。Ni:0.25%以下、Co:0.25%以下、Fe:0.25%以下の範囲に管理してもよい。   Since Ni, Co, and Fe form an intermetallic compound with Ti and contribute to improvement in strength, one or more of these can be added as necessary. In particular, in the solution treatment of a Cu-Ti-based copper alloy, since the intermetallic compound of these elements suppresses the coarsening of the crystal grains, the solution treatment in a higher temperature range becomes possible, and Ti is sufficiently reduced. This is advantageous in forming a solid solution. When one or more of these are added, it is more effective that the content of Ni is 0.05% or more, Co is 0.05% or more, and Fe is 0.05% or more. It is more effective to set the ratio to 1 or more, Co: 0.1% or more, and Fe: 0.1% or more. However, when Fe, Co, and Ni are excessively contained, coarse granular precipitates are easily formed, and the durability is reduced. Therefore, when one or more of Ni, Co, and Fe are added, the content is set to a range of Ni: 1.5% or less, Co: 1.0% or less, and Fe: 0.5% or less. Ni: 0.25% or less, Co: 0.25% or less, Fe: 0.25% or less may be managed.

Snは、固溶強化作用と耐応力緩和性の向上作用を有するので、必要に応じて積極的に添加してもよい。0.1%以上のSn含有量を確保することが効果的である。ただし、過剰のSn含有は鋳造性と導電率の低下を招くので、Snを含有させる場合は1.2%以下とする。0.5%以下あるいは0.25%以下の範囲に管理してもよい。   Since Sn has a solid solution strengthening action and a stress relaxation resistance improving action, Sn may be positively added as necessary. It is effective to secure a Sn content of 0.1% or more. However, excessive Sn content lowers castability and conductivity, so when Sn is contained, the content is set to 1.2% or less. It may be controlled within a range of 0.5% or less or 0.25% or less.

Znは、はんだ付け性および強度を向上させる作用を有する他、鋳造性を改善させる作用もあるので、必要に応じて積極的に添加してもよい。0.1%以上のZn含有量を確保することが効果的であり、0.3以上とすることが一層効果的である。ただし、過剰のZn含有は導電性や耐応力腐食割れ性の低下要因となりやすいので、Zn含有量は2.0%以下とし、1.0%以下あるいは0.5%以下の範囲に管理してもよい。   Zn has the effect of improving the solderability and strength, and also has the effect of improving the castability. Therefore, Zn may be positively added as necessary. It is effective to ensure a Zn content of 0.1% or more, and it is more effective to set the Zn content to 0.3% or more. However, since excessive Zn content is likely to cause a reduction in conductivity and resistance to stress corrosion cracking, the Zn content is set to 2.0% or less, and is controlled to a range of 1.0% or less or 0.5% or less. Is also good.

Mgは、耐応力緩和性の向上作用と脱S作用を有するので、必要に応じて積極的に添加してもよい。0.01%以上のMg含有量を確保することが効果的であり、0.05%以上とすることがより効果的である。ただし、Mgは酸化されやすい元素であり、過剰添加は鋳造性が損なう要因となるので、Mgを含有させる場合は1.0%以下の含有量とし、0.5%以下の範囲で調整することが一層好ましい。通常、0.1%以下とすればよい。   Since Mg has an action of improving stress relaxation resistance and an action of removing S, Mg may be positively added as necessary. It is effective to secure the Mg content of 0.01% or more, and it is more effective to set the Mg content to 0.05% or more. However, Mg is an element that is easily oxidized, and excessive addition may cause the castability to be impaired. Therefore, when Mg is contained, the content should be 1.0% or less and adjusted within the range of 0.5% or less. Is more preferred. Usually, the content may be set to 0.1% or less.

その他の元素として、Zr:1.0%以下、Al:1.0%以下、Si:1.0%以下、P:0.1%以下、B:0.05%以下、Cr:1.0%以下、Mn:1.0%以下、V:1.0%以下の1種以上を含有させることができる。例えば、ZrとAlはTiとの金属間化合物を形成することができ、SiはTiとの析出物を生成できる。Cr、Zr、Mn、Vは不可避的不純物として存在するS、Pbなどと高融点化合物を形成しやすく、また、Cr、B、P、Zrは鋳造組織の微細化効果を有し、熱間加工性の改善に寄与しうる。Zr、Al、Si、P、B、Cr、Mn、Vの1種以上を含有させる場合は、各元素の作用を十分に得るためにこれらの総量が0.01%以上となるように含有させることが効果的である。   Other elements include Zr: 1.0% or less, Al: 1.0% or less, Si: 1.0% or less, P: 0.1% or less, B: 0.05% or less, and Cr: 1.0%. % Or less, Mn: 1.0% or less, V: 1.0% or less. For example, Zr and Al can form an intermetallic compound with Ti, and Si can form a precipitate with Ti. Cr, Zr, Mn, and V easily form a high melting point compound with S, Pb and the like existing as unavoidable impurities, and Cr, B, P, and Zr have an effect of refining a cast structure, and are hot worked. It can contribute to improvement of the performance. When one or more of Zr, Al, Si, P, B, Cr, Mn, and V are contained, they are contained so that the total amount thereof is 0.01% or more in order to sufficiently obtain the effect of each element. It is effective.

ただし、Zr、Al、Si、P、B、Cr、Mn、Vを多量に含有させると、熱間または冷間加工性に悪影響を与え、かつコスト的にも不利となる。したがって、前述のSn、Zn、Mgと、Zr、Al、Si、P、B、Cr、Mn、Vの合計含有量は3.0%以下に抑えることが望ましく、2.0%以下あるいは1.0%以下の範囲に規制することができ、0.5%以下の範囲に管理しても構わない。経済性を加味したより合理的な上限規制としては、例えばZr:0.2%以下、Al:0.15%以下、Si:0.2%以下、P:0.05%以下、B:0.03%以下、Cr:0.2%以下、Mn:0.1%以下、V:0.2%以下の規制を設けることができる。   However, when Zr, Al, Si, P, B, Cr, Mn, and V are contained in a large amount, the hot or cold workability is adversely affected, and the cost is disadvantageous. Therefore, the total content of Sn, Zn, Mg and Zr, Al, Si, P, B, Cr, Mn, and V is desirably suppressed to 3.0% or less, preferably 2.0% or less or 1.0% or less. It can be regulated within the range of 0% or less, and may be controlled within the range of 0.5% or less. As a more reasonable upper limit regulation considering economy, for example, Zr: 0.2% or less, Al: 0.15% or less, Si: 0.2% or less, P: 0.05% or less, B: 0 Regulations of 0.03% or less, Cr: 0.2% or less, Mn: 0.1% or less, and V: 0.2% or less can be provided.

《金属組織》
従来一般的なCu−Ti系銅合金板材には、図1に示したように「粒状析出物」と「粒界反応相」が観察される。本発明に従うCu−Ti系銅合金板材にもこれらの第二相は観察されるが、そのうち「粒界反応相」の最大幅および存在形態が後述のように厳しく制限されていることに特徴がある。なお、Cu−Ti系銅合金の強化機構は主として変調構造(スピノーダル構造)によるものである。変調構造自体は析出相とは異なり光学顕微鏡やSEMでは観測されない。
《Metal structure》
As shown in FIG. 1, “granular precipitates” and “grain boundary reaction phases” are observed in conventional general Cu—Ti-based copper alloy sheet materials. Although these second phases are also observed in the Cu—Ti-based copper alloy sheet according to the present invention, it is characterized in that the maximum width and the form of the “grain boundary reaction phase” are severely restricted as described below. is there. The strengthening mechanism of the Cu-Ti based copper alloy is mainly based on a modulation structure (spinodal structure). The modulated structure itself is not observed with an optical microscope or SEM unlike the precipitated phase.

〔粒状析出物〕
Cu−Ti系銅合金の母相(マトリックス)中に観察される粒状析出物としては、添加する合金元素の種類に応じてNi−Ti系、Co−Ti系、Fe−Ti系などの金属間化合物も存在しうるが、量的にはCu−Ti系金属間化合物であるα相が大部分を占める。
(Granular precipitate)
Granular precipitates observed in the parent phase (matrix) of the Cu-Ti copper alloy include intermetallics such as Ni-Ti, Co-Ti, and Fe-Ti, depending on the type of alloy element to be added. Although a compound may be present, the α-phase, which is a Cu—Ti-based intermetallic compound, occupies most of the compound.

〔粒界反応相〕
粒界反応相は脆弱な部分であり、疲労破壊や曲げ割れの起点あるいは伝播経路として作用する。そのため、粒界反応相の生成量はできるだけ少ないことが望ましいと考えられている。しかし、180°U字曲げ部を有する試験片により評価される厳しい耐久性や、幅の狭い試験片で評価される厳しい180°曲げ加工性を改善するには、単に粒界反応相の生成量を低減するだけでは不十分であり、結晶粒界でのクラックの発生や伝播をより効果的に防ぐ手法を採用することが求められる。そこで発明者らは、クラックの発生や伝播に関して、結晶粒界を「粒界反応相の影響が大きい粒界」と「粒界反応相の影響が小さい粒界」に分別し、「粒界反応相の影響が大きい粒界」に存在する粒界反応相を制限するという思想に基づいて検討を進めてきた。その結果、「粒界反応相の影響が大きい粒界」として「方位差が35〜55°である結晶の粒界」を取り上げることができ、その種の粒界での粒界反応相の生成を抑制することが上述の厳しい耐久性や曲げ加工性を安定して改善する上で極めて有効であるという知見を得た。また同時に、粒界反応相の最大幅、すなわち粒界反応相が生じている結晶粒界に対して直角方向の最大長さを規制することも重要であることが確認された。
(Grain boundary reaction phase)
The grain boundary reaction phase is a fragile portion and acts as a starting point or a propagation path of fatigue fracture or bending crack. Therefore, it is considered desirable that the generation amount of the grain boundary reaction phase be as small as possible. However, in order to improve the severe durability evaluated by the test piece having the 180 ° U-shaped bent portion and the severe 180 ° bending workability evaluated by the narrow test piece, it is necessary to simply generate the grain boundary reaction phase. It is not enough to simply reduce the number of cracks, and it is required to adopt a method of more effectively preventing the generation and propagation of cracks at the crystal grain boundaries. Therefore, regarding the generation and propagation of cracks, the inventors classified the crystal grain boundaries into “grain boundaries where the influence of the grain boundary reaction phase is large” and “grain boundaries where the influence of the grain boundary reaction phase is small”, and Investigations have been conducted based on the idea of restricting the grain boundary reaction phase existing in the "grain boundary where the influence of the phase is large". As a result, the "grain boundary of a crystal having a misorientation of 35 to 55 [deg.]" Can be taken as "a grain boundary having a large influence of the grain boundary reaction phase". Has been found to be extremely effective in stably improving the above-mentioned severe durability and bending workability. At the same time, it has been confirmed that it is also important to regulate the maximum width of the grain boundary reaction phase, that is, the maximum length in the direction perpendicular to the crystal grain boundary where the grain boundary reaction phase occurs.

具体的には、板面に平行な観察面において、方位差が35〜55°である結晶の粒界セグメントのうち、幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合が60%以下であることが、上述の厳しい耐久性や曲げ加工性の改善に極めて有効である。上記個数割合は少ないほど好ましいが、0%にすることは困難であり、通常は10〜60%の範囲にあれば高い改善効果が得られる。ここで、粒界セグメントとは、結晶粒界の1つの交点からその隣の交点までの粒界部分を意味する。結晶粒界上のある位置における粒界反応相の幅は、その位置での結晶粒界の接線に対して直角方向に測定した粒界反応相の長さに相当する。ある粒界セグメントの端部(すなわち結晶粒界の交点)に粒界反応相が存在している場合は、その端部での当該結晶粒界の接線に対して直角方向に測定した粒界反応相の長さが、当該粒界セグメントに関しての、その交点に存在する粒界反応相の幅となる。ある粒界セグメントの一端から他端まで結晶粒界上の位置を移動しながら、その粒界セグメントに生じている粒界反応相の幅を測定していったとき、粒界反応相の幅が0.5μmを超える部分が存在していれば、その粒界セグメントは「幅0.5μmを超える粒界反応相が存在する粒界セグメント」に該当する。ただし、粒界セグメントの一部が前述の観察視野に設けた矩形領域の境界線で切断されている粒界セグメントについては、その矩形領域内(境界を含む)の部分に限定して粒界反応相の幅を測定すればよい。
方位差が35〜55°である結晶の粒界セグメントのうち、幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合の具体的測定方法は前述した通りである。
Specifically, on the observation plane parallel to the plate surface, the number ratio of the number of the grain boundary segments in which the grain boundary reaction phase exceeding 0.5 μm exists among the grain boundary segments of the crystal having the misorientation of 35 to 55 °. Is 60% or less, which is extremely effective in improving the above-mentioned severe durability and bending workability. The smaller the above number ratio, the better, but it is difficult to reduce the number to 0%. Generally, a high improvement effect can be obtained in the range of 10 to 60%. Here, the grain boundary segment means a grain boundary portion from one intersection of a crystal grain boundary to an adjacent intersection. The width of the grain boundary reaction phase at a certain position on the grain boundary corresponds to the length of the grain boundary reaction phase measured in a direction perpendicular to the tangent to the grain boundary at that position. If a grain boundary reaction phase is present at the end of a given grain boundary segment (ie, at the intersection of the grain boundaries), the grain boundary reaction measured at a direction perpendicular to the tangent to the grain boundary at that end. The phase length is the width of the grain boundary reaction phase at the intersection with respect to the grain boundary segment. While moving the position on the grain boundary from one end to the other end of a certain grain boundary segment, and measuring the width of the grain boundary reaction phase generated in the grain boundary segment, the width of the grain boundary reaction phase becomes If there is a portion exceeding 0.5 μm, the grain boundary segment corresponds to “a grain boundary segment having a grain boundary reaction phase having a width of more than 0.5 μm”. However, with respect to a grain boundary segment in which a part of the grain boundary segment is cut at the boundary of the rectangular area provided in the above-described observation field, the grain boundary reaction is limited to a portion within the rectangular area (including the boundary). The phase width may be measured.
The specific method of measuring the number ratio of the grain boundary segments having a grain boundary reaction phase exceeding 0.5 μm among the grain boundary segments of the crystal having the misorientation of 35 to 55 ° is as described above.

また、板面に平行な観察面において、粒界反応相の最大幅が1.5μm以下であることも重要である。それを超えるサイズの粒界反応相がいずれかの粒界に存在すると、厳しい評価方法による耐久性や曲げ加工性を十分改善することが困難である。粒界反応相の最大幅は1.0μm以下であることがより好ましい。
粒界反応相の最大幅の具体的測定方法は前述した通りである。
It is also important that the maximum width of the grain boundary reaction phase be 1.5 μm or less on the observation plane parallel to the plate surface. If a grain boundary reaction phase having a size exceeding that size is present at any of the grain boundaries, it is difficult to sufficiently improve the durability and bending workability by a strict evaluation method. More preferably, the maximum width of the grain boundary reaction phase is 1.0 μm or less.
The specific method of measuring the maximum width of the grain boundary reaction phase is as described above.

〔平均結晶粒径〕
結晶粒の微細化は曲げ加工性や耐疲労特性に有利となる反面、耐応力緩和特性に不利となる。種々検討の結果、平均結晶粒径は3.0〜25.0μmの範囲に調整することが望ましく、5.0〜20.0μmに管理してもよい。平均結晶粒径のコントロールは主として溶体化処理によって行うことができる。ここで、平均結晶粒径は、板面(圧延面)に平行な観察面の金属組織観察において、300μm×300μm以上の視野で圧延方向に直角に線を引き100個以上の結晶粒の粒径をJIS H0501の切断法によりで測定することによって求めることができる。
(Average crystal grain size)
Finer crystal grains are advantageous for bending workability and fatigue resistance, but are disadvantageous for stress relaxation resistance. As a result of various studies, the average crystal grain size is desirably adjusted to a range of 3.0 to 25.0 μm, and may be controlled to 5.0 to 20.0 μm. The control of the average crystal grain size can be mainly performed by a solution treatment. Here, the average crystal grain size is determined by observing the metallographic structure on the observation surface parallel to the plate surface (rolled surface), by drawing a line perpendicular to the rolling direction with a visual field of 300 μm × 300 μm or more, and measuring the particle size of 100 or more crystal grains. Can be determined by the cutting method of JIS H0501.

《特性》
〔導電率〕
通電部品に使用するためには、11.0%IACS以上の導電率を有することが望ましく、12.0%IACS以上であることがさらに好ましい。上述の化学組成および金属組織によって前記導電率を満たすことができる。
"Characteristic"
〔conductivity〕
In order to be used for a current-carrying part, it is desirable to have a conductivity of 11.0% IACS or more, more preferably 12.0% IACS or more. The conductivity can be satisfied by the above-described chemical composition and metal structure.

〔強度〕
LDの0.2%耐力は800MPa以上であることが望ましく、810MPa以上であることがより好ましい。一方、過度に強度を高めると180°U字曲げ部でのクラック発生を招きやすくなり、耐久性を低下させる要因となる場合がある。LDの0.2%耐力は1000MPa以下の範囲で調整することが好ましい。970MPa以下あるいは930MPa以下の範囲に管理してもよい。LDの引張強さについては820〜980MPaの範囲であることが望ましい。
〔Strength〕
The 0.2% proof stress of the LD is desirably 800 MPa or more, and more desirably 810 MPa or more. On the other hand, if the strength is excessively increased, cracks are likely to occur at the 180 ° U-shaped bent portion, which may be a factor of reducing durability. The 0.2% proof stress of the LD is preferably adjusted within a range of 1000 MPa or less. It may be managed in a range of 970 MPa or less or 930 MPa or less. The tensile strength of the LD is desirably in the range of 820 to 980 MPa.

〔曲げ加工性〕
通電部品の小型化ニーズを考慮して、ここでは幅の狭い曲げ試験片を用いた厳しい評価方法で板材の曲げ加工性を評価する。具体的には、1mm幅の試験片を板材から採取してJIS Z2248:2014の巻付け法による180°曲げ試験を行ったとき、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値が、LD、TDいずれの方向においても1.0以下となる曲げ加工性を具備しているものが好適な対象となる。「LDの曲げ加工性」は長手方向がLDの試験片により評価される曲げ加工性であり、曲げ軸はTDである。「TDの曲げ加工性」は長手方向がTDの試験片により評価される曲げ加工性であり、曲げ軸はLDである。
[Bendability]
In consideration of the need for miniaturization of current-carrying parts, here, the bending workability of the sheet material is evaluated by a strict evaluation method using a narrow bending test piece. Specifically, when a 1 mm wide test piece is sampled from a plate material and subjected to a 180 ° bending test by the winding method of JIS Z2248: 2014, the ratio MBR between the minimum bending radius MBR and the plate thickness t at which cracking does not occur. Those having bending workability in which the value of / t is 1.0 or less in both the LD and TD directions are suitable targets. The “bending workability of LD” is bending workability evaluated in the longitudinal direction by a test piece of LD, and the bending axis is TD. The “bendability of TD” is the bendability evaluated by a TD test piece in the longitudinal direction, and the bending axis is LD.

〔耐疲労特性〕
耐疲労特性は一般に平板状試験片によって評価されるが、ここでは上述のように、180°U字曲げ加工部を有する試験片を用いて、より実装状態に近い耐久性を把握する。具体的には、例えば後述の実施例に示す方法が適用できる。
(Fatigue resistance characteristics)
Generally, the fatigue resistance is evaluated by a flat test piece. Here, as described above, a test piece having a 180 ° U-shaped bent portion is used to grasp the durability closer to the mounted state. Specifically, for example, a method described in the following embodiment can be applied.

〔耐応力緩和特性〕
耐応力緩和特性は、車載用コネクタなどの用途では特に重要となる。後述の応力緩和特性の評価方法において、長手方向がTDである試験片を200℃で1000h保持した場合の応力緩和率が5%以下であることが好ましく、4%以下であることが一層好ましい。
(Stress relaxation resistance)
Stress relaxation resistance is particularly important in applications such as automotive connectors. In the stress relaxation characteristic evaluation method described below, the stress relaxation rate when a test piece having a TD in the longitudinal direction is held at 200 ° C. for 1000 hours is preferably 5% or less, more preferably 4% or less.

《製造方法》
上述の特性を具備するCu−Ti系銅合金板材は、熱間圧延、溶体化処理、時効処理を有する工程で製造することができる。より具体的には、例えば下記の工程を例示することができる。
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→時効処理→仕上冷間圧延→低温焼鈍」
なお、上記工程中には記載していないが、溶解・鋳造後には必要に応じて均熱処理(又は熱間鍛造)が行われ、熱間圧延後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。また、用途に応じて「時効処理」の前に「中間冷間圧延」を追加してもよい。以下、各工程について説明する。
"Production method"
The Cu-Ti-based copper alloy sheet having the above-described characteristics can be manufactured by a process including hot rolling, solution treatment, and aging treatment. More specifically, for example, the following steps can be exemplified.
`` Melting / Casting → Hot rolling → Cold rolling → Solution treatment → Aging treatment → Finish cold rolling → Low temperature annealing ''
Although not described in the above steps, soaking and heat treatment (or hot forging) are performed as necessary after melting and casting, and face milling is performed as necessary after hot rolling, After the heat treatment, pickling, polishing, or further degreasing is performed as necessary. Further, "intermediate cold rolling" may be added before "aging treatment" depending on the use. Hereinafter, each step will be described.

〔溶解・鋳造〕
連続鋳造、半連続鋳造等により鋳片を製造すればよい。Tiの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting / Casting]
The slab may be manufactured by continuous casting, semi-continuous casting, or the like. In order to prevent oxidation of Ti, it is preferable to carry out in an inert gas atmosphere or a vacuum melting furnace.

〔熱間圧延〕
熱間圧延では、できるだけ高温で大きな圧延率を稼ぎ、かつ材料全体に大きなせん断力を加えて鋳造組織中の偏析相の破壊・分断を促進させること、熱間圧延最終パスをα相の固溶度線以上の温度で終えること、および最終パス終了後はできるだけ高温状態から水冷することが極めて効果的である。
熱間圧延前の加熱温度は960℃以下とする。それより高いと鋳造組織に起因して融点が低下している部分が存在すると、その部分が溶融する恐れがあり、熱間割れを招く要因となる。加熱温度範囲は930〜960℃、加熱時間は2h以上とすることが好ましい。材料表面温度が920℃以上であるうちに合計圧延率60%以上、より好ましくは65%以上の圧下を付与する。すなわち、920℃以上での合計圧延率を60%以上、より好ましくは65%以上とする。920℃以上での合計圧延率の上限については設備能力等により制限を受けるので特に規定する必要はないが、通常、95%以下の範囲で良好な結果が得られる。この温度域で大きな加工度を稼ぐことによって、鋳造組織のデンドライト樹間に生じやすいTiの濃化部分を破壊、分断し、粗大な第二相粒子に成長しやすい核源を十分に消失させる。920℃以上での合計圧延率が60%に満たないと、最終的に粗大な粒界反応相が生成するので、材料の強度、曲げ加工性、耐久性(耐疲労特性)を十分に向上させることが困難となる。920℃以上の温度域で行う熱間圧延パスのうち、最も圧下率の大きい熱間圧延パスでの圧下率(最大圧下率)を15%以上とすることがより効果的である。特に、920℃以上の温度域で行う各熱間圧延パスでの圧下率の平均値(平均圧下率)を15%以上とすることがより好ましい。
(Hot rolling)
In hot rolling, a large rolling reduction is achieved at as high a temperature as possible, and a large shear force is applied to the entire material to promote the destruction / separation of the segregated phase in the cast structure. It is extremely effective to finish the process at a temperature equal to or higher than the steepness line and to perform water cooling from the highest possible temperature after the final pass.
The heating temperature before hot rolling is 960 ° C. or less. If it is higher than that, if there is a portion where the melting point is lowered due to the cast structure, the portion may be melted, which may cause hot cracking. The heating temperature range is preferably 930 to 960 ° C., and the heating time is preferably 2 hours or more. While the surface temperature of the material is 920 ° C. or more, a reduction of 60% or more, more preferably 65% or more, is given to the total rolling reduction. That is, the total rolling ratio at 920 ° C. or more is set to 60% or more, and more preferably 65% or more. Since the upper limit of the total rolling reduction at 920 ° C. or higher is limited by the capacity of the equipment and the like, it is not necessary to particularly define the upper limit. By obtaining a large workability in this temperature range, the concentrated portion of Ti which is likely to be generated between the dendrite trees of the casting structure is broken and divided, and the nucleus source which easily grows into coarse second phase particles is sufficiently eliminated. If the total rolling reduction at 920 ° C. or higher is less than 60%, a coarse grain boundary reaction phase is finally generated, and thus the strength, bending workability, and durability (fatigue resistance properties) of the material are sufficiently improved. It becomes difficult. Of the hot rolling passes performed in a temperature range of 920 ° C. or higher, it is more effective to set the rolling reduction (maximum rolling reduction) in the hot rolling pass having the largest rolling reduction to 15% or more. In particular, it is more preferable that the average value of the rolling reduction (average rolling reduction) in each hot rolling pass performed in a temperature range of 920 ° C. or more is 15% or more.

熱間圧延最終パス温度は下記(1)式のTs(℃)以上とする。
Ts=151.5×ln[Ti]+620.5 …(1)
ここで、lnは自然対数を意味し、[Ti]の箇所には質量%で表される当該合金のTi含有量の値が代入される。
このTsはCu−Ti二元合金におけるα相の固溶度線温度(℃)を示す指標であり、上記(1)式により精度良く近似される。通常、固溶度線より低温側の固溶度線近傍の温度域では核形成は起こりにくいが、加工歪が加わった場合にはその温度域で核形成が起こりやすい。一旦、その温度域で核形成が起こってしまうと、高温であるためにその後の成長も速い。従って、粗大な析出物の存在量を減じるためには、Ts以上の温度で熱間圧延を終了することが極めて有効である。熱間圧延での合計圧延率は60%以上95%以下の範囲で設定すればよい。
なお、ある板厚t0(mm)からある板厚t1(mm)までの圧延率は、下記(4)式により求まる。後述の各工程における圧延率も同様である。
圧延率(%)=(t0−t1)/t0×100 …(4)
ある1回の圧延パスでの圧下率は、その圧延パス前の板厚をt0(mm)、その圧延パス前の板厚をt1(mm)としたときに上記(4)式により算出される圧延率(%)を意味する。
The final pass temperature of the hot rolling is Ts (° C.) or more in the following equation (1).
Ts = 151.5 × ln [Ti] +620.5 (1)
Here, ln means a natural logarithm, and the value of Ti content of the alloy expressed in mass% is substituted for [Ti].
This Ts is an index indicating the solid solubility line temperature (° C.) of the α phase in the Cu—Ti binary alloy, and is accurately approximated by the above equation (1). Normally, nucleation hardly occurs in a temperature region near the solid solubility line on a lower temperature side than the solid solubility line, but nucleation easily occurs in a temperature region when a processing strain is applied. Once nucleation occurs in that temperature range, subsequent growth is fast because of the high temperature. Therefore, in order to reduce the amount of coarse precipitates, it is extremely effective to terminate hot rolling at a temperature equal to or higher than Ts. The total rolling reduction in the hot rolling may be set in a range of 60% or more and 95% or less.
The rolling ratio from a certain plate thickness t 0 (mm) to a certain plate thickness t 1 (mm) is obtained by the following equation (4). The same applies to the rolling ratio in each step described later.
Rolling ratio (%) = (t 0 −t 1 ) / t 0 × 100 (4)
The rolling reduction in one rolling pass is calculated by the above equation (4), where the thickness before the rolling pass is t 0 (mm) and the thickness before the rolling pass is t 1 (mm). Rolling rate (%).

また、この高温域で材料全体に大きなせん断力を加えるためには、圧延ロールと材料間の摩擦力を利用して、材料表面に付与する引張応力成分を増大させることが極めて有効であることがわかった。
一般に圧延加工では、ロールと接触する表面近くでは引張応力状態、板厚中央に近い部分では圧縮応力状態となり、材料の表層部と内部とで異なる方向の応力が負荷される。このうち引張応力は主としてロールと材料の摩擦力によって生じる。この摩擦力はロール寿命低下などの要因となるため、通常の熱間圧延操業では潤滑液を使用して摩擦力の低減を図っている。熱間圧延用の潤滑液としては、一般に冷却能力と難燃性の点から水に水溶性潤滑成分(ソリュブルオイル)を数%加えたもの使用される。
最終的な板材製品において、粗大な粒界反応相の存在が厳しく制限された本発明に従う組織状態を実現するためには、この摩擦力を積極的に利用し、材料の表面近くに生じる引張応力を増大させることが極めて有効である。引張応力の増大によって表層部と内部の応力方向の差が大きくなり、材料全体に大きなせん断力を加わるため、鋳造組織中の偏析相の破壊・分断が促進される。種々検討の結果、水にソリュブルオイル等の潤滑成分を添加して水分含有量が97.0質量%以上となるように潤滑成分の配合量を制限した潤滑液を使用することが、本発明に従う組織状態の板材製品を得るうえで非常に効果的である。水分含有量が98.0質量%以上の潤滑液を使用することがより好ましく、99.0質量%以上のものが一層好ましい。潤滑液は水分含有量100%(すなわち水)とすることもできるし、例えば水分含有量99.8質量%以下の範囲に管理することもできる。潤滑液中の水分含有量は加熱乾燥式水分計によって測定できる。
In order to apply a large shearing force to the entire material in this high temperature range, it is extremely effective to increase the tensile stress component applied to the material surface by using the frictional force between the rolling roll and the material. all right.
Generally, in the rolling process, a tensile stress state occurs near the surface in contact with the roll, and a compressive stress state occurs near the center of the sheet thickness, and stresses in different directions are applied between the surface layer portion and the inside of the material. The tensile stress is mainly generated by the frictional force between the roll and the material. Since this frictional force causes a reduction in the life of the roll, the lubricating liquid is used in a normal hot rolling operation to reduce the frictional force. As the lubricating liquid for hot rolling, a water-soluble lubricating component (soluble oil) added to water by a few percent is generally used in terms of cooling ability and flame retardancy.
In order to realize the microstructure according to the present invention in which the presence of the coarse grain boundary reaction phase is severely restricted in the final sheet material, the frictional force is actively utilized to make the tensile stress generated near the surface of the material. Is very effective. Due to the increase in tensile stress, the difference in stress direction between the surface layer and the inside increases, and a large shearing force is applied to the entire material. This promotes destruction / separation of the segregated phase in the cast structure. As a result of various studies, according to the present invention, the use of a lubricating liquid in which the amount of a lubricating component is limited by adding a lubricating component such as soluble oil to water so that the water content is 97.0% by mass or more is used. It is very effective in obtaining a plate product in a textured state. It is more preferable to use a lubricating liquid having a water content of 98.0% by mass or more, more preferably 99.0% by mass or more. The lubricating liquid may have a water content of 100% (that is, water), or may be controlled to have a water content of, for example, 99.8% by mass or less. The water content in the lubricating liquid can be measured by a heat-drying moisture meter.

熱間圧延最終パス終了後の冷却過程でも、第二相の生成をできるだけ防止する必要がある。熱間圧延最終パス終了後の冷却過程では、加工歪の導入を伴わないので、固溶度線温度近傍での第二相の生成はほとんど起こらないと考えてよい。しかし、固溶度線からの温度差が大きくなると析出が活発に起こるようになる。種々検討の結果、Ts−100℃で表される温度を下回ると第二相の生成が問題となる場合がある。従って、熱間圧延最終パス終了後は、材料表面温度がTs−100℃で表される温度以上の高温であるときに水冷を開始する。水冷方法は、熱間圧延材を搬送するテーブル上で材料表面に十分な量の冷却水を接触させる方法や、巻き取ったコイルを水槽中に浸漬させる方法などが採用できる。それらの水冷手法によって、水冷開始温度から200℃までの平均冷却速度を20℃/sec以上とすることができ、50℃/sec以上に管理することもできる。水冷開始温度はTs−50℃で表される温度以上の高温とすることがより好ましい。   In the cooling process after the end of the final hot rolling pass, it is necessary to prevent the formation of the second phase as much as possible. In the cooling process after the end of the final hot rolling pass, since no work strain is introduced, it can be considered that the formation of the second phase near the solid solubility line temperature hardly occurs. However, when the temperature difference from the solid solubility line becomes large, precipitation actively occurs. As a result of various studies, if the temperature is lower than the temperature expressed by Ts-100 ° C., the formation of the second phase may become a problem. Therefore, after the end of the final hot rolling pass, water cooling is started when the material surface temperature is higher than the temperature represented by Ts-100 ° C. As a water cooling method, a method of bringing a sufficient amount of cooling water into contact with the surface of a material on a table for transporting a hot-rolled material, a method of immersing a wound coil in a water tank, and the like can be adopted. With these water cooling methods, the average cooling rate from the water cooling start temperature to 200 ° C. can be set to 20 ° C./sec or more, and can be controlled to 50 ° C./sec or more. The water cooling start temperature is more preferably a high temperature equal to or higher than the temperature represented by Ts-50 ° C.

〔冷間圧延〕
最終製品の板厚を考慮して、溶体化処理前の段階で適宜冷間圧延を実施することができる。中間焼鈍を挟んだ複数回の冷間圧延を実施してもよい。溶体化処理に供する板材の冷間圧延率は、90%以上とすることが効果的である。
(Cold rolling)
In consideration of the thickness of the final product, cold rolling can be appropriately performed at a stage before the solution treatment. A plurality of cold rollings with intermediate annealing may be performed. It is effective that the cold rolling reduction of the sheet material to be subjected to the solution treatment is 90% or more.

〔溶体化処理〕
溶体化処理の加熱保持温度は750〜900℃の範囲とする。この温度域においてα相を十分に固溶させることができる。900℃を超えると結晶粒が粗大化しやすい。750℃未満ではα相の固溶が不十分となりやすい。750〜900℃での保持時間は5sec〜5minの範囲で設定すればよい。溶体化処理の保持温度、保持時間によって最終製品の平均結晶粒径を調整することができる。溶体化処理の冷却過程では、550℃から300℃までの平均冷却速度が100℃/sec以上となるように急冷することが望ましい。
(Solution treatment)
The heat holding temperature of the solution treatment is in the range of 750 to 900 ° C. In this temperature range, the α phase can be sufficiently dissolved. If it exceeds 900 ° C., the crystal grains tend to be coarse. If the temperature is lower than 750 ° C., the solid solution of the α phase tends to be insufficient. The holding time at 750 to 900 ° C. may be set in the range of 5 sec to 5 min. The average crystal grain size of the final product can be adjusted by the holding temperature and holding time of the solution treatment. In the cooling process of the solution treatment, it is desirable to perform rapid cooling so that the average cooling rate from 550 ° C to 300 ° C is 100 ° C / sec or more.

〔時効処理〕
時効処理は400〜700℃の範囲に材料を加熱して行う。Cu−Ti系銅合金では、この温度範囲で変調構造(スピノーダル構造)の形成による顕著な強度上昇作用が得られる。しかし、この範囲は同時に粒界反応相が形成されやすい温度域と重なる。そのため、従来Cu−Ti系の高強度銅合金において粒界反応相の形成を抑制することは難しかった。発明者らは詳細な検討の結果、時効処理に供するCu−Ti系銅合金材料として、上述の熱間圧延工程により粗大な第二相粒子へと成長しやすい核源を十分に消失させた組織状態としておいた溶体化処理材を用いた場合、最高到達材料温度TMAX(℃)を400〜700℃の範囲内とし、400℃以上TMAX以下の温度域での保持時間tA(min)と下記(2)式で定義されるX値の関係が下記(3)式を満たす条件で時効処理を施すことによって、粒界反応相の成長を顕著に抑制させながら0.2%耐力800MPa以上の高強度化が可能となることを見いだした。最高到達材料温度TMAX(℃)は420〜500℃の範囲に管理してもよい。
X=exp((694−TMAX)/28) …(2)
0.20≦tA/X≦1.0 …(3)
粒界反応相の析出が進行しにくい組織状態となっているので、比較的高温・長時間の時効処理が可能となるが、最高到達材料温度TMAXに応じて、時効処理時間を厳しく制限する必要がある。
(Aging treatment)
The aging treatment is performed by heating the material to a range of 400 to 700 ° C. In the Cu-Ti-based copper alloy, a remarkable strength increasing effect by the formation of a modulated structure (spinodal structure) can be obtained in this temperature range. However, this range overlaps with the temperature range where the grain boundary reaction phase is likely to be formed at the same time. For this reason, it has been difficult to suppress the formation of a grain boundary reaction phase in a conventional Cu-Ti-based high-strength copper alloy. As a result of detailed studies, the inventors have found that, as a Cu-Ti-based copper alloy material to be subjected to aging treatment, a structure in which a nucleus source that easily grows into coarse second-phase particles by the above-described hot rolling step has sufficiently disappeared. When the solution-treated material in the state is used, the maximum attained material temperature T MAX (° C.) is set in the range of 400 to 700 ° C., and the holding time t A (min) in the temperature range of 400 ° C. or more and T MAX or less. And the X value defined by the following equation (2) are subjected to aging treatment under the conditions satisfying the following equation (3), so that the growth of the grain boundary reaction phase is remarkably suppressed, and the 0.2% proof stress is 800 MPa or more. Has been found to be able to increase the strength of the steel. The highest attained material temperature T MAX (° C.) may be controlled in the range of 420 to 500 ° C.
X = exp ((694−T MAX ) / 28) (2)
0.20 ≦ t A /X≦1.0 (3)
Since precipitation of grain boundary reaction phase is in the hard tissue condition progresses, a relatively high temperature for a long time aging treatment but it is possible, depending on the ultimate maximum material temperature T MAX, severely limits the aging time There is a need.

最高到達材料温度TMAXが700℃を上回る場合や、加熱保持時間tAが(3)式中のtA/X≦1.0を外れて長時間となる場合は、粒界反応相が過剰に成長しやすく、粒界反応相の析出形態が上述所望の状態に適正化された金属組織が得られない。その場合は耐久性や180°曲げ加工性の改善が不十分となる。最高到達材料温度TMAXが400℃を下回る場合や、加熱保持時間tAが(3)式中の0.20≦tA/Xを外れて短時間となる場合は、高強度化が不十分となる。ここで、加熱保持時間tA(min)は、材料温度が400℃以上TMAX(℃)以下にある時間を意味する。なお、従来一般的なCu−Ti系銅合金の熱間加工方法では、粗大な第二相粒子へと成長しやすい核源が十分に消失されていないので、そのような材料に本発明で規定する上述の条件での時効処理を適用した場合には、比較的短時間の時効処理時間にて高強度化は可能であっても、本発明で意図する耐久性や180°曲げ加工性の改善はできない。
最高到達材料温度TMAXは420〜550℃の範囲とすることがより好ましい。また、(3)式中のtA/X値については、上限に関してはtA/X≦0.9であることがより好ましく、下限に関しては0.4≦tA/Xであることがより好ましい。
時効処理中の表面酸化を極力抑制する場合には、水素、窒素またはアルゴン雰囲気を使うことができる。
If the maximum attained material temperature T MAX exceeds 700 ° C., or if the heating holding time t A is longer than t A /X≦1.0 in the equation (3), the grain boundary reaction phase is excessive. Therefore, a metal structure in which the precipitation form of the grain boundary reaction phase is optimized to the above-mentioned desired state cannot be obtained. In such a case, the durability and the 180 ° bending workability are not sufficiently improved. When the maximum attained material temperature T MAX is lower than 400 ° C. or when the heating holding time t A is short of 0.20 ≦ t A / X in the equation (3), the strength is not sufficiently increased. Becomes Here, the heating holding time t A (min) means a time when the material temperature is 400 ° C. or more and T MAX (° C.) or less. In the conventional general hot working method of Cu-Ti based copper alloy, a nucleus source that easily grows into coarse second phase particles is not sufficiently eliminated, and therefore, such a material is specified in the present invention. When the aging treatment under the above-mentioned conditions is applied, even if it is possible to increase the strength in a relatively short aging treatment time, the durability and the 180 ° bending workability intended in the present invention are improved. Can not.
More preferably, the highest attained material temperature T MAX is in the range of 420 to 550 ° C. Further, as for the t A / X value in the expression (3), it is more preferable that the upper limit is t A /X≦0.9, and that the lower limit is 0.4 ≦ t A / X. preferable.
In order to minimize surface oxidation during the aging treatment, a hydrogen, nitrogen or argon atmosphere can be used.

〔仕上冷間圧延〕
時効処理後には、板厚調整や強度レベル調整などを目的として、必要に応じて仕上冷間圧延を行うことができる。仕上冷間圧延率は、例えば5〜15%の範囲で調整すればよい。
(Finish cold rolling)
After the aging treatment, finish cold rolling can be performed, if necessary, for the purpose of adjusting the thickness or adjusting the strength level. The finish cold rolling rate may be adjusted, for example, in the range of 5 to 15%.

〔低温焼鈍〕
仕上冷間圧延後には、板材の残留応力の低減や曲げ加工性の向上、空孔やすべり面上の転位の低減による耐応力緩和特性向上を目的として、低温焼鈍を施すことができる。加熱温度150〜430℃、加熱時間5〜3600secの範囲で条件設定すればよい。仕上冷間圧延を省略した場合は、通常、この低温焼鈍も省略される。
(Low temperature annealing)
After the finish cold rolling, low-temperature annealing can be performed for the purpose of reducing the residual stress of the sheet material, improving the bending workability, and improving the stress relaxation resistance by reducing the dislocations on the holes and slip surfaces. The conditions may be set in the range of a heating temperature of 150 to 430 ° C. and a heating time of 5 to 3600 sec. When the finish cold rolling is omitted, the low-temperature annealing is usually also omitted.

表1に示す銅合金を溶製し、縦型半連続鋳造機を用いて鋳造した。得られた鋳片を表2に示す種々の条件で熱間圧延した。市販のソリュブルオイルを水に添加して潤滑液を作製した。潤滑液の水分含有量は加熱乾燥式水分計(エー・アンド・デイ社製ML−50)を用いて測定した。一部の実施例(No.6)では潤滑液として水を使用した。鋳片の加熱時間は4hとした。熱間圧延後の水冷は、得られたコイルを水槽に浸漬する方法で行った。このときの水冷開始温度から200℃までの平均冷却速度は50℃/sec以上であった。鋳片からのトータルの熱間圧延率は約90%である。920℃以上における各圧延パスでの圧下率の平均値(920℃以上での平均圧下率)は、本発明例においていずれも15%以上であった。熱間圧延後、表層の酸化層を機械研磨により板の表裏それぞれ約0.5mmを除去(面削)し、厚さ10mmの圧延板を得た。次いで、圧延率95〜98%で冷間圧延を行った後、表3に示す条件で溶体化処理を施した。溶体化処理の加熱保持後は水冷を行い、550℃から300℃までの平均冷却速度を100℃/sec以上とした。その後、表3に記載の条件で仕上冷間圧延および低温焼鈍を行って最終板厚0.20mmの供試材を得た。   Copper alloys shown in Table 1 were melted and cast using a vertical semi-continuous casting machine. The obtained slab was hot-rolled under various conditions shown in Table 2. A lubricating liquid was prepared by adding commercially available soluble oil to water. The moisture content of the lubricating fluid was measured using a heat-drying moisture meter (ML-50, manufactured by A & D). In some examples (No. 6), water was used as the lubricating liquid. The heating time of the slab was 4 hours. Water cooling after hot rolling was performed by immersing the obtained coil in a water tank. At this time, the average cooling rate from the water cooling start temperature to 200 ° C. was 50 ° C./sec or more. The total hot rolling reduction from the slab is about 90%. The average value of the rolling reduction in each rolling pass at 920 ° C. or higher (average rolling reduction at 920 ° C. or higher) was 15% or more in each of the examples of the present invention. After hot rolling, the surface oxide layer was mechanically polished to remove about 0.5 mm on both sides of the plate (face milling) to obtain a rolled plate having a thickness of 10 mm. Next, after performing cold rolling at a rolling reduction of 95 to 98%, a solution treatment was performed under the conditions shown in Table 3. After the heating and holding in the solution treatment, water cooling was performed, and the average cooling rate from 550 ° C to 300 ° C was set to 100 ° C / sec or more. Thereafter, finish cold rolling and low-temperature annealing were performed under the conditions shown in Table 3 to obtain a test material having a final plate thickness of 0.20 mm.

各供試材について、以下の項目を調査した。
〔平均結晶粒径〕
供試材の板面(圧延面)を研磨したのちエッチングし、その面を光学顕微鏡で観察し、300μm×300μmの視野において100個以上の結晶粒の粒径をJIS H0501の切断法により上述の方法で測定した。
The following items were investigated for each test material.
(Average crystal grain size)
The plate surface (rolled surface) of the test material is polished and etched, and the surface is observed with an optical microscope. The grain size of 100 or more crystal grains is determined by a cutting method according to JIS H0501 in a 300 μm × 300 μm visual field. Measured by the method.

〔粒界反応相の析出形態〕
供試材の板面を番手1500(JIS R6010:2000に規定される粒度P1500)の耐水研磨紙で研磨したのち、表面に研磨ひずみを入れないために振動研磨法により仕上げ研磨を行って観察面を得た。日本電子社製のFESEM(電界放出形走査電子顕微鏡)を使用して、前述の「方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合の特定方法」に記載した方法に従いSEMおよびEBSP法を利用して200μm×200μm(40000μm2)の矩形領域を有する無作為に選択した12視野についての観察を行い、上記の粒界セグメントの個数割合を求めた。また、上記12視野の観察に際して、上述の「粒界反応相の最大幅の特定方法」に従いSEM像より粒界反応相の最大幅を測定し、その最大幅の測定値に基づいて1.5μmを超える粒界反応相の有無を判定した。なお、SEM像において粒界反応相は結晶粒界から粒内方向に成長している層状組織として観察され、幅0.5μmを超える粒界反応相を明確に確認することができる。
(Precipitation form of grain boundary reaction phase)
After the plate surface of the test material is polished with a water-resistant abrasive paper having a count of 1500 (particle size P1500 specified in JIS R6010: 2000), the surface is polished by a vibration polishing method in order to prevent a polishing strain from being applied to the surface. I got Using FESEM (Field Emission Scanning Electron Microscope) manufactured by JEOL Co., Ltd., there is a grain boundary reaction phase having a width of more than 0.5 μm among the grain boundary segments of the crystal having a misorientation of 35 to 55 °. According to the method described in “Specifying the Number Ratio of Grain Boundary Segments to be Performed”, observation was performed on 12 randomly selected visual fields having a rectangular area of 200 μm × 200 μm (40000 μm 2 ) using the SEM and the EBSP method. Of the grain boundary segments was determined. When observing the 12 visual fields, the maximum width of the grain boundary reaction phase was measured from the SEM image according to the above-mentioned “method of specifying the maximum width of the grain boundary reaction phase”, and 1.5 μm was measured based on the measured value of the maximum width. Was determined. In the SEM image, the grain boundary reaction phase is observed as a layered structure that grows from the crystal grain boundary to the inside of the grain, and the grain boundary reaction phase having a width of more than 0.5 μm can be clearly confirmed.

〔導電率〕
JIS H0505に従って各供試材の導電率を測定した。
〔引張強さ、0.2%耐力〕
各供試材からLDの引張試験片(JIS 5号)を採取し、n=3でJIS Z2241の引張試験行い、n=3の平均値によって引張強さおよび0.2%耐力を定めた。
〔conductivity〕
The conductivity of each test material was measured according to JIS H0505.
[Tensile strength, 0.2% proof stress]
An LD tensile test piece (JIS No. 5) was collected from each test material, and a tensile test of JIS Z2241 was performed at n = 3, and the tensile strength and 0.2% proof stress were determined by the average value of n = 3.

〔曲げ加工性〕
供試材の板材から長手方向がLDの曲げ試験片およびTDの曲げ試験片(いずれも幅1mm)を採取し、JIS Z2248:2014の巻付け法に従い180°曲げ試験を行った。曲げ部の内側の曲げ半径Rは板厚tと同じ(R/t=1)とした。試験後の試験片について曲げ軸に垂直な断面を光学顕微鏡にて100倍の倍率で観察することにより、180°曲げ加工部の外側表面における割れ発生の有無を調べた。この試験で割れの発生が認められなかった試験片はMBR/tの値が1.0以下であると判定される。各供試材のLD、TDとも試験数n=3で実施し、n=3のうち1つでも割れが発生した場合を×評価(割れあり)、1つも割れが発生しなかった場合を○評価(割れなし)とした。
[Bendability]
A bending test piece having a LD in the longitudinal direction and a bending test piece having a TD (each having a width of 1 mm) were sampled from the plate material of the test material, and subjected to a 180 ° bending test in accordance with the winding method of JIS Z2248: 2014. The bending radius R inside the bent portion was the same as the plate thickness t (R / t = 1). The cross section perpendicular to the bending axis of the test piece after the test was observed with an optical microscope at a magnification of 100 times to check for the occurrence of cracks on the outer surface of the 180 ° bent portion. A test piece in which cracking was not observed in this test is determined to have an MBR / t value of 1.0 or less. Both the LD and TD of each test material were tested with the number of tests n = 3, and x was evaluated when at least one of n = 3 was cracked (with cracks), and O was determined when no crack was generated. It was evaluated (no crack).

〔耐久回数〕
供試材をプレス加工して実際の通電部品に近い形状の試験片を作製して疲労試験に供した。その試験片の形状を図2に示す。この試験片は、板厚0.20mmの板からTDを長手方向とする幅1.4mmの材料を打抜き、これに180°U字曲げを含む曲げ加工を施したものに相当する。図2中の矢印で示す位置に、一定の押込み量にて繰り返し荷重Pを負荷した。押込み量は、初期荷重20Nを付与したときの変位量に設定した。この押込み量にて繰り返し荷重を付与し、1000回毎に荷重を測定し、初期荷重の50%以下となった回数を耐久回数とした。初期荷重の50%を基準とする理由は、SEMにて試験片表面を観察したとき、初期荷重の50%以下となった試験片にクラックが観測されるからである。試験数n=5とし、それらの中で最も悪い耐久回数を当該板材の成績値として採用した。この試験において耐久回数が10000回以上となるものは、従来一般的なCu−Ti系銅合金と比べ、電子機器に実装された通電部品としての繰り返しの抜き挿しやスイッチング動作について、耐久性が顕著に改善されていると判断できる。
[Endurance times]
The test material was pressed to prepare a test piece having a shape close to an actual energized component, and was subjected to a fatigue test. FIG. 2 shows the shape of the test piece. This test piece corresponds to a material obtained by punching a material having a width of 1.4 mm with TD as a longitudinal direction from a plate having a thickness of 0.20 mm and performing a bending process including a 180 ° U-shaped bending. A load P was repeatedly applied to a position indicated by an arrow in FIG. The pushing amount was set to a displacement amount when an initial load of 20 N was applied. A load was repeatedly applied at the indentation amount, and the load was measured every 1000 times. The number of times the load became 50% or less of the initial load was defined as the number of times of durability. The reason that 50% of the initial load is used as a reference is that when the surface of the test piece is observed by SEM, cracks are observed in the test piece that has become 50% or less of the initial load. The number of tests was set to n = 5, and the worst durability count among them was adopted as the performance value of the plate. In this test, those having a durability of 10,000 times or more have remarkable durability in terms of repeated insertion / removal and switching operation as current-carrying parts mounted on electronic devices, compared to conventional general Cu-Ti based copper alloys. It can be judged that it has been improved.

〔応力緩和率〕
各供試材から長手方向がTDの曲げ試験片(幅10mm)を採取し、試験片の長手方向における中央部の表面応力が0.2%耐力の80%の大きさとなるようにアーチ曲げした状態で固定した。上記表面応力は次式により定まる。
表面応力(MPa)=6Etδ/L0 2
ただし、
E:弾性係数(MPa)
t:試料の厚さ(mm)
δ:試料のたわみ高さ(mm)
この状態の試験片を大気中200℃の温度で1000時間保持した後の曲げ癖から次式を用いて応力緩和率を算出した。
応力緩和率(%)=(L1−L2)/(L1−L0)×100
ただし、
0:治具の長さ、すなわち試験中に固定されている試料端間の水平距離(mm)
1:試験開始時の試料長さ(mm)
2:試験後の試料端間の水平距離(mm)
この応力緩和率が5.0%以下のものは、車載用コネクタとして高い耐久性を有すると評価される。
これらの結果を表4、表5に示す。
(Stress relaxation rate)
A bending test piece (width: 10 mm) having a longitudinal direction of TD was sampled from each test material, and was arch-bent so that the surface stress at the center in the longitudinal direction of the test piece was 80% of 0.2% proof stress. Fixed in state. The surface stress is determined by the following equation.
Surface stress (MPa) = 6Etδ / L 0 2
However,
E: Modulus of elasticity (MPa)
t: thickness of sample (mm)
δ: Deflection height of sample (mm)
The stress relaxation rate was calculated from the bending habit after holding the test piece in this state at a temperature of 200 ° C. in the atmosphere for 1000 hours using the following equation.
Stress relaxation rate (%) = (L 1 −L 2 ) / (L 1 −L 0 ) × 100
However,
L 0 : length of jig, that is, horizontal distance (mm) between sample ends fixed during the test
L 1 : Sample length at the start of test (mm)
L 2 : Horizontal distance between sample edges after test (mm)
A connector having a stress relaxation rate of 5.0% or less is evaluated as having high durability as a connector for a vehicle.
Tables 4 and 5 show these results.

本発明に従う銅合金板材は、幅1.5μmを超えるサイズの粒界反応相が観察されず、かつ方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合が60%以下であった。これらはいずれも、1mm幅でR/t=1となる180°曲げにおいてLD、TDとも割れが発生しない優れた曲げ加工性を有するとともに、上記の疲労試験による耐久回数が10000回以上という優れた耐久性を呈した。導電率、0.2%耐力、曲げ加工性、応力緩和率についても良好であった。   In the copper alloy sheet according to the present invention, no grain boundary reaction phase having a width exceeding 1.5 μm is observed, and among grain boundary segments of a crystal having a misorientation of 35 to 55 °, a grain boundary exceeding 0.5 μm in width is used. The number ratio of the grain boundary segments in which the reaction phase was present was 60% or less. All of these have excellent bending workability in which cracks do not occur in both LD and TD in 180 ° bending where 1 mm width and R / t = 1, and the number of durability in the above fatigue test is 10,000 or more. It exhibited durability. The electrical conductivity, 0.2% proof stress, bending workability, and stress relaxation rate were also good.

これに対し、比較例No.21〜23は時効処理時間tAが(3)式の規定を外れて過大であったので、方位差が35〜55°である結晶の粒界セグメントに占める幅0.5μmを超える粒界反応相が存在するものの割合が高くなり、曲げ加工性および耐久性の改善が不十分であった。No.24は熱間圧延で920℃以上での圧下を行っておらず、また固溶度線温度を表すTsより低温で熱間圧延最終パスを終えたことにより粗大な粒界反応相が生成し、十分な曲げ加工性および耐久性が得られなかった。No.25は時効温度が低すぎ、またNo.28はTi含有量が少なすぎたので、これらはいずれもTiの変調構造による高強度化が不十分であり、強度不足に起因して耐久性が低かった。No.26は時効温度が高すぎたので、幅1.5μmを超える粒界反応相が生成し、粒界反応相が生成した方位差35〜55°の粒界の割合も高く、曲げ加工性および耐久性が低かった。No.27は熱間圧延で920℃以上の温度域での圧延率が不足したので幅1.5μmを超える粒界反応相が生成し、曲げ加工性および耐久性に劣った。No.29はTi含有量が多すぎたので熱間圧延で割れが生じ、その後の工程を中止した。No.30はFe含有量が多すぎ、No.32はCo含有量が多すぎ、No.34はNi含有量が多すぎたので、これらはいずれも幅1.5μmを超える粒界反応相が生成し、曲げ加工性および耐久性に劣った。No.31は熱間圧延での鋳片加熱温度が高すぎたので局部的な溶融に起因して熱間圧延で割れが生じ、その後の工程を中止した。No.33は熱間圧延で920℃以上の温度域での圧延率が不足したので幅1.5μmを超える粒界反応相が生成し、時効処理時間tAも(3)式の規定を外れて過大であったため、粒界反応相が生成した方位差35〜55°の粒界の割合が高く、曲げ加工性および耐久性が大きく劣った。No.35は溶体化処理温度が高すぎたので結晶粒が粗大化し、その結果、十分な曲げ加工性および耐久性が得られなかった。No.36は熱間圧延の最終パス温度がTsより低かったので最終的に幅1.5μmを超える粒界反応相が生成し、曲げ加工性および耐久性に劣った。No.37は熱間圧延時の潤滑液として潤滑成分(油分)の多いものを使用したため鋳造組織中の濃縮Tiの破壊、分断が不十分となり、最終的に幅1.5μmを超える粒界反応相が生成し、曲げ加工性および耐久性に劣った。No.38は時効処理時間tAが(3)式の規定を外れて短かったので、強度が不足し、またそれに伴って耐久性も低かった。 On the other hand, in Comparative Examples Nos. 21 to 23, since the aging treatment time t A was outside the range of the expression (3) and was excessive, the width of the crystal having the misorientation of 35 to 55 ° occupying the grain boundary segment. The proportion of those having a grain boundary reaction phase exceeding 0.5 μm was high, and the improvement in bending workability and durability was insufficient. In No. 24, the rolling was not performed at 920 ° C. or higher by hot rolling, and a coarse grain boundary reaction phase was formed by completing the final hot rolling pass at a temperature lower than Ts, which indicates the solid solubility line temperature. However, sufficient bending workability and durability could not be obtained. In No. 25, the aging temperature was too low, and in No. 28, the Ti content was too small. Was low. In No. 26, the aging temperature was too high, so that a grain boundary reaction phase having a width of more than 1.5 μm was formed, and the ratio of the grain boundary having a misorientation of 35 to 55 ° generated by the grain boundary reaction phase was also high. And the durability was low. In No. 27, the rolling reduction in the temperature range of 920 ° C. or more was insufficient in hot rolling, so that a grain boundary reaction phase having a width of more than 1.5 μm was formed, and the bending workability and durability were poor. In No. 29, since the Ti content was too large, cracks were generated by hot rolling, and the subsequent steps were stopped. No. 30 had an excessively high Fe content, No. 32 had an excessively high Co content, and No. 34 had an excessively high Ni content. It formed and was inferior in bending workability and durability. In No. 31, since the slab heating temperature in the hot rolling was too high, cracks occurred in the hot rolling due to local melting, and the subsequent steps were stopped. In No. 33, the rolling reduction in the temperature range of 920 ° C. or more was insufficient in hot rolling, so that a grain boundary reaction phase exceeding 1.5 μm in width was formed, and the aging treatment time t A also deviated from the expression (3). Therefore, the ratio of grain boundaries having a misorientation of 35 to 55 ° produced by the grain boundary reaction phase was high, and the bending workability and durability were significantly inferior. In No. 35, since the solution treatment temperature was too high, the crystal grains became coarse, and as a result, sufficient bending workability and durability could not be obtained. In No. 36, since the final pass temperature of hot rolling was lower than Ts, a grain boundary reaction phase finally exceeding 1.5 μm in width was generated, and the bending workability and durability were poor. In No. 37, a lubricating liquid having a large amount of lubricating components (oil) was used as a lubricating liquid at the time of hot rolling, so that the destruction and fragmentation of concentrated Ti in the cast structure became insufficient, and finally a grain boundary reaction exceeding 1.5 μm in width. A phase was formed, resulting in poor bending workability and durability. In No. 38, the aging treatment time t A was shorter than the expression (3) and was short, so that the strength was insufficient and the durability was low accordingly.

図3に、本発明例No.1と比較例No.21について、耐久回数と荷重低下率の関係を例示する。本発明に従えば耐久性が大幅に向上することがわかる。   FIG. 3 exemplifies the relationship between the number of endurance times and the load reduction rate for the inventive example No. 1 and the comparative example No. 21. It can be seen that the durability is greatly improved according to the present invention.

Claims (7)

質量%で、Ti:2.0〜4.0%、Ni:0〜1.5%、Co:0〜1.0%、Fe:0〜0.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、B:0〜0.05%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、B、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有する銅合金板材であって、板面に平行な観察面において、平均結晶粒径が3.0〜25.0μm、粒界反応相の最大幅が1.5μm以下であり、かつ結晶粒界の1つの交点からその隣の交点までの粒界部分を1つの「粒界セグメント」と定義するとき、方位差が35〜55°である結晶の粒界セグメントのうち幅0.5μmを超える粒界反応相が存在する粒界セグメントの個数割合が10%以上60%以下である金属組織を有し、圧延方向の0.2%耐力が800MPa以上、導電率が11.0%IACS以上である銅合金板材。 In mass%, Ti: 2.0 to 4.0%, Ni: 0 to 1.5%, Co: 0 to 1.0%, Fe: 0 to 0.5%, Sn: 0 to 1.2% , Zn: 0 to 2.0%, Mg: 0 to 1.0%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Si: 0 to 1.0%, P: 0 to 0% 0.1%, B: 0 to 0.05%, Cr: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, and among the above elements, Sn and Zn , Mg, Zr, Al, Si, P, B, Cr, Mn, and V, the total content of which is 3.0% or less, and a copper alloy sheet having a composition consisting of a balance of Cu and unavoidable impurities, On the observation plane parallel to the plane, the average crystal grain size is 3.0 to 25.0 μm, the maximum width of the grain boundary reaction phase is 1.5 μm or less, and from one intersection point of the crystal grain boundary to the next intersection point. When the grain boundary part of is defined as one "grain boundary segment" Has a metal structure misorientation is less than 60% the number ratio of the grain boundary segments 10% or more of the grain boundary reaction phases are present in excess of the width 0.5μm of grain boundary segments of the crystal is 35 to 55 °, A copper alloy sheet having a 0.2% proof stress of 800 MPa or more in the rolling direction and a conductivity of 11.0% IACS or more. 長手方向が圧延方向(LD)および圧延直角方向(TD)である1mm幅の曲げ試験片をそれぞれ採取してJIS Z2248:2014の巻付け法に従い180°曲げ試験を行ったとき、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tの値がLD、TDとも1.0以下となる曲げ加工性を有する請求項1に記載の銅合金板材。   When a bending test piece having a width of 1 mm whose longitudinal direction is the rolling direction (LD) and the perpendicular direction to rolling (TD) is sampled and subjected to a 180 ° bending test according to the winding method of JIS Z2248: 2014, no crack occurs. The copper alloy sheet according to claim 1, wherein the copper alloy sheet has bending workability in which a value of a ratio MBR / t between the minimum bending radius MBR and the sheet thickness t is 1.0 or less for both LD and TD. 質量%で、Ti:2.0〜4.0%、Ni:0〜1.5%、Co:0〜1.0%、Fe:0〜0.5%、Sn:0〜1.2%、Zn:0〜2.0%、Mg:0〜1.0%、Zr:0〜1.0%、Al:0〜1.0%、Si:0〜1.0%、P:0〜0.1%、B:0〜0.05%、Cr:0〜1.0%、Mn:0〜1.0%、V:0〜1.0%であり、前記元素のうちSn、Zn、Mg、Zr、Al、Si、P、B、Cr、MnおよびVの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成の銅合金板材を、熱間圧延、冷間圧延、溶体化処理、時効処理の工程を上記の順に有する工程にて製造するに際し、
熱間圧延工程において、加熱温度を960℃以下とし、920℃以上で行う圧延パスで水分含有量97.0質量%以上の潤滑液を使用し、920℃以上での合計圧延率を60%以上とし、熱間圧延最終パス温度を下記(1)式のTs(℃)以上とし、その最終パス後にTs−100℃で表される温度以上の高温から水冷を開始し、
溶体化処理工程において、加熱保持温度を750〜900℃の範囲とし、
時効処理工程において、最高到達材料温度TMAX(℃)を400〜700℃の範囲内とし、400℃以上TMAX以下の温度域での保持時間tA(min)と下記(2)式で定義されるX値の関係が下記(3)式を満たす条件で時効処理を施す、
請求項1または2に記載の銅合金板材の製造方法。
Ts=151.5×ln[Ti]+620.5 …(1)
ここで、lnは自然対数、[Ti]は質量%で表される当該合金のTi含有量である。
X=exp((694−TMAX)/28) …(2)
0.20≦tA/X≦1.0 …(3)
In mass%, Ti: 2.0 to 4.0%, Ni: 0 to 1.5%, Co: 0 to 1.0%, Fe: 0 to 0.5%, Sn: 0 to 1.2% , Zn: 0 to 2.0%, Mg: 0 to 1.0%, Zr: 0 to 1.0%, Al: 0 to 1.0%, Si: 0 to 1.0%, P: 0 to 0% 0.1%, B: 0 to 0.05%, Cr: 0 to 1.0%, Mn: 0 to 1.0%, V: 0 to 1.0%, and among the above elements, Sn and Zn , Mg, Zr, Al, Si, P, B, Cr, Mn and V have a total content of 3.0% or less, and a copper alloy sheet having a composition consisting of a balance of Cu and unavoidable impurities is hot-rolled. Cold rolling, solution treatment, when producing in the process having the steps of aging treatment in the above order,
In the hot rolling step, the heating temperature is set to 960 ° C or lower, and a lubricating liquid having a water content of 97.0% by mass or more is used in a rolling pass performed at 920 ° C or higher, and the total rolling ratio at 920 ° C or higher is 60% or more. And the final pass temperature of the hot rolling is set to Ts (° C.) or more in the following formula (1), and after the final pass, water cooling is started from a high temperature equal to or higher than Ts−100 ° C.
In the solution treatment step, the heating and holding temperature is in a range of 750 to 900 ° C,
In the aging treatment step, the maximum attained material temperature T MAX (° C.) is set in the range of 400 to 700 ° C., and the holding time t A (min) in the temperature range of 400 ° C. or more and T MAX or less is defined by the following equation (2). Aging treatment is performed under the condition that the relationship of the X values to be satisfied satisfies the following equation (3).
The method for producing a copper alloy sheet according to claim 1 .
Ts = 151.5 × ln [Ti] +620.5 (1)
Here, ln is the natural logarithm, and [Ti] is the Ti content of the alloy expressed in mass%.
X = exp ((694−T MAX ) / 28) (2)
0.20 ≦ t A /X≦1.0 (3)
前記熱間圧延工程において、920℃以上での合計圧延率を60%以上95%以下とする、請求項3に記載の銅合金板材の製造方法。   4. The method for producing a copper alloy sheet according to claim 3, wherein in the hot rolling step, a total rolling reduction at 920 ° C. or more is set to 60% or more and 95% or less. 5. 前記熱間圧延工程において、最も圧下率の大きい熱間圧延パスでの圧下率(最大圧下率)を15%以上とする、請求項3または4に記載の銅合金板材の製造方法。   5. The method of manufacturing a copper alloy sheet according to claim 3, wherein in the hot rolling step, a reduction ratio (maximum reduction ratio) in a hot rolling pass having the largest reduction ratio is 15% or more. 前記時効処理工程において、最高到達材料温度TMAX(℃)を420〜500℃の範囲内とする、請求項3〜5のいずれか1項に記載の銅合金板材の製造方法。 The method for manufacturing a copper alloy sheet according to any one of claims 3 to 5, wherein, in the aging treatment step, a maximum attained material temperature T MAX (° C) is set in a range of 420 to 500 ° C. 請求項1または2に記載の銅合金板材を材料に用いた通電部品。   A current-carrying part using the copper alloy sheet material according to claim 1 as a material.
JP2015160722A 2015-08-17 2015-08-17 Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part Active JP6639147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160722A JP6639147B2 (en) 2015-08-17 2015-08-17 Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160722A JP6639147B2 (en) 2015-08-17 2015-08-17 Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part

Publications (2)

Publication Number Publication Date
JP2017039959A JP2017039959A (en) 2017-02-23
JP6639147B2 true JP6639147B2 (en) 2020-02-05

Family

ID=58206464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160722A Active JP6639147B2 (en) 2015-08-17 2015-08-17 Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part

Country Status (1)

Country Link
JP (1) JP6639147B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112251626B (en) * 2020-09-16 2022-05-31 中铝材料应用研究院有限公司 Cu-Ti series alloy with ultra-fine grain structure and preparation method thereof
CN113088754A (en) * 2021-04-01 2021-07-09 江西中晟金属有限公司 High-flexibility copper rod and preparation method thereof
JP7038879B1 (en) * 2021-07-20 2022-03-18 Dowaメタルテック株式会社 Cu-Ti copper alloy plate material, its manufacturing method, and current-carrying parts

Also Published As

Publication number Publication date
JP2017039959A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4563480B2 (en) Copper alloy sheet and manufacturing method thereof
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
EP2570505B1 (en) Copper alloy and copper alloy rolled material for electronic device and method for producing this alloy
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
US20100189593A1 (en) Copper alloy material
JP3977376B2 (en) Copper alloy
CN108026612B (en) Copper alloy sheet and method for producing same
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
WO2006093140A1 (en) Copper alloy
JP2006265731A (en) Copper alloy
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
KR20170012282A (en) Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet
JP6368518B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP2017179553A (en) Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
JP2018070908A (en) Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER
KR20060130183A (en) Copper alloy
JP6639147B2 (en) Cu-Ti-based copper alloy sheet, method for producing the same, and current-carrying part
JP6317966B2 (en) Cu-Ni-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP6286241B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and energized component
EP2374907B1 (en) Copper alloy sheet for electrical/electronic components, and method for producing same
JP6869397B2 (en) Copper alloy plate material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R150 Certificate of patent or registration of utility model

Ref document number: 6639147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250