JP2023152264A - Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREOF, ENERGIZATION MEMBER AND HEAT DISSIPATION COMPONENT - Google Patents

Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREOF, ENERGIZATION MEMBER AND HEAT DISSIPATION COMPONENT Download PDF

Info

Publication number
JP2023152264A
JP2023152264A JP2022122576A JP2022122576A JP2023152264A JP 2023152264 A JP2023152264 A JP 2023152264A JP 2022122576 A JP2022122576 A JP 2022122576A JP 2022122576 A JP2022122576 A JP 2022122576A JP 2023152264 A JP2023152264 A JP 2023152264A
Authority
JP
Japan
Prior art keywords
copper alloy
less
alloy plate
plate material
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022122576A
Other languages
Japanese (ja)
Inventor
拓也 橋本
Takuya Hashimoto
洋 依藤
Hiroshi Ito
宏 兵藤
Hiroshi Hyodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to TW111130259A priority Critical patent/TW202338108A/en
Priority to CN202211512057.0A priority patent/CN116891960A/en
Priority to EP22210566.0A priority patent/EP4253579A1/en
Priority to US18/118,793 priority patent/US11946127B2/en
Priority to KR1020230040700A priority patent/KR20230141589A/en
Publication of JP2023152264A publication Critical patent/JP2023152264A/en
Pending legal-status Critical Current

Links

Abstract

To provide a Cu-Ti-based copper alloy plate having strength, conductivity, flexure workability and stress relaxation property in combination at a high level, and reduced density (specific gravity).SOLUTION: A copper alloy plate comprising, in mass%, Ti: 1.0 to 5.0%, Al: 0.5 to 3.0%, Ag: 0 to 0.3%, B: 0 to 0.3%, Be: 0 to 0.15%, Co: 0 to 1.0%, Cr: 0 to 1.0%, Fe: 0 to 1.0%, Mg: 0 to 0.5%, Mn: 0 to 1.5%, Nb: 0.0 to 0.5%, Ni: 0 to 1.0%, P: 0 to 0.2%, Si: 0 to 0.5%, Sn: 0 to 1.5%, V: 0 to 1.0%, Zn: 0 to 2.0%, Zr: 0 to 1.0%, S: 0 to 0.2%, rare earth elements: 0 to 3.0%, and the remainder essentially consists of Cu, wherein a maximum width of a grain boundary reaction type precipitate existing region is 1000 nm or less, a KAM value is 3.0 degrees or less with a crystal orientation difference of 15 degrees or more by EBSD measurement (step size 0.1 μm) as the grain boundary, and the tensile strength in a rolling direction is 850 MPa or more.SELECTED DRAWING: Figure 5

Description

本発明は、密度(比重)を低減化したCu-Ti系銅合金板材、その製造方法、および前記板材を材料に用いた通電部品等に関する。 The present invention relates to a Cu--Ti based copper alloy plate material with reduced density (specific gravity), a method for manufacturing the same, and current-carrying parts using the plate material.

Cu-Ti系銅合金(チタン銅)は、各種銅合金の中でも強度レベルが高く、耐応力緩和性も良好であることから、コネクタ、リレー、スイッチ等の通電部品やばね部品として広く使用されている。近年、スマートフォンをはじめとする携帯端末や自動車用電子機器の高機能化に伴い、それに用いる個々の構成部品には、軽量化に対する要求が高まっている。この要求に応えるためには、通電部品に用いる銅合金材料においても、本来の良好な特性を維持しながら同時に軽量化を図ることが重要となる。 Cu-Ti copper alloy (titanium copper) has the highest strength level among various copper alloys and has good stress relaxation resistance, so it is widely used as electrically conductive parts and spring parts such as connectors, relays, and switches. There is. BACKGROUND ART In recent years, as mobile terminals such as smartphones and electronic devices for automobiles have become more sophisticated, there has been an increasing demand for their individual components to be lighter. In order to meet this demand, it is important to reduce the weight of copper alloy materials used in current-carrying parts while maintaining their original good characteristics.

特許文献1には、Cu-Ti系銅合金において、予備的な時効処理(前駆処理)と比較的低温域での時効処理とを組み合わせた工程によって粒界反応型析出物の生成を抑え、強度、曲げ加工性、耐応力緩和特性、耐疲労特性を改善する技術が開示されている。 Patent Document 1 discloses that in a Cu-Ti based copper alloy, a process combining preliminary aging treatment (precursor treatment) and aging treatment at a relatively low temperature suppresses the formation of grain boundary reaction type precipitates and improves strength. , techniques for improving bending workability, stress relaxation resistance, and fatigue resistance have been disclosed.

特許文献2には、Cu-Ti系銅合金において、高温域で圧下率を稼ぐ熱間圧延と、比較的高温での溶体化処理と、最大硬さが得られる温度付近に制御する時効処理とを組み合わせた工程によって所定の集合組織に調整し、ノッチング後の曲げ加工性を改善する技術が開示されている。 Patent Document 2 describes, in Cu-Ti copper alloys, hot rolling to increase the rolling reduction in a high temperature range, solution treatment at a relatively high temperature, and aging treatment to control the temperature near the maximum hardness. A technique has been disclosed that adjusts the texture to a predetermined texture through a process that combines these steps, and improves the bending workability after notching.

特開2014-185370号公報Japanese Patent Application Publication No. 2014-185370 特開2010-126777号公報Japanese Patent Application Publication No. 2010-126777

上記の特許文献1、2に開示の技術などによって、現在では用途に応じて所望の特性を改善したCu-Ti系銅合金板材を工業的に得ることが可能になっている。しかしながら、合金の密度(比重)を効果的に低減する手法は確立されていない。例えば、特許文献1、2の技術では、Cuに比べ原子量の小さいAlを最大1.0質量%まで添加することができるとされるが、実施例に示されている材料のAl含有量は0.08%(特許文献1、本発明例6)、0.14%(特許文献2、実施例9)であり、この程度のAl含有量では密度の低減効果は不十分である。また、特許文献1、2に開示される製造工程でAlを例えば0.5%以上添加したCu-Ti合金板材の製造を試みた場合、強度と曲げ加工性を高いレベルで安定して両立させることは困難である。 With the techniques disclosed in Patent Documents 1 and 2 mentioned above, it is now possible to industrially obtain Cu--Ti based copper alloy sheets with improved desired properties depending on the intended use. However, a method for effectively reducing the density (specific gravity) of alloys has not been established. For example, in the technologies of Patent Documents 1 and 2, it is said that Al, which has a smaller atomic weight than Cu, can be added up to a maximum of 1.0% by mass, but the Al content of the materials shown in the examples is 0. 0.08% (Patent Document 1, Invention Example 6) and 0.14% (Patent Document 2, Example 9), and the density reduction effect is insufficient with this level of Al content. In addition, when attempting to manufacture a Cu-Ti alloy sheet material in which 0.5% or more of Al is added using the manufacturing process disclosed in Patent Documents 1 and 2, it is possible to stably achieve both strength and bending workability at a high level. That is difficult.

本発明は、強度、導電性、曲げ加工性、応力緩和特性のすべてを高いレベルでバランス良く兼ね備え、かつ密度(比重)が低減されたCu-Ti系銅合金板材を提供することを目的とする。 An object of the present invention is to provide a Cu-Ti based copper alloy plate material that has a high level of strength, conductivity, bending workability, and stress relaxation properties in a well-balanced manner, and has a reduced density (specific gravity). .

発明者らは詳細な検討の結果、所定量のAlを含有させて密度(比重)を低減したCu-Ti系銅合金において、「溶体化処理+中間冷間圧延」の工程を2回行ったのちに時効処理に供する製造工程を採用することにより、粗大な粒界反応型析出物の生成が少なく、かつ適度な格子歪を持つ組織状態の板材を得ることができ、それによって、Alを含有しているにもかかわらず優れた強度、導電性、曲げ加工性、応力緩和特性を付与することが可能になることを見出した。
上記目的を達成するため、本明細書では以下の発明を開示する。
As a result of detailed study, the inventors performed the process of "solution treatment + intermediate cold rolling" twice on a Cu-Ti based copper alloy containing a predetermined amount of Al to reduce the density (specific gravity). By adopting a manufacturing process that is subsequently subjected to aging treatment, it is possible to obtain a plate material with a structure in which there is little generation of coarse grain boundary reaction type precipitates and a moderate lattice strain, thereby making it possible to obtain a plate material that contains aluminum. It has been found that it is possible to impart excellent strength, electrical conductivity, bending workability, and stress relaxation properties despite the above properties.
In order to achieve the above object, the following invention is disclosed in this specification.

[1]質量%で、Ti:1.0~5.0%、Al:0.5~3.0%、Ag:0~0.3%、B:0~0.3%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~0.5%、Mn:0~1.5%、Nb:0.0~0.5%、Ni:0~1.0%、P:0~0.2%、Si:0~0.5%、Sn:0~1.5%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%、S:0~0.2%であり、前記元素のうちAg、B、Be、Co、Cr、Fe、Mg、Mn、Nb、Ni、P、Si、Sn、V、Zn、ZrおよびSの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有し、板面に平行な観察面において粒界反応型析出物存在領域の最大幅が1000nm以下であり、板面に平行な観察面のEBSD(電子線後方散乱回折法)によるステップサイズ0.1μmでの測定において結晶方位差15°以上の境界を結晶粒界とみなした場合のKAM値が3.0°以下であり、圧延方向の引張強さが850MPa以上である銅合金板材。
[2]更に、希土類元素を合計3.0質量%以下の範囲で含有する組成を有する、上記[1]に記載の銅合金板材。
[3]板面に平行な観察面において長径5~100nmの微細析出物粒子の個数密度が1.0×10個/mm以上1.0×1012個/mm以下である、上記[1]または[2]に記載の銅合金板材。
[4]板面に平行な観察面においてJIS H0501-1986に準ずる切断法による平均結晶粒径が2~20μmである、上記[1]~[3]のいずれかに記載の銅合金板材。
[5]日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tが2.0以下である、上記[1]~[4]のいずれかに記載の銅合金板材。
[6]導電率が10.0%IACS以上である、上記[1]~[5]のいずれかに記載の銅合金板材。
[7]密度が8.53g/cm以下である、上記[1]~[6]のいずれかに記載の銅合金板材。
[8]板厚が0.02~0.50mmである、上記[1]~[7]のいずれかに記載の銅合金板材。
[9]上記[1]に規定の組成を有する中間製品板材に、第1溶体化処理、第1中間冷間圧延、第2溶体化処理、第2中間冷間圧延、時効処理を前記の順に施して銅合金板材を製造する工程において、
第1溶体化処理を750~950℃の温度域で10~600秒保持する条件で行い、
第1中間冷間圧延を圧延率70%以上で行い、
第2溶体化処理を750~900℃の温度域で10~600秒保持する条件で行い、
第2中間冷間圧延を圧延率15~50%で行い、
時効処理を300~470℃の時効温度で行う、
上記[1]~[8]のいずれかに記載の銅合金板材の製造方法。
[10]前記中間製品板材は、更に、希土類元素を合計3.0質量%以下の範囲で含有する組成を有するものである、上記[9]に記載の銅合金板材の製造方法。
[11]前記の時効処理の後に、仕上冷間圧延、低温焼鈍を前記の順に更に施して銅合金板材を製造する工程において、
仕上冷間圧延を圧延率50%以下で行い、
低温焼鈍を350~550℃の温度域に60秒以下の時間保持する条件で行う、
上記[9]または[10]に記載の銅合金板材の製造方法。
[12]上記[1]~[8]のいずれかに記載の銅合金板材を材料に用いた通電部品。
[13]上記[1]~[8]のいずれかに記載の銅合金板材を材料に用いた放熱部品。
[1] In mass%, Ti: 1.0 to 5.0%, Al: 0.5 to 3.0%, Ag: 0 to 0.3%, B: 0 to 0.3%, Be: 0 ~0.15%, Co: 0-1.0%, Cr: 0-1.0%, Fe: 0-1.0%, Mg: 0-0.5%, Mn: 0-1.5% , Nb: 0.0-0.5%, Ni: 0-1.0%, P: 0-0.2%, Si: 0-0.5%, Sn: 0-1.5%, V: 0 to 1.0%, Zn: 0 to 2.0%, Zr: 0 to 1.0%, S: 0 to 0.2%, and among the above elements, Ag, B, Be, Co, Cr, The total content of Fe, Mg, Mn, Nb, Ni, P, Si, Sn, V, Zn, Zr and S is 3.0% or less, the balance is Cu and inevitable impurities, and the plate The maximum width of the grain boundary reaction type precipitate existing region is 1000 nm or less on the observation plane parallel to the plate surface, and measurement is performed with a step size of 0.1 μm by EBSD (electron beam backscatter diffraction method) on the observation plane parallel to the plate surface. A copper alloy sheet material having a KAM value of 3.0° or less when a boundary with a crystal orientation difference of 15° or more is regarded as a grain boundary, and a tensile strength in the rolling direction of 850 MPa or more.
[2] The copper alloy sheet material according to [1] above, further having a composition containing rare earth elements in a total amount of 3.0% by mass or less.
[3] The above, wherein the number density of fine precipitate particles with a major diameter of 5 to 100 nm in the observation plane parallel to the plate surface is 1.0 × 10 8 pieces/mm 2 or more and 1.0 × 10 12 pieces/mm 2 or less The copper alloy plate material according to [1] or [2].
[4] The copper alloy sheet material according to any one of [1] to [3] above, which has an average crystal grain size of 2 to 20 μm when measured by a cutting method according to JIS H0501-1986 in an observation plane parallel to the sheet surface.
[5] The ratio MBR/t of the minimum bending radius without cracking to the plate thickness t, MBR/t, is 2.0 or less according to the W bending test at B.W. according to the Japan Copper Brass Association technical standard JCBA T307:2007. , the copper alloy plate material according to any one of [1] to [4] above.
[6] The copper alloy plate material according to any one of [1] to [5] above, which has an electrical conductivity of 10.0% IACS or higher.
[7] The copper alloy plate material according to any one of [1] to [6] above, which has a density of 8.53 g/cm 3 or less.
[8] The copper alloy plate material according to any one of [1] to [7] above, having a plate thickness of 0.02 to 0.50 mm.
[9] The intermediate product sheet material having the composition specified in [1] above is subjected to first solution treatment, first intermediate cold rolling, second solution treatment, second intermediate cold rolling, and aging treatment in the above order. In the process of manufacturing copper alloy plate material by applying
The first solution treatment is carried out in a temperature range of 750 to 950°C and held for 10 to 600 seconds,
Performing the first intermediate cold rolling at a rolling ratio of 70% or more,
The second solution treatment is carried out at a temperature range of 750 to 900°C for 10 to 600 seconds,
A second intermediate cold rolling is performed at a rolling ratio of 15 to 50%,
Aging treatment is performed at an aging temperature of 300 to 470°C.
The method for producing a copper alloy plate material according to any one of [1] to [8] above.
[10] The method for producing a copper alloy plate material according to [9] above, wherein the intermediate product plate material further has a composition containing a rare earth element in a total amount of 3.0% by mass or less.
[11] After the aging treatment, a step of manufacturing a copper alloy plate material by further performing finish cold rolling and low-temperature annealing in the above order,
Finish cold rolling is performed at a rolling rate of 50% or less,
Low-temperature annealing is performed under conditions of holding the material in a temperature range of 350 to 550°C for 60 seconds or less.
The method for producing a copper alloy plate material according to [9] or [10] above.
[12] A current-carrying component using the copper alloy plate material according to any one of [1] to [8] above.
[13] A heat dissipation component using the copper alloy plate material according to any one of [1] to [8] above.

本明細書において、「板材」とは金属の展性を利用して成形されたシート状の金属材料を意味する。薄いシート状の金属材料は「箔」と呼ばれることもあるが、そのような「箔」もここでいう「板材」に含まれる。コイル状に巻き取られた長尺のシート状金属材料も「板材」に含まれる。本明細書ではシート状の金属材料の厚さを「板厚」と呼んでいる。また、「板面」とは板材の板厚方向に対して垂直な表面である。「板面」は「圧延面」と呼ばれることもある。
本明細書において、数値範囲を示す表記「n1~n2」は、「n1以上n2以下」であることを意味する。ここで、n1、n2は、n1<n2を満たす数値である。
In this specification, the term "plate material" refers to a sheet-like metal material formed by utilizing the malleability of metal. A thin sheet-shaped metal material is sometimes called "foil," and such "foil" is also included in the "plate material" referred to here. A long sheet metal material wound into a coil shape is also included in the term "plate material." In this specification, the thickness of a sheet-like metal material is referred to as "plate thickness." Further, the "plate surface" is a surface perpendicular to the thickness direction of the plate material. The "plate surface" is sometimes called the "rolled surface."
In this specification, the notation "n1 to n2" indicating a numerical range means "not less than n1 and not more than n2". Here, n1 and n2 are numerical values satisfying n1<n2.

Cu-Ti系銅合金は通常、マトリックス(金属素地)中に析出相が存在する金属組織を呈する。その析出相には粒界に析出する「粒界反応型析出物」と、それ以外の箇所に析出する「粒状析出物」とがある。これらの析出相はCu-Ti系金属間化合物を主体とするものであるが、添加する合金元素の種類と添加量に応じてNi-Ti系、Co-Ti系、Fe-Ti系、Cu-Ti-Al系などの金属間化合物も存在しうる。粒状析出物のなかでも非常に微細なものは強度向上に寄与する。ここでは長径5~100nmの微細な粒状析出物の粒子を「微細析出物粒子」と呼んでいる。粒界反応型析出物は、結晶粒界の部分に一群の層状粒子の集合として存在する。観察面が一群の層状粒子を切断する角度によって、観察面に現れる層状粒子の見え方は異なってくる。 A Cu--Ti based copper alloy usually exhibits a metal structure in which a precipitated phase exists in a matrix (metal base). The precipitated phases include "grain boundary reaction type precipitates" that precipitate at grain boundaries, and "granular precipitates" that precipitate at other locations. These precipitated phases are mainly composed of Cu-Ti intermetallic compounds, but depending on the type and amount of alloying elements added, they may be Ni-Ti, Co-Ti, Fe-Ti, or Cu-Ti. Intermetallic compounds such as Ti--Al may also be present. Among the granular precipitates, very fine ones contribute to improving the strength. Here, fine granular precipitate particles with a major diameter of 5 to 100 nm are referred to as "fine precipitate particles." Grain boundary reaction type precipitates exist as a group of layered particles at grain boundaries. The way the layered particles appear on the observation surface varies depending on the angle at which the observation surface cuts through a group of layered particles.

[粒界反応型析出物存在領域の最大幅の求め方]
板面に平行な観察面についてのSEM(走査型電子顕微鏡)画像において、隣接する一群の層状粒子で構成される1つの粒界反応型析出物存在領域の輪郭線上の任意の点から層状粒子を挟んで前記輪郭線と対向する結晶粒側の輪郭線までの距離のなかで、最も長い距離を、その粒界反応型析出物存在領域の幅と定義する。このとき、合計10個以上の粒界反応型析出物存在領域が含まれる観察領域(無作為に選択した1つまたは重複しない複数の視野)に観察される粒界反応型析出物存在領域の幅のうちの最大値を、当該板材についての粒界反応型析出物存在領域の最大幅とする。
[How to find the maximum width of the region where grain boundary reaction type precipitates exist]
In an SEM (scanning electron microscope) image of an observation plane parallel to the plate surface, layered particles can be detected from any point on the outline of one grain boundary reaction type precipitate existing region consisting of a group of adjacent layered particles. The longest distance among the distances to the contour line on the grain side opposite to the contour line is defined as the width of the grain boundary reaction type precipitate existing region. At this time, the width of the grain boundary reaction type precipitate existence area observed in the observation area (one randomly selected field or multiple non-overlapping fields of view) that includes a total of 10 or more grain boundary reaction type precipitate existence areas. The maximum value of these is the maximum width of the grain boundary reaction type precipitate existing region for the plate material.

図1~図3に、粒界反応型析出物が過剰に生成したCu-Ti系銅合金板材(後述の比較例No.45)についての板面に平行な観察面のSEM画像を例示してある。図3は粒界反応型析出物存在領域を含む部分の拡大画像である。図3中には粒界反応型析出物存在領域の輪郭線を破線で示してある。その輪郭線上の点Pから層状粒子を挟んで前記輪郭線と対向する結晶粒側の輪郭線までの距離は線分Pの長さで表される。点Qは、点Pと対向する結晶粒側の輪郭線上で最も点Pに近い点である。同様に、輪郭線上の点Pから層状粒子を挟んで前記輪郭線と対向する結晶粒側の輪郭線までの距離は線分Pの長さで表される。点Qは、点Pと対向する結晶粒側の輪郭線上で最も点Pに近い点である。輪郭線上の全ての点について層状粒子を挟んで前記輪郭線と対向する結晶粒側の輪郭線までの距離を求めた場合の、その距離の最大値が、この粒界反応型析出物存在領域の幅となる。なお、層状粒子を挟んだ両側の結晶粒が結晶粒界によって直接接することとなる粒界反応型析出物存在領域の端部や、その近傍など、「対向する結晶粒側の輪郭線」が明確に特定できない輪郭線部分については、その部分の輪郭線上の点における「対向する結晶粒側の輪郭線までの距離」は0(ゼロ)とみなしてよい。 Figures 1 to 3 illustrate SEM images of the observation plane parallel to the plate surface of a Cu-Ti based copper alloy plate material (Comparative Example No. 45 described later) in which grain boundary reaction type precipitates were excessively generated. be. FIG. 3 is an enlarged image of a portion including a region where grain boundary reaction type precipitates exist. In FIG. 3, the outline of the region where grain boundary reaction type precipitates exist is shown by a broken line. The distance from point P 1 on the contour line to the contour line on the crystal grain side opposite to the contour line with the layered grain in between is represented by the length of the line segment P 1 Q 1 . Point Q 1 is the closest point to point P 1 on the contour line on the crystal grain side facing point P 1 . Similarly, the distance from point P 2 on the contour to the contour on the crystal grain side that faces the contour with the layered grain in between is represented by the length of line segment P 2 Q 2 . Point Q 2 is the closest point to point P 2 on the contour line on the grain side facing point P 2 . When the distance from all points on the contour line to the contour line on the crystal grain side facing the above contour line across the layered grains is determined, the maximum value of the distance is determined as the area where the grain boundary reaction type precipitate exists. It becomes the width. In addition, the "contour line of the opposing crystal grain side" is clearly defined, such as at the edge of the region where grain boundary reaction type precipitates exist, where the crystal grains on both sides of the layered grain are in direct contact through the grain boundary, and in the vicinity thereof. For a contour portion that cannot be specified, the “distance to the contour on the opposing crystal grain side” at a point on the contour of that portion may be considered to be 0 (zero).

[KAM値の求め方]
測定対象である板材試料の板面(圧延面)をバフ研磨仕上げとし、その後イオンミリングにより平滑化した観察面を得る。その観察面内に観察倍率500倍に相当する視野の観察領域(例えば240×180μmの矩形領域)を無作為に設定し、その観察領域についてEBSD(電子線後方散乱回折法)によりステップサイズ0.1μmで電子線を照射して結晶方位データを採取し、そのデータに基づき、EBSDデータ解析用ソフトウェアを用いて、隣接する測定点の結晶方位差が15°以上である境界を結晶粒界とみなした場合のKAM(Kernel Average Misorientation)値を算出する。KAM値は、0.1μmピッチで配置された電子線照射スポットについて、隣接するスポット間の結晶方位差(以下これを「隣接スポット方位差」という。)をすべて測定し、15°未満である隣接スポット方位差の測定値のみを抽出して、それらの平均値を求めたものに相当する。KAM値の算出においては双晶境界も結晶粒界とみなす。
[How to find KAM value]
The plate surface (rolled surface) of the plate material sample to be measured is buffed and then ion milled to obtain a smooth observation surface. An observation area (for example, a rectangular area of 240 x 180 μm) with a field of view corresponding to an observation magnification of 500 times is randomly set within the observation plane, and a step size of 0. Collect crystal orientation data by irradiating with an electron beam at 1 μm, and based on that data, use EBSD data analysis software to consider boundaries where the crystal orientation difference between adjacent measurement points is 15° or more as grain boundaries. Calculate the KAM (Kernel Average Misorientation) value when The KAM value is determined by measuring all the crystal orientation differences between adjacent spots (hereinafter referred to as "adjacent spot orientation differences") for electron beam irradiation spots arranged at a pitch of 0.1 μm, and determining the difference in crystal orientation between adjacent spots that is less than 15°. This corresponds to extracting only the measured values of the spot azimuth difference and calculating their average value. In calculating the KAM value, twin boundaries are also regarded as grain boundaries.

[微細析出物粒子の個数密度の求め方]
板面を下記電解研磨条件で電解研磨したのちエタノール中で20分間の超音波洗浄を施して得た観察面について、FE-SEM(電界放出形走査電子顕微鏡)により倍率10万倍で観察し、長径1.0μm以上の粒子の一部または全部が視野中に含まれない観察視野を無作為に設定する。その観察視野について、粒子の輪郭全体が見えている粒子のうち長径が5~100nmである析出物粒子の数をカウントする。この操作を領域が重複しない10以上の観察視野について行い、観察した全視野での前記カウント数の合計NTOTALを観察視野の総面積で除した値を、1mmあたりの個数に換算し、これを微細析出物粒子の個数密度(個/mm)とする。ここで、ある粒子の「長径」は、画像上で当該粒子を取り囲む最小の外接円の直径として表される。
(電解研磨条件)
・電解液:蒸留水、リン酸、エタノール、2-プロパノールを10:5:5:1の体積比で混合
・液温:20℃
・電圧:15V
・電解時間:20秒
[How to determine the number density of fine precipitate particles]
After electrolytically polishing the plate surface under the following electrolytic polishing conditions, the observation surface obtained by ultrasonic cleaning in ethanol for 20 minutes was observed at a magnification of 100,000 times using an FE-SEM (field emission scanning electron microscope). An observation field is randomly set in which part or all of particles having a major diameter of 1.0 μm or more are not included in the field of view. With respect to the observation field, the number of precipitate particles having a major axis of 5 to 100 nm is counted among particles whose entire contours are visible. This operation is performed for 10 or more observation fields whose areas do not overlap, and the total number of counts in all the observed fields N TOTAL is divided by the total area of the observation field, and the value is converted to the number per 1 mm2 . Let be the number density (pieces/mm 2 ) of fine precipitate particles. Here, the "major axis" of a certain particle is expressed as the diameter of the smallest circumscribed circle surrounding the particle on the image.
(Electrolytic polishing conditions)
・Electrolyte: Distilled water, phosphoric acid, ethanol, and 2-propanol mixed in a volume ratio of 10:5:5:1 ・Liquid temperature: 20°C
・Voltage: 15V
・Electrolysis time: 20 seconds

本発明によれば、強度、導電性、曲げ加工性、応力緩和特性のすべてを高いレベルでバランス良く兼ね備えたCu-Ti系銅合金板材において、合金の密度(比重)を低減したものが実現可能となった。 According to the present invention, it is possible to realize a Cu-Ti based copper alloy sheet material that has a high level of well-balanced strength, conductivity, bending workability, and stress relaxation properties, but has a reduced density (specific gravity) of the alloy. It became.

比較例No.45で得られたCu-Ti系合金板材の板面を電解研磨調製した観察面のSEM写真。SEM photograph of the observed surface of the Cu-Ti alloy plate obtained in Comparative Example No. 45 prepared by electrolytic polishing. 図1の一部領域を拡大したSEM写真。An SEM photograph showing an enlarged partial area of Fig. 1. 図2の一部領域を拡大したSEM写真。SEM photograph of a partial region of FIG. 2 enlarged. 本発明例No.1で得られたCu-Ti系合金板材の板面を電解研磨調製した観察面のSEM写真。SEM photograph of the observed surface of the Cu-Ti alloy plate obtained in Invention Example No. 1 prepared by electrolytic polishing. 図4の一部領域を拡大したSEM写真。SEM photograph of a partial region of FIG. 4 enlarged. 図5の一部領域を拡大したSEM写真。SEM photograph of a partial region of FIG. 5 enlarged.

[化学組成]
以下、合金成分に関する「%」は、特に断らない限り「質量%」を意味する。
[Chemical composition]
Hereinafter, "%" regarding alloy components means "% by mass" unless otherwise specified.

Ti(チタン)は、スピノーダル分解によるTiの変調構造の形成や、析出による微細第二相粒子の形成をもたらし、Cu-Ti系銅合金の強度上昇に寄与する元素である。また、耐応力緩和性向上や密度(比重)の低減にも寄与する。ここではTi含有量1.0%以上の合金を対象とする。Ti含有量は析出強化の観点から2.5%以上であることがより好ましい。過剰なTi含有は、熱間加工性や冷間加工性を低下させる要因となる他、曲げ加工性の低下要因ともなるので、Ti含有量は5.0%以下とする。4.5%以下、あるいは4.0%以下に管理してもよい。 Ti (titanium) is an element that causes the formation of a Ti modulation structure through spinodal decomposition and the formation of fine second phase particles through precipitation, contributing to an increase in the strength of the Cu--Ti based copper alloy. It also contributes to improving stress relaxation resistance and reducing density (specific gravity). Here, alloys with a Ti content of 1.0% or more are targeted. From the viewpoint of precipitation strengthening, the Ti content is more preferably 2.5% or more. Excessive Ti content causes deterioration in hot workability and cold workability as well as deterioration in bending workability, so the Ti content is set to 5.0% or less. It may be controlled to 4.5% or less, or 4.0% or less.

Al(アルミニウム)は、Cu-Ti系銅合金の密度(比重)の低減に有効な元素である。その効果を十分に発揮させるためには、0.5%以上のAl含有が必要である。0.7%以上とすることがより効果的であり、1.0%以上とすることが更に効果的である。Cu-Ti系銅合金に0.5%以上のAlを添加すると、一般に強度と曲げ加工性の両立が難しくなるという問題がある。しかし、後述の製造方法により、その問題を解消することができる。ただし、Al含有量が多くなりすぎると導電性が低下するので、Al含有量は3.0%以下に制限される。Al含有量は2.75%以下であることが好ましい。 Al (aluminum) is an element effective in reducing the density (specific gravity) of a Cu-Ti based copper alloy. In order to fully exhibit this effect, Al content of 0.5% or more is required. It is more effective to set it to 0.7% or more, and even more effective to set it to 1.0% or more. When 0.5% or more of Al is added to a Cu-Ti based copper alloy, there is generally a problem that it becomes difficult to achieve both strength and bending workability. However, this problem can be solved by the manufacturing method described below. However, if the Al content becomes too large, the conductivity will decrease, so the Al content is limited to 3.0% or less. The Al content is preferably 2.75% or less.

Ag(銀)、B(ホウ素)、Be(ベリリウム)、Co(コバルト)、Cr(クロム)、Fe(鉄)、Mg(マグネシウム)、Mn(マンガン)、Nb(ニオブ)、Ni(ニッケル)、P(リン)、Si(ケイ素)、Sn(スズ)、V(バナジウム)、Zn(亜鉛)、Zr(ジルコニウム)、S(硫黄)は任意元素である。必要に応じてこれらの1種以上を含有させることができる。例えば、Ni、Co、Fe、Nbは、Tiとの金属間化合物を形成して強度の向上に寄与する。また、これらの元素の金属間化合物が結晶粒の粗大化を抑制するので、銅合金板材の製造においてより高温域での溶体化処理が可能になり、Tiを十分に固溶させる上で有利となる。Tiが十分に固溶することで、粒界反応型析出物の生成抑制と、高強度化に寄与する第二相粒子の増加が期待できる。Snは、固溶強化作用と耐応力緩和性の向上作用を有する。Znは、はんだ付け性および強度を向上させる他、鋳造性の改善にも有効である。Mgは、耐応力緩和性の向上作用と脱S作用を有する。Siは、Tiとの化合物を形成でき、銅合金板材の製造における再結晶時のピン止めに寄与し、結晶粒径を小型化しうる。Cr、Zrは分散強化、結晶粒の粗大化抑制に有効である。Mn、Vは、Sなどと高融点化合物を形成しやすく、またB、Pは鋳造組織の微細化効果を有するので、それぞれ熱間加工性の改善に寄与しうる。 Ag (silver), B (boron), Be (beryllium), Co (cobalt), Cr (chromium), Fe (iron), Mg (magnesium), Mn (manganese), Nb (niobium), Ni (nickel), P (phosphorus), Si (silicon), Sn (tin), V (vanadium), Zn (zinc), Zr (zirconium), and S (sulfur) are optional elements. One or more of these can be contained as necessary. For example, Ni, Co, Fe, and Nb form intermetallic compounds with Ti and contribute to improving strength. In addition, since the intermetallic compounds of these elements suppress the coarsening of crystal grains, solution treatment at higher temperatures is possible in the production of copper alloy sheets, which is advantageous for sufficiently dissolving Ti. Become. Sufficient solid solution of Ti can be expected to suppress the formation of grain boundary reaction type precipitates and increase the number of second phase particles that contribute to higher strength. Sn has a solid solution strengthening effect and an effect of improving stress relaxation resistance. Zn improves solderability and strength, and is also effective in improving castability. Mg has an effect of improving stress relaxation resistance and a function of removing S. Si can form a compound with Ti, which contributes to pinning during recrystallization in the production of copper alloy sheets, and can reduce the crystal grain size. Cr and Zr are effective in dispersion strengthening and suppressing coarsening of crystal grains. Mn and V tend to form a high melting point compound with S and the like, and B and P have the effect of refining the casting structure, so each can contribute to improving hot workability.

上記任意元素の含有量は、Ag:0~0.3%、B:0~0.3%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~0.5%、Mn:0~1.5%、Nb:0~0.5%、Ni:0~1.0%、P:0~0.2%、Si:0~0.5%、Sn:0~1.5%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%、S:0~0.2%の範囲とすることができる。また、これらAg、B、Be、Co、Cr、Fe、Mg、Mn、Ni、P、S、Si、Sn、V、Zn、Zrの合計含有量は3.0%以下とすることが望ましく、1.0%以下とすることがより好ましく、0.8%以下に管理してもよい。 The contents of the above arbitrary elements are Ag: 0 to 0.3%, B: 0 to 0.3%, Be: 0 to 0.15%, Co: 0 to 1.0%, and Cr: 0 to 1. 0%, Fe: 0-1.0%, Mg: 0-0.5%, Mn: 0-1.5%, Nb: 0-0.5%, Ni: 0-1.0%, P: 0-0.2%, Si: 0-0.5%, Sn: 0-1.5%, V: 0-1.0%, Zn: 0-2.0%, Zr: 0-1.0 %, S: can be in the range of 0 to 0.2%. Further, the total content of these Ag, B, Be, Co, Cr, Fe, Mg, Mn, Ni, P, S, Si, Sn, V, Zn, and Zr is desirably 3.0% or less, It is more preferably 1.0% or less, and may be controlled to 0.8% or less.

また、上記任意元素の含有量は、Ag:0~0.1%、B:0~0.03%、Be:0~0.05%、Co:0~0.1%、Cr:0~0.1%、Fe:0~0.2%、Mg:0~0.25%、Mn:0~0.2%、Nb:0~0.04%、Ni:0~0.2%、P:0~0.03%、S:0~0.03%、Si:0~0.15%、Sn:0~0.8%、V:0~0.03%、Zn:0~0.2%、Zr:0~0.5%の範囲とすることがより望ましい。 In addition, the content of the above arbitrary elements is Ag: 0-0.1%, B: 0-0.03%, Be: 0-0.05%, Co: 0-0.1%, Cr: 0-0. 0.1%, Fe: 0-0.2%, Mg: 0-0.25%, Mn: 0-0.2%, Nb: 0-0.04%, Ni: 0-0.2%, P: 0-0.03%, S: 0-0.03%, Si: 0-0.15%, Sn: 0-0.8%, V: 0-0.03%, Zn: 0-0 .2%, Zr: more preferably in the range of 0 to 0.5%.

また、上記任意元素の含有量は、Ag:0~0.08%、B:0~0.02%、Be:0~0.03%、Co:0~0.08%、Cr:0~0.08%、Fe:0~0.18%、Mg:0~0.2%、Mn:0~0.18%、Nb:0~0.03%、Ni:0~0.18%、P:0~0.02%、S:0~0.02%、Si:0~0.12%、Sn:0~0.6%、V:0~0.02%、Zn:0~0.18%、Zr:0~0.4%の範囲に管理してもよい。 In addition, the content of the above arbitrary elements is Ag: 0-0.08%, B: 0-0.02%, Be: 0-0.03%, Co: 0-0.08%, Cr: 0-0. 0.08%, Fe: 0-0.18%, Mg: 0-0.2%, Mn: 0-0.18%, Nb: 0-0.03%, Ni: 0-0.18%, P: 0-0.02%, S: 0-0.02%, Si: 0-0.12%, Sn: 0-0.6%, V: 0-0.02%, Zn: 0-0 .18%, Zr: may be controlled within the range of 0 to 0.4%.

上記以外の元素として、希土類元素(REM)を含有させることができる。希土類元素は、周期表第3族のSc(スカンジウム)、Y(イットリウム)、およびランタノイド系元素である。希土類元素の含有は、結晶粒の微細化や析出物の分散化に有効である。板材の表面性状、強度、導電性を良好にバランスさせるためには、希土類元素の合計含有量を質量%で3.0%以下とすることが好ましく、1.5%以下とすることがより好ましく、0.8%以下、あるいは0.5%以下に管理してもよい。 A rare earth element (REM) can be included as an element other than the above. The rare earth elements are Sc (scandium), Y (yttrium), and lanthanoid elements of Group 3 of the periodic table. Inclusion of rare earth elements is effective in making crystal grains finer and dispersing precipitates. In order to achieve a good balance between the surface properties, strength, and conductivity of the plate material, the total content of rare earth elements is preferably 3.0% or less by mass, and more preferably 1.5% or less. , 0.8% or less, or 0.5% or less.

具体的な希土類元素の含有量範囲として、例えば、質量%で、La(ランタン):2.0%以下、Ce(セリウム):1.8%以下、Pr(プラセオジム):0.3%以下、Nd(ネオジム):0.8%以下、Sm(サマリウム):2.5%以下、およびY(イットリウム):2.5%以下から選ばれる1種以上を含み、希土類元素の合計含有量が3.0%以下である範囲を挙げることができる。 Specific rare earth element content ranges include, in mass %, La (lanthanum): 2.0% or less, Ce (cerium): 1.8% or less, Pr (praseodymium): 0.3% or less, Contains one or more selected from Nd (neodymium): 0.8% or less, Sm (samarium): 2.5% or less, and Y (yttrium): 2.5% or less, and the total content of rare earth elements is 3. A range of .0% or less can be mentioned.

経済性や製造性を考慮した希土類元素の含有量範囲としては、例えば、質量%で、La:0.8%以下、Ce:0.7%以下、Pr:0.1%以下、Nd:0.2%以下、Sm:1.0%以下、およびY:1.0%以下から選ばれる1種以上を含み、希土類元素の合計含有量が1.5%以下である範囲を挙げることができる。経済性や製造性に更に配慮したより好ましい希土類元素の含有量範囲としては、例えば、質量%で、La:0.35%以下、Ce:0.32%以下、Pr:0.04%以下、Nd:0.1%以下、Sm:0.5%以下、およびY:0.5%以下から選ばれる1種以上を含み、希土類元素の合計含有量が0.8%以下である範囲を挙げることができる。 The content range of rare earth elements in consideration of economic efficiency and manufacturability is, for example, in mass %, La: 0.8% or less, Ce: 0.7% or less, Pr: 0.1% or less, Nd: 0. .2% or less, Sm: 1.0% or less, and Y: 1.0% or less, and the total content of rare earth elements is 1.5% or less. . More preferable rare earth element content ranges in consideration of economic efficiency and manufacturability include, for example, in terms of mass %, La: 0.35% or less, Ce: 0.32% or less, Pr: 0.04% or less, The range includes one or more selected from Nd: 0.1% or less, Sm: 0.5% or less, and Y: 0.5% or less, and the total content of rare earth elements is 0.8% or less. be able to.

[粒界反応型析出物存在領域の最大幅]
Cu-Ti系銅合金では、粒界反応型析出物が生成しやすい。粒界反応型析出物は曲げ加工性を低下させる要因となる。軟質な組織状態に調整されていれば粒界反応型析出物が多く生成しても曲げ加工性をある程度良好に維持することはできる。しかし、Cu-Ti系銅合金板材において強度と曲げ加工性を高いレベルで両立させるためには、粒界反応型析出物存在領域の最大幅が小さくなるように金属組織を制御することが重要であることがわかった。具体的には、本発明の銅合金板材では、前述の「粒界反応型析出物存在領域の最大幅の求め方」に従って特定される、板面に平行な観察面における粒界反応型析出物存在領域の最大幅が1000nm以下である組織状態が採用される。粒界反応型析出物存在領域の最大幅の低減には、結晶粒径を微細化させることができる後述の製造工程の採用が極めて有効である。なお、上掲の「粒界反応型析出物存在領域の最大幅の求め方」で説明したSEM画像において、粒界反応型析出物存在領域が観察されない場合は、「粒界反応型析出物存在領域の最大幅が1000nm以下である」に該当するものとする。
[Maximum width of grain boundary reaction type precipitate existing region]
In Cu-Ti based copper alloys, grain boundary reaction type precipitates are likely to be generated. Grain boundary reaction type precipitates become a factor that reduces bending workability. If the structure is adjusted to be soft, bending workability can be maintained to some extent even if a large amount of grain boundary reaction type precipitates are generated. However, in order to achieve both high levels of strength and bending workability in Cu-Ti copper alloy sheets, it is important to control the metal structure so that the maximum width of the region where grain boundary reaction type precipitates exist is small. I found out something. Specifically, in the copper alloy sheet material of the present invention, the grain boundary reaction type precipitates in the observation plane parallel to the plate surface are A tissue state in which the maximum width of the existing region is 1000 nm or less is adopted. In order to reduce the maximum width of the region where grain boundary reaction type precipitates exist, it is extremely effective to employ the manufacturing process described below that can make the crystal grain size finer. In addition, if the region where grain boundary reaction type precipitates exist is not observed in the SEM image explained above in "How to determine the maximum width of the region where grain boundary reaction type precipitates exist," The maximum width of the region is 1000 nm or less."

[KAM値]
強度と曲げ加工性を高いレベルで両立させるためには、KAM値が高くなりすぎないことも重要である。KAM値は結晶粒内の格子ひずみを評価することができる指標の1つである。検討の結果、本発明の銅合金板材では、前述の「KAM値の求め方」に従うKAM値が3.0°以下である組織状態とする。十分な強度が得られる限り、KAM値の下限は特に制限されないが、通常、0.5°以上の範囲で調整すればよい。強度と曲げ加工性の両立、および製造性の観点から、KAM値は0.6~2.0の範囲であることがより好ましい。
[KAM value]
In order to achieve both high levels of strength and bending workability, it is also important that the KAM value does not become too high. The KAM value is one of the indicators that can evaluate lattice strain within crystal grains. As a result of the study, the copper alloy sheet material of the present invention has a structure in which the KAM value is 3.0° or less according to the above-mentioned "How to Determine the KAM Value". As long as sufficient strength can be obtained, the lower limit of the KAM value is not particularly limited, but it can usually be adjusted within a range of 0.5° or more. From the viewpoint of achieving both strength and bending workability and manufacturability, the KAM value is more preferably in the range of 0.6 to 2.0.

[引張強さ]
本発明の銅合金板材の圧延方向の引張強さは、850MPa以上であることが好ましく、880MPa以上であることがより好ましい。圧延方向の引張強さが1000MPa以上である強度レベルに調整することも可能である。引張強さの上限は特に制限されないが、例えば1400MPa以下の範囲で調整すればよく、1200MPa以下の範囲で調整してもよい。
[Tensile strength]
The tensile strength in the rolling direction of the copper alloy sheet material of the present invention is preferably 850 MPa or more, more preferably 880 MPa or more. It is also possible to adjust the tensile strength in the rolling direction to a strength level of 1000 MPa or more. The upper limit of the tensile strength is not particularly limited, but may be adjusted within a range of, for example, 1400 MPa or less, or may be adjusted within a range of 1200 MPa or less.

[微細析出物粒子の個数密度]
長径5~100nmの微細析出物粒子は、マトリックス(金属素地)中に分散して存在することにより強度向上に寄与する。長径5~100nmの微細析出物粒子の個数密度は1.0×10個/mm以上であることが好ましい。一方、微細析出物粒子が多くなり過ぎると、曲げ加工性に悪影響を及ぼす場合があるので、長径5~100nmの微細析出物粒子の個数密度は1.0×1012個/mm以下の範囲であることが好ましい。なお、Tiの含有量が多いほど微細析出物粒子の生成量は多くなる傾向にある。
[Number density of fine precipitate particles]
Fine precipitate particles with a major diameter of 5 to 100 nm contribute to improving strength by being dispersed in the matrix (metal base). The number density of fine precipitate particles having a major diameter of 5 to 100 nm is preferably 1.0×10 8 particles/mm 2 or more. On the other hand, if the number of fine precipitate particles is too large, it may have an adverse effect on bending workability, so the number density of fine precipitate particles with a major axis of 5 to 100 nm is within the range of 1.0 × 10 12 /mm 2 or less. It is preferable that Note that the amount of fine precipitate particles produced tends to increase as the Ti content increases.

[平均結晶粒径]
平均結晶粒径が小さいほど、銅合金板材の製造における時効処理時に粒界反応型析出物の生成サイトを分散させることができ、上述した粒界反応型析出物存在領域の最大幅を低減させる上で有利となる。また、強度向上にも有利となる。本発明の銅合金板材は、板面に平行な観察面においてJIS H0501-1986に準ずる切断法による平均結晶粒径が例えば20μm以下であることが好ましく、16μm以下であることがより好ましく、5μm以下であることが更に好ましい。平均結晶粒径を過剰に微細化することは工程負荷の増加を招く観点から好ましくない。通常、平均結晶粒径は2μm以上の範囲とすればよい。溶体化処理を2回行う後述の製造工程は結晶粒の微細化に有効である。なお、JIS H0501-1986に規定の切断法では「切断長さの平均値(mm)をもって表示する」とあるが、この既定の表示単位に対し本発明で目標とする結晶粒径は非常に小さいため、ここではより倍率の高い観察視野において当該規格の手法に準ずる測定を行い、μm単位での平均結晶粒径を求める。
[Average grain size]
The smaller the average grain size, the more dispersed the formation sites of grain boundary reaction type precipitates are during aging treatment in the production of copper alloy sheet materials, and the more the above-mentioned maximum width of the grain boundary reaction type precipitate existing region can be reduced. It is advantageous. It is also advantageous for improving strength. The copper alloy sheet material of the present invention preferably has an average crystal grain size of, for example, 20 μm or less, more preferably 16 μm or less, and 5 μm or less when measured by a cutting method according to JIS H0501-1986 in an observation plane parallel to the sheet surface. It is more preferable that Excessive refinement of the average grain size is not preferable from the viewpoint of increasing process load. Usually, the average crystal grain size may be in the range of 2 μm or more. The manufacturing process described below in which solution treatment is performed twice is effective for refining crystal grains. In addition, the cutting method prescribed in JIS H0501-1986 states that "the average value of the cutting length (mm) is indicated," but the crystal grain size targeted by the present invention is extremely small in relation to this default display unit. Therefore, here, measurement is performed in accordance with the method of the standard in an observation field of higher magnification, and the average crystal grain size in μm is determined.

[曲げ加工性]
通電部品等への加工に際しては曲げ加工を伴うことが多い。Cu-Ti系合金においては、日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tが2.5以下である曲げ加工性を備えていれば、多くの通電部品用途への適用が可能であるが、本発明では更に厳しい基準として、上記MBR/tが2.0以下である曲げ加工性を目標とする。B.W.(Bad Way)は、曲げ軸が圧延平行方向となることを意味する。本発明の銅合金板材のMBR/tは、好ましくは1.0以下であり、より好ましくは0.7以下であり、更に好ましくは0.0である。
[Bending workability]
Bending is often involved when processing current-carrying parts. For Cu-Ti alloys, the ratio MBR/t of the minimum bending radius MBR without cracking and the plate thickness t is 2 in the W bending test at B.W. according to the Japan Copper Brass Association technical standard JCBA T307:2007. If the bending workability is .5 or less, it can be applied to many current-carrying parts, but in the present invention, as an even stricter standard, the above-mentioned MBR/t is 2.0 or less. The goal is B.W. (Bad Way) means that the bending axis is parallel to the rolling direction. The MBR/t of the copper alloy plate material of the present invention is preferably 1.0 or less, more preferably 0.7 or less, and even more preferably 0.0.

なお、JCBA T307:2007には「本標準は、厚さ0.1mm以上0.8mm以下の銅および銅合金薄板条の曲げ加工性評価に適用する。」と記載されている。発明者らの検討によれば、板厚が0.1mm未満のCu-Ti系銅合金板材においても、当該規格に記載される方法でのW曲げ試験によって、曲げ加工性の評価が可能であることが確認された。したがって、本発明ではJCBA T307:2007に示されるB.W.でのW曲げ試験方法を、板厚が0.1mm未満(例えば0.02mm以上0.1mm未満)の場合にも拡張して、そのまま適用する。 Note that JCBA T307:2007 states, "This standard is applied to the evaluation of bending workability of copper and copper alloy thin sheets and strips with a thickness of 0.1 mm or more and 0.8 mm or less." According to the inventors' studies, it is possible to evaluate the bending workability of Cu-Ti copper alloy sheets with a thickness of less than 0.1 mm by W bending tests using the method described in the standard. This was confirmed. Therefore, in the present invention, the W bending test method in B.W. shown in JCBA T307:2007 is extended to cases where the plate thickness is less than 0.1 mm (for example, 0.02 mm or more and less than 0.1 mm). Apply as is.

[導電率]
Cu-Ti系銅合金板材の用途を考慮すると、導電率は10.0%IACS以上であることが望まれる。導電率の上限は特に制限されないが、通常、20.0%IACS以下の範囲で調整すればよい。
[conductivity]
Considering the use of the Cu-Ti based copper alloy plate material, it is desirable that the conductivity is 10.0% IACS or more. The upper limit of the electrical conductivity is not particularly limited, but it may normally be adjusted within a range of 20.0% IACS or less.

[応力緩和特性]
Cu-Ti系銅合金板材の用途を考慮すると、250℃で100時間保持後の応力緩和率が15%以下であることが望ましい。応力緩和率の下限は特に制限されないが、上記応力緩和率は通常3%以上である。
[Stress relaxation properties]
Considering the use of the Cu-Ti based copper alloy sheet material, it is desirable that the stress relaxation rate after being held at 250° C. for 100 hours is 15% or less. Although the lower limit of the stress relaxation rate is not particularly limited, the stress relaxation rate is usually 3% or more.

[密度]
Cu、Ti、Alの原子量の序列はCu>Ti>Alであるから、Alの含有量を多くすることがCu-Ti系銅合金の密度(比重)を低減する上で最も効果的であるとともに、Ti含有量の影響も無視できない。強度、曲げ加工性、導電性、応力緩和特性の全てを上述した良好な範囲に維持する上でAlやTiの含有量は制限を受けるが、本発明に従えば、20℃の密度を8.53g/cm以下に低減することができる。Cu-Ti系銅合金において、強度、曲げ加工性、導電性、応力緩和特性の全てを上述した良好な範囲に維持しながら密度を8.53g/cm以下にまで低減することは、従来の技術では困難であった。なお、密度の下限は特に制限されないが、例えば7.8g/cm以上の範囲で調整すればよい。
[density]
Since the atomic weight order of Cu, Ti, and Al is Cu>Ti>Al, increasing the Al content is most effective in reducing the density (specific gravity) of the Cu-Ti based copper alloy. , the influence of Ti content cannot be ignored. The content of Al and Ti is limited in order to maintain strength, bendability, conductivity, and stress relaxation properties within the above-mentioned favorable ranges, but according to the present invention, the density at 20°C can be reduced to 8. It can be reduced to 53 g/cm 3 or less. In Cu-Ti based copper alloys, reducing the density to 8.53 g/cm 3 or less while maintaining strength, bending workability, conductivity, and stress relaxation properties within the above-mentioned favorable ranges is an impossible task compared to conventional methods. This was difficult with technology. Note that the lower limit of the density is not particularly limited, but may be adjusted within a range of 7.8 g/cm 3 or more, for example.

[製造方法]
以上説明した銅合金板材は、例えば以下の製造工程により製造することができる。
溶解・鋳造→鋳片加熱→熱間加工→粗冷間圧延→第1溶体化処理→第1中間冷間圧延→第2溶体化処理→第2中間冷間圧→時効処理→(仕上冷間圧延)→(低温焼鈍)
上記において、括弧を付した工程は省略可能である。なお、上記工程中には記載していないが、熱間加工後には必要に応じて面削が行われ、各熱処理後には必要に応じて酸洗、研磨、あるいは更に脱脂が行われる。以下、上記の各工程について説明する。
[Production method]
The copper alloy plate material explained above can be manufactured, for example, by the following manufacturing process.
Melting/casting → billet heating → hot working → rough cold rolling → first solution treatment → first intermediate cold rolling → second solution treatment → second intermediate cold pressure → aging treatment → (finish cold rolling) Rolling) → (Low temperature annealing)
In the above, steps in parentheses can be omitted. Although not described in the above steps, surface cutting is performed as necessary after hot working, and pickling, polishing, or further degreasing is performed as necessary after each heat treatment. Each of the above steps will be explained below.

[溶解・鋳造]
るつぼ炉などを用いて本発明で規定する化学組成の鋳片を製造すればよい。TiおよびAlの酸化を防止するために、不活性ガス雰囲気または真空溶解炉で行うのがよい。
[Melting/Casting]
A slab having the chemical composition specified in the present invention may be manufactured using a crucible furnace or the like. In order to prevent oxidation of Ti and Al, it is preferable to carry out the process in an inert gas atmosphere or in a vacuum melting furnace.

[鋳片加熱]
熱間加工前の鋳片加熱は例えば900~960℃で0.5~5時間保持する方法で行うことができる。
[Slab heating]
The slab can be heated before hot working, for example, by holding it at 900 to 960°C for 0.5 to 5 hours.

[熱間加工、粗冷間圧延]
熱間加工の方法は特に限定されない。通常、熱間鍛造や熱間圧延が採用される。熱間圧延の場合、トータルの熱間圧延率は例えば60~99%とすればよい。熱間加工終了後には、水冷などにより急冷することが好ましい。次いで、冷間圧延を行う。この段階での冷間圧延を本明細書では「粗冷間圧延」と呼ぶ。粗冷間圧延での圧延率は例えば50~99%とすることができる。このようにして第1溶体化処理に供するための中間製品板材を得ることができる。
ここで、圧延率は下記(1)式によって表される。
圧延率(%)=100×(t-t)/t …(1)
:圧延前の板厚(mm)
:圧延後の板厚(mm)
[Hot working, rough cold rolling]
The hot working method is not particularly limited. Usually, hot forging or hot rolling is used. In the case of hot rolling, the total hot rolling rate may be, for example, 60 to 99%. After the hot working is completed, it is preferable to rapidly cool the material by water cooling or the like. Next, cold rolling is performed. Cold rolling at this stage is referred to as "rough cold rolling" in this specification. The rolling ratio in rough cold rolling can be, for example, 50 to 99%. In this way, an intermediate product plate material to be subjected to the first solution treatment can be obtained.
Here, the rolling rate is expressed by the following formula (1).
Rolling ratio (%) = 100 x (t 0 - t 1 )/t 0 (1)
t 0 : Plate thickness before rolling (mm)
t1 : Plate thickness after rolling (mm)

[第1溶体化処理]
上記の中間製品板材に対して、1回目の溶体化処理を施す。この溶体化処理では、熱間加工や粗冷間圧延で導入された歪を利用して再結晶させ、鋳造後や熱間加工中に生成した粗大な粒界反応型析出物や粒状析出物を十分に固溶させる。この第1溶体化処理の段階で析出物の固溶が不十分であると、その析出物は最終工程まで残存し、所望の特性が得られない。第1溶体化処理では固溶化を優先させるために熱エネルギーの導入量を多くすることが有利となる。この場合、再結晶粒の成長が生じやすいが、後の第2溶体化処理で結晶粒の微細化を図るので問題ない。第1溶体化処理は、750~950℃の温度域で10~600秒保持する条件にて行うことができ、800~900℃で20~600秒保持する条件とすることがより好ましい。
[First solution treatment]
A first solution treatment is performed on the above intermediate product plate material. In this solution treatment, the strain introduced during hot working and rough cold rolling is used to recrystallize and remove coarse grain boundary reaction type precipitates and granular precipitates generated after casting and during hot working. Sufficient solid solution. If the solid solution of the precipitates is insufficient in this first solution treatment stage, the precipitates will remain until the final step, making it impossible to obtain desired characteristics. In the first solution treatment, it is advantageous to increase the amount of thermal energy introduced in order to give priority to solid solution treatment. In this case, although recrystallized grains tend to grow, there is no problem because the crystal grains are made finer in the subsequent second solution treatment. The first solution treatment can be carried out under conditions of holding at a temperature range of 750 to 950°C for 10 to 600 seconds, and more preferably under conditions of holding at 800 to 900°C for 20 to 600 seconds.

[第1中間冷間圧延]
第1溶体化処理を終えた材料に施す冷間圧延を第1冷間圧延と呼ぶ。第1冷間圧延では、板厚を減少させることに加え、歪を導入することを目的とする。歪の導入が不十分であると、続く第2溶体化処理で再結晶の核生成サイトが十分に確保できず、結晶粒の微細化が困難となる。以上の理由から、第1中間冷間圧延では圧延率を70%以上とする必要がある。85%以上とすることがより効果的であり、90%以上とすることが更に効果的である。圧延率の上限については特に制限されないが、冷間圧延機の能力に応じて、通常は99%以下の範囲で設定すればよい。
[First intermediate cold rolling]
The cold rolling performed on the material that has undergone the first solution treatment is called first cold rolling. The purpose of the first cold rolling is to introduce strain in addition to reducing the plate thickness. If strain is insufficiently introduced, sufficient nucleation sites for recrystallization cannot be secured in the subsequent second solution treatment, making it difficult to refine crystal grains. For the above reasons, it is necessary to set the rolling ratio in the first intermediate cold rolling to 70% or more. It is more effective to set it to 85% or more, and even more effective to set it to 90% or more. The upper limit of the rolling ratio is not particularly limited, but it may be normally set within a range of 99% or less depending on the capacity of the cold rolling mill.

[第2溶体化処理]
第1中間冷間圧延を終えた材料は、析出物が既に十分に固溶しており、かつマトリックス(金属素地)の結晶には歪が導入されている。このような組織状態の板材に対し、2回目の溶体化処理を施す。この溶体化処理では、第1中間冷間圧延で導入された歪を利用して多くの場所から新たな再結晶を生じさせ、結晶粒の微細化を図る。主目的は、析出物の固溶化ではなく、再結晶による結晶粒微細化であるから、第1溶体化処理よりも加熱温度の許容上限は低くなる。具体的には、750~900℃の温度域で10~600秒保持する条件で行うことができる。900℃を超えると再結晶粒間の粒界移動を伴う粒成長が起こりやすくなり、結晶粒が粗大化する場合がある。また、750℃より低いと再結晶ではなく析出が起こりやすくなり、後述する時効処理において微細析出物を十分に生成させることが困難になる。第2溶体化処理は750~880℃の温度域で10~300秒保持する条件で行うことがより好ましく、750~860℃の温度域で10~150秒保持する条件で行うことが更に好ましい。また、結晶粒の微細化を図るという第2溶体化処理の目的を好適に達成する観点から、第2溶体化処理における加熱温度2は第1溶体化処理における加熱温度1より低いことがより効果的であり、また、前記加熱温度2が加熱温度1以上の温度である場合には、その差は50℃以下でありかつ第2溶体化処理の加熱温度2での保持時間2が第1溶体化処理の加熱温度1での保持時間1の3分の1以下であることがより効果的である。
[Second solution treatment]
In the material that has undergone the first intermediate cold rolling, the precipitates are already sufficiently dissolved in solid solution, and strain has been introduced into the crystals of the matrix (metal base). A plate material having such a structure is subjected to a second solution treatment. In this solution treatment, the strain introduced in the first intermediate cold rolling is used to generate new recrystallization from many locations, thereby refining the crystal grains. Since the main purpose is not to form a solid solution of precipitates but to refine grains by recrystallization, the upper limit of the allowable heating temperature is lower than in the first solution treatment. Specifically, it can be carried out under conditions of holding the temperature in a temperature range of 750 to 900°C for 10 to 600 seconds. When the temperature exceeds 900° C., grain growth accompanied by movement of grain boundaries between recrystallized grains tends to occur, and crystal grains may become coarse. Furthermore, if the temperature is lower than 750°C, precipitation rather than recrystallization tends to occur, making it difficult to sufficiently generate fine precipitates in the aging treatment described below. The second solution treatment is more preferably carried out at a temperature range of 750 to 880°C for 10 to 300 seconds, and even more preferably carried out at a temperature range of 750 to 860°C for 10 to 150 seconds. In addition, from the viewpoint of suitably achieving the purpose of the second solution treatment, which is to refine the crystal grains, it is more effective that the heating temperature 2 in the second solution treatment is lower than the heating temperature 1 in the first solution treatment. and when the heating temperature 2 is higher than the heating temperature 1, the difference is 50°C or less and the holding time 2 at the heating temperature 2 of the second solution treatment is longer than that of the first solution. It is more effective that the holding time at the heating temperature 1 of the chemical treatment is one-third or less of the holding time 1.

[第2中間冷間圧延]
第2溶体化処理を終えた材料に施す冷間圧延を第2中間冷間圧延と呼ぶ。第2中間冷間圧延では、続く時効処理において結晶粒内での微細析出物の生成が促進されるように、適度な歪を導入する。また、この歪は強度の向上にも寄与する。歪の導入量が多すぎると最終的にKAM値が高すぎる組織状態となり、曲げ加工性の低下に繋がる恐れがある。したがって第2中間冷間圧延の圧延率は第1中間冷間圧延のように高く設定することはできない。具体的には、第2中間冷間圧延の圧延率は15~50%の範囲とする必要がある。15~40%の範囲とすることがより好ましく、15~35%の範囲に管理してもよい。
[Second intermediate cold rolling]
The cold rolling performed on the material that has undergone the second solution treatment is called second intermediate cold rolling. In the second intermediate cold rolling, appropriate strain is introduced so that the formation of fine precipitates within the crystal grains is promoted in the subsequent aging treatment. This strain also contributes to improving the strength. If the amount of strain introduced is too large, the resulting structure will have a KAM value that is too high, which may lead to a decrease in bending workability. Therefore, the rolling rate of the second intermediate cold rolling cannot be set as high as that of the first intermediate cold rolling. Specifically, the rolling ratio of the second intermediate cold rolling needs to be in the range of 15 to 50%. It is more preferably in the range of 15 to 40%, and may be controlled in the range of 15 to 35%.

[時効処理]
第2中間冷間圧延を終えた材料に対して、300~470℃、好ましくは320~450℃での時効処理を施し、強度に寄与する微細析出物を生成させる。時効処理によって粒界反応型析出物も生成するが、既に結晶粒が微細化されているので、粒界反応型析出物の生成サイトが材料中に分散し、上述した「粒界反応型析出物存在領域の最大幅」が小さい金属組織が得られる。時効処理時間(300~470℃での保持時間)については、通常、1~24時間の範囲で十分に効果が得られる時効処理時間を設定することができる。時効処理時間は例えば8~20時間の範囲で設定することが好ましい。
[Aging treatment]
The material that has undergone the second intermediate cold rolling is subjected to an aging treatment at 300 to 470°C, preferably 320 to 450°C, to generate fine precipitates that contribute to strength. Grain boundary reaction type precipitates are also generated by aging treatment, but since the crystal grains have already been refined, the generation sites of grain boundary reaction type precipitates are dispersed throughout the material, resulting in the above-mentioned ``grain boundary reaction type precipitates''. A metal structure with a small "maximum width of existing region" can be obtained. The aging treatment time (holding time at 300 to 470°C) can usually be set within the range of 1 to 24 hours to obtain a sufficient effect. The aging treatment time is preferably set within a range of 8 to 20 hours, for example.

[仕上冷間圧延、低温焼鈍]
時効処理後には、板厚調整や強度向上などの目的で必要に応じて冷間圧延および低温焼鈍を施すことができる。この段階での冷間圧延を「仕上冷間圧延」と呼ぶ。仕上冷間圧延での圧延率が高すぎると、KAM値が高すぎる組織状態となり、曲げ加工性の低下に繋がる。仕上冷間圧延では圧延率を50%以下とする必要があり、30%以下とすることがより好ましく、25%以下の範囲に管理してもよい。強度向上のためには5%以上の圧延率を確保することが効果的であり、10%以上とすることがより効果的である。低温焼鈍は、350~550℃、好ましくは400~500℃の温度域に60秒以下の時間保持する条件で行うことができる。上記温度域での保持時間は15秒以上を確保することが効果的である。
最終的な板厚は、例えば0.02~0.50mmの範囲とすることができる。
[Final cold rolling, low temperature annealing]
After the aging treatment, cold rolling and low-temperature annealing can be performed as necessary for the purpose of adjusting plate thickness, improving strength, and the like. Cold rolling at this stage is called "finish cold rolling." If the rolling rate in finish cold rolling is too high, the KAM value will be too high, leading to a decrease in bending workability. In the finish cold rolling, the rolling ratio needs to be 50% or less, more preferably 30% or less, and may be controlled within the range of 25% or less. In order to improve strength, it is effective to ensure a rolling ratio of 5% or more, and more effective to ensure a rolling ratio of 10% or more. Low-temperature annealing can be carried out under conditions of holding the material in a temperature range of 350 to 550°C, preferably 400 to 500°C, for a period of 60 seconds or less. It is effective to ensure a holding time of 15 seconds or more in the above temperature range.
The final plate thickness can range from 0.02 to 0.50 mm, for example.

[通電部品]
以上説明した本発明の銅合金板材は、強度、導電性、曲げ加工性、応力緩和特性のすべてを高いレベルでバランス良く兼ね備えているとともに密度(比重)が低減されているので、この板材を材料に用いた通電部品は、近年の携帯端末や自動車用電子機器の高機能化の要求にかなうものである。
[Electricity-carrying parts]
The copper alloy sheet material of the present invention described above has a high level of well-balanced strength, electrical conductivity, bending workability, and stress relaxation properties, and has a reduced density (specific gravity). The current-carrying components used in this work meet the demands for higher functionality in mobile terminals and automotive electronic equipment in recent years.

[放熱部品]
以上説明した本発明の銅合金板材は、強度、導電性、曲げ加工性、応力緩和特性のすべてを高いレベルでバランス良く兼ね備えている(導電性に優れる材料は一般的に放熱性に優れている)とともに密度(比重)が低減されているので、この板材を材料に用いた放熱部品は、近年の携帯端末や自動車用電子機器の高機能化の要求にかなうものである。
[Heat dissipation parts]
The copper alloy sheet material of the present invention described above has a high level of well-balanced strength, electrical conductivity, bending workability, and stress relaxation properties (materials with excellent electrical conductivity generally have excellent heat dissipation properties). ), and the density (specific gravity) is reduced, so heat dissipation parts using this plate material meet the demands for higher functionality of mobile terminals and automotive electronic devices in recent years.

表1に示す化学組成の銅合金を溶製し、鋳造した。本発明例No.14では、希土類元素の添加源としてミッシュメタル(希土類元素の混合体)を銅合金原料の全量中0.32質量%の割合で添加した。このミッシュメタルに含まれる主要な希土類元素の質量割合は、La:Ce:Pr:Nd=28:50:5:17であった。 A copper alloy having the chemical composition shown in Table 1 was melted and cast. In Inventive Example No. 14, misch metal (mixture of rare earth elements) was added as a rare earth element addition source at a ratio of 0.32% by mass to the total amount of the copper alloy raw material. The mass ratio of the main rare earth elements contained in this misch metal was La:Ce:Pr:Nd=28:50:5:17.

得られた鋳片を表2、表3に示す温度、時間で加熱した。一部の例(比較例No.40、41)を除き、鋳片を加熱炉から取り出して表2、表3に記載の板厚まで熱間圧延し、水冷した。トータルの熱間圧延率は87.5~95%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)し、各熱延材に表2、表3の「粗冷間圧延」の欄に記載の板厚まで冷間圧延を施した。 The obtained slabs were heated at the temperatures and times shown in Tables 2 and 3. Except for some examples (Comparative Example Nos. 40 and 41), the slabs were taken out of the heating furnace, hot-rolled to the thickness shown in Tables 2 and 3, and cooled with water. The total hot rolling rate is 87.5 to 95%. After hot rolling, the surface oxide layer was removed by mechanical polishing (face cutting), and each hot rolled material was cold rolled to the thickness listed in the "Rough Cold Rolling" column of Tables 2 and 3. did.

その後、一部の例(比較例No.31、38、39、40、41、45)を除き、表2、表3に示す条件で第1溶体化処理、第1中間冷間圧延、第2溶体化処理、第2中間冷間圧延、時効処理を前記の順に施した。時効処理はバッチ式熱処理炉を用いて窒素雰囲気下で行った。本発明例No.4、5、11、比較例37については、時効処理後に表2、表3に記載の条件で仕上冷間圧延および低温焼鈍を施した。表2、表3の「-」(ハイフン)表示は、工程を省略したことを意味する。No.31、39、45は第1中間冷間圧延および第2溶体化処理を省略した。No.38は溶体化処理後に予備的な時効処理(前駆処理)を行い、その後、軽圧延率での冷間圧延を経て時効処理を施す工程とした。No.40は均質化の熱処理を施した鋳片に、直接時効処理を施す工程としたものであり、熱間圧延、冷間圧延は行っていない。No.41は均質化の熱処理を施した鋳片に、圧延率85%の冷間圧延を施して板厚0.10mmとし、その後、溶体化処理と時効処理を施す工程としたものであり、熱間圧延は行っていない。表2、表3には最終的に得られた板材の板厚を示してある。この板材を供試材として、以下の調査に供した。No.40の例では圧延工程を経ていないので、時効処理を終えた材料から切り出したサンプルをエッチングにより板厚0.08mmに調整した試験片を、供試材とした。なお、密度(比重)については、鋳片加熱を終えた段階の材料から切り出したブロック試料を用いて測定した。 Thereafter, except for some examples (Comparative Example No. 31, 38, 39, 40, 41, 45), the first solution treatment, the first intermediate cold rolling, and the second Solution treatment, second intermediate cold rolling, and aging treatment were performed in the above order. The aging treatment was performed in a nitrogen atmosphere using a batch heat treatment furnace. Regarding Invention Examples Nos. 4, 5, and 11 and Comparative Example 37, finish cold rolling and low-temperature annealing were performed under the conditions listed in Tables 2 and 3 after the aging treatment. The symbol "-" (hyphen) in Tables 2 and 3 means that a step was omitted. For Nos. 31, 39, and 45, the first intermediate cold rolling and the second solution treatment were omitted. In No. 38, a preliminary aging treatment (precursor treatment) was performed after the solution treatment, and then the aging treatment was performed through cold rolling at a light rolling reduction. No. 40 is a process in which the slab subjected to homogenization heat treatment is directly subjected to aging treatment, and hot rolling and cold rolling are not performed. No. 41 is a slab that has been heat-treated for homogenization, cold-rolled at a rolling rate of 85% to a plate thickness of 0.10 mm, and then subjected to solution treatment and aging treatment. No hot rolling was performed. Tables 2 and 3 show the thicknesses of the finally obtained plates. This plate material was used as a test material for the following investigation. Since the example No. 40 did not go through the rolling process, the test piece was prepared by cutting out a sample from the aged material and adjusting the plate thickness to 0.08 mm by etching. Note that the density (specific gravity) was measured using a block sample cut from the material after heating the slab.

(平均結晶粒径)
供試材の板面を研磨し、上掲の「微細析出物粒子の個数密度の求め方」に記載した電解研磨条件を採用して電解研磨により仕上げた面をエッチングして観察面を作製した。その観察面を光学顕微鏡で拡大倍率1000倍で観察し、観察画像を取得した。圧延面に平行な直線を合計3本引き、JIS H0501-1986に準拠した切断法により、それぞれの直線によって切断される結晶粒界の数をカウントすることにより、観察視野における結晶粒径の平均値を算出した。この操作を無作為に選択した5視野について行い、各視野で得られた結晶粒径の平均値の相加平均値を、当該板材の平均結晶粒径として採用した。なお、光学顕微鏡としてOLYMPUS株式会社製のLEXT OLS4000を使用した。
(Average grain size)
The observation surface was prepared by polishing the plate surface of the sample material and etching the surface finished by electropolishing using the electrolytic polishing conditions described in "How to determine the number density of fine precipitate particles" above. . The observation surface was observed with an optical microscope at a magnification of 1000 times, and an observation image was obtained. By drawing a total of three straight lines parallel to the rolling surface and counting the number of grain boundaries cut by each straight line using a cutting method based on JIS H0501-1986, the average value of the grain size in the observation field can be determined. was calculated. This operation was performed for five randomly selected visual fields, and the arithmetic mean value of the average values of the crystal grain sizes obtained in each visual field was adopted as the average crystal grain size of the plate material. Note that LEXT OLS4000 manufactured by OLYMPUS Corporation was used as an optical microscope.

(粒界反応型析出物存在領域の最大幅)
供試材の板面を研磨し、上掲の「微細析出物粒子の個数密度の求め方」に記載した電解研磨条件を採用して電解研磨により仕上げた観察面を、SEM(走査型電子顕微鏡)により観察し、上掲の「粒界反応型析出物存在領域の最大幅の求め方」に従い、粒界反応型析出物存在領域の最大幅を求めた。
(Maximum width of grain boundary reaction type precipitate existing region)
The plate surface of the test material was polished, and the observation surface, which was finished by electropolishing using the electrolytic polishing conditions described in "How to determine the number density of fine precipitate particles" above, was examined using an SEM (scanning electron microscope). ), and the maximum width of the grain boundary reaction type precipitate existing area was determined according to the above-mentioned "How to determine the maximum width of the grain boundary reaction type precipitate existing area".

(微細析出物粒子の個数密度)
上掲の「微細析出物粒子の個数密度の求め方」に従い、微細析出物粒子の個数密度を求めた。
(Number density of fine precipitate particles)
The number density of fine precipitate particles was determined according to the above-mentioned "How to determine the number density of fine precipitate particles."

(KAM値)
供試材から切り出したサンプルの板面をバフ研磨した後、イオンミリング研磨を行ってEBSD(電子線後方散乱回折)測定用の試料表面を作製した。その試料表面をFE-SEM(日本電子株式会社製JSM-7200F)により加速電圧15kV、倍率500倍の条件で観察し、240μm×板厚方向180μmの矩形の測定領域について、FE-SEMに設置されているEBSD装置(Oxford Instruments社製、Symmetry)を用いて、EBSD法によりステップサイズ0.1μmで結晶方位データを採取した。5視野の測定領域について測定した結晶方位データに基づき、上掲の「KAM値の求め方」に従い、KAM値を求めた。EBSDデータ解析用ソフトウェアとして、株式会社TSLソリューションズ製OIM-Analysis7.3.1を利用した。
(KAM value)
After buffing the plate surface of the sample cut out from the test material, ion milling polishing was performed to prepare a sample surface for EBSD (electron beam backscatter diffraction) measurement. The surface of the sample was observed using an FE-SEM (JSM-7200F manufactured by JEOL Ltd.) under the conditions of an acceleration voltage of 15 kV and a magnification of 500 times. Crystal orientation data was collected by the EBSD method at a step size of 0.1 μm using an EBSD device (manufactured by Oxford Instruments, Symmetry). Based on the crystal orientation data measured for the measurement area of 5 visual fields, the KAM value was determined according to the above-mentioned "How to determine the KAM value". OIM-Analysis 7.3.1 manufactured by TSL Solutions Co., Ltd. was used as software for EBSD data analysis.

(引張強さ)
各供試材から圧延方向(例No.40では任意の方向)の引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241に準拠した引張試験行い、引張強さを測定した。n=3の平均値を当該供試材の成績値とした。また、この引張試験により求めた0.2%耐力の値を後述の応力緩和率の測定に用いた。
(Tensile strength)
A tensile test piece (JIS No. 5) in the rolling direction (any direction in Example No. 40) was taken from each sample material, and a tensile test was conducted in accordance with JIS Z2241 with the number of tests n = 3 to measure the tensile strength. did. The average value of n=3 was taken as the performance value of the sample material. In addition, the value of 0.2% proof stress determined by this tensile test was used to measure the stress relaxation rate described below.

(導電率)
各供試材の導電率をJIS H0505に準拠してダブルブリッジ、平均断面積法により測定した。
(conductivity)
The conductivity of each sample material was measured by double bridge and average cross-sectional area method in accordance with JIS H0505.

(90°W曲げのMBR/t)
日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tを求めた。試験片サイズは圧延直角方向長さ30mm、圧延方向長さ10mmとした。ただし、例No.40では任意の方向を長手方向とした。曲げ半径を段階的に変えた曲げ試験を、1つの曲げ半径について試験数n=3で試験を行い、3本の試験片の全てにおいて曲げ部表面に割れが認められなかった最小の曲げ半径をその供試材についてのMBRとした。曲げ部表面の割れ有無の判定はJCBA T307:2007に従って行った。曲げ部表面の外観観察において「しわ:大」と判定されたサンプルについては、最も深いしわの部分について曲げ軸方向に垂直に切断した試料を作製し、その研磨断面を光学顕微鏡で観察することによって板厚内部へ進展するクラックが生じていないかどうかを確認し、そのようなクラックが生じていない場合に「割れが認められない」と判定した。
(MBR/t of 90°W bending)
The ratio MBR/t between the minimum bending radius MBR at which no cracking occurs and the plate thickness t was determined by a W bending test at B.W. according to the Japan Copper Brass Association technical standard JCBA T307:2007. The test piece size was 30 mm in length in the direction perpendicular to rolling and 10 mm in length in rolling direction. However, in Example No. 40, an arbitrary direction was taken as the longitudinal direction. A bending test was performed in which the bending radius was changed in stages, and the number of tests was n = 3 for one bending radius. This is the MBR for the sample material. The presence or absence of cracks on the surface of the bent portion was determined in accordance with JCBA T307:2007. For samples judged to have "large wrinkles" in the appearance observation of the surface of the bent part, a sample was cut perpendicular to the bending axis direction at the deepest wrinkle part, and the polished cross section was observed with an optical microscope. It was checked to see if any cracks had developed into the inside of the plate, and if no such cracks had occurred, it was determined that ``no cracks were observed.''

(応力緩和率)
供試材から圧延直角方向(例No.40では任意の方向)の幅が10mmの試験片を切り出し、日本伸銅協会技術標準JCBA T309:2004に準拠して片持ちはり方式で応力緩和率を測定した。試験片は、たわみ変位が板厚方向となるように、0.2%耐力の80%に相当する負荷応力を付与した状態でセットし、250℃で100時間保持後の応力緩和率を測定した。この条件で応力緩和率が15%以下であれば、Cu-Ti系銅合金板材として良好な耐応力緩和性を有していると判断できる。
(stress relaxation rate)
A test piece with a width of 10 mm in the direction perpendicular to the rolling direction (any direction in Example No. 40) was cut from the test material, and the stress relaxation rate was measured using a cantilever method in accordance with the Japan Copper Brass Association technical standard JCBA T309:2004. It was measured. The test piece was set with a load stress equivalent to 80% of the 0.2% proof stress so that the deflection displacement was in the thickness direction, and the stress relaxation rate was measured after holding it at 250°C for 100 hours. . If the stress relaxation rate is 15% or less under these conditions, it can be judged that the sheet material has good stress relaxation resistance as a Cu-Ti based copper alloy plate material.

(密度)
鋳片加熱を終えた段階の材料から切り出した質量10gのブロック試料を用いて、アルキメデス法(水中重量法)により常温(20℃)の密度を測定した。
以上の結果を表4、表5に示す。
(density)
Using a block sample with a mass of 10 g cut out from the material after heating the slab, the density at room temperature (20° C.) was measured by the Archimedes method (underwater gravimetric method).
The above results are shown in Tables 4 and 5.

Figure 2023152264000002
Figure 2023152264000002

Figure 2023152264000003
Figure 2023152264000003

Figure 2023152264000004
Figure 2023152264000004

Figure 2023152264000005
Figure 2023152264000005

Figure 2023152264000006
Figure 2023152264000006

化学組成および製造条件を上述の規定に従って厳密にコントロールした本発明例の板材はいずれも、強度、導電性、曲げ加工性、応力緩和特性が良好であり、かつ密度(比重)の低減効果にも優れていた。 All of the plate materials of the present invention, whose chemical composition and manufacturing conditions were strictly controlled in accordance with the above regulations, have good strength, conductivity, bending workability, and stress relaxation properties, and are also effective in reducing density (specific gravity). It was excellent.

これに対し、比較例であるNo.31は、溶体化処理を1回しか行っていないので粒界反応型析出物存在領域の最大幅が大きくなり、曲げ加工性に劣った。
No.32は、Al含有量が多すぎたので導電性が低下した。
No.33は、第1溶体化処理の温度が低かったので析出相の固溶化が不十分となり、粒界反応型析出物存在領域の最大幅が大きく、曲げ加工性に劣った。また、微細析出物の析出量が不足し、強度も低かった。
No.34は、第1溶体化処理の温度が高すぎたので結晶粒が粗大化し、強度が低かった。
No.35は、第1中間冷間圧延での圧延率が低かったので第2溶体化処理で結晶粒の微細化を図ることができず、強度が低かった。
No.36は、第2中間冷間圧延での圧延率が高すぎたのでKAM値が大きくなりすぎ、曲げ加工性に劣った。
No.37は、仕上冷間圧延での圧延率が高すぎたのでKAM値が大きくなりすぎ、曲げ加工性に劣った。
No.38は、Alを含有していないので密度(比重)の低減効果が得られていない。
No.39は、Alを含有していないので密度(比重)の低減効果が得られていない。また、溶体化処理を高温で1回行う工程を採用しているので粒界反応型析出物存在領域の最大幅が大きくなり、曲げ加工性に劣った。
No.40は、圧延工程を実施していない例である。この場合、軟質であることから粒界反応型析出物存在領域の最大幅が大きいにもかかわらず曲げ加工性は良好であった。しかし、微細析出物の生成量が少なく導電性が低かった。また、微細析出物が少ないことや平均結晶粒径が大きいことから、強度も低かった。
No.41は、Alを含有していないがMgを含有するので密度(比重)の低減効果を得ることはできた。しかし、高強度化は達成されていない。
No.42は、Ti含有量が少なかったので微細析出物の生成量が不足して強度が低かった。また、密度(比重)の低減効果が得られていない。
No.43は、Ti含有量が多すぎたので微細析出物の生成が過剰となり、曲げ加工性に劣った。
No.44は、Al含有量が少なかったので密度(比重)の低減効果が得られていない。
No.45は、Alを含有していないので密度(比重)の低減効果が得られていない。また、溶体化処理を1回しか行っていないので粒界反応型析出物存在領域の最大幅が大きくなり、曲げ加工性に劣った。
No.46は、第2溶体化処理の温度が低かったので結晶粒の微細化が不十分となり、強度が低かった。
On the other hand, Comparative Example No. 31 was subjected to solution treatment only once, so the maximum width of the grain boundary reaction type precipitate existing region was large, and the bending workability was poor.
In No. 32, the electrical conductivity decreased because the Al content was too high.
In No. 33, since the temperature of the first solution treatment was low, the solid solution of the precipitated phase was insufficient, the maximum width of the grain boundary reaction type precipitate existing region was large, and the bending workability was poor. Furthermore, the amount of fine precipitates was insufficient and the strength was low.
In No. 34, the temperature of the first solution treatment was too high, so the crystal grains became coarse and the strength was low.
In No. 35, since the rolling rate in the first intermediate cold rolling was low, grain refinement could not be achieved in the second solution treatment, and the strength was low.
In No. 36, the rolling ratio in the second intermediate cold rolling was too high, so the KAM value became too large and the bending workability was poor.
In No. 37, the rolling ratio in the finish cold rolling was too high, so the KAM value was too large, and the bending workability was poor.
Since No. 38 does not contain Al, the effect of reducing density (specific gravity) cannot be obtained.
Since No. 39 does not contain Al, the effect of reducing density (specific gravity) cannot be obtained. Furthermore, since the process of performing solution treatment once at high temperature was adopted, the maximum width of the region where grain boundary reaction type precipitates existed became large, resulting in poor bending workability.
No. 40 is an example in which the rolling process was not performed. In this case, since the material was soft, the bending workability was good despite the fact that the maximum width of the grain boundary reaction type precipitate existing region was large. However, the amount of fine precipitates produced was small and the conductivity was low. In addition, the strength was low because there were few fine precipitates and the average crystal grain size was large.
No. 41 did not contain Al but contained Mg, so it was possible to obtain the effect of reducing density (specific gravity). However, high strength has not been achieved.
In No. 42, since the Ti content was low, the amount of fine precipitates produced was insufficient and the strength was low. Further, the effect of reducing density (specific gravity) has not been obtained.
In No. 43, the Ti content was too high, resulting in excessive formation of fine precipitates, resulting in poor bending workability.
In No. 44, since the Al content was low, the effect of reducing the density (specific gravity) was not obtained.
Since No. 45 does not contain Al, the effect of reducing density (specific gravity) cannot be obtained. Furthermore, since the solution treatment was performed only once, the maximum width of the grain boundary reaction type precipitate existing region was increased, resulting in poor bending workability.
In No. 46, since the temperature of the second solution treatment was low, the crystal grains were not sufficiently refined and the strength was low.

参考のため、図1~図3に比較例No.45で得られたCu-Ti系合金板材の板面を電解研磨調製した観察面のSEM写真を例示する。また、図4~図6に本発明例No.1で得られたCu-Ti系合金板材の板面を電解研磨調製した観察面のSEM写真を例示する。各写真下部の白のスケールバーの長さが、図1、図4では10μm、図2、図3、図5、図6では1μmに相当する。 For reference, FIGS. 1 to 3 illustrate SEM photographs of the observed surface of the Cu--Ti alloy plate obtained in Comparative Example No. 45 prepared by electrolytic polishing. Further, FIGS. 4 to 6 illustrate SEM photographs of the observed surface of the Cu--Ti alloy plate obtained in Invention Example No. 1 prepared by electrolytic polishing. The length of the white scale bar at the bottom of each photograph corresponds to 10 μm in FIGS. 1 and 4, and 1 μm in FIGS. 2, 3, 5, and 6.

Claims (13)

質量%で、Ti:1.0~5.0%、Al:0.5~3.0%、Ag:0~0.3%、B:0~0.3%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~0.5%、Mn:0~1.5%、Nb:0.0~0.5%、Ni:0~1.0%、P:0~0.2%、Si:0~0.5%、Sn:0~1.5%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%、S:0~0.2%であり、前記元素のうちAg、B、Be、Co、Cr、Fe、Mg、Mn、Nb、Ni、P、Si、Sn、V、Zn、ZrおよびSの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有し、板面に平行な観察面において粒界反応型析出物存在領域の最大幅が1000nm以下であり、板面に平行な観察面のEBSD(電子線後方散乱回折法)によるステップサイズ0.1μmでの測定において結晶方位差15°以上の境界を結晶粒界とみなした場合のKAM値が3.0°以下であり、圧延方向の引張強さが850MPa以上である銅合金板材。 In mass%, Ti: 1.0 to 5.0%, Al: 0.5 to 3.0%, Ag: 0 to 0.3%, B: 0 to 0.3%, Be: 0 to 0. 15%, Co: 0-1.0%, Cr: 0-1.0%, Fe: 0-1.0%, Mg: 0-0.5%, Mn: 0-1.5%, Nb: 0.0-0.5%, Ni: 0-1.0%, P: 0-0.2%, Si: 0-0.5%, Sn: 0-1.5%, V: 0-1 .0%, Zn: 0-2.0%, Zr: 0-1.0%, S: 0-0.2%, and among the above elements, Ag, B, Be, Co, Cr, Fe, Mg , Mn, Nb, Ni, P, Si, Sn, V, Zn, Zr and S total content is 3.0% or less, the balance is Cu and unavoidable impurities, and the composition is parallel to the plate surface. The maximum width of the grain boundary reaction type precipitate existing region is 1000 nm or less on the observation plane, and the crystal orientation is determined by EBSD (electron backscatter diffraction) with a step size of 0.1 μm on the observation plane parallel to the plate surface. A copper alloy sheet material having a KAM value of 3.0° or less when boundaries with a difference of 15° or more are regarded as grain boundaries, and a tensile strength in the rolling direction of 850 MPa or more. 更に、希土類元素を合計3.0質量%以下の範囲で含有する組成を有する、請求項1に記載の銅合金板材。 The copper alloy sheet material according to claim 1, further having a composition containing rare earth elements in a total amount of 3.0% by mass or less. 板面に平行な観察面において長径5~100nmの微細析出物粒子の個数密度が1.0×10個/mm以上1.0×1012個/mm以下である、請求項1または2に記載の銅合金板材。 Claim 1 or 2, wherein the number density of fine precipitate particles with a major diameter of 5 to 100 nm in an observation plane parallel to the plate surface is 1.0×10 8 particles/mm 2 or more and 1.0×10 12 particles/mm 2 or less. Copper alloy plate material according to 2. 板面に平行な観察面においてJIS H0501-1986に準ずる切断法による平均結晶粒径が2~20μmである、請求項1または2に記載の銅合金板材。 The copper alloy sheet material according to claim 1 or 2, which has an average crystal grain size of 2 to 20 μm when measured by a cutting method according to JIS H0501-1986 in an observation plane parallel to the sheet surface. 日本伸銅協会技術標準JCBA T307:2007に従うB.W.でのW曲げ試験による、割れが発生しない最小曲げ半径MBRと板厚tとの比MBR/tが2.0以下である、請求項1または2に記載の銅合金板材。 A claim in which the ratio MBR/t of the minimum bending radius MBR at which cracking does not occur and the plate thickness t is 2.0 or less in a W bending test at B.W. according to the Japan Copper Brass Association technical standard JCBA T307:2007. Copper alloy plate material according to 1 or 2. 導電率が10.0%IACS以上である、請求項1または2に記載の銅合金板材。 The copper alloy plate material according to claim 1 or 2, having an electrical conductivity of 10.0% IACS or more. 密度が8.53g/cm以下である、請求項1または2に記載の銅合金板材。 The copper alloy plate material according to claim 1 or 2, having a density of 8.53 g/cm 3 or less. 板厚が0.02~0.50mmである、請求項1または2に記載の銅合金板材。 The copper alloy plate material according to claim 1 or 2, having a plate thickness of 0.02 to 0.50 mm. 質量%で、Ti:1.0~5.0%、Al:0.5~3.0%、Ag:0~0.3%、B:0~0.3%、Be:0~0.15%、Co:0~1.0%、Cr:0~1.0%、Fe:0~1.0%、Mg:0~0.5%、Mn:0~1.5%、Nb:0.0~0.5%、Ni:0~1.0%、P:0~0.2%、Si:0~0.5%、Sn:0~1.5%、V:0~1.0%、Zn:0~2.0%、Zr:0~1.0%、S:0~0.2%であり、前記元素のうちAg、B、Be、Co、Cr、Fe、Mg、Mn、Nb、Ni、P、Si、Sn、V、Zn、ZrおよびSの合計含有量が3.0%以下であり、残部Cuおよび不可避的不純物からなる組成を有する中間製品板材に、第1溶体化処理、第1中間冷間圧延、第2溶体化処理、第2中間冷間圧延、時効処理を前記の順に施して銅合金板材を製造する工程において、
第1溶体化処理を750~950℃の温度域で10~600秒保持する条件で行い、
第1中間冷間圧延を圧延率70%以上で行い、
第2溶体化処理を750~900℃の温度域で10~600秒保持する条件で行い、
第2中間冷間圧延を圧延率15~50%で行い、
時効処理を300~470℃の時効温度で行う、
請求項1に記載の銅合金板材の製造方法。
In mass%, Ti: 1.0 to 5.0%, Al: 0.5 to 3.0%, Ag: 0 to 0.3%, B: 0 to 0.3%, Be: 0 to 0. 15%, Co: 0-1.0%, Cr: 0-1.0%, Fe: 0-1.0%, Mg: 0-0.5%, Mn: 0-1.5%, Nb: 0.0-0.5%, Ni: 0-1.0%, P: 0-0.2%, Si: 0-0.5%, Sn: 0-1.5%, V: 0-1 .0%, Zn: 0-2.0%, Zr: 0-1.0%, S: 0-0.2%, and among the above elements, Ag, B, Be, Co, Cr, Fe, Mg , Mn, Nb, Ni, P, Si, Sn, V, Zn, Zr and S total content is 3.0% or less, and the balance consists of Cu and unavoidable impurities. In the step of manufacturing a copper alloy plate material by applying 1 solution treatment, 1st intermediate cold rolling, 2nd solution treatment, 2nd intermediate cold rolling, and aging treatment in the above order,
The first solution treatment is carried out in a temperature range of 750 to 950°C and held for 10 to 600 seconds,
Performing the first intermediate cold rolling at a rolling ratio of 70% or more,
The second solution treatment is carried out at a temperature range of 750 to 900°C for 10 to 600 seconds,
A second intermediate cold rolling is performed at a rolling ratio of 15 to 50%,
Aging treatment is performed at an aging temperature of 300 to 470°C.
A method for manufacturing a copper alloy plate material according to claim 1.
前記中間製品板材は、更に、希土類元素を合計3.0質量%以下の範囲で含有する組成を有するものである、請求項9に記載の銅合金板材の製造方法。 10. The method for manufacturing a copper alloy sheet material according to claim 9, wherein the intermediate product sheet material further has a composition containing a rare earth element in a total amount of 3.0% by mass or less. 前記の時効処理の後に、仕上冷間圧延、低温焼鈍を前記の順に更に施して銅合金板材を製造する工程において、
仕上冷間圧延を圧延率50%以下で行い、
低温焼鈍を350~550℃の温度域に60秒以下の時間保持する条件で行う、
請求項9または10に記載の銅合金板材の製造方法。
After the aging treatment, finish cold rolling and low temperature annealing are further performed in the above order to produce a copper alloy plate material,
Finish cold rolling is performed at a rolling rate of 50% or less,
Low-temperature annealing is performed under conditions of holding the material in a temperature range of 350 to 550°C for 60 seconds or less.
The method for manufacturing a copper alloy plate material according to claim 9 or 10.
請求項1または2に記載の銅合金板材を材料に用いた通電部品。 A current-carrying component using the copper alloy plate material according to claim 1 or 2 as a material. 請求項1または2に記載の銅合金板材を材料に用いた放熱部品。 A heat dissipation component using the copper alloy plate material according to claim 1 or 2 as a material.
JP2022122576A 2022-03-30 2022-08-01 Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREOF, ENERGIZATION MEMBER AND HEAT DISSIPATION COMPONENT Pending JP2023152264A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW111130259A TW202338108A (en) 2022-03-30 2022-08-11 Cu-ti-based copper alloy plate, method of manufacturing the same, current-carrying parts, and heat-radiating parts
CN202211512057.0A CN116891960A (en) 2022-03-30 2022-11-29 Cu-Ti-based copper alloy sheet, method for producing same, current-carrying member, and heat-dissipating member
EP22210566.0A EP4253579A1 (en) 2022-03-30 2022-11-30 Cu-ti-based copper alloy sheet material, method for producing the same, electric current carrying component, and heat radiation component
US18/118,793 US11946127B2 (en) 2022-03-30 2023-03-08 Cu—Ti-based copper alloy sheet material, method for producing the same, electric current carrying component, and heat radiation component
KR1020230040700A KR20230141589A (en) 2022-03-30 2023-03-28 Cu-Ti-BASED COPPER ALLOY SHEET MATERIAL, METHOD FOR PRODUCING SAME, CURRENT-CARRYING COMPONENT, AND HEAT-DISSIPATING COMPONENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055205 2022-03-30
JP2022055205 2022-03-30

Publications (1)

Publication Number Publication Date
JP2023152264A true JP2023152264A (en) 2023-10-16

Family

ID=88327561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022122576A Pending JP2023152264A (en) 2022-03-30 2022-08-01 Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREOF, ENERGIZATION MEMBER AND HEAT DISSIPATION COMPONENT

Country Status (1)

Country Link
JP (1) JP2023152264A (en)

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2011118400A1 (en) High-strength copper titanium plate and production method therefor
WO2011068134A1 (en) Copper alloy sheet material having low young&#39;s modulus and method for producing same
JP5153949B1 (en) Cu-Zn-Sn-Ni-P alloy
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5619389B2 (en) Copper alloy material
JPWO2011068121A1 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP4087307B2 (en) High strength and high conductivity copper alloy with excellent ductility
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
JP2018178243A (en) Cu-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD, AND COMPONENT USING THE SHEET MATERIAL
JP6749121B2 (en) Copper alloy plate with excellent strength and conductivity
JP2015183263A (en) Cu-Ni-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD THEREOF AND ELECTRIFICATION COMPONENT
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP2008088558A (en) High-strength and high-conductivity copper alloy with excellent ductility
JP2023152264A (en) Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREOF, ENERGIZATION MEMBER AND HEAT DISSIPATION COMPONENT
US11946127B2 (en) Cu—Ti-based copper alloy sheet material, method for producing the same, electric current carrying component, and heat radiation component
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
CN116891960A (en) Cu-Ti-based copper alloy sheet, method for producing same, current-carrying member, and heat-dissipating member