JP5611773B2 - Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy - Google Patents
Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy Download PDFInfo
- Publication number
- JP5611773B2 JP5611773B2 JP2010244794A JP2010244794A JP5611773B2 JP 5611773 B2 JP5611773 B2 JP 5611773B2 JP 2010244794 A JP2010244794 A JP 2010244794A JP 2010244794 A JP2010244794 A JP 2010244794A JP 5611773 B2 JP5611773 B2 JP 5611773B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- copper
- ray diffraction
- diffraction intensity
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000010936 titanium Substances 0.000 claims description 61
- 238000010438 heat treatment Methods 0.000 claims description 56
- 239000000243 solution Substances 0.000 claims description 54
- 230000032683 aging Effects 0.000 claims description 32
- 238000002441 X-ray diffraction Methods 0.000 claims description 27
- 238000005097 cold rolling Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 239000010949 copper Substances 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000006104 solid solution Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 238000005452 bending Methods 0.000 description 21
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 21
- 239000013078 crystal Substances 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 238000007792 addition Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000000137 annealing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000001330 spinodal decomposition reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910010165 TiCu Inorganic materials 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/005—Copper or its alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、例えばコネクタ等の電子部品用部材に好適なチタンを含む銅合金及びこれを用いた伸銅品、電子部品及びコネクタ及び銅合金の製造方法に関する。 The present invention relates to a copper alloy containing titanium suitable for a member for an electronic component such as a connector, a copper-stretched product using the same, an electronic component and a connector, and a method for producing the copper alloy.
近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する素材には、必要なバネ性を得るための高い強度と過酷な曲げ加工に耐え得る、優れた曲げ加工性が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、素材強度が要求される信号系端子用素材として古くから使用されてきた。 In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used for such devices tend to have a narrow pitch and a low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the material used must have high strength to obtain the necessary springiness and excellent bending workability that can withstand severe bending. It is done. In this respect, a titanium-containing copper alloy (hereinafter referred to as “titanium copper”) has a relatively high strength and is most excellent in the copper alloy in terms of stress relaxation characteristics, and therefore requires a material strength. It has been used for a long time as a signal system terminal material.
チタン銅は時効硬化型の銅合金である。具体的には、溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。かかる強化機構を基本としてチタン銅の更なる特性向上を目指して種々の手法が研究されている。 Titanium copper is an age-hardening type copper alloy. Specifically, when a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment, and heat treatment is performed at a low temperature for a relatively long time from that state, periodic fluctuations in Ti concentration in the parent phase due to spinodal decomposition The modulation structure is developed and the strength is improved. Based on this strengthening mechanism, various methods have been studied with the aim of further improving the properties of titanium copper.
この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。 At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained.
そこで、Fe、Co、Ni、Siなどの第3元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、結晶粒を微細化する(特許文献4)などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする研究開発が従来なされてきた。 Therefore, by adding a third element such as Fe, Co, Ni, Si, etc. (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these are added to the second phase particles (Cu—Ti—). X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3) and refining crystal grains (Patent Document 4), research and development have been made to achieve both the strength and bending workability of titanium copper.
また、特許文献5では、結晶方位に着目し、曲げ加工における割れを防止するために熱間圧延条件を調整してI{420}/I0{420}>1.0とし、さらに冷間圧延率を調整してI{220}/I0{220}≦3.0を満たすように結晶配向を制御することで、強度、曲げ加工性及び耐応力緩和性を改善した技術も提案されている。 Further, in Patent Document 5, paying attention to the crystal orientation, the hot rolling conditions are adjusted to I {420} / I 0 {420}> 1.0 in order to prevent cracking in bending, and further cold rolling is performed. A technique has also been proposed in which strength, bending workability, and stress relaxation resistance are improved by controlling the crystal orientation so as to satisfy I {220} / I 0 {220} ≦ 3.0 by adjusting the rate. .
上記のチタン銅は、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造することを基本としており、この工程を基本として特性の改善を図ってきた。しかしながら、より優れた特性をもつチタン銅を得る上では、更なる改善の余地が残されている。 The above-mentioned titanium copper is basically manufactured in the order of ingot melting casting → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. Based on this process, the characteristics have been improved. However, there is room for further improvement in obtaining titanium copper having more excellent characteristics.
そこで、本発明は、従来とは異なる観点からチタン銅の特性改善を試みることにより、優れた強度及び曲げ加工性を有する銅合金及びこれを用いた伸銅品、電子部品及びコネクタ及び銅合金の製造方法を提供する。 Therefore, the present invention tries to improve the characteristics of titanium copper from a viewpoint different from the conventional one, and thereby, a copper alloy having excellent strength and bending workability, and a copper product, an electronic component, a connector, and a copper alloy using the copper alloy. A manufacturing method is provided.
本発明者は上記課題を解決するための検討過程において、溶体化処理後に、チタンの準安定相又は安定相が生成しないか又は一部生成する程度の適切な熱処理(亜時効処理)を行い、予め一定程度スピノーダル分解を起こしておくと、その後に冷間圧延及び時効処理を行って最終的に得られるチタン銅の強度が有意に向上することを見出した。即ち、従来のチタン銅が、スピノーダル分解を起こす熱処理工程を、時効処理の1段階で行っていたのに対し、本発明のチタン銅の製造方法では、冷間圧延を挟んでスピノーダル分解を2段階で起こす点で大きく異なる。 In the examination process for solving the above problems, the present inventor performs an appropriate heat treatment (sub-aging treatment) to the extent that a metastable phase or a stable phase of titanium is not generated or partially formed after solution treatment, It has been found that when spinodal decomposition is caused to some extent in advance, the strength of titanium copper finally obtained by performing cold rolling and aging treatment is significantly improved. That is, while the conventional titanium copper performs the heat treatment process causing spinodal decomposition in one stage of aging treatment, in the titanium copper manufacturing method of the present invention, spinodal decomposition is performed in two stages across cold rolling. It differs greatly in the point that occurs in.
更に、第3元素の添加量を更に最適な範囲に調節することで、従来は、固溶を目的とした第2の溶体化処理と再結晶を目的とした第2の溶体化処理の2段階で処理していたものを、1回の溶体化処理で固溶と再結晶化を同時に行うことができ、生産効率に優れ、且つ強度及び曲げ加工性のバランスに優れたチタン銅が得られることも分かった。 Furthermore, by adjusting the addition amount of the third element to a more optimal range, conventionally, there are two stages of a second solution treatment for the purpose of solid solution and a second solution treatment for the purpose of recrystallization. Titanium copper with excellent production efficiency and excellent balance of strength and bending workability can be obtained by simultaneously dissolving and recrystallizing the material treated with I understand.
上記知見に基づいて完成した本発明は一側面において、Tiを2.0〜4.0質量%含有し、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.2質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、圧延面のX線回折強度を測定したときに、(311)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(1):{I/I0(311)}/{I/I0(200)}≦2.54・・・(1)を満たし、且つ(220)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(2):15≦{I/I0(220)}/{I/I0(200)}≦95・・・(2)を満たす銅合金である。 This invention completed based on the said knowledge contains 2.0-4.0 mass% of Ti in one side surface, Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, as a 3rd element, One or two or more selected from the group consisting of Zr, Si, B and P are contained in a total of 0 to 0.2% by mass, and a copper alloy consisting of the remaining copper and unavoidable impurities, When the X-ray diffraction intensity was measured, the ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (311) plane and (200) plane was as follows: Relational expression (1): {I / I 0 (311)} / {I / I 0 (200)} ≦ 2.54 (1) and pure copper in the (220) plane and (200) plane The ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolling surface to the X-ray diffraction intensity I 0 of the powder is expressed by the following relational expression ( 2): It is a copper alloy satisfying 15 ≦ {I / I 0 (220)} / {I / I 0 (200)} ≦ 95 (2).
本発明は別の一側面において、Tiを2.0〜4.0質量%含有し、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0.01〜0.15質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、圧延面のX線回折強度を測定したときに、(311)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(1):{I/I0(311)}/{I/I0(200)}≦2.54・・・(1)を満たし、且つ(220)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(3):30≦{I/I0(220)}/{I/I0(200)}≦95・・・(3)を満たす銅合金である。 In another aspect of the present invention, 2.0 to 4.0% by mass of Ti is contained, and the third element is Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B And a copper alloy containing 0.01 to 0.15% by mass in total of one or more selected from the group consisting of P and the balance copper and unavoidable impurities, and X-ray diffraction of the rolling surface When the intensity was measured, the ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (311) plane and the (200) plane was expressed by the following relational expression ( 1): {I / I 0 (311)} / {I / I 0 (200)} ≦ 2.54 (X) of pure copper powder satisfying (1) and in the (220) plane and (200) plane The ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the line diffraction intensity I 0 is expressed by the following relational expression (3): 30 ≦ { It is a copper alloy satisfying I / I 0 (220)} / {I / I 0 (200)} ≦ 95 (3).
本発明は更に別の一側面において、上記銅合金からなる伸銅品である。 In another aspect of the present invention, there is provided a copper product made of the above copper alloy.
本発明は更に別の一側面において、上記銅合金からなる電子部品である。 In still another aspect, the present invention is an electronic component made of the above copper alloy.
本発明は更に別の一側面において、上記銅合金を備えたコネクタである。 In another aspect of the present invention, there is provided a connector including the copper alloy.
本発明は更に別の一側面において、Tiを2.0〜4.0質量%含有し、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.2質量%含有し、残部銅及び不可避的不純物からなる銅合金素材に対して、銅合金素材を、730〜880℃においてTiの固溶限が添加量と同じになる固溶限温度に比べて0〜20℃高い温度になるまで加熱して急冷する溶体化処理を行い、溶体化処理に続いて熱処理を行い、熱処理に続いて加工率5〜40%で最終冷間圧延を行い、最終冷間圧延に続いて時効処理を行うことを含む上記銅合金の製造方法である。 In yet another aspect of the present invention, Ti is contained in an amount of 2.0 to 4.0% by mass, and the third element is Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, One or two or more selected from the group consisting of B and P is contained in a total amount of 0 to 0.2% by mass, and the copper alloy material consisting of the remaining copper and inevitable impurities is 730. At 880 ° C., a solution treatment is performed by heating and quenching until the solid solubility limit of Ti becomes the same as the addition amount at which the Ti solid solubility limit is 0 to 20 ° C., followed by a heat treatment. This is a method for producing the above copper alloy, which includes performing a final cold rolling at a processing rate of 5 to 40% following the heat treatment, and performing an aging treatment subsequent to the final cold rolling.
本発明に係る銅合金の製造方法は一実施態様において、上記熱処理が、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(4):0.5≦C≦(−0.50 [Ti]2−0.50[Ti]+14)・・・(4)を満たすように、導電率を上昇させる熱処理を行うことを含む。 In one embodiment of the method for producing a copper alloy according to the present invention, when the heat treatment is performed when the titanium concentration (% by mass) is [Ti], the increase C in conductivity (% IACS) is expressed by the following relational expression ( 4): 0.5 ≦ C ≦ (−0.50 [Ti] 2 −0.50 [Ti] +14) (including heat treatment for increasing conductivity so as to satisfy (4)).
<Ti含有量>
Tiが2質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4.0質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2.0〜4.0質量%であり、好ましくは2.7〜3.5質量%、更に好ましくは2.9〜3.3質量%である。Tiの含有量を適正化することで、電子部品用に適した優れた強度及び曲げ加工性を共に実現することができる。
<Ti content>
If Ti is less than 2% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of the original modulation structure of titanium copper. On the other hand, if Ti exceeds 4.0% by mass, coarse TiCu 3 is formed. It tends to precipitate and tends to deteriorate strength and bending workability. Therefore, the content of Ti in the copper alloy according to the present invention is 2.0 to 4.0 mass%, preferably 2.7 to 3.5 mass%, and more preferably 2.9 to 3.3 mass%. %. By optimizing the Ti content, it is possible to achieve both excellent strength and bending workability suitable for electronic parts.
<第3元素>
第3元素は結晶粒の微細化に寄与するため、所定の第3元素を添加することができる。具体的には、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度が向上しやすい。また、第3元素は変調構造の形成を促進させる。更に、TiCu3の析出を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。
<Third element>
Since the third element contributes to the refinement of crystal grains, a predetermined third element can be added. Specifically, even if the solution treatment is performed at a high temperature at which Ti is sufficiently dissolved, the crystal grains are easily refined and the strength is easily improved. Further, the third element promotes the formation of the modulation structure. Furthermore, there is an effect of suppressing precipitation of TiCu 3 . Therefore, the original age hardening ability of titanium copper can be obtained.
チタン銅において上記効果が最も高いのがFeである。そして、Mn、Mg、Co、Ni、Si、Cr、V、Nb、Mo、Zr、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。 In titanium copper, Fe has the highest effect. And in Mn, Mg, Co, Ni, Si, Cr, V, Nb, Mo, Zr, B, and P, the effect according to Fe can be expected, and even if added alone, the effect is seen, but two or more Multiple additions may be made.
これらの元素は、合計で0.01質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%、より好ましくは0〜0.2質量%、更に好ましくは0.01〜0.15質量%含有するのが好ましい。 When these elements contain a total content of 0.01% by mass or more, the effect starts to appear, but when the total content exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability is deteriorated. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Accordingly, the total of one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element group is 0 to 0 in total. It is preferable to contain 0.5% by mass, more preferably 0 to 0.2% by mass, and still more preferably 0.01 to 0.15% by mass.
第3元素の添加は、チタン銅の結晶粒の微細化には有効な反面、固溶限温度を上昇させる場合があるため、第3元素を添加しない場合に比べて固溶温度を高くする必要がある。従来では、第3元素を十分に固溶させるために、1回目の溶体化処理を高温で比較的長時間で行った後、最終の溶体化処理を行っていた。しかしながら、2回の溶体化処理を行うことにより、製造工程に負荷がかかり、生産効率が低くなる場合がある。本実施形態では、チタン銅中の第3元素の濃度を0〜0.2質量%、更に好ましくは0.01〜0.15質量%に調整することで、処理温度を従来よりも低くした状態で、第3元素の固溶と再結晶化を1回の溶体化処理で同時に行うことができる。これにより、チタン銅の製造に必要な熱量が従来に比べて少量で済み、処理時間も短時間で済み、生産効率が向上し、大量生産に好適なプロセスが実現できる。 Although the addition of the third element is effective for making the titanium copper crystal grains finer, it may increase the solid solution limit temperature. Therefore, it is necessary to increase the solid solution temperature compared to the case where the third element is not added. There is. Conventionally, in order to sufficiently dissolve the third element, the first solution treatment is performed at a high temperature for a relatively long time, and then the final solution treatment is performed. However, when the solution treatment is performed twice, a load is imposed on the manufacturing process, and the production efficiency may be lowered. In this embodiment, the concentration of the third element in the titanium copper is adjusted to 0 to 0.2% by mass, more preferably 0.01 to 0.15% by mass, so that the processing temperature is lower than the conventional one. Thus, the solid solution and recrystallization of the third element can be simultaneously performed by one solution treatment. As a result, the amount of heat required for the production of titanium-copper is smaller than in the conventional case, the processing time is also shorter, the production efficiency is improved, and a process suitable for mass production can be realized.
<X線回折による積分強度>
溶体化処理後の圧延面の集合組織は(200)面の構成比率が高く、圧延が進むにつれて回転が起こり、最終的には(220)面の構成比率が高くなるのが一般的である。本発明者らの検討の結果、本実施形態に係る製造工程、即ち、最終の溶体化処理後、冷間圧延を行う前に熱処理を行った場合は、従来の工程、即ち、溶体化処理→冷間圧延→時効処理の製造工程に比べて、母材中に変調構造が発達するため、(200)面から(311)面への回転が起こりにくくなることを見出した。よって、本実施形態に係る銅合金は、圧延面のX線回折強度(積分強度)を測定したときに、(311)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(1):
{I/I0(311)}/{I/I0(200)}≦2.54 ・・・(1)
を満たすのが好ましい。
本発明において、純銅標準粉末は325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
<Integrated intensity by X-ray diffraction>
The texture of the rolled surface after the solution treatment has a high (200) plane composition ratio, and as rolling progresses, rotation generally occurs, and eventually the (220) plane composition ratio increases. As a result of the study by the present inventors, the manufacturing process according to the present embodiment, that is, when the heat treatment is performed before the cold rolling after the final solution treatment, the conventional process, that is, the solution treatment → It has been found that the rotation from the (200) plane to the (311) plane is less likely to occur because the modulation structure develops in the base metal as compared to the cold rolling → aging process. Therefore, the copper alloy according to this embodiment has a rolled surface with respect to the X-ray diffraction intensity I 0 of the pure copper powder in the (311) plane and the (200) plane when the X-ray diffraction intensity (integrated intensity) of the rolled surface is measured. The ratio (I / I 0 ) of the X-ray diffraction intensity I of the following relational expression (1):
{I / I 0 (311)} / {I / I 0 (200)} ≦ 2.54 (1)
It is preferable to satisfy.
In the present invention, pure copper standard powder is defined as copper powder of 99.5% purity of 325 mesh (JIS Z8801).
{I/I0(311)}/{I/I0(200)}は0.50〜2.00であるのがより好ましく、更に好ましくは{I/I0(311)}/{I/I0(200)}が0.80〜1.75である。{I/I0(311)}/{I/I0(200)}が2.54より大きい場合、強度(0.2%耐力)が弱くなり、曲げ加工性も悪化する場合がある。 {I / I 0 (311)} / {I / I 0 (200)} is more preferably 0.50 to 2.00, and still more preferably {I / I 0 (311)} / {I / I 0 (200)} is 0.80 to 1.75. When {I / I 0 (311)} / {I / I 0 (200)} is greater than 2.54, the strength (0.2% proof stress) becomes weak and bending workability may also deteriorate.
チタン銅の集合組織は、最終の圧延工程の加工率にも影響を受ける。即ち、圧延の加工率が大きすぎると、(220)面が発達しすぎて曲げ性が劣化となり、加工率が低すぎると、(220)面の発達が不十分で強度が低下するとなる場合がある。本実施形態に係るチタン銅は加工率を5〜40%で行うのが好ましく、より好ましくは10〜30%である。この場合の圧延面の集合組織は、(220)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(2):
15≦{I/I0(220)}/{I/I0(200)}≦95・・・(2)
を満たすのが好ましい。{I/I0(220)}/{I/I0(200)}が15より小さい場合は加工率が低く圧延工程による加工硬化が不十分となる場合がある。
The texture of titanium copper is also affected by the processing rate of the final rolling process. That is, if the processing rate of rolling is too large, the (220) plane develops too much and the bendability deteriorates. If the processing rate is too low, the (220) plane develops insufficiently and the strength decreases. is there. The titanium copper according to the present embodiment is preferably performed at a processing rate of 5 to 40%, more preferably 10 to 30%. The texture of the rolled surface in this case is such that the ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (220) plane and (200) plane is as follows: Relational expression (2):
15 ≦ {I / I 0 (220)} / {I / I 0 (200)} ≦ 95 (2)
It is preferable to satisfy. When {I / I 0 (220)} / {I / I 0 (200)} is smaller than 15, the processing rate is low, and the work hardening by the rolling process may be insufficient.
溶体化処理を2回行った場合と溶体化処理を1回のみとした場合の集合組織を比較すると、溶体化処理を1回のみとした場合の方が、溶体化処理を2回した場合に比べて再結晶集合組織が弱く、(220)/(200)比の値が大きくなることが分かった。強度と曲げ性の良好なバランスを得る上では、関係式(1)に加えて、関係式(2)の代わりに以下の関係式(3):
30≦{I/I0(220)}/{I/I0(200)}≦95・・・(3)
を満たすのがより好ましく、更に好ましくは、{I/I0(220)}/{I/I0(200)}は、40〜70であり、更に好ましくは{I/I0(220)}/{I/I0(200)}が40〜55である。
Comparing the texture when the solution treatment is performed twice and when the solution treatment is performed only once, when the solution treatment is performed once, the solution treatment is performed twice. In comparison, it was found that the recrystallized texture was weak and the value of the (220) / (200) ratio was large. In order to obtain a good balance between strength and bendability, the following relational expression (3) is used instead of relational expression (2) in addition to relational expression (1):
30 ≦ {I / I 0 (220)} / {I / I 0 (200)} ≦ 95 (3)
It is more preferable that {I / I 0 (220)} / {I / I 0 (200)} is 40 to 70, and more preferably {I / I 0 (220)}. / {I / I 0 (200)} is 40-55.
<用途>
本実施形態に係る銅合金は種々の伸銅品、例えば板、条、管、棒、箔及び線として提供されることができる。本実施形態に係る銅合金を加工することにより、例えばスイッチ、コネクタ、ジャック、端子、リレー等の電子部品が得られる。
<Application>
The copper alloy according to this embodiment can be provided as various copper products, for example, plates, strips, tubes, bars, foils, and wires. By processing the copper alloy according to this embodiment, electronic components such as switches, connectors, jacks, terminals, and relays can be obtained.
<製造方法>
本実施形態に係る銅合金の1つの特徴は、最終溶体化処理の後、冷間圧延前に所定の材料温度条件で短時間の熱処理を行うことである。熱処理時、材料の温度が高く長くなり過ぎると、その後の時効処理において強度にそれほど寄与しないβ’相や曲げ加工性を悪化させるβ相の析出がしやすくなる。また、熱処理時の材料の温度が低く短くなり過ぎると、時効処理においてスピノーダル分解によって生じる変調構造の発達が不十分となりやすい。
<Manufacturing method>
One feature of the copper alloy according to the present embodiment is that a short-time heat treatment is performed under a predetermined material temperature condition after the final solution treatment and before cold rolling. If the temperature of the material becomes too high during heat treatment, the β ′ phase that does not contribute much to the strength in the subsequent aging treatment and the β phase that deteriorates the bending workability are likely to precipitate. Further, if the temperature of the material during the heat treatment is too low and too short, the development of the modulation structure caused by spinodal decomposition tends to be insufficient in the aging treatment.
溶体化処理後のチタン銅を熱処理すると、変調構造の発達に伴い導電率が上昇するので、焼鈍の度合は、焼鈍の前後での導電率の変化を指標とすることができる。本発明者の研究によれば、熱処理は導電率を0.5〜8%IACS、好ましくは1〜4%IACS上昇させるような条件で行うのが望ましい。即ち、ここではピーク硬度に対して90%よりも小さくなるような熱処理を行うのが好ましい。このような導電率の上昇に対応する具体的な熱処理条件は、材料温度300℃以上700℃未満として0.001〜12時間加熱する条件である。 When the titanium copper after solution treatment is heat-treated, the conductivity increases with the development of the modulation structure, so the degree of annealing can be determined by the change in conductivity before and after annealing. According to the inventor's research, it is desirable that the heat treatment be performed under conditions that increase the conductivity by 0.5 to 8% IACS, preferably by 1 to 4% IACS. That is, here, it is preferable to perform heat treatment so that the peak hardness is less than 90%. Specific heat treatment conditions corresponding to such an increase in conductivity are conditions for heating for 0.001 to 12 hours at a material temperature of 300 ° C. or higher and lower than 700 ° C.
より具体的には、本実施形態に係る熱処理は、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(4)を満たすことができる。
0.5≦C≦(−0.50 [Ti]2−0.50[Ti]+14)・・・(4)
上記(4)式に従えば、例えば、Ti濃度2.0質量%の場合は、導電率を0.5〜11%IACS上昇させるような条件で行うのが望ましく、Ti濃度3.0質量%の場合は、導電率を0.5〜8%IACS上昇させるような条件で行うのが望ましく、Ti濃度4.0質量%の場合は、導電率を0.5〜4%IACS上昇させるような条件で行うのが望ましい。
More specifically, in the heat treatment according to the present embodiment, when the titanium concentration (% by mass) is [Ti], the conductivity increase value C (% IACS) satisfies the following relational expression (4). Can do.
0.5 ≦ C ≦ (−0.50 [Ti] 2 −0.50 [Ti] +14) (4)
According to the above formula (4), for example, when the Ti concentration is 2.0% by mass, it is desirable that the conductivity be increased by 0.5 to 11% IACS, and the Ti concentration is 3.0% by mass. In this case, it is desirable that the conductivity be increased by 0.5 to 8% IACS. When the Ti concentration is 4.0% by mass, the conductivity is increased by 0.5 to 4% IACS. It is desirable to carry out under conditions.
より好ましくは、本実施形態に係る熱処理は、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(5)を満たすことである。
1.0≦C≦(0.25 [Ti]2−3.75[Ti]+13)・・・(5)
上記(5)式に従えば、例えば、Ti濃度2.0質量%の場合は、導電率を1.0〜6.5%IACS上昇させるような条件で行うのが望ましく、Ti濃度3.0質量%の場合は、導電率を1.0〜4%IACS上昇させるような条件で行うのが望ましく、Ti濃度4.0質量%の場合は、導電率を1.0〜2%IACS上昇させるような条件で行うのが望ましい。
More preferably, in the heat treatment according to the present embodiment, when the titanium concentration (% by mass) is [Ti], the increase C in conductivity (% IACS) satisfies the following relational expression (5). .
1.0 ≦ C ≦ (0.25 [Ti] 2 −3.75 [Ti] +13) (5)
According to the above formula (5), for example, when the Ti concentration is 2.0% by mass, it is desirable that the conductivity be increased by 1.0 to 6.5% IACS, and the Ti concentration is 3.0%. In the case of mass%, it is desirable to carry out under conditions that increase the conductivity by 1.0 to 4% IACS, and in the case of Ti concentration of 4.0 mass%, the conductivity is increased by 1.0 to 2% IACS. It is desirable to carry out under such conditions.
なお、最終の溶体化処理後の熱処理に銅合金の硬度がピークとなる時効を行った場合、導電率の差は、例えばTi濃度2.0質量%で13%IACS、Ti濃度3.0%で10%IACS、Ti濃度4.0%で5%IACS程度上昇することになる。即ち、本実施形態に係る最終溶体化処理後の熱処理は、硬度がピークとなる時効よりも、銅合金に与える熱量が非常に小さい。 In addition, when the aging at which the hardness of the copper alloy reaches a peak is performed in the heat treatment after the final solution treatment, the difference in conductivity is, for example, 13% IACS and Ti concentration of 3.0% at a Ti concentration of 2.0% by mass. Thus, 10% IACS and Ti concentration of 4.0% increase by about 5% IACS. That is, in the heat treatment after the final solution treatment according to the present embodiment, the amount of heat given to the copper alloy is much smaller than the aging at which the hardness reaches a peak.
熱処理は以下の何れかの条件で行うのが好ましい。
・材料温度300℃以上400℃未満として0.5〜3時間加熱
・材料温度400℃以上500℃未満として0.01〜0.5時間加熱
・材料温度500℃以上600℃未満として0.001〜0.01時間加熱
・材料温度600℃以上700℃未満として0.001〜0.005時間加熱
The heat treatment is preferably performed under any of the following conditions.
-Heating at a material temperature of 300 ° C or more and less than 400 ° C for 0.5 to 3 hours · Heating at a material temperature of 400 ° C or more and less than 500 ° C for 0.01 to 0.5 hours · Material temperature of 500 ° C or more and less than 600 ° C as 0.001 Heating for 0.01 hours-Heating for 0.001 to 0.005 hours with material temperature of 600 ° C or higher and lower than 700 ° C
また、熱処理は以下の何れかの条件で行うのがより好ましい。
・材料温度350℃以上400℃未満として1〜3時間加熱
・材料温度400℃以上450℃未満として0.2〜0.5時間加熱
・材料温度500℃以上550℃未満として0.005〜0.01時間加熱
・材料温度550℃以上600℃未満として0.001〜0.005時間加熱
・材料温度600℃以上650℃未満として0.0025〜0.005時間加熱
The heat treatment is more preferably performed under any of the following conditions.
-Heating for 1 to 3 hours at a material temperature of 350 ° C to less than 400 ° C · Heating for 0.2 to 0.5 hour at a material temperature of 400 ° C to less than 450 ° C · 0.005 to 0.005 as a material temperature of 500 ° C to less than 550 ° C Heating for 01 hours-Heating at a material temperature of 550 ° C or more and less than 600 ° C for 0.001 to 0.005 hours · Heating at a material temperature of 600 ° C or more and less than 650 ° C for 0.0025 to 0.005 hours
以下、工程毎に好ましい実施形態を説明する。
1)インゴット製造工程
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の添加元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素群の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.2質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造する。
Hereinafter, a preferred embodiment will be described for each process.
1) Ingot manufacturing process Manufacturing of an ingot by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high-melting-point additive element such as Fe or Cr, and after stirring sufficiently, hold it for a certain period of time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element group is dissolved. Therefore, Cu includes one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P in total from 0 to 0.0. It adds so that it may contain 2 mass%, and then adds Ti so that it may contain 2.0-4.0 mass%, and manufactures an ingot.
2)均質化焼鈍及び熱間圧延
ここでは凝固偏析や鋳造中に発生した晶出物をできるだけ無くすことが望ましい。後の溶体化処理において、第二相粒子の析出を微細かつ均一に分散させる為であり、混粒の防止にも効果があるからである。インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とするのが好ましい。
2) Homogenization annealing and hot rolling Here, it is desirable to eliminate solidified segregation and crystallized substances generated during casting as much as possible. This is because, in the subsequent solution treatment, the precipitation of the second phase particles is finely and uniformly dispersed, which is effective in preventing mixed grains. After the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, the temperature is preferably 960 ° C. or less before and during hot rolling.
3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行う。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、第二相粒子が析出しないようにするのが好ましい。但し、第3元素の添加量を0.01〜0.15質量%とした場合には、第一溶体化処理を経ることなく、最終の溶体化処理のみで固溶と再結晶を行うことができるため、第一溶体化処理工程は省略することが好ましい。
3) First solution treatment After that, cold rolling and annealing are repeated as appropriate, followed by solution treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. It is preferable to increase the heating rate and cooling rate at that time as much as possible so that the second phase particles do not precipitate. However, when the addition amount of the third element is 0.01 to 0.15% by mass, solid solution and recrystallization can be performed only by the final solution treatment without passing through the first solution treatment. Therefore, it is preferable to omit the first solution treatment step.
4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における第二相粒子が均一かつ微細に析出する。但し、加工度をあまり高くして最終の溶体化処理を行うと、再結晶集合組織が発達して、塑性異方性が生じ、プレス整形性を害することがある。従って、中間圧延の加工度は好ましくは70〜99%ある。加工度は{(圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the degree of processing in the intermediate rolling before the final solution treatment is increased, the second phase particles in the final solution treatment are precipitated more uniformly and finely. However, if the final solution treatment is performed with a too high degree of processing, a recrystallized texture develops and plastic anisotropy occurs, which may impair the press formability. Therefore, the processing degree of intermediate rolling is preferably 70 to 99%. The degree of work is defined by {(thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.
5)最終の溶体化処理
最終溶体化処理前の銅合金素材中には鋳造又中間圧延過程で生成された析出物が存在する。この析出物は、曲げ性及び時効後の機械的特性増加を妨げる場合があるため、最終の溶体化処理では、銅合金素材中の析出物を完全に固溶させる温度に銅合金素材を加熱することが望ましい。しかしながら、析出物を完全に無くすまで高温に加熱すると、析出物による粒界のピン止め効果が無くなり、結晶粒が急激に粗大化する。結晶粒が急激に粗大化すると強度が低下する傾向にある。
5) Final solution treatment In the copper alloy material before the final solution treatment, there are precipitates generated during the casting or intermediate rolling process. Since this precipitate may hinder bendability and increase in mechanical properties after aging, in the final solution treatment, the copper alloy material is heated to a temperature at which the precipitate in the copper alloy material is completely dissolved. It is desirable. However, if the precipitate is heated to a high temperature until it is completely eliminated, the grain boundary pinning effect due to the precipitate disappears, and the crystal grains become coarser rapidly. When crystal grains become coarser, the strength tends to decrease.
このため、加熱温度としては、溶体化前の銅合金素材が、第二相粒子組成の固溶限付近の温度になるまで加熱する。Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度(本発明では「固溶限温度」という。)は730〜840℃程度であり、例えばTiの添加量が3.0質量%では800℃程度である。そしてこの温度まで急速に加熱し、冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。従って、典型的には、730〜880℃のTiの固溶限が添加量と同じになる温度以上に加熱し、より典型的には730〜880℃のTiの固溶限が添加量と同じになる温度に比べて0〜20℃高い温度、好ましくは0〜10℃高い温度に加熱する。 For this reason, as a heating temperature, it heats until the copper alloy raw material before solutionization becomes the temperature of the solid solution limit vicinity of a 2nd phase particle composition. The temperature at which the solid solubility limit of Ti becomes equal to the addition amount when the addition amount of Ti is in the range of 2.0 to 4.0% by mass (referred to as “solid solubility limit temperature” in the present invention) is about 730 to 840 ° C. For example, when the addition amount of Ti is 3.0 mass%, it is about 800 degreeC. And if it heats rapidly to this temperature and a cooling rate is also made fast, generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Therefore, typically, heating is performed at a temperature at which the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount, and more typically, the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount. It is heated to a temperature that is 0 to 20 ° C. higher, preferably 0 to 10 ° C. higher than the temperature at which it becomes.
最終溶体化処理における粗大な第二相粒子の発生を抑制するために、銅合金素材の加熱及び冷却は出来るだけ急速に行うのが好ましい。具体的には、第二相粒子組成の固溶限付近の温度よりも50〜500℃程度、好ましくは150〜500℃程度高くした雰囲気中に銅合金素材を配置することにより急速加熱を行える。冷却は水冷等により行われる。 In order to suppress the generation of coarse second-phase particles in the final solution treatment, it is preferable to heat and cool the copper alloy material as quickly as possible. Specifically, rapid heating can be performed by placing the copper alloy material in an atmosphere that is about 50 to 500 ° C., preferably about 150 to 500 ° C. higher than the temperature near the solid solubility limit of the second phase particle composition. Cooling is performed by water cooling or the like.
6)熱処理
最終の溶体化処理の後、熱処理を行う。熱処理の条件は先述した通りである。
6) Heat treatment Heat treatment is performed after the final solution treatment. The conditions for the heat treatment are as described above.
7)最終の冷間圧延
上記焼鈍後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができる。この際、加工度が5%未満では充分な効果が得られないので加工度を5%以上とするのが好ましい。但し、加工度が高すぎると粒内析出による格子歪よりも結晶粒の扁平による加工歪が大きくなり、曲げ加工性が劣化する。さらに必要に応じて実施する時効処理や歪取焼鈍で粒界析出が起こり易いので、加工度を40%以下、好ましくは5〜40%、より好ましくは10〜30%、更に好ましくは15〜25%とする。
7) Final cold rolling After the annealing, the final cold rolling is performed. The strength of titanium copper can be increased by the final cold working. At this time, if the degree of work is less than 5%, a sufficient effect cannot be obtained, so the degree of work is preferably 5% or more. However, if the working degree is too high, the working strain due to the flattening of crystal grains becomes larger than the lattice strain caused by intragranular precipitation, and the bending workability deteriorates. Furthermore, since grain boundary precipitation is likely to occur during aging treatment or strain relief annealing as necessary, the degree of work is 40% or less, preferably 5 to 40%, more preferably 10 to 30%, and still more preferably 15 to 25. %.
8)時効処理
最終の冷間圧延の後、時効処理を行う。時効処理の条件は慣用の条件でよいが、時効処理を従来に比べてと軽めに行うと、強度と曲げ加工性のバランスが更に向上する。具体的には、時効処理は材料温度300〜400℃で3〜12時間加熱の条件で行うのが好ましい。なお、時効処理を行わない場合や、時効処理時間が短い(2時間未満)場合、時効処理温度が低い(290℃未満)場合には、強度および導電率が低下する場合がある。また、時効時間が長い場合(13時間以上)又は、時効温度が高い場合(450℃以上)、導電率は高くなるが、強度が低下する場合がある。
8) Aging treatment An aging treatment is performed after the final cold rolling. The conditions for the aging treatment may be conventional conditions, but if the aging treatment is performed lighter than in the prior art, the balance between strength and bending workability is further improved. Specifically, the aging treatment is preferably performed under the conditions of heating at a material temperature of 300 to 400 ° C. for 3 to 12 hours. In addition, when aging treatment is not performed, when the aging treatment time is short (less than 2 hours), and when the aging treatment temperature is low (less than 290 ° C.), strength and conductivity may be reduced. In addition, when the aging time is long (13 hours or longer) or when the aging temperature is high (450 ° C. or higher), the electrical conductivity increases, but the strength may decrease.
時効処理は以下の何れかの条件で行うのがより好ましい。
・材料温度340℃以上360℃未満として5〜8時間加熱
・材料温度360℃以上380℃未満として4〜7時間加熱
・材料温度380℃以上400℃未満として3〜6時間加熱
The aging treatment is more preferably performed under any of the following conditions.
・ Material temperature is 340 ° C. or more and less than 360 ° C. for 5 to 8 hours ・ Material temperature is 360 ° C. or more and less than 380 ° C. for 4 to 7 hours ・ Material temperature is 380 ° C. or more and less than 400 ° C. for 3 to 6 hours
時効処理は以下の何れかの条件で行うのが更により好ましい。
・材料温度340℃以上360℃未満として6〜7時間加熱
・材料温度360℃以上380℃未満として5〜6時間加熱
・材料温度380℃以上400℃未満として4〜6時間加熱
It is even more preferable that the aging treatment is performed under any of the following conditions.
・ Material temperature is 340 ° C. or more and less than 360 ° C. for 6 to 7 hours ・ Material temperature is 360 ° C. or more and less than 380 ° C. for 5 to 6 hours ・ Material temperature is 380 ° C. or more and less than 400 ° C. for 4 to 6 hours
なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。 A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。 When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.
Cuに必要に応じて表1の第3元素を添加した後、表1の濃度のTiを添加し、残部銅及び不可避的不純物の組成を有するインゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(1.5mm)とし、必要に応じて(第3元素の添加量に応じて)素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で7.5分間加熱とした。次いで、中間の冷間圧延では最終板厚が0.25mmとなるように中間の板厚を調整して冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、その後、水冷した。このときの加熱条件は材料温度がTiの固溶限が添加量と同じになる温度(Ti濃度3.2質量%で約800℃、Ti濃度2.0質量%で約730℃、Ti濃度4.0質量%で約840℃)を基準として、Tiの固溶限が添加量と同じになる温度よりも0〜20℃高い条件となるように、表1に記載の加熱条件で各々1分間保持した。 Addition of the third element shown in Table 1 to Cu as required, and then add Ti at the concentration shown in Table 1 and homogenize by heating at 950 ° C. for 3 hours to the ingot having the composition of the remaining copper and inevitable impurities After annealing, hot rolling was performed at 900 to 950 ° C. to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, it is cold-rolled to the strip thickness (1.5 mm), and if necessary (depending on the amount of the third element added), the primary solution treatment with the strip is performed. went. The conditions for the first solution treatment were heating at 850 ° C. for 7.5 minutes. Next, in the intermediate cold rolling, the intermediate thickness is adjusted so that the final thickness is 0.25 mm, cold rolling is performed, and then inserted into an annealing furnace capable of rapid heating to perform the final solution treatment. And then water cooled. The heating conditions at this time were such that the material temperature was such that the solid solubility limit of Ti was the same as the amount added (Ti concentration: 3.2% by mass, about 800 ° C., Ti concentration: 2.0% by mass, about 730 ° C., Ti concentration: 4 About 840 ° C. at 0.0 mass%) for 1 minute each under the heating conditions shown in Table 1 so that the solid solubility limit of Ti is 0 to 20 ° C. higher than the temperature at which the addition amount is the same. Retained.
次いで、試験片によっては冷間圧延を表1に記載の条件で行った後に、Ar雰囲気中で表1に記載の条件で熱処理を行った。酸洗による脱スケール後、表1に記載の条件で最終の冷間圧延し、最後に表1に記載の各加熱条件で時効処理を行って、実施例及び比較例の試験片とした。 Next, depending on the test piece, after cold rolling was performed under the conditions described in Table 1, heat treatment was performed under the conditions described in Table 1 in an Ar atmosphere. After descaling by pickling, the final cold rolling was performed under the conditions described in Table 1, and finally an aging treatment was performed under each heating condition described in Table 1 to obtain test pieces of Examples and Comparative Examples.
得られた各試験片について、以下の条件で特性評価を行った。結果を表2に示す。
<強度>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
<曲げ加工性>
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<結晶方位>
各試験片について、理学電機社製型式rint Ultima2000のX線回折装置を用いて、以下の測定条件で圧延面の回折強度曲線を取得し、(111)結晶面、(200)結晶面、(220)結晶面、(311)結晶面のX線回折強度(積分値)Iを測定した。同様の測定条件で、純銅粉標準試料についても(111)結晶面、(200)結晶面、(220)結晶面、(311)結晶面についてX線回折強度(積分値)I0を求め、I/I0(111)、I/I0(200)、I/I0(220)、I/I0(311)をそれぞれ計算し、{I/I0(311)}/{I/I0(200)}及びI/I0(220)}/{I/I0(200)}を求めた。
・ターゲット:Cu管球
・管電圧:40kV
・管電流:40mA
・走査速度:5°/min
・サンプリング幅:0.02°
About each obtained test piece, characteristic evaluation was performed on the following conditions. The results are shown in Table 2.
<Strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.
<Bending workability>
In accordance with JIS H 3130, a W-bending test of Badway (the bending axis is the same direction as the rolling direction) was performed to measure the MBR / t value, which is the ratio of the minimum radius (MBR) to the thickness (t) at which no cracks occur.
<Conductivity>
In accordance with JIS H 0505, the conductivity (EC:% IACS) was measured by a four-terminal method.
<Crystal orientation>
For each test piece, a diffraction intensity curve of the rolled surface was obtained under the following measurement conditions using an X-ray diffractometer manufactured by Rigaku Electric Co., Ltd. model Ultima 2000, and the (111) crystal plane, (200) crystal plane, (220 ) The X-ray diffraction intensity (integral value) I of the crystal plane and (311) crystal plane was measured. Under the same measurement conditions, the X-ray diffraction intensity (integrated value) I 0 was determined for the pure copper powder standard sample for the (111) crystal plane, the (200) crystal plane, the (220) crystal plane, and the (311) crystal plane. / I 0 (111), I / I 0 (200), I / I 0 (220), and I / I 0 (311) are calculated, and {I / I 0 (311)} / {I / I 0 (200)} and I / I 0 (220)} / {I / I 0 (200)} were obtained.
・ Target: Cu tube ・ Tube voltage: 40 kV
・ Tube current: 40 mA
・ Scanning speed: 5 ° / min
・ Sampling width: 0.02 °
<考察>
比較例1〜5は、第3元素の添加元素を0〜0.17質量%とし、第一溶体化処理を行わずに最終の溶体化処理1回のみ行い、最終の溶体化処理→冷間圧延→時効処理の従来の手順順で製造した場合の例を示す。比較例1〜5では、十分な強度が得られていない。
比較例6〜10は、第3元素の添加元素を0〜0.17質量%とし、2段階の溶体化処理(第一溶体化処理及び最終の溶体化処理)を行い、最終の溶体化処理→冷間圧延→時効処理の従来の手順で製造した場合の例を示す。比較例5〜10では曲げ性は向上するものの、十分な強度が得られていない。
比較例11は、最終の溶体化処理→熱処理→冷間圧延→時効処理の手順で製造した場合において、冷間圧延時の加工度を低くしすぎた場合の例を示す。比較例11では、加工度が低すぎるために十分な強度が得られていない。
比較例12は、最終の溶体化処理→熱処理→冷間圧延→時効処理の手順で製造した場合において、冷間圧延時の加工度を高くしすぎた場合の例を示す。比較例12では、十分な強度は得られているが、加工度が高すぎるために曲げ性が劣化した。
比較例13は、最終の溶体化処理→熱処理→冷間圧延→時効処理の手順で製造した場合において、最終の溶体化処理をチタン銅の硬度がピークに近くなるような条件(ピーク時効条件)で行い、更に、最終の時効処理を極短時間で行った場合の例を示す。比較例13では、溶体化後の熱処理をピーク付近にしたために、粗大な安定相が析出し曲げ性が劣化した。
比較例1〜13と比べると、実施例1〜11は、強度と曲げ加工性がバランス良く向上していることが分かる。
<Discussion>
In Comparative Examples 1 to 5, the additive element of the third element is set to 0 to 0.17% by mass, only the final solution treatment is performed once without performing the first solution treatment, and the final solution treatment → cold. An example in the case of manufacturing in the order of conventional procedures of rolling → aging treatment is shown. In Comparative Examples 1 to 5, sufficient strength is not obtained.
In Comparative Examples 6 to 10, the additive element of the third element is set to 0 to 0.17% by mass, and a two-step solution treatment (first solution treatment and final solution treatment) is performed to obtain a final solution treatment. → An example of manufacturing by the conventional procedure of cold rolling → aging treatment is shown. In Comparative Examples 5 to 10, the bendability is improved, but sufficient strength is not obtained.
Comparative Example 11 shows an example in which the degree of workability during cold rolling is made too low in the case of manufacturing in the procedure of final solution treatment → heat treatment → cold rolling → aging treatment. In Comparative Example 11, sufficient strength is not obtained because the degree of processing is too low.
Comparative Example 12 shows an example in which the degree of work at the time of cold rolling is too high in the case of manufacturing by the procedure of final solution treatment → heat treatment → cold rolling → aging treatment. In Comparative Example 12, sufficient strength was obtained, but the bendability deteriorated because the degree of processing was too high.
In Comparative Example 13, when the final solution treatment was performed by the procedure of heat treatment → cold rolling → aging treatment, the final solution treatment was performed under conditions such that the hardness of titanium copper was close to the peak (peak aging condition). In addition, an example in which the final aging treatment is performed in an extremely short time will be shown. In Comparative Example 13, since the heat treatment after solution treatment was performed in the vicinity of the peak, a coarse stable phase precipitated and the bendability deteriorated.
Compared with Comparative Examples 1 to 13, it can be seen that Examples 1 to 11 are improved in balance between strength and bending workability.
Claims (6)
(311)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(1):
{I/I0(311)}/{I/I0(200)}≦2.54・・・(1)
を満たし、且つ
(220)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(2):
15≦{I/I0(220)}/{I/I0(200)}≦95・・・(2)
を満たす銅合金。 The Ti containing 2.0-4.0 wt%, M n, Fe, Mg , Co, Ni, Cr, V, Nb, Mo, Zr, Si, 1 kind or is selected from the group consisting of B and P When the X-ray diffraction intensity of the rolled surface is measured, the content of the third element composed of two or more elements is a total of 0 to 0.2% by mass , and is a copper alloy composed of the remaining copper and unavoidable impurities. ,
The ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (311) plane and the (200) plane is the following relational expression (1):
{I / I 0 (311)} / {I / I 0 (200)} ≦ 2.54 (1)
And the ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (220) plane and (200) plane is expressed by the following relational expression (2):
15 ≦ {I / I 0 (220)} / {I / I 0 (200)} ≦ 95 (2)
Satisfy copper alloy.
(311)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(1):
{I/I0(311)}/{I/I0(200)}≦2.54・・・(1)
を満たし、且つ
(220)面及び(200)面における純銅粉末のX線回折強度I0に対する圧延面のX線回折強度Iの比(I/I0)が、以下の関係式(3):
30≦{I/I0(220)}/{I/I0(200)}≦95・・・(3)
を満たす銅合金。 The Ti containing 2.0-4.0 wt%, M n, Fe, Mg , Co, Ni, Cr, V, Nb, Mo, Zr, Si, 1 kind or is selected from the group consisting of B and P The total content of the third element composed of two or more elements is 0.01 to 0.15 mass% , and is a copper alloy composed of the remaining copper and inevitable impurities, and the X-ray diffraction intensity of the rolled surface was measured. sometimes,
The ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (311) plane and the (200) plane is the following relational expression (1):
{I / I 0 (311)} / {I / I 0 (200)} ≦ 2.54 (1)
And the ratio (I / I 0 ) of the X-ray diffraction intensity I of the rolled surface to the X-ray diffraction intensity I 0 of the pure copper powder in the (220) plane and (200) plane is expressed by the following relational expression (3):
30 ≦ {I / I 0 (220)} / {I / I 0 (200)} ≦ 95 (3)
Satisfy copper alloy.
前記銅合金素材を、730〜880℃においてTiの固溶限が添加量と同じになる固溶限温度に比べて0〜20℃高い温度になるまで加熱して急冷する溶体化処理を行い、
溶体化処理に続いて、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(4):
0.5≦C≦(−0.50[Ti] 2 −0.50[Ti]+14)・・・(4)
を満たすように、導電率を上昇させる熱処理を行い、
熱処理に続いて加工率5〜40%で最終冷間圧延を行い、
最終冷間圧延に続いて、材料温度300〜400℃で3〜12時間加熱の時効処理を行うこと
を含む請求項1又は2に記載の銅合金の製造方法。 The Ti containing 2.0-4.0 wt%, M n, Fe, Mg , Co, Ni, Cr, V, Nb, Mo, Zr, Si, 1 kind or is selected from the group consisting of B and P The content of the third element composed of two or more types is 0 to 0.2% by mass in total, and the copper alloy material consisting of the remaining copper and inevitable impurities,
The copper alloy material is subjected to a solution treatment that is rapidly cooled by heating to a temperature higher by 0 to 20 ° C. than a solid solution limit temperature at which the solid solubility limit of Ti is the same as the addition amount at 730 to 880 ° C.,
Following the solution treatment, when the titanium concentration (% by mass) is [Ti], the conductivity increase value C (% IACS) is expressed by the following relational expression (4):
0.5 ≦ C ≦ (−0.50 [Ti] 2 −0.50 [Ti] +14) (4)
Heat treatment to increase the conductivity so as to satisfy ,
Following the heat treatment, the final cold rolling is performed at a processing rate of 5 to 40%,
The manufacturing method of the copper alloy of Claim 1 or 2 including performing aging treatment of 3-12 hours heating at material temperature 300-400 degreeC following final cold rolling.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010244794A JP5611773B2 (en) | 2010-10-29 | 2010-10-29 | Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy |
TW100136251A TWI429766B (en) | 2010-10-29 | 2011-10-06 | Copper alloy and its use of copper products, electronic parts and connectors, and copper alloy manufacturing methods |
KR1020110110860A KR101367017B1 (en) | 2010-10-29 | 2011-10-28 | Copper alloy, and wrought copper, electric parts, and connector using thereof, and manufacturing method of copper alloy |
CN201110342285.3A CN102453815B (en) | 2010-10-29 | 2011-10-28 | Copper alloy, forged copper adopting the copper alloy, electronic component, connector and method for manufacturing copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010244794A JP5611773B2 (en) | 2010-10-29 | 2010-10-29 | Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012097307A JP2012097307A (en) | 2012-05-24 |
JP5611773B2 true JP5611773B2 (en) | 2014-10-22 |
Family
ID=46037504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010244794A Active JP5611773B2 (en) | 2010-10-29 | 2010-10-29 | Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5611773B2 (en) |
KR (1) | KR101367017B1 (en) |
CN (1) | CN102453815B (en) |
TW (1) | TWI429766B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6192917B2 (en) * | 2012-10-25 | 2017-09-06 | Jx金属株式会社 | High strength titanium copper |
JP6192916B2 (en) * | 2012-10-25 | 2017-09-06 | Jx金属株式会社 | High strength titanium copper |
JP5718436B1 (en) * | 2013-11-18 | 2015-05-13 | Jx日鉱日石金属株式会社 | Titanium copper for electronic parts |
JP6080823B2 (en) * | 2014-09-19 | 2017-02-15 | Jx金属株式会社 | Titanium copper for electronic parts |
JP6080822B2 (en) * | 2014-09-19 | 2017-02-15 | Jx金属株式会社 | Titanium copper for electronic parts and manufacturing method thereof |
KR101627696B1 (en) | 2015-12-28 | 2016-06-07 | 주식회사 풍산 | Copper alloy material for car and electrical and electronic components and process for producing same |
JP6703878B2 (en) * | 2016-03-31 | 2020-06-03 | Jx金属株式会社 | Titanium copper foil and its manufacturing method |
JP6907282B2 (en) * | 2019-09-25 | 2021-07-21 | Jx金属株式会社 | Titanium-copper alloy plate for vapor chamber and vapor chamber |
CN112548495B (en) * | 2020-11-26 | 2022-03-01 | 西北有色金属研究院 | Forging method of plate blank for superconducting wire barrier layer niobium sheet |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1688732B (en) * | 2002-09-13 | 2010-05-26 | Gbc金属有限责任公司 | Age hardening copper base alloy and its preparing process |
JP5084106B2 (en) | 2005-03-07 | 2012-11-28 | Dowaメタニクス株式会社 | Copper titanium alloy sheet and method for producing the same |
JP4191159B2 (en) | 2005-03-14 | 2008-12-03 | 日鉱金属株式会社 | Titanium copper with excellent press workability |
JP4634955B2 (en) * | 2006-03-31 | 2011-02-16 | Jx日鉱日石金属株式会社 | High strength copper alloy with excellent bending workability and dimensional stability |
JP2008081767A (en) * | 2006-09-26 | 2008-04-10 | Nikko Kinzoku Kk | Titanium-copper for electronic part |
JP5208555B2 (en) * | 2008-03-31 | 2013-06-12 | Jx日鉱日石金属株式会社 | Titanium copper for electronic parts |
JP4563480B2 (en) * | 2008-11-28 | 2010-10-13 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
-
2010
- 2010-10-29 JP JP2010244794A patent/JP5611773B2/en active Active
-
2011
- 2011-10-06 TW TW100136251A patent/TWI429766B/en active
- 2011-10-28 CN CN201110342285.3A patent/CN102453815B/en active Active
- 2011-10-28 KR KR1020110110860A patent/KR101367017B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
TWI429766B (en) | 2014-03-11 |
CN102453815A (en) | 2012-05-16 |
CN102453815B (en) | 2015-03-25 |
JP2012097307A (en) | 2012-05-24 |
TW201231690A (en) | 2012-08-01 |
KR101367017B1 (en) | 2014-02-24 |
KR20120046052A (en) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5319590B2 (en) | Copper alloy, copper alloy manufacturing method and electronic component manufacturing method | |
JP5611773B2 (en) | Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy | |
JP4889801B2 (en) | Manufacturing method of titanium copper for electronic parts | |
JP5226057B2 (en) | Copper alloys, copper products, electronic components and connectors | |
JP5490439B2 (en) | Manufacturing method of titanium copper for electronic parts | |
JP5226056B2 (en) | Copper alloys, copper products, electronic components and connectors | |
KR101793854B1 (en) | Copper-titanium alloy for electronic component | |
JP5718436B1 (en) | Titanium copper for electronic parts | |
JP6125409B2 (en) | Titanium copper for electronic parts | |
JPWO2011065152A1 (en) | Titanium copper for electronic parts | |
JP5718021B2 (en) | Titanium copper for electronic parts | |
JP4961049B2 (en) | Titanium copper for electronic parts | |
JP6246456B2 (en) | Titanium copper | |
JP5628712B2 (en) | Titanium copper for electronic parts | |
JP5378286B2 (en) | Titanium copper and method for producing the same | |
JP2012007215A (en) | Titanium copper, copper elongation product, electronic component, connector, and method for manufacturing the titanium copper | |
JP6629400B1 (en) | Titanium copper plate before aging treatment, pressed product and method for producing pressed product | |
JP5319578B2 (en) | Manufacturing method of titanium copper for electronic parts | |
JP2016211077A (en) | Titanium copper | |
JP2010236029A (en) | Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME | |
JP6165071B2 (en) | Titanium copper for electronic parts | |
JP6310131B1 (en) | Titanium copper for electronic parts | |
JP2013204138A (en) | Titanium copper and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5611773 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |