JP5084106B2 - Copper titanium alloy sheet and method for producing the same - Google Patents

Copper titanium alloy sheet and method for producing the same Download PDF

Info

Publication number
JP5084106B2
JP5084106B2 JP2005062444A JP2005062444A JP5084106B2 JP 5084106 B2 JP5084106 B2 JP 5084106B2 JP 2005062444 A JP2005062444 A JP 2005062444A JP 2005062444 A JP2005062444 A JP 2005062444A JP 5084106 B2 JP5084106 B2 JP 5084106B2
Authority
JP
Japan
Prior art keywords
titanium alloy
copper
temperature
rolling
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005062444A
Other languages
Japanese (ja)
Other versions
JP2006241573A (en
Inventor
道夫 三浦
実 一色
鈴木  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2005062444A priority Critical patent/JP5084106B2/en
Publication of JP2006241573A publication Critical patent/JP2006241573A/en
Application granted granted Critical
Publication of JP5084106B2 publication Critical patent/JP5084106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強度と導電率との両立を図った銅チタン合金板材及びその製造方法に関する。   The present invention relates to a copper titanium alloy sheet material that achieves both strength and electrical conductivity and a method for manufacturing the same.

近時、導電性ばね材料として、強度及び導電性が優れた銅チタン合金板材が開発されている。従来、銅チタン合金板材は、溶体化処理を行って析出物を固溶させた後、圧延して歪を付与し、その後、一定温度、例えば450℃に例えば3乃至10時間保持して等温時効処理を行うことにより製造されていた。このとき、等温時効処理における加熱温度及び保持時間は、強度が最大になるように決定されていた(例えば、非特許文献1乃至3参照。)。   Recently, copper-titanium alloy sheets having excellent strength and conductivity have been developed as conductive spring materials. Conventionally, a copper-titanium alloy plate material is subjected to a solution treatment to form a solid solution, and then rolled to impart strain, and then maintained at a constant temperature, for example, 450 ° C. for 3 to 10 hours, for example, for isothermal aging. It was manufactured by processing. At this time, the heating temperature and the holding time in the isothermal aging treatment have been determined so that the strength is maximized (see, for example, Non-Patent Documents 1 to 3).

池野、他2名「Cu−Ti合金の時効におよぼすTi濃度の影響」日本金属学会誌(1974年)、第38巻、第5号、p.446−451Ikeno, et al. 2 “Effect of Ti concentration on aging of Cu—Ti alloy”, Journal of the Japan Institute of Metals (1974), Vol. 38, No. 5, p. 446-451 佐治、他2名「時効後圧延したCu−Ti合金の焼鈍硬化と軟化について」日本金属学会誌(1974年)、第38巻、第7号、p.591−599Saji and two others, “On annealing hardening and softening of Cu-Ti alloy rolled after aging”, Journal of the Japan Institute of Metals (1974), Vol. 38, No. 7, p. 591-599 S. Nagaryuna, and et. al, "Effects of Cold Work on Precipitation Hardening of Cu-4.5 mass% Ti Alloy" Materials Transactions, JIM, Vol.36, No.8(1995), p.1058-1066S. Nagaryuna, and et. Al, "Effects of Cold Work on Precipitation Hardening of Cu-4.5 mass% Ti Alloy" Materials Transactions, JIM, Vol.36, No.8 (1995), p.1058-1066

しかしながら、上述の従来の技術には、以下に示すような問題点がある。上述の時効処理においては、銅チタン合金板材の強度が最大値となる時効処理時間が存在し、これより短時間側では時効処理時間が増加するに伴って強度が増加し、長時間側では時効処理時間の増加に伴って強度が低下する。一方、時効処理に伴う導電率の増加のタイミングは、強度の増加のタイミングよりも遅く、強度が最大値に達して低下し始めた後に、導電率が最大値に達する。即ち、導電率が最大値となる時効処理時間は、強度が最大値となる時効処理時間よりも長時間側にある。このため、時効処理の条件をどのように選択しても、高い強度と高い導電性とを両立させることができない。即ち、強度を最大にしようとして時効処理時間を短くすると、導電率が不十分となる。また、導電率を最大にしようとして時効処理時間を長くすると、強度が低下してしまう。   However, the conventional techniques described above have the following problems. In the aging treatment described above, there is an aging treatment time in which the strength of the copper-titanium alloy sheet becomes the maximum value, and the strength increases as the aging treatment time increases on the short time side, and the aging treatment on the long time side. The strength decreases as the processing time increases. On the other hand, the timing of the increase in the conductivity accompanying the aging treatment is later than the timing of the increase in the strength, and the conductivity reaches the maximum value after the strength reaches the maximum value and starts to decrease. That is, the aging treatment time at which the electrical conductivity reaches the maximum value is longer than the aging treatment time at which the strength reaches the maximum value. For this reason, no matter how the aging treatment conditions are selected, it is impossible to achieve both high strength and high conductivity. That is, if the aging treatment time is shortened in order to maximize the strength, the conductivity becomes insufficient. Further, if the aging treatment time is lengthened in order to maximize the conductivity, the strength is lowered.

本発明はかかる問題点に鑑みてなされたものであって、高い強度と高い導電率とを両立できる銅チタン合金板材及びその製造方法を提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: It aims at providing the copper titanium alloy board | plate material which can make high intensity | strength and high electrical conductivity compatible, and its manufacturing method.

本発明に係る銅チタン合金板材の製造方法は、Tiを含有し、残部が銅及び不可避的不純物からなり、Tiの含有量が2.9乃至3.5質量%である銅チタン合金材をその析出物が固溶する温度に加熱する溶体化工程と、この銅チタン合金材に対して加工率が10乃至50%となるように圧延を施す第1の圧延工程と、温度が500乃至600℃、時間が150秒乃至30分間の熱処理を施す時効処理工程と、加工率が10乃至50%となるように圧延を施す第2の圧延工程と、450℃から300℃まで10乃至25時間の時間をかけて時効処理を施しながら冷却する冷却時効工程と、加工率が10乃至50%となるように圧延を施す第3の圧延工程と、を有することを特徴とする。本発明に係る他の銅チタン合金材の製造方法は、Tiを含有し、更にP、Si及びMgからなる群から選択された1種以上の金属を含有し、残部が銅及び不可避的不純物からなり、Ti、P、Si及びMgの含有量が合計で2.9乃至3.5質量%であり、Pの含有量が0.08乃至0.25質量%であり、Siの含有量が0.08乃至0.4質量%であり、Mgの含有量が0.08乃至1.0質量%である銅チタン合金材をその析出物が固溶する温度に加熱する溶体化工程と、この銅チタン合金材に対して加工率が10乃至50%となるように圧延を施す第1の圧延工程と、温度が500乃至600℃、時間が150秒乃至30分間の熱処理を施す時効処理工程と、加工率が10乃至50%となるように圧延を施す第2の圧延工程と、450℃から300℃まで10乃至25時間の時間をかけて時効処理を施しながら冷却する冷却時効工程と、加工率が10乃至50%となるように圧延を施す第3の圧延工程と、を有することを特徴とする。 Method for producing a copper titanium alloy sheet according to the present invention contains Ti, the residual portion is made of copper and unavoidable impurities, the content of T i is 2. Rolling so that the copper titanium alloy material of 9 to 3.5% by mass is heated to a temperature at which the precipitate is dissolved, and the processing rate is 10 to 50% with respect to the copper titanium alloy material. A first rolling step for performing heat treatment, an aging treatment step for performing heat treatment at a temperature of 500 to 600 ° C. for a time of 150 seconds to 30 minutes, and a second rolling for performing rolling so that the processing rate is 10 to 50%. A cooling aging step in which cooling is performed while performing an aging treatment from 450 ° C. to 300 ° C. over 10 to 25 hours, and a third rolling step in which rolling is performed so that the processing rate is 10 to 50%. It is characterized by having. Another method for producing a copper-titanium alloy material according to the present invention contains Ti, and further contains one or more metals selected from the group consisting of P, Si and Mg, and the balance is made of copper and inevitable impurities. Thus, the total content of Ti, P, Si and Mg is 2.9 to 3.5% by mass, the P content is 0.08 to 0.25% by mass, and the Si content is 0. A solution treatment step of heating a copper titanium alloy material having a Mg content of 0.08 to 0.4% by mass to a temperature at which the precipitate is dissolved, A first rolling step of rolling the titanium alloy material so that the processing rate is 10 to 50%; an aging treatment step of performing a heat treatment at a temperature of 500 to 600 ° C. and a time of 150 seconds to 30 minutes; A second rolling step for rolling so that the processing rate is 10 to 50%; A cooling aging step of cooling while performing an aging treatment from 10 ° C. to 300 ° C. over 10 to 25 hours, and a third rolling step of rolling so that the processing rate is 10 to 50%. It is characterized by.

本発明においては、従来よりも高温・短時間の時効処理を施し、この時効処理の前後に圧延加工を施すことにより、過時効になりにくく、高い強度を維持したまま、導電率が向上するまで時効処理を続けることができる。この結果、高い強度と高い導電率とを両立させることができる。   In the present invention, an aging treatment is performed at a higher temperature and a shorter time than in the past, and rolling is performed before and after this aging treatment, so that it is difficult to become over-aged and the electrical conductivity is improved while maintaining high strength. Aging treatment can be continued. As a result, both high strength and high electrical conductivity can be achieved.

また、前記冷却時効工程が、前記銅チタン合金材を300乃至450℃の範囲にある第1の温度に一定時間保持する工程と、300乃至450℃の範囲にあり前記第1の温度よりも低い第2の温度に一定時間保持する工程と、を有していてもよい。又は、前記冷却時効工程が、前記銅チタン合金材の温度を450℃から300℃まで連続的に低下させる工程であってもよい。   In addition, the cooling aging step includes a step of holding the copper titanium alloy material at a first temperature in a range of 300 to 450 ° C. for a certain time, and a range of 300 to 450 ° C. that is lower than the first temperature. And maintaining the second temperature for a certain period of time. Alternatively, the cooling aging step may be a step of continuously decreasing the temperature of the copper titanium alloy material from 450 ° C. to 300 ° C.

更に、前記時効処理工程の温度を500℃とする場合は、前記時効処理工程の時間を20乃至30分間とすることが好ましい。又は、前記時効処理工程の温度を600℃とする場合は、前記時効処理工程の時間を150乃至200秒間とすることが好ましい。
また、本発明に係る銅チタン合金板材は、上記製造方法によって製造された銅チタン合金板材であって、引張強度が950MPa以上であり、導電率が18%IACS以上であることを特徴とする。
更に、本発明に係る他の銅チタン合金板材は、上記製造方法によって製造された銅チタン合金板材であって、引張強度が950乃至1050MPaであり、導電率が18乃至22%IACSであることを特徴とする。
Furthermore, when the temperature of the aging treatment step is 500 ° C., the time of the aging treatment step is preferably 20 to 30 minutes. Alternatively, when the temperature of the aging treatment step is 600 ° C., the time of the aging treatment step is preferably 150 to 200 seconds.
The copper-titanium alloy sheet according to the present invention is a copper-titanium alloy sheet produced by the above-described production method, and has a tensile strength of 950 MPa or more and an electrical conductivity of 18% IACS or more.
Furthermore, another copper titanium alloy sheet according to the present invention is a copper titanium alloy sheet manufactured by the above manufacturing method, and has a tensile strength of 950 to 1050 MPa and an electrical conductivity of 18 to 22% IACS. Features.

本発明によれば、銅チタン合金板材に対して、従来よりも高温・短時間の時効処理を施し、この時効処理の前後に圧延加工を施すことにより、高い強度と高い導電率とを両立させることができる。   According to the present invention, a copper titanium alloy sheet material is subjected to an aging treatment at a higher temperature and a shorter time than before, and rolling is performed before and after the aging treatment, thereby achieving both high strength and high electrical conductivity. be able to.

以下、本発明の実施形態について添付の図面を参照して詳細に説明する。先ず、本発明の第1の実施形態について説明する。本実施形態は、銅チタン合金板材の実施形態である。本実施形態に係る銅チタン合金板材は、銅(Cu)からなる母相に、チタン(Ti)を例えば、3.2質量%含有している。また、Tiの他に、P、Si及びMgからなる群から選択された1種又は2種以上の金属含有している。Ti、P、Si及びMgの合計含有量は2.9乃至3.5質量%であり、Pの含有量が0.25質量%以下であり、Siの含有量が0.4質量%以下であり、Mgの含有量が1.0質量%以下である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, a first embodiment of the present invention will be described. This embodiment is an embodiment of a copper titanium alloy sheet. The copper-titanium alloy sheet according to the present embodiment contains, for example, 3.2% by mass of titanium (Ti) in the parent phase made of copper (Cu). In addition to Ti, containing one or more metals selected P, from the group consisting of Si and Mg. The total content of Ti, P, Si and Mg is 2.9 to 3.5% by mass, the P content is 0.25% by mass or less, and the Si content is 0.4% by mass or less. Yes, the Mg content is 1.0 mass% or less.

そして、この板材の主面、即ち圧延面に対してX線回折を行い、その(111)結晶面を示すピークの強度をI(111)とし、(220)結晶面を示すピークの強度をI(220)とするとき、ピーク強度の比(I(220)/I(111))の値が4以上、例えば、6.75となる。そして、本実施形態に係る銅チタン合金板材は、引張強度が例えば950乃至1050MPa、導電率が例えば18乃至22%IACSである。なお、導電率の単位である「%IACS」とは、純銅の導電率を100としたときの相対値である。 Then, X-ray diffraction is performed on the main surface of the plate material, that is, the rolling surface, the peak intensity indicating the (111) crystal plane is defined as I (111), and the peak intensity indicating the (220) crystal plane is defined as I. When (220) , the value of the peak intensity ratio (I (220) / I (111) ) is 4 or more, for example, 6.75. The copper titanium alloy sheet according to the present embodiment has a tensile strength of, for example, 950 to 1050 MPa and a conductivity of, for example, 18 to 22% IACS. Note that “% IACS”, which is a unit of conductivity, is a relative value when the conductivity of pure copper is 100.

本実施形態によれば、Ti、P、Si及びMgの合計含有量が2.9乃至3.5質量%である銅チタン合金板材において、比(I(220)/I(111))の値を4以上とすることにより、強度及び導電率の双方を良好なものとすることができる。 According to the present embodiment, in the copper titanium alloy sheet material in which the total content of Ti, P, Si and Mg is 2.9 to 3.5% by mass, the value of the ratio (I (220) / I (111) ) By setting the value to 4 or more, both strength and conductivity can be improved.

以下、本発明の各構成要件における数値限定理由について説明する。   Hereinafter, the reason for the numerical limitation in each constituent requirement of the present invention will be described.

Ti、P、Si及びMgの合計含有量:2.9乃至3.5質量%
Ti、P、Si及びMgの合計含有量が2.9質量%未満では、銅チタン合金板材の導電率は高くなるものの、強度が不十分となる。一方、前記含有率が3.5質量%を超えると、銅チタン合金板材の強度は高くなるものの、導電率が不十分となる。従って、銅チタン合金板材の強度及び導電率を両立させるために、Ti、P、Si及びMgの合計含有量は、2.9乃至3.5質量%とする。
Total content of Ti, P, Si and Mg: 2.9 to 3.5% by mass
If the total content of Ti, P, Si and Mg is less than 2.9% by mass, the conductivity of the copper titanium alloy sheet will be high, but the strength will be insufficient. On the other hand, when the content exceeds 3.5% by mass, the strength of the copper-titanium alloy sheet is increased, but the electrical conductivity is insufficient. Therefore, the total content of Ti, P, Si, and Mg is 2.9 to 3.5% by mass in order to achieve both the strength and conductivity of the copper titanium alloy sheet.

Pの含有量:0.25質量%以下
Pの含有量が0.25質量%を超えると、銅チタン合金板材の導電率は高くなるものの、引張強度が低くなる。従って、Pの含有量は0.25質量%以下とする。
P content: 0.25 mass% or less If the P content exceeds 0.25 mass%, the electrical conductivity of the copper titanium alloy sheet increases, but the tensile strength decreases. Accordingly, the P content is 0.25% by mass or less.

Siの含有量:0.4質量%以下
Siの含有量が0.4質量%を超えると、銅チタン合金板材の導電率は高くなるものの、引張強度が低くなる。従って、Siの含有量が0.4質量%以下とする。
Si content: 0.4 mass% or less When the Si content exceeds 0.4 mass%, the electrical conductivity of the copper titanium alloy sheet increases, but the tensile strength decreases. Accordingly, the Si content is set to 0.4 mass% or less.

Mgの含有量:1.0質量%以下
Mgの含有量が1.0質量%を超えると、溶体化工程前に行う熱間圧延において割れやすくなる。このため、銅チタン合金板材を安定して製造することができない。従って、Mgの含有量は1.0質量%以下とする。
Mg content: 1.0% by mass or less When the Mg content exceeds 1.0% by mass, cracking easily occurs during hot rolling performed before the solution treatment step. For this reason, a copper titanium alloy board cannot be manufactured stably. Therefore, the Mg content is 1.0% by mass or less.

比(I (220) /I (111) )の値:4以上
後述の第2の実施形態において詳細に説明するように、本実施形態に係る銅チタン合金板材は、溶体化処理後の銅チタン合金材に圧延及び短時間の時効処理を施して微細な析出粒子を多く析出させ、その後、多段時効処理を施して導電率が目標値を超えるように析出粒子を更に析出させ、その後、更に圧延を行って加工歪を導入し、導電率を多少低下させても強度を向上させて、製造される。これにより、過時効になりにくく、且つ導電率の向上に寄与する析出粒子が十分に析出された銅チタン合金板材を得ることができる。このように、本実施形態に係る銅チタン合金板材は、その製造工程において多くの加工を加えるために、圧延面において(220)結晶面を示すピークの強度I(220)が強くなる。このため、ピーク強度の比(I(220)/I(111))の値が4以上となる。
Ratio (I (220) / I (111) ) value: 4 or more As will be described in detail in the second embodiment described later, the copper titanium alloy sheet according to this embodiment is a copper titanium after solution treatment. The alloy material is subjected to rolling and short-term aging treatment to precipitate a large amount of fine precipitated particles, and then subjected to multistage aging treatment to further precipitate particles so that the electrical conductivity exceeds the target value, and then further rolling. In this way, the processing strain is introduced to improve the strength even if the electrical conductivity is somewhat reduced, and the manufacturing is performed. Thereby, it is possible to obtain a copper-titanium alloy plate material in which the precipitated particles that are less likely to be over-aged and that contribute to the improvement of the conductivity are sufficiently precipitated. Thus, since the copper titanium alloy sheet according to the present embodiment is subjected to many processes in the manufacturing process, the peak intensity I (220) indicating the (220) crystal plane is increased on the rolled surface. For this reason, the value of the ratio of peak intensity (I (220) / I (111) ) is 4 or more.

より詳細に説明すると、銅チタン合金板材の引張強度及び導電率に影響を及ぼすのは、析出粒子の大きさ及び析出密度である。そして、析出粒子の大きさ及び析出密度に影響を及ぼすのは、析出粒子が析出するときの温度及びひずみである。銅の結晶構造はfccであり、圧延を行うと結晶が回転して加工軸に対して相対的な方位変化を示す。即ち、圧延面の結晶面は、圧延加工に伴い、基本的には(110)面に近づいていく。なお、(110)面は(220)面に平行な面である。そして、圧延の加工率の上昇に伴い、圧延面における(220)面以外の結晶面も、(220)面に近づいていく。   More specifically, it is the size and precipitation density of the precipitated particles that affect the tensile strength and conductivity of the copper titanium alloy sheet. Then, it is the temperature and strain at which the precipitated particles precipitate that influence the size and the density of the precipitated particles. The crystal structure of copper is fcc, and when rolling is performed, the crystal rotates and shows a change in orientation relative to the processing axis. In other words, the crystal plane of the rolled surface basically approaches the (110) plane with the rolling process. The (110) plane is a plane parallel to the (220) plane. As the rolling processing rate increases, the crystal plane other than the (220) plane on the rolled plane also approaches the (220) plane.

従来の銅チタン合金板材の製造方法における圧延工程も、本発明の銅チタン合金板材の製造方法における圧延工程も、全体の加工率は50%程度で同等であるが、本発明は、時効処理の後でも圧延加工を行っているため、合金材に大きなひずみを導入することができる。例えば、従来のように、溶体化工程後に加工率が50%の圧延を行って、その後時効処理を行うよりも、本発明の実施形態のように、溶体化工程後に加工率が20%の圧延を行い、600℃の温度で時効処理工程を行い、その後、加工率が40%の圧延を行う方が、合金板材に大きなひずみを導入できる。そして、このひずみの導入の程度は、ピークの比(I(220)/I(111))の値により、検知することができる。即ち、銅チタン合金板材に導入されたひずみが大きいほど、圧延面における(220)面が多くなり、ピークの比(I(220)/I(111))の値が大きくなる。この結果、析出粒子が好適な大きさ及び密度で析出し、良好な引張強度及び導電率を実現することができるようになる。前記比の値が4以上であれば、銅チタン合金板材に導入されたひずみが十分に大きく、良好な引張強度及び導電率を得ることができる。 The rolling process in the conventional method for producing a copper-titanium alloy sheet and the rolling process in the method for producing a copper-titanium alloy sheet according to the present invention are equivalent to an overall processing rate of about 50%. Since the rolling process is performed later, a large strain can be introduced into the alloy material. For example, the rolling with a processing rate of 20% after the solution forming step is performed as in the embodiment of the present invention, rather than performing the rolling with a processing rate of 50% after the solution forming step and performing the aging treatment thereafter. If the aging treatment process is performed at a temperature of 600 ° C. and then rolling with a processing rate of 40% is performed, a large strain can be introduced into the alloy sheet. The degree of introduction of this strain can be detected by the value of the peak ratio (I (220) / I (111) ). That is, as the strain introduced into the copper-titanium alloy sheet increases, the (220) plane on the rolled surface increases and the value of the peak ratio (I (220) / I (111) ) increases. As a result, the precipitated particles are precipitated with a suitable size and density, and good tensile strength and electrical conductivity can be realized. If the value of the ratio is 4 or more, the strain introduced into the copper titanium alloy sheet is sufficiently large, and good tensile strength and electrical conductivity can be obtained.

次に、本発明の第2の実施形態について説明する。本実施形態は、前述の第1の実施形態に係る銅チタン合金板材の製造方法の実施形態である。図1は、横軸に時間をとり、縦軸に銅チタン合金板材の温度をとって、本実施形態に係る銅チタン合金板材の製造工程を示すグラフ図である。なお、図1において、横軸の長さは必ずしも実際の時間の長さには比例していない。また、図2(a)及び(b)は製造途中の銅チタン合金板材を示すTEM(Transmission Electron Microscope:透過型電子顕微鏡)写真であり、(a)は時効処理により析出する析出粒子を示し、(b)は最終圧延後の析出粒子を示す。なお、図2(a)及び(b)におけるスケールの長さは100nmである。   Next, a second embodiment of the present invention will be described. This embodiment is an embodiment of a method for producing a copper titanium alloy sheet according to the first embodiment described above. FIG. 1 is a graph showing a manufacturing process of a copper-titanium alloy sheet according to the present embodiment, with time on the horizontal axis and the temperature of the copper-titanium alloy sheet on the vertical axis. In FIG. 1, the length of the horizontal axis is not necessarily proportional to the actual time length. 2 (a) and 2 (b) are TEM (Transmission Electron Microscope) photographs showing the copper titanium alloy plate material in the process of production, (a) shows the precipitated particles precipitated by aging treatment, (B) shows the precipitated particles after the final rolling. Note that the length of the scale in FIGS. 2A and 2B is 100 nm.

先ず、チタン(Ti)を例えば、3.2質量%含有し、Tiの他に、P、Si及びMgからなる群から選択された1種又は2種以上の金属含有し、Ti、P、Si及びMgの合計含有量は2.9乃至3.5質量%であり、Pの含有量が0.25質量%以下であり、Siの含有量が0.4質量%以下であり、Mgの含有量が1.0質量%以下である銅チタン合金材を準備する。そして、図1の溶体化工程S1に示すように、この銅チタン合金材をその析出物が固溶する温度、例えば900℃に、例えば3分間保持する。次に、図1の圧延工程S2に示すように、この銅チタン合金材に対して加工率が10乃至50%となるように圧延処理を室温で施す。なお、加工率とは、銅チタン合金材における圧延方向に直交する断面の面積の減少率(減面率)をいう。次に、時効処理工程S3に示すように、圧延後の銅チタン合金材に対して、温度が500乃至600℃、時間が150秒乃至30分間の熱処理を施し、時効させる。次に、圧延工程S4に示すように、時効処理後の銅チタン合金材に対して、加工率が10乃至50%となるように圧延処理を室温で施す。 First, titanium (Ti) is contained, for example, 3.2% by mass, and in addition to Ti, one or more metals selected from the group consisting of P, Si and Mg are contained, and Ti, P, The total content of Si and Mg is 2.9 to 3.5% by mass, the content of P is 0.25% by mass or less, the content of Si is 0.4% by mass or less, A copper titanium alloy material having a content of 1.0% by mass or less is prepared. Then, as shown in the solution treatment step S1 in FIG. 1, the copper titanium alloy material is held at a temperature at which the precipitate is solid-solved, for example, 900 ° C., for example, for 3 minutes. Next, as shown in the rolling step S2 in FIG. 1, the copper titanium alloy material is subjected to a rolling process at room temperature so that the processing rate is 10 to 50%. In addition, a processing rate means the reduction rate (area reduction rate) of the area of the cross section orthogonal to the rolling direction in a copper titanium alloy material. Next, as shown in the aging treatment step S3, the rolled copper titanium alloy material is subjected to heat treatment at a temperature of 500 to 600 ° C. for a time of 150 seconds to 30 minutes to be aged. Next, as shown in rolling step S4, the copper titanium alloy material after the aging treatment is subjected to a rolling treatment at room temperature so that the processing rate becomes 10 to 50%.

次に、図1の冷却時効工程S5に示すように、多段時効処理を行う。例えば450℃の温度に3時間保持した後、400℃の温度に3時間保持し、350℃の温度に3時間保持し、その後、300℃の温度に10時間保持する。即ち、冷却時効工程S5においては、450℃から300℃まで19時間かけて時効処理を施しながら冷却する。その後、銅チタン合金材を室温まで冷却する。次に、図1の圧延工程S6に示すように、加工率が10乃至50%となるように圧延処理を室温で施す。これにより、前述の第1の実施形態に係る銅チタン合金板材が製造される。   Next, as shown in the cooling aging step S5 of FIG. 1, a multi-stage aging process is performed. For example, after holding at a temperature of 450 ° C. for 3 hours, holding at a temperature of 400 ° C. for 3 hours, holding at a temperature of 350 ° C. for 3 hours, and then holding at a temperature of 300 ° C. for 10 hours. That is, in the cooling aging step S5, cooling is performed while performing an aging treatment from 450 ° C. to 300 ° C. over 19 hours. Thereafter, the copper titanium alloy material is cooled to room temperature. Next, as shown in rolling step S6 of FIG. 1, a rolling process is performed at room temperature so that the processing rate becomes 10 to 50%. As a result, the copper titanium alloy sheet according to the first embodiment is manufactured.

本実施形態においては、図1に示す時効処理工程S3を、500乃至600℃の温度で行っている。この温度は、従来の銅チタン合金板材の製造方法における時効処理であれば過時効になる温度であり、析出粒子が粗大化して銅チタン合金材の強度が低下してしまう温度である。しかしながら、本発明者等は、このような高温で時効処理を行っても、時効処理工程S3の前後に圧延工程S2及びS4を設けることにより、銅チタン合金材に歪を付与して核析出の機会を増大させ、且つ、時効処理時間を従来よりも短くすることにより、図2(a)に示すように、圧延工程S4の後の時点において、極めて小さな析出粒子を高密度に生成させる技術を開発した。なお、図2(a)において、直径が10乃至20nmの析出粒子が黒点状(高密度)に観察されている。 In the present embodiment, the aging treatment step S3 shown in FIG. 1 is performed at a temperature of 500 to 600 ° C. This temperature is a temperature that becomes over-aged if it is an aging treatment in a conventional method for producing a copper-titanium alloy sheet, and is a temperature at which the precipitated particles become coarse and the strength of the copper-titanium alloy material decreases. However, even if the present inventors perform an aging treatment at such a high temperature, by providing the rolling steps S2 and S4 before and after the aging treatment step S3, strain is imparted to the copper titanium alloy material to cause nucleation. By increasing the opportunity and shortening the aging treatment time as compared with the prior art, as shown in FIG. 2 (a ), a technology for generating extremely small precipitated particles at a high density at the time after the rolling step S4. developed. In FIG. 2A, precipitated particles having a diameter of 10 to 20 nm are observed as black spots (high density).

また、このように微細な析出粒子が高密度に発生した銅チタン合金材に対して、図1に示す冷却時効処理S5を施すと、銅チタン合金材中のチタン原子が短範囲で拡散し、微細な析出粒子を更に析出させることができる。この結果、少数の析出粒子が粗大化してしまうことを防止し、銅チタン合金板材中にナノメートルサイズの析出粒子を高密度に分散させることができる。これにより、図2(b)に示すように、粒径が10乃至20nm程度の析出粒子が得られる。なお、図2(b)において、この析出粒子は黒点状に観察されている。このように、析出粒子の粒径が小さく保たれるため、この析出粒子が銅チタン合金板材の強度に寄与し、銅チタン合金板材の強度を高いものとすることができる。また、このとき、銅の母相からチタンが固溶限近くまで析出するため、銅チタン合金板材の導電率を高くすることができる。また、冷却時効処理S5の後に圧延工程S6を設けることにより、銅チタン合金板材の強度を向上させると共に、導電率が低下することを防止できる。   Moreover, when the cooling aging treatment S5 shown in FIG. 1 is applied to the copper titanium alloy material in which fine precipitate particles are generated at a high density, titanium atoms in the copper titanium alloy material diffuse in a short range, Fine precipitate particles can be further precipitated. As a result, it is possible to prevent a small number of precipitated particles from becoming coarse and to disperse the nanometer-sized precipitated particles in the copper titanium alloy sheet at high density. Thereby, as shown in FIG.2 (b), the precipitation particle | grains whose particle size is about 10 thru | or 20 nm are obtained. In FIG. 2B, the precipitated particles are observed as black spots. Thus, since the particle size of the precipitated particles is kept small, the precipitated particles contribute to the strength of the copper titanium alloy sheet, and the strength of the copper titanium alloy sheet can be increased. At this time, since titanium precipitates from the copper matrix to near the solid solution limit, the conductivity of the copper titanium alloy sheet can be increased. Further, by providing the rolling step S6 after the cooling aging treatment S5, it is possible to improve the strength of the copper titanium alloy sheet and to prevent the electrical conductivity from decreasing.

このように、本実施形態によれば、時効処理を従来よりも高温・短時間とすることにより、析出粒子の成長を抑え、高い強度を維持しながら、良好な導電率を得ることができる。   As described above, according to the present embodiment, by setting the aging treatment at a higher temperature and shorter time than conventional, it is possible to suppress the growth of the precipitated particles and to obtain a good conductivity while maintaining a high strength.

以下、本発明の各構成要件における数値限定理由について説明する。   Hereinafter, the reason for the numerical limitation in each constituent requirement of the present invention will be described.

時効処理温度:500乃至600℃
時効処理温度が600℃を超えると、析出粒子が粗大化して過時効となる。この結果、銅チタン合金板材の強度が低下する。一方、時効処理温度が500℃未満であると、時効処理に要する時間が長くなり、製造ラインの設計が難しくなる。また、生産効率が低くなる。このため、時効処理温度は500乃至600℃とする。
Aging temperature: 500 to 600 ° C
When the aging treatment temperature exceeds 600 ° C., the precipitated particles become coarse and become over-aged. As a result, the strength of the copper titanium alloy sheet is reduced. On the other hand, when the aging treatment temperature is less than 500 ° C., the time required for the aging treatment becomes long, and the design of the production line becomes difficult. Moreover, production efficiency is lowered. Therefore, the aging treatment temperature is set to 500 to 600 ° C.

時効処理時間:150秒間乃至30分間
時効処理温度が500℃であるとき、製造された銅チタン合金板材の引張強度が良好になる時効処理時間は20乃至30分間であり、導電率が良好になる時効処理時間は20分間以上である。従って、時効処理温度を500℃とすると、良好な引張強度及び導電率を両立できる時効処理時間は20乃至30分間となる。また、時効処理温度が600℃であるとき、製造された銅チタン合金板材の引張強度が良好になる時効処理時間は200秒間以下であり、導電率が良好になる時効処理時間は150秒間以上である。従って、時効処理温度を600℃とすると、良好な引張強度及び導電率を両立できる時効処理時間は150乃至200秒間となる。このため、時効処理温度が500乃至600℃であるとき、良好な引張強度及び導電率を両立できる時効処理時間は150秒間乃至30分間となる。
Aging treatment time: 150 seconds to 30 minutes When the aging treatment temperature is 500 ° C., the tensile strength of the produced copper titanium alloy sheet is good. The aging treatment time is 20 to 30 minutes, and the conductivity is good. The aging treatment time is 20 minutes or more. Therefore, when the aging treatment temperature is 500 ° C., the aging treatment time that can achieve both good tensile strength and electrical conductivity is 20 to 30 minutes. Further, when the aging treatment temperature is 600 ° C., the aging treatment time at which the tensile strength of the produced copper titanium alloy sheet is good is 200 seconds or less, and the aging treatment time at which the conductivity is good is 150 seconds or more. is there. Therefore, when the aging treatment temperature is 600 ° C., the aging treatment time capable of achieving both good tensile strength and electrical conductivity is 150 to 200 seconds. For this reason, when the aging treatment temperature is 500 to 600 ° C., the aging treatment time capable of achieving both good tensile strength and electrical conductivity is 150 seconds to 30 minutes.

冷却時効温度:300℃乃至450℃
冷却時効工程を450℃よりも高い温度から開始すると、銅チタン合金材が過時効となり、銅チタン合金板材の強度が低下する。一方、冷却時効工程を300℃未満の温度まで行っても、300℃未満の温度では粒子の析出は期待できないため、意味がない。このため、冷却時効工程における銅チタン合金材の温度は、300乃至450℃とする。
Cooling aging temperature: 300 ° C to 450 ° C
When the cooling aging process is started from a temperature higher than 450 ° C., the copper titanium alloy material is over-aged and the strength of the copper titanium alloy sheet is lowered. On the other hand, even if the cooling aging step is performed up to a temperature of less than 300 ° C., the precipitation of particles cannot be expected at a temperature of less than 300 ° C., which is meaningless. For this reason, the temperature of the copper titanium alloy material in a cooling aging process shall be 300 to 450 degreeC.

冷却時効時間:10乃至25時間
冷却時効時間が10時間未満であると、析出粒子の析出が不十分となる。一方、冷却時効時間を25時間より長くすると、以下のような不具合が生じる。即ち、450乃至400℃の温度範囲における時間を長くすると、過時効となり銅チタン合金板材の強度が低下する。また、450乃至350℃の温度範囲における時間を長くせずに350乃至300℃の温度範囲における時間のみを長くした場合は、銅チタン合金板材の強度に対する影響は少ないものの、エネルギーの無駄になる。従って、冷却時効時間は10乃至25時間とする。
Cooling aging time: 10 to 25 hours When the cooling aging time is less than 10 hours, precipitation of the precipitated particles becomes insufficient. On the other hand, if the cooling aging time is longer than 25 hours, the following problems occur. That is, if the time in the temperature range of 450 to 400 ° C. is lengthened, it becomes over-aged and the strength of the copper titanium alloy sheet is lowered. Further, when only the time in the temperature range of 350 to 300 ° C. is increased without increasing the time in the temperature range of 450 to 350 ° C., energy is wasted although there is little influence on the strength of the copper titanium alloy sheet. Therefore, the cooling aging time is 10 to 25 hours.

各圧延工程における加工率:10乃至50%
加工率が10%未満では、銅チタン合金材に対するひずみの付与が少なくなり、銅チタン合金板材の強度及び導電率が低くなる。一方、加工率が50%を超えると、銅チタン合金板材の導電率は高くなるものの、強度が低下する。従って、各圧延工程における加工率は10乃至50%とする。
Processing rate in each rolling process: 10 to 50%
If the processing rate is less than 10%, the strain imparted to the copper titanium alloy material is reduced, and the strength and conductivity of the copper titanium alloy sheet are lowered. On the other hand, when the processing rate exceeds 50%, the electrical conductivity of the copper titanium alloy sheet increases, but the strength decreases. Therefore, the processing rate in each rolling process is 10 to 50%.

なお、本実施形態においては、冷却時効工程S5において多段時効処理を行う例を示したが、本発明はこれに限定されず、銅チタン合金材の温度を450℃から300℃まで10乃至25時間かけて冷却すればよく、例えば、連続冷却処理を行ってもよい。   In the present embodiment, an example in which the multi-stage aging treatment is performed in the cooling aging step S5 is shown, but the present invention is not limited to this, and the temperature of the copper titanium alloy material is changed from 450 ° C. to 300 ° C. for 10 to 25 hours. For example, a continuous cooling process may be performed.

以下、本発明の実施例の効果について、その特許請求の範囲から外れる比較例と比較して具体的に説明する。本実施例1においては、時効処理時間が銅チタン合金板材の導電率及び引張強度に及ぼす影響について説明する。図3(a)は横軸に時効処理時間をとり、縦軸に引張強度をとって、時効処理時間が引張強度に及ぼす影響を示すグラフ図であり、(b)は横軸に時効処理時間をとり、縦軸に導電率をとって、時効処理時間が導電率に及ぼす影響を示すグラフ図である。   Hereinafter, the effect of the embodiment of the present invention will be specifically described in comparison with a comparative example that deviates from the scope of the claims. In Example 1, the influence of the aging treatment time on the conductivity and tensile strength of the copper titanium alloy sheet will be described. FIG. 3 (a) is a graph showing the effect of aging treatment time on tensile strength, with the horizontal axis representing aging treatment time and the vertical axis representing tensile strength, and FIG. 3 (b) representing aging treatment time on the horizontal axis. FIG. 5 is a graph showing the effect of aging treatment time on conductivity, taking conductivity on the vertical axis.

先ず、銅(Cu)からなる母相中にチタン(Ti)を3.2質量%含有し、残部が銅(Cu)及び不可避的不純物からなり、板厚が0.4mmである銅チタン合金材を用意した。そして、この合金材に対して、温度が900℃、時間が3分間の溶体化処理を施した。次に、溶体化処理後の合金材に、加工率(減面率)が20%となるように圧延加工を施した。次に、温度が600℃の時効処理を行った。このとき、時効処理の時間を50乃至250秒間の範囲で相互に異ならせた。次に、加工率が40%になるように圧延加工を施した。次に、この圧延加工後の合金材に、多段時効処理を施した。多段時効処理は、450℃の温度に3時間保持した後、400℃の温度に3時間保持し、350℃の温度に3時間保持し、300℃の温度に10時間保持して行った。その後、加工率が30%となるように圧延加工を施した。これにより、銅チタン合金板材を作製した。   First, a copper titanium alloy material containing 3.2% by mass of titanium (Ti) in a parent phase made of copper (Cu), the balance being made of copper (Cu) and inevitable impurities, and a plate thickness of 0.4 mm. Prepared. The alloy material was subjected to a solution treatment at a temperature of 900 ° C. and for a time of 3 minutes. Next, the alloy material after the solution treatment was subjected to rolling so that the processing rate (area reduction rate) was 20%. Next, an aging treatment at a temperature of 600 ° C. was performed. At this time, the aging treatment time was varied within a range of 50 to 250 seconds. Next, rolling was performed so that the processing rate was 40%. Next, multistage aging treatment was performed on the alloy material after the rolling process. The multi-stage aging treatment was carried out by holding at a temperature of 450 ° C. for 3 hours, holding at a temperature of 400 ° C. for 3 hours, holding at a temperature of 350 ° C. for 3 hours, and holding at a temperature of 300 ° C. for 10 hours. Thereafter, rolling was performed so that the processing rate was 30%. This produced the copper titanium alloy board | plate material.

そして、この銅チタン合金板材の引張強度及び導電率を測定した。この測定結果を図3(a)及び(b)に示す。図3(a)に示すように、時効処理時間が150秒間以上であると、時効処理時間の増大に伴って引張強度が減少する傾向が見られたものの、時効処理時間が50乃至200秒間の範囲では、銅チタン合金板材の引張強度は980MPa以上と良好であった。一方、図3(b)に示すように、時効処理時間が170秒間以下であると、時効処理時間の短縮に伴って導電率が減少する傾向が見られ、時効処理時間が150秒間未満であると導電率は20%IACS未満となった。   And the tensile strength and electrical conductivity of this copper titanium alloy board | plate material were measured. The measurement results are shown in FIGS. 3 (a) and 3 (b). As shown in FIG. 3 (a), when the aging treatment time is 150 seconds or longer, the tensile strength tends to decrease as the aging treatment time increases, but the aging treatment time is 50 to 200 seconds. In the range, the tensile strength of the copper titanium alloy sheet was as good as 980 MPa or more. On the other hand, as shown in FIG. 3 (b), when the aging treatment time is 170 seconds or less, there is a tendency that the conductivity decreases as the aging treatment time decreases, and the aging treatment time is less than 150 seconds. And the conductivity was less than 20% IACS.

本実施例2においては、前述の実施例1と同様に、時効処理時間が銅チタン合金板材の導電率及び引張強度に及ぼす影響について説明する。但し、本実施例2においては、前述の実施例1とは異なり、時効処理温度を500℃とした。また、時効処理時間を10乃至30分間とした。図4は、横軸に時効処理時間をとり、縦軸に引張強度及び導電率をとって、時効処理時間が引張強度及び導電率に及ぼす影響を示すグラフ図である。図4に示すように、時効処理時間が10乃至30分間の範囲では、時効処理時間が増大するほど、引張強度及び導電率が増加する傾向が見られたが、この時効処理時間範囲では、良好な引張強度及び導電性が得られた。 In the second embodiment, as in the first embodiment, the influence of the aging treatment time on the conductivity and tensile strength of the copper titanium alloy sheet will be described. However, in the second embodiment, unlike the first embodiment, the aging treatment temperature was set to 500 ° C. The aging treatment time was 10 to 30 minutes. FIG. 4 is a graph showing the effect of aging treatment time on tensile strength and conductivity, with the aging treatment time on the horizontal axis and the tensile strength and conductivity on the vertical axis. As shown in FIG. 4, when the aging treatment time was in the range of 10 to 30 minutes, the tensile strength and the conductivity tended to increase as the aging treatment time increased, but in this aging treatment time range, it was good. High tensile strength and conductivity were obtained.

本実施例3においては、実施例である本発明の製造方法と、比較例である従来の製造方法との比較を行った。先ず、銅からなる母相中にチタンを3.2質量%含有し、板厚が0.4mmである銅チタン合金材を用意した。そして、この合金材に対して、温度が900℃、時間が3分間の溶体化処理を施した。その後、表1に示すように、No.1乃至4の合金材については、加工率が20%の圧延加工を施した後、500乃至600℃の温度で短時間(150秒間乃至12.5分間)の時効処理を行い、加工率が40%の圧延加工、多段時効処理、加工率が30%の圧延加工を施した。一方、No.5乃至7の合金材については、夫々加工率が54%、50%又は24%の圧延加工を施した後、420℃又は450℃の温度で長時間(3時間)の時効処理を行った。但し、No.1乃至4の合金材に対して行った加工率が40%の圧延加工、多段時効処理、加工率が30%の圧延加工は行わなかった。その後、これらの合金板材の引張強度及び導電率を測定した。この測定結果を表1に示す。   In the present Example 3, the manufacturing method of the present invention as an example was compared with the conventional manufacturing method as a comparative example. First, a copper titanium alloy material containing 3.2% by mass of titanium in a parent phase made of copper and having a plate thickness of 0.4 mm was prepared. The alloy material was subjected to a solution treatment at a temperature of 900 ° C. and for a time of 3 minutes. Thereafter, as shown in Table 1, For the alloy materials 1 to 4, after rolling with a processing rate of 20%, an aging treatment is performed at a temperature of 500 to 600 ° C. for a short time (150 seconds to 12.5 minutes), and the processing rate is 40 % Rolling, multi-stage aging treatment, and rolling with a processing rate of 30%. On the other hand, no. The alloy materials 5 to 7 were subjected to aging treatment at a temperature of 420 ° C. or 450 ° C. for a long time (3 hours) after rolling with a processing rate of 54%, 50% or 24%, respectively. However, no. Rolling with a processing rate of 40%, multi-stage aging treatment, and rolling with a processing rate of 30% performed on the alloy materials 1 to 4 were not performed. Thereafter, the tensile strength and electrical conductivity of these alloy sheets were measured. The measurement results are shown in Table 1.

Figure 0005084106
Figure 0005084106

表1に示すNo.1乃至4は、本発明の実施例である。実施例No.1乃至4は、製造条件が本発明の範囲を満たしているため、引張強度及び導電率がいずれも良好であった。一方、表1に示すNo.5乃至7は比較例である。比較例No.5乃至7については、引張強度を実施例と同程度に合わせようとすると、導電率が実施例No.1乃至4よりも低くなった。   No. shown in Table 1. Examples 1 to 4 are examples of the present invention. Example No. In Nos. 1 to 4, since the manufacturing conditions satisfied the scope of the present invention, both the tensile strength and the electrical conductivity were good. On the other hand, no. Reference numerals 5 to 7 are comparative examples. Comparative Example No. About 5 thru | or 7, when trying to match | combine the tensile strength to the same level as an Example, electrical conductivity is Example No .. It was lower than 1 to 4.

また、表1に示すNo.1及びNo.5の合金板材については、X線回折を行った。図5は合金板材におけるX線回折を行った面を示す斜視図である。図5に示すように、銅チタン合金板材11は、圧延方向12に沿って圧延されたものである。そして、X線回折は、銅チタン合金板材11の主面であり圧延面である平面13と、この平面13と交差し且つ圧延方向12に平行な平行断面14に対して行った。X線回折の方法はθ−2θ法とした。図6(a)乃至(d)は、横軸に2θをとり、縦軸にピーク強度をとって、X線回折プロファイルを示すグラフ図であり、(a)は表1に示す実施例No.1の平面のプロファイルを示し、(b)は実施例No.1の平行断面のプロファイルを示し、(c)は比較例No.5の平面のプロファイルを示し、(d)は比較例No.5の平行断面のプロファイルを示す。   No. 1 shown in Table 1 1 and no. The alloy plate material No. 5 was subjected to X-ray diffraction. FIG. 5 is a perspective view showing the surface of the alloy plate subjected to X-ray diffraction. As shown in FIG. 5, the copper titanium alloy sheet 11 is rolled along the rolling direction 12. X-ray diffraction was performed on a plane 13 which is the main surface of the copper-titanium alloy sheet 11 and is a rolling surface, and a parallel section 14 which intersects the plane 13 and is parallel to the rolling direction 12. The X-ray diffraction method was the θ-2θ method. 6A to 6D are graphs showing X-ray diffraction profiles with 2θ on the horizontal axis and peak intensity on the vertical axis, and FIG. 1 shows the profile of the plane of FIG. 1 shows a profile of a parallel section of No. 1 and (c) shows a comparative example No. 1 5 shows the profile of the plane of FIG. 5 shows a profile of 5 parallel sections.

表1に示す実施例No.1と比較例No.5との合計の加工率は略同じである。しかし、図6(a)及び(c)に示すように、(220)結晶面を示すピーク強度I(220)と、(111)結晶面を示すピーク強度I(111)との比(I(220)/I(111))の値は、実施例No.1においては、6.75であり、比較例No.5においては3.60であった。即ち、実施例No.1の方が、比較例No.5よりも(220)ピークの相対的な強度が高かった。 Example No. shown in Table 1 1 and Comparative Example No. The total processing rate with 5 is substantially the same. However, as shown in FIGS. 6A and 6C, the ratio (I 1 (2 ) between the peak intensity I (220) indicating the (220 ) crystal plane and the peak intensity I (111) indicating the (111) crystal plane. 220) / I (111) ) is the value of Example No. 1 was 6.75, and Comparative Example No. 1 5 was 3.60. That is, Example No. No. 1 is comparative example No.1. The relative intensity of the (220) peak was higher than 5.

また、図6(b)及び(d)に示すように、実施例No.1においては、平行断面の(111)ピークの近傍に銅チタン合金(Cu Ti合金)の影響と思われるピーク21が認められた。一方、比較例No.5については、そのようなピークは認められなかった。このため、実施例No.1は比較例No.5よりも平行断面に関しては結晶の等方性が高いと考えられる。 In addition, as shown in FIGS. In No. 1, a peak 21 that was considered to be an influence of a copper titanium alloy ( Cu 4 Ti alloy ) was observed in the vicinity of the (111) peak of the parallel section. On the other hand, Comparative Example No. For 5, no such peak was observed. For this reason, Example No. 1 is Comparative Example No. 1. It is considered that the crystal isotropic is higher with respect to the parallel section than 5.

本実施例4においては、従来の銅チタン合金板材の製造方法について、時効処理時間を延ばす実験を行った。この場合、時効処理温度は従来の時効処理温度である350乃至450℃とし、圧延加工は行わなかった。そして、時効処理後の板材について、引張強度及び導電率を測定した。測定結果を図7(a)及び(b)に示す。図7(a)は、横軸に時効時間をとり、縦軸に引張強度をとって、従来の製造方法において時効時間が引張強度に及ぼす影響を示すグラフ図であり、(b)は、横軸に時効時間をとり、縦軸に導電率をとって、従来の製造方法において時効時間が導電率に及ぼす影響を示すグラフ図である。   In Example 4, an experiment for extending the aging treatment time was performed on a conventional method for producing a copper titanium alloy sheet. In this case, the aging temperature was 350 to 450 ° C., which is a conventional aging temperature, and no rolling process was performed. And the tensile strength and electrical conductivity were measured about the board | plate material after an aging treatment. The measurement results are shown in FIGS. 7 (a) and (b). FIG. 7 (a) is a graph showing the effect of aging time on tensile strength in a conventional manufacturing method, with the aging time on the horizontal axis and the tensile strength on the vertical axis. (B) It is a graph which shows the influence which an aging time has on an electrical conductivity in a conventional manufacturing method, taking aging time on an axis | shaft and taking an electrical conductivity on a vertical axis | shaft.

図7(a)に示すように、時効処理温度を400℃とした場合及び450℃とした場合は、時効処理時間が約3時間の場合に引張強度が最大値をとり、時効処理時間が3時間を超えると、時効処理時間の増大に伴って引張強度が低下した。一方、時効処理温度が350℃とした場合は、時効処理時間に拘らず引張強度が低かった。これに対して、導電率は時効処理時間の増大に伴って増加し続けた。このため、従来の方法では、時効処理時間をいかなる時間に設定しても、高い強度と高い導電率とを両立させることができないことがわかる。   As shown in FIG. 7A, when the aging treatment temperature is 400 ° C. and 450 ° C., the tensile strength takes the maximum value when the aging treatment time is about 3 hours, and the aging treatment time is 3 When the time was exceeded, the tensile strength decreased as the aging treatment time increased. On the other hand, when the aging treatment temperature was 350 ° C., the tensile strength was low regardless of the aging treatment time. In contrast, conductivity continued to increase with increasing aging treatment time. For this reason, it can be seen that the conventional method cannot achieve both high strength and high conductivity regardless of the aging treatment time.

なお、図には示していないが、時効処理の前に圧延加工を行うと、引張強度は全体的に高くなるが、引張強度が低下し始める時効処理時間は短くなった。一方、導電率は、圧延加工を行わない場合と同様な傾向を示した。このため、高い引張強度を実現しようとして時効処理時間を短くすると、導電率がより一層低くなった。   Although not shown in the figure, when the rolling process was performed before the aging treatment, the tensile strength was increased as a whole, but the aging treatment time at which the tensile strength began to decrease was shortened. On the other hand, the electrical conductivity showed the same tendency as the case where no rolling process was performed. For this reason, when the aging treatment time was shortened in order to achieve high tensile strength, the conductivity was further lowered.

本実施例5においては、銅チタン合金板材の組成が引張強度及び導電率に及ぼす影響を調査した。先ず、銅からなる母相中にTiを含有し、P、Si及びMgのうちいずれかの金属元素を含有した合金材を溶製した。この合金材の組成を表2に示す。そして、この合金材に対して熱間圧延を施し、板厚が0.4mmである銅チタン合金材を作製した。次に、この合金材に対して、温度が900℃、時間が3分間の溶体化処理を施した。次に、この合金材を水冷して室温まで冷却した後、加工率が20%の圧延加工を施した。次に、600℃の温度で時効処理を施し、室温まで冷却した後、加工率が40%の圧延加工を施し、冷却時効処理を施した。この冷却時効処理は、銅チタン合金材を450℃の温度に2時間保持した後、400℃の温度に2時間保持し、350℃の温度に2時間保持し、300℃の温度に10時間保持する多段時効処理とした。そして、その後、この合金材を水冷して室温まで冷却した後、加工率が20%の圧延加工を施して、銅チタン合金板材を製造した。その後、これらの合金板材の引張強度及び導電率を測定した。この測定結果を表2に示す。なお、表2に示す「−」は、該当する成分を含有していないことを示す。また、表2に示す成分以外の残部は、銅及び不可避的不純物である。

In Example 5, the influence of the composition of the copper titanium alloy sheet on the tensile strength and conductivity was investigated. First, an alloy material containing Ti in a matrix phase made of copper and containing any metal element of P, Si and Mg was melted. Table 2 shows the composition of this alloy material. And this alloy material was hot-rolled to produce a copper titanium alloy material having a plate thickness of 0.4 mm. Next, the alloy material was subjected to a solution treatment at a temperature of 900 ° C. and a time of 3 minutes. Next, this alloy material was cooled with water to room temperature, and then subjected to rolling with a processing rate of 20%. Next, subjected to time aging treatment at a temperature of 600 ° C., after cooling to room temperature, the working ratio is subjected to 40% rolling, subjected to cooling aging treatment. In this cooling aging treatment, the copper titanium alloy material is held at a temperature of 450 ° C. for 2 hours, then held at a temperature of 400 ° C. for 2 hours, held at a temperature of 350 ° C. for 2 hours, and held at a temperature of 300 ° C. for 10 hours. Multistage aging treatment. Then, after cooling the alloy material to water and cooling to room temperature, a rolling process with a processing rate of 20% was performed to manufacture a copper titanium alloy sheet. Thereafter, the tensile strength and electrical conductivity of these alloy sheets were measured. The measurement results are shown in Table 2. In addition, "-" shown in Table 2 indicates that the corresponding component is not contained. The balance other than the components shown in Table 2 is copper and inevitable impurities.

Figure 0005084106
Figure 0005084106

表2に示すNo.11、12、14、15、17乃至20は本発明の実施例である。実施例No.11、12、14、15、17乃至20は、合金材の組成が本発明の範囲を満たしているため、引張強度及び導電率がいずれも良好であった。これに対して、表2に示すNo.13、16及び21は比較例である。比較例No.13は、Siの含有量が0.4質量%を超えているため、実施例と比較して引張強度が低かった。比較例No.16は、Pの含有量が0.25質量%を超えているため、実施例と比較して引張強度が低かった。比較例No.21は、Mgの含有量が1.0質量%を超えているため、溶体化工程前の熱間圧延において割れてしまい、銅チタン合金板材を製造できなかった。このため、合金板材の引張強度及び導電率は測定していない。   No. shown in Table 2 11, 12, 14, 15, 17 to 20 are embodiments of the present invention. Example No. Nos. 11, 12, 14, 15, 17 to 20 had good tensile strength and electrical conductivity because the composition of the alloy material satisfied the scope of the present invention. In contrast, No. 2 shown in Table 2. 13, 16 and 21 are comparative examples. Comparative Example No. No. 13 had a tensile strength lower than that of the example because the Si content exceeded 0.4 mass%. Comparative Example No. No. 16 had a lower tensile strength than the examples because the P content exceeded 0.25 mass%. Comparative Example No. In No. 21, since the Mg content exceeded 1.0 mass%, it was cracked in hot rolling before the solution treatment step, and a copper titanium alloy sheet could not be produced. For this reason, the tensile strength and electrical conductivity of the alloy sheet are not measured.

本発明は、導電性ばね材等に使用される銅チタン合金板材及びその製造方法に好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for a copper titanium alloy plate material used for a conductive spring material or the like and a manufacturing method thereof.

横軸に時間をとり、縦軸に銅チタン合金材の温度をとって、本発明の第2の実施形態に係る銅チタン板材の製造工程を示すグラフ図である。It is a graph which shows the manufacturing process of the copper titanium board | plate material which concerns on the 2nd Embodiment of this invention, taking time on a horizontal axis and taking the temperature of a copper titanium alloy material on a vertical axis | shaft. (a)及び(b)は製造途中の銅チタン合金材を示す図面代用写真であり、(a)は時効処理により析出する析出核を示し、(b)は最終圧延後の析出粒子を示す(TEM写真:紙面上倍率200000倍)。(A) And (b) is a drawing-substituting photograph showing a copper titanium alloy material in the course of production, (a) shows precipitation nuclei precipitated by aging treatment, and (b) shows precipitated particles after final rolling ( (TEM photograph: magnification on paper of 200000 times). (a)は横軸に時効処理時間をとり、縦軸に引張強度をとって、時効処理時間が引張強度に及ぼす影響を示すグラフ図であり、(b)は横軸に時効処理時間をとり、縦軸に導電率をとって、時効処理時間が導電率に及ぼす影響を示すグラフ図である。(A) is a graph showing the effect of aging treatment time on tensile strength by taking the aging treatment time on the horizontal axis and the tensile strength on the vertical axis, and (b) shows the aging treatment time on the horizontal axis. It is a graph which shows the influence which electrical conductivity is taken on a vertical axis | shaft and an aging treatment time has on electrical conductivity. 横軸に時効処理時間をとり、縦軸に引張強度及び導電率をとって、時効処理時間が引張強度及び導電率に及ぼす影響を示すグラフ図である。It is a graph which shows the influence which an aging treatment time has on the tensile strength and electrical conductivity, taking aging treatment time on a horizontal axis | shaft and taking a tensile strength and electrical conductivity on a vertical axis | shaft. 合金板材におけるX線回折を行った面を示す斜視図である。It is a perspective view which shows the surface which performed the X-ray diffraction in the alloy board | plate material. (a)乃至(d)は、横軸に2θをとり、縦軸にピーク強度をとって、X線回折プロファイルを示すグラフ図であり、(a)は表1に示す実施例No.1の平面のプロファイルを示し、(b)は実施例No.1の平行断面のプロファイルを示し、(c)は比較例No.5の平面のプロファイルを示し、(d)は比較例No.5の平行断面のプロファイルを示す。(A) to (d) are graphs showing X-ray diffraction profiles with 2θ on the horizontal axis and peak intensity on the vertical axis, and (a) is an example No. shown in Table 1. 1 shows the profile of the plane of FIG. 1 shows a profile of a parallel section of No. 1 and (c) shows a comparative example No. 1; 5 shows the profile of the plane of FIG. 5 shows a profile of 5 parallel sections. (a)は、横軸に時効時間をとり、縦軸に引張強度をとって、従来の製造方法において時効時間が引張強度に及ぼす影響を示すグラフ図であり、(b)は、横軸に時効時間をとり、縦軸に導電率をとって、従来の製造方法において時効時間が導電率に及ぼす影響を示すグラフ図である。(A) is a graph showing the effect of aging time on tensile strength in a conventional manufacturing method, with the aging time on the horizontal axis and the tensile strength on the vertical axis, and (b) is the horizontal axis. It is a graph which shows the influence which aging time has on aging in a conventional manufacturing method, taking aging time and taking a conductivity on a vertical axis | shaft.

符号の説明Explanation of symbols

11;銅チタン合金板材 12;圧延方向 13;平面 14;平行断面 21:ピーク S1;溶体化工程 S2、S4、S6;圧延工程 S3;時効処理工程 S5;冷却時効工程   11; copper titanium alloy sheet 12; rolling direction 13; plane 14; parallel cross section 21: peak S1; solution treatment step S2, S4, S6; rolling step S3; aging treatment step S5; cooling aging step

Claims (8)

Tiを含有し、残部が銅及び不可避的不純物からなり、Tiの含有量が2.9乃至3.5質量%である銅チタン合金材をその析出物が固溶する温度に加熱する溶体化工程と、この銅チタン合金材に対して加工率が10乃至50%となるように圧延を施す第1の圧延工程と、温度が500乃至600℃、時間が150秒乃至30分間の熱処理を施す時効処理工程と、加工率が10乃至50%となるように圧延を施す第2の圧延工程と、450℃から300℃まで10乃至25時間の時間をかけて時効処理を施しながら冷却する冷却時効工程と、加工率が10乃至50%となるように圧延を施す第3の圧延工程と、を有することを特徴とする銅チタン合金板材の製造方法。 A solution treatment step for heating a copper titanium alloy material containing Ti, the balance of copper and inevitable impurities, and containing Ti of 2.9 to 3.5% by mass to a temperature at which the precipitate is dissolved. And a first rolling step for rolling the copper-titanium alloy material to a processing rate of 10 to 50%, and an aging treatment for performing a heat treatment at a temperature of 500 to 600 ° C. and a time of 150 seconds to 30 minutes. A treatment step, a second rolling step for rolling so that the processing rate becomes 10 to 50%, and a cooling aging step for cooling while performing an aging treatment from 450 ° C. to 300 ° C. over 10 to 25 hours And a third rolling step in which rolling is performed so that the processing rate is 10 to 50%. Tiを含有し、更にP、Si及びMgからなる群から選択された1種以上の金属を含有し、残部が銅及び不可避的不純物からなり、Ti、P、Si及びMgの含有量が合計で2.9乃至3.5質量%であり、Pの含有量が0.08乃至0.25質量%であり、Siの含有量が0.08乃至0.4質量%であり、Mgの含有量が0.08乃至1.0質量%である銅チタン合金材をその析出物が固溶する温度に加熱する溶体化工程と、この銅チタン合金材に対して加工率が10乃至50%となるように圧延を施す第1の圧延工程と、温度が500乃至600℃、時間が150秒乃至30分間の熱処理を施す時効処理工程と、加工率が10乃至50%となるように圧延を施す第2の圧延工程と、450℃から300℃まで10乃至25時間の時間をかけて時効処理を施しながら冷却する冷却時効工程と、加工率が10乃至50%となるように圧延を施す第3の圧延工程と、を有することを特徴とする銅チタン合金板材の製造方法。 It contains Ti, and further contains one or more metals selected from the group consisting of P, Si and Mg, the balance is made of copper and unavoidable impurities, and the total content of Ti, P, Si and Mg 2.9 to 3.5% by mass, P content is 0.08 to 0.25% by mass, Si content is 0.08 to 0.4% by mass, Mg content Is a solution treatment step of heating a copper titanium alloy material having a content of 0.08 to 1.0 mass% to a temperature at which the precipitate is dissolved, and the processing rate is 10 to 50% with respect to the copper titanium alloy material. The first rolling step for rolling, the aging treatment step for applying a heat treatment at a temperature of 500 to 600 ° C. for a time of 150 seconds to 30 minutes, and the first rolling step for applying a rolling rate of 10 to 50%. 2 rolling process and 450 to 300 ° C for 10 to 25 hours Method for producing a copper titanium alloy sheet, characterized in that it comprises only a cooling aging step of cooling while applying an aging treatment, a third rolling step of processing rate is to perform rolling such that 10 to 50%, a. 前記冷却時効工程が、前記銅チタン合金材を300乃至450℃の範囲にある第1の温度に一定時間保持する工程と、300乃至450℃の範囲にあり前記第1の温度よりも低い第2の温度に一定時間保持する工程と、を有することを特徴とする請求項1又は2に記載の銅チタン合金板材の製造方法。 The cooling aging step includes a step of holding the copper titanium alloy material at a first temperature in a range of 300 to 450 ° C. for a certain time, and a second in a range of 300 to 450 ° C. that is lower than the first temperature. And maintaining the temperature at a certain temperature for a certain period of time. The method for producing a copper-titanium alloy sheet according to claim 1 or 2 . 前記冷却時効工程が、前記銅チタン合金材の温度を450℃から300℃まで連続的に低下させる工程であることを特徴とする請求項1又は2に記載の銅チタン合金板材の製造方法。 The method for producing a copper titanium alloy sheet according to claim 1 or 2 , wherein the cooling aging step is a step of continuously reducing the temperature of the copper titanium alloy material from 450 ° C to 300 ° C. 前記時効処理工程の温度を500℃とし、前記時効処理工程の時間を20乃至30分間とすることを特徴とする請求項1乃至4のいずれか1項に記載の銅チタン合金板材の製造方法。 Wherein the temperature of the aging treatment step was 500 ° C., a manufacturing method of a copper titanium alloy sheet according to any one of claims 1 to 4 time of the aging treatment step, characterized in that the inter 20-30 minutes. 前記時効処理工程の温度を600℃とし、前記時効処理工程の時間を150乃至200秒間とすることを特徴とする請求項1乃至4のいずれか1項に記載の銅チタン合金板材の製造方法。 5. The method for producing a copper-titanium alloy sheet according to claim 1, wherein the temperature of the aging treatment step is 600 ° C., and the time of the aging treatment step is 150 to 200 seconds. 請求項1乃至6のいずれか1項に記載の銅チタン合金板材の製造方法によって製造された銅チタン合金板材であって、引張強度が950MPa以上であり、導電率が18%IACS以上であることを特徴とする銅チタン合金板材。 A copper titanium alloy sheet produced by the method for producing a copper titanium alloy sheet according to any one of claims 1 to 6, wherein the tensile strength is 950 MPa or more and the conductivity is 18% IACS or more. A copper titanium alloy sheet characterized by 請求項1乃至6のいずれか1項に記載の銅チタン合金板材の製造方法によって製造された銅チタン合金板材であって、引張強度が950乃至1050MPaであり、導電率が18乃至22%IACSであることを特徴とする銅チタン合金板材。 A copper titanium alloy sheet produced by the method for producing a copper titanium alloy sheet according to any one of claims 1 to 6, wherein the tensile strength is 950 to 1050 MPa, and the conductivity is 18 to 22% IACS. A copper-titanium alloy sheet characterized by being.
JP2005062444A 2005-03-07 2005-03-07 Copper titanium alloy sheet and method for producing the same Active JP5084106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062444A JP5084106B2 (en) 2005-03-07 2005-03-07 Copper titanium alloy sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062444A JP5084106B2 (en) 2005-03-07 2005-03-07 Copper titanium alloy sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006241573A JP2006241573A (en) 2006-09-14
JP5084106B2 true JP5084106B2 (en) 2012-11-28

Family

ID=37048265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062444A Active JP5084106B2 (en) 2005-03-07 2005-03-07 Copper titanium alloy sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5084106B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563480B2 (en) 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
EP2196548B1 (en) 2008-12-02 2012-05-16 Dowa Metaltech Co., Ltd. Cu-Ti based copper alloy sheet material and method of manufacturing same
US8097102B2 (en) 2008-12-08 2012-01-17 Dowa Metaltech Co., Ltd. Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP5393629B2 (en) * 2010-09-30 2014-01-22 Jx日鉱日石金属株式会社 Titanium copper and copper products, electronic parts and connectors using the same
JP5214701B2 (en) 2010-10-18 2013-06-19 Jx日鉱日石金属株式会社 Titanium copper excellent in strength, electrical conductivity and bending workability and its manufacturing method
JP5611773B2 (en) 2010-10-29 2014-10-22 Jx日鉱日石金属株式会社 Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP5718021B2 (en) * 2010-10-29 2015-05-13 Jx日鉱日石金属株式会社 Titanium copper for electronic parts
JP5628712B2 (en) * 2011-03-08 2014-11-19 Jx日鉱日石金属株式会社 Titanium copper for electronic parts
JP6246456B2 (en) * 2012-03-29 2017-12-13 Jx金属株式会社 Titanium copper
JP6247812B2 (en) * 2012-03-30 2017-12-13 Jx金属株式会社 Titanium copper and method for producing the same
JP6196435B2 (en) * 2012-10-02 2017-09-13 Jx金属株式会社 Titanium copper and method for producing the same
JP6080820B2 (en) 2014-08-29 2017-02-15 Jx金属株式会社 High strength titanium copper foil and method for producing the same
JP6073268B2 (en) * 2014-08-29 2017-02-01 Jx金属株式会社 High strength titanium copper foil and method for producing the same
JP6228941B2 (en) * 2015-01-09 2017-11-08 Jx金属株式会社 Titanium copper with plating layer
CN113802026B (en) * 2021-09-18 2022-06-14 宁波博威合金板带有限公司 Titanium bronze strip and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258807A (en) * 1994-03-22 1995-10-09 Nikko Kinzoku Kk Production of high-strength and high-conductivity copper alloy material for electronic equipment
JP2790238B2 (en) * 1994-03-23 1998-08-27 日鉱金属株式会社 Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
JP4001491B2 (en) * 2001-02-20 2007-10-31 日鉱金属株式会社 High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same
JP4118814B2 (en) * 2002-01-30 2008-07-16 日鉱金属株式会社 Copper alloy sputtering target and method of manufacturing the same
JP3748859B2 (en) * 2003-01-28 2006-02-22 日鉱金属加工株式会社 High-strength copper alloy with excellent bendability
JP3740474B2 (en) * 2003-03-20 2006-02-01 日鉱金属加工株式会社 Titanium copper excellent in conductivity and method for producing the same

Also Published As

Publication number Publication date
JP2006241573A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP5084106B2 (en) Copper titanium alloy sheet and method for producing the same
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
JP2010275622A (en) Copper alloy sheet material and manufacturing method therefor
KR102306527B1 (en) Copper-alloy production method, and copper alloy
JP6696769B2 (en) Copper alloy plate and connector
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
CN110506132B (en) Cu-Co-Si-based copper alloy plate material, method for producing same, and member using same
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
WO2016171055A1 (en) Copper alloy material and method for producing same
WO2017006490A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
WO2020066371A1 (en) Cu-ni-al-based copper alloy sheet, method for producing same, and conductive spring member
WO2014016934A1 (en) Copper alloy and production method thereof
JP6696770B2 (en) Copper alloy plate and connector
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
TW202120707A (en) Aluminum alloy material
JP3740474B2 (en) Titanium copper excellent in conductivity and method for producing the same
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP2019056163A (en) Aluminum alloy plate and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5084106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250