JP5319590B2 - Copper alloy, copper alloy manufacturing method and electronic component manufacturing method - Google Patents

Copper alloy, copper alloy manufacturing method and electronic component manufacturing method Download PDF

Info

Publication number
JP5319590B2
JP5319590B2 JP2010078032A JP2010078032A JP5319590B2 JP 5319590 B2 JP5319590 B2 JP 5319590B2 JP 2010078032 A JP2010078032 A JP 2010078032A JP 2010078032 A JP2010078032 A JP 2010078032A JP 5319590 B2 JP5319590 B2 JP 5319590B2
Authority
JP
Japan
Prior art keywords
copper alloy
annealing
manufacturing
copper
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010078032A
Other languages
Japanese (ja)
Other versions
JP2011208243A (en
Inventor
尚彦 江良
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010078032A priority Critical patent/JP5319590B2/en
Publication of JP2011208243A publication Critical patent/JP2011208243A/en
Application granted granted Critical
Publication of JP5319590B2 publication Critical patent/JP5319590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、例えばコネクタ等の電子部品用部材に好適なチタンを含む銅合金の製造方法及び電子部品の製造方法に関する。   The present invention relates to a method for manufacturing a copper alloy containing titanium and a method for manufacturing an electronic component suitable for electronic component members such as connectors.

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する素材には、必要なバネ性を得るための高い強度と過酷な曲げ加工に耐え得る、優れた曲げ加工性が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、素材強度が要求される信号系端子用素材として古くから使用されてきた。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used for such devices tend to have a narrow pitch and a low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the material used must have high strength to obtain the necessary springiness and excellent bending workability that can withstand severe bending. It is done. In this respect, a titanium-containing copper alloy (hereinafter referred to as “titanium copper”) has a relatively high strength and is most excellent in the copper alloy in terms of stress relaxation characteristics, and therefore requires a material strength. It has been used for a long time as a signal system terminal material.

チタン銅は時効硬化型の銅合金である。具体的には、溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。かかる強化機構を基本としてチタン銅の更なる特性向上を目指して種々の手法が研究されている。   Titanium copper is an age-hardening type copper alloy. Specifically, when a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment, and heat treatment is performed at a low temperature for a relatively long time from that state, periodic fluctuations in Ti concentration in the parent phase due to spinodal decomposition The modulation structure is developed and the strength is improved. Based on this strengthening mechanism, various methods have been studied with the aim of further improving the properties of titanium copper.

この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。   At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained.

そこで、Fe、Co、Ni、Siなどの第3元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、結晶粒を微細化する(特許文献4)などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする研究開発が従来なされてきた。   Therefore, by adding a third element such as Fe, Co, Ni, Si, etc. (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these are added to the second phase particles (Cu—Ti—). X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3) and refining crystal grains (Patent Document 4), research and development have been made to achieve both the strength and bending workability of titanium copper.

また、特許文献5では、結晶方位に着目し、曲げ加工における割れを防止するために熱間圧延条件を調整してI{420}/I0{420}>1.0とし、さらに冷間圧延率を調整してI{220}/I0{220}≦3.0を満たすように結晶配向を制御することで、強度、曲げ加工性及び耐応力緩和性を改善した技術も提案されている。 Further, in Patent Document 5, paying attention to the crystal orientation, the hot rolling conditions are adjusted to be I {420} / I 0 {420}> 1.0 in order to prevent cracking in bending, and further cold rolling is performed. A technique has also been proposed in which strength, bending workability and stress relaxation resistance are improved by controlling the crystal orientation so as to satisfy I {220} / I 0 {220} ≦ 3.0 by adjusting the rate. .

特開2004−231985号公報Japanese Patent Laid-Open No. 2004-231985 特開2004−176163号公報JP 2004-176163 A 特開2005−97638号公報JP-A-2005-97638 特開2006−283142号公報JP 2006-283142 A 特開2008−308734号公報JP 2008-308734 A

上記のチタン銅は、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造することを基本としている。   The above-mentioned titanium copper is basically manufactured in the order of ingot melting casting → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. .

しかしながら、より優れた特性をもつチタン銅を得る上では、更なる改善の余地が残されている。そこで、本発明は、従来とは異なる観点からチタン銅の特性改善を試みることにより、優れた強度及び曲げ加工性を有するチタンを含む銅合金の製造方法及び電子部品の製造方法を提供することを課題とする。   However, there is room for further improvement in obtaining titanium copper having more excellent characteristics. Therefore, the present invention provides a method of manufacturing a copper alloy containing titanium and an electronic component manufacturing method having excellent strength and bending workability by attempting to improve the properties of titanium copper from a viewpoint different from the conventional one. Let it be an issue.

本発明者は上記課題を解決するための検討過程において、最終溶体化処理の後に行う冷間圧延及び時効処理の順序を、従来とは逆に行う方法、すなわち、時効処理→冷間圧延の順番に変更した上で、更に時効処理の時間を従来に比べて短時間の焼鈍とすることを試みたところ、曲げ加工性が有位に向上することを見出した。すなわち、従来の手順で製造したチタン銅と本発明のチタン銅を比べると、同一の強度の場合に本発明のチタン銅の方が曲げ加工性が優れているということである。また、曲げ加工性が同一の場合には強度が優れているということである。本発明者はその原因を調査するために、本発明に係るチタン銅の組織を調査したところ、転位密度と圧延で発達する結晶方位とに特徴点を見出した。   In the examination process for solving the above-mentioned problems, the present inventor is a method in which the order of cold rolling and aging treatment performed after the final solution treatment is reversed, that is, the order of aging treatment → cold rolling. In addition, when an attempt was made to further shorten the aging treatment time compared to the conventional method, the inventors found that the bending workability was significantly improved. That is, when the titanium copper manufactured according to the conventional procedure and the titanium copper of the present invention are compared, the titanium copper of the present invention is superior in bending workability in the case of the same strength. Further, when the bending workability is the same, the strength is excellent. In order to investigate the cause, the present inventor investigated the structure of titanium copper according to the present invention, and found characteristic points in the dislocation density and the crystal orientation developed by rolling.

ところが転位密度は直接測定することが困難である。それは変調構造や析出粒子の分布により転位の分布が不均一になるためである。そのため、本発明では、転位に相関を持つ圧延面における{220}結晶面のX線回折強度(I)及びその半価幅(β)を測定し、この測定結果を評価の基準として利用することにより、転位密度の状態を間接的に示した。なお、半価幅はX線回折強度曲線のピーク強度(I)の1/2の強度における回折強度曲線の幅(β)であって2θで表わされる。   However, it is difficult to directly measure the dislocation density. This is because the dislocation distribution becomes non-uniform due to the modulation structure and the distribution of the precipitated particles. Therefore, in the present invention, the X-ray diffraction intensity (I) and the half width (β) of the {220} crystal plane in the rolled surface having a correlation with the dislocation are measured, and this measurement result is used as a reference for evaluation. Thus, the state of dislocation density was indirectly shown. The half-value width is the width (β) of the diffraction intensity curve at an intensity that is half the peak intensity (I) of the X-ray diffraction intensity curve, and is represented by 2θ.

上記知見に基づいて完成した本発明は一側面において、Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、圧延面の{220}結晶面からのX線回折強度の半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度の半価幅であるβ0{220}と次式:1.5≦β{220}/β0{220}≦3.0を満たし、且つ、圧延面の{220}結晶面からのX線回折強度であるI{220}が、純銅標準粉末の{220}結晶面からのX線回折強度であるI0{220}と次式:4.0≦I{220}/I0{220}≦7.0を満たす銅合金である。 One aspect of the present invention completed based on the above knowledge is a copper alloy for electronic parts containing 2.0 to 4.0% by mass of Ti and the balance copper and unavoidable impurities, {220 on the rolling surface. } Β {220}, which is the half width of the X-ray diffraction intensity from the crystal plane, is β 0 {220}, which is the half width of the X-ray diffraction intensity from the {220} crystal plane of the pure copper standard powder, and the following formula: : 1.5 ≦ β {220} / β 0 {220} ≦ 3.0, and I {220}, which is the X-ray diffraction intensity from the {220} crystal plane of the rolled surface, is a pure copper standard powder. It is a copper alloy that satisfies I 0 {220}, which is the X-ray diffraction intensity from the {220} crystal plane, and the following formula: 4.0 ≦ I {220} / I 0 {220} ≦ 7.0.

本発明に係る銅合金の一実施形態では、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有する。   In one embodiment of the copper alloy according to the present invention, one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Si, B, and P as the third element In a total of 0 to 0.5 mass%.

本発明は別の一側面において、Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる銅合金の製造方法であって、最終の溶体化処理後に、材料温度400℃以上500℃未満で0.1〜0.5時間の加熱条件で焼鈍を行った後、冷間圧延、時効処理を順に行うことを含む銅合金の製造方法である。   Another aspect of the present invention is a method for producing a copper alloy containing 2.0 to 4.0% by mass of Ti, the balance being copper and unavoidable impurities, and a material temperature of 400 after the final solution treatment. It is a manufacturing method of a copper alloy including performing cold rolling and an aging treatment in this order after performing annealing under a heating condition of 0.1 to 0.5 hours at a temperature of not lower than 500 ° C and lower than 500 ° C.

本発明は別の一側面において、Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金の製造方法であって、最終の溶体化処理後に、材料温度500℃以上600℃未満で0.005〜0.01時間の加熱条件で焼鈍を行った後、冷間圧延、時効処理を順に行うことを含む銅合金の製造方法である。   Another aspect of the present invention is a method for producing a copper alloy for electronic parts comprising 2.0 to 4.0% by mass of Ti and the balance copper and unavoidable impurities, after the final solution treatment, It is a manufacturing method of a copper alloy including performing cold rolling and an aging treatment in this order after annealing at a material temperature of 500 ° C. or more and less than 600 ° C. under a heating condition of 0.005 to 0.01 hours.

本発明は別の一側面において、Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金の製造方法であって、最終の溶体化処理後に、材料温度600℃以上700℃未満で0.001〜0.005時間の加熱条件で焼鈍を行った後、冷間圧延、時効処理を順に行うことを含む銅合金の製造方法である。   Another aspect of the present invention is a method for producing a copper alloy for electronic parts comprising 2.0 to 4.0% by mass of Ti and the balance copper and unavoidable impurities, after the final solution treatment, It is a manufacturing method of a copper alloy including performing cold rolling and an aging treatment in this order after annealing at a material temperature of 600 ° C. or more and less than 700 ° C. under a heating condition of 0.001 to 0.005 hours.

本発明に係る製造方法の一実施形態では、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有する。   In one embodiment of the production method according to the present invention, one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Si, B and P as the third element. In a total of 0 to 0.5 mass%.

本発明に係る製造方法の一実施形態では、焼鈍が、導電率を0.5〜8%IACS上昇させる焼鈍である。   In one embodiment of the manufacturing method according to the present invention, the annealing is annealing that increases the conductivity by 0.5 to 8% IACS.

本発明に係る製造方法の一実施形態では、冷間圧延の加工度が10〜30%である。   In one embodiment of the manufacturing method according to the present invention, the cold rolling workability is 10 to 30%.

本発明は別の一側面において、上記製造方法によって銅合金を製造する工程と、銅合金を加工する工程を含む電子部品の製造方法である。   In another aspect, the present invention is a method for manufacturing an electronic component including a step of manufacturing a copper alloy by the above-described manufacturing method and a step of processing the copper alloy.

<Ti含有量>
Tiが2質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2.0〜4.0質量%であり、好ましくは2.7〜3.5質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
<Ti content>
If Ti is less than 2% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of a modulation structure inherent to titanium copper, and sufficient strength cannot be obtained. Conversely, if it exceeds 4% by mass, coarse TiCu 3 precipitates. It becomes easy and there exists a tendency for intensity | strength and bending workability to deteriorate. Therefore, the content of Ti in the copper alloy according to the present invention is 2.0 to 4.0 mass%, preferably 2.7 to 3.5 mass%. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

<第3元素>
第3元素は結晶粒の微細化に寄与するため、所定の第3元素を添加することができる。具体的には、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度が向上しやすい。また、第3元素は変調構造の形成を促進する。更に、TiCu3の析出を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。
<Third element>
Since the third element contributes to the refinement of crystal grains, a predetermined third element can be added. Specifically, even if the solution treatment is performed at a high temperature at which Ti is sufficiently dissolved, the crystal grains are easily refined and the strength is easily improved. The third element also promotes the formation of the modulation structure. Furthermore, there is an effect of suppressing precipitation of TiCu 3 . Therefore, the original age hardening ability of titanium copper can be obtained.

チタン銅において上記効果が最も高いのがFeである。そして、Mn、Mg、Co、Ni、Si、Cr、V、Nb、Mo、Zr、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。   In titanium copper, Fe has the highest effect. And in Mn, Mg, Co, Ni, Si, Cr, V, Nb, Mo, Zr, B, and P, the effect according to Fe can be expected, and even if added alone, the effect is seen, but two or more Multiple additions may be made.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有することができ、合計で0.05〜0.5質量%含有するのが好ましい。   When these elements contain a total of 0.05% by mass or more, the effect appears. However, when the total exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability deteriorates. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Accordingly, the total of one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element group is 0 to 0 in total. It can contain 0.5 mass%, and it is preferable to contain 0.05-0.5 mass% in total.

これら第3元素のより好ましい範囲は、Feにおいて0.17〜0.23質量%であり、Co、Mg、Ni、Cr、Si、V、Nb、Mn、Moにおいて0.15〜0.25質量%、Zr、B、Pにおいて0.05〜0.5質量%である。   A more preferable range of these third elements is 0.17 to 0.23 mass% in Fe, and 0.15 to 0.25 mass in Co, Mg, Ni, Cr, Si, V, Nb, Mn, and Mo. %, Zr, B, and P are 0.05 to 0.5 mass%.

<X線回折強度>
圧延等の加工を行うと、原子がすべり変形して転位が形成され母相が歪む。例えば、溶体化後に時効して圧延する場合は、時効で母相が歪み、続く冷間圧延で母相が更に歪む。更に加えて析出粒子の周りには転位の影響が残るため更に歪むこととなる。加工では結晶粒界も歪む。母相と析出粒子の周りの歪みと結晶粒界の歪みの程度が同等でバランスが取れていれば、曲げや割れに対する抵抗は高くなると考えられる。しかしながら、析出粒子が粒界で粗大化していたり、無析出帯のように弱まっていたりすると、歪みのバランスがとれていないため、曲げ加工で割れやすい。
<X-ray diffraction intensity>
When processing such as rolling is performed, atoms slip and deform, dislocations are formed, and the matrix phase is distorted. For example, when aging and rolling after solution treatment, the parent phase is distorted by aging, and the parent phase is further distorted by subsequent cold rolling. In addition, since the influence of dislocations remains around the precipitated particles, it is further distorted. The grain boundaries are also distorted during processing. If the strain around the parent phase and the precipitated particles and the strain at the crystal grain boundaries are equal and balanced, the resistance to bending and cracking will increase. However, if the precipitated particles are coarsened at the grain boundary or weakened like a non-precipitated zone, the strain is not balanced, so that it is easily broken by bending.

従来のように、溶体化後に圧延して時効する場合は、圧延で歪んだ母相内の、歪みの大きい部分で析出するので、半価幅の増加は、主に圧延加工で導入された歪み(半価幅の増分)と考えられる。   As in the conventional case, when rolling and aging after solution treatment, precipitation occurs in the large strained portion of the matrix that is distorted by rolling, so the increase in half width is mainly due to strain introduced by rolling. (Increase in half-value width).

一方、本実施形態に係る銅合金のように、溶体後に焼鈍して圧延し、時効する場合は、最終冷間前に焼鈍して、予め変調構造を形成して適切な格子歪みを導入することで、焼鈍後に適切な圧延加工度で加工歪みを制御することができる。   On the other hand, as in the copper alloy according to the present embodiment, when annealed and rolled after solution and aging, anneal before the final cold to form a modulation structure in advance and introduce appropriate lattice strain Thus, the processing strain can be controlled with an appropriate degree of rolling processing after annealing.

<ピーク強度(I)及び半価幅(β)>
本発明では転位密度の指標として圧延面における{220}結晶面のX線回線強度として、ピーク強度(I)とピークの半価幅(β)を用いる。具体的には、本実施形態に係るチタン銅は、圧延面の{220}結晶面からのX線回折強度I{220}とピークの半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度I0{220}とピークの半価幅であるβ0{220}と次式:
4≦I{220}/I0{220}≦7、
1.5≦β{220}/β0{220}≦3.0
を満たす。
I{220}、I0{220}及び、β{220}、β0{220}は、同一測定条件で測定する。純銅標準粉末は325メッシュ(JIS Z8801)の純度99.5%の銅粉末で定義される。
<Peak intensity (I) and half width (β)>
In the present invention, the peak intensity (I) and the half width of the peak (β) are used as the X-ray line intensity of the {220} crystal plane on the rolled surface as an index of dislocation density. Specifically, the titanium copper according to the present embodiment has X-ray diffraction intensity I {220} from the {220} crystal plane of the rolled surface and β {220}, which is the half width of the peak, of pure copper standard powder. X-ray diffraction intensity I 0 {220} from the {220} crystal plane, β 0 {220} which is the half width of the peak, and the following formula:
4 ≦ I {220} / I 0 {220} ≦ 7,
1.5 ≦ β {220} / β 0 {220} ≦ 3.0
Meet.
I {220}, I 0 {220}, and β {220}, β 0 {220} are measured under the same measurement conditions. The pure copper standard powder is defined as a copper powder having a purity of 99.5% with a 325 mesh (JIS Z8801).

本実施形態において、I/I0は、4〜7であるのが好ましく、より好ましくは4〜6である。一方、β/β0は、1.5〜3.0であるのが好ましく、より好ましくは1.9〜2.7である。Iは結晶方位を示し、βは局所的な格子間隔に影響を受ける。圧延により結晶が回転してIが圧延方位へ変化するが、析出により{220}の格子間隔が変化してβに変化が現れる。I/I0の下限を4とするのは、焼鈍前後のEC差と圧延加工度を制御して析出歪と加工歪をバランスよく確保するためである。なお、EC差と圧延加工度の一方だけを過剰に蓄えても、他方が不足すれば下限を下回ってしまう。また、一方を適切に制御しても、他方に過不足が生じれば、下限を下回る。I/I0の上限を7とするのは加工歪と析出歪をバランスよく制御するためであり、歪が過剰に蓄積されて曲げ加工性を損なうのを抑制するためである。β/β0の下限を1.5とするのは、焼鈍前後のECを制御して最低限必要な析出歪を確保するためであり、加工歪だけでは達成できない組織に制御する。β/β0の上限を3.0とするのは、焼鈍前後のECが過剰とならないように制御して析出歪の増大を抑制し、曲げ加工性を損なうのを抑制するためである。 In the present embodiment, I / I 0 is preferably 4 to 7, and more preferably 4 to 6. On the other hand, β / β 0 is preferably 1.5 to 3.0, more preferably 1.9 to 2.7. I indicates the crystal orientation, and β is affected by the local lattice spacing. The crystal rotates by rolling and I changes to the rolling orientation, but the lattice spacing of {220} changes due to precipitation and changes appear in β. The reason why the lower limit of I / I 0 is set to 4 is to control the EC difference before and after annealing and the degree of rolling to ensure a good balance between precipitation strain and processing strain. Even if only one of the EC difference and the rolling degree is stored excessively, if the other is insufficient, the lower limit is not reached. Moreover, even if one is controlled appropriately, if an excess or deficiency occurs in the other, it falls below the lower limit. The upper limit of I / I 0 is set to 7 in order to control the work strain and the precipitation strain in a well-balanced manner, and to prevent the strain from being accumulated excessively and impairing the bending workability. The reason why the lower limit of β / β 0 is set to 1.5 is to control EC before and after annealing to ensure the minimum required precipitation strain, and to a structure that cannot be achieved by processing strain alone. The reason why the upper limit of β / β 0 is set to 3.0 is that the EC before and after annealing is controlled so as not to be excessive so as to suppress the increase in precipitation strain and to suppress the bending workability.

<用途>
本実施形態に係る銅合金は種々の伸銅品、例えば板、条、管、棒及び線として提供されることができる。本実施形態に係る銅合金を加工することにより、例えばスイッチ、コネクタ、ジャック、端子、リレー等の電子部品が得られる。
<Application>
The copper alloy according to the present embodiment can be provided as various copper products, such as plates, strips, tubes, bars, and wires. By processing the copper alloy according to this embodiment, electronic components such as switches, connectors, jacks, terminals, and relays can be obtained.

<製造方法>
本実施形態に係る銅合金の1つの特徴は、最終溶体化処理の後、冷間圧延前に所定の材料温度条件で短時間の焼鈍を行うことである。焼鈍時、材料の温度が高く長くなり過ぎると、その後の時効処理において強度にそれほど寄与しないβ’相や曲げ加工性を悪化させるβ相の析出がしやすくなる。また、焼鈍時の材料の温度が低く短くなり過ぎると、時効処理においてスピノーダル分解によって生じる変調構造の発達が不十分となりやすい。
<Manufacturing method>
One feature of the copper alloy according to the present embodiment is that after the final solution treatment, annealing is performed for a short time under a predetermined material temperature condition before cold rolling. If the temperature of the material becomes too high during annealing, the β ′ phase that does not contribute much to the strength in the subsequent aging treatment and the β phase that deteriorates the bending workability tend to precipitate. Also, if the temperature of the material during annealing is too low and too short, the development of the modulation structure caused by spinodal decomposition tends to be insufficient in the aging treatment.

溶体化処理後のチタン銅を焼鈍すると、変調構造の発達に伴い導電率が上昇するので、焼鈍の度合は、焼鈍の前後での導電率の変化を指標とすることができる。本発明者の研究によれば、焼鈍は導電率を0.5〜8%IACS、好ましくは1〜4%IACS上昇させるような条件で行うのが望ましい。   When titanium copper after solution treatment is annealed, the conductivity increases with the development of the modulation structure, so the degree of annealing can be determined by the change in conductivity before and after annealing. According to the inventor's research, it is desirable that the annealing be performed under conditions that increase the conductivity by 0.5 to 8% IACS, and preferably by 1 to 4% IACS.

よって、焼鈍は以下の何れかの条件で行うのが好ましい。
・材料温度400℃以上500℃未満として0.1〜0.5時間加熱
・材料温度500℃以上600℃未満として0.005〜0.01時間加熱
・材料温度600℃以上700℃未満として0.001〜0.005時間加熱
Therefore, annealing is preferably performed under any of the following conditions.
Heating for 0.1 to 0.5 hours at a material temperature of 400 ° C. or more and less than 500 ° C. Heating for 0.005 to 0.01 hour as a material temperature of 500 ° C. or more and less than 600 ° C. 001 to 0.005 hours heating

また、焼鈍は以下の何れかの条件で行うのがより好ましい。
・材料温度500℃以上550℃未満として0.0075〜0.01時間加熱
・材料温度550℃以上600℃未満として0.005〜0.0075時間加熱
・材料温度600℃以上650℃未満として0.0025〜0.005時間加熱
In addition, annealing is more preferably performed under any of the following conditions.
-Heating at a material temperature of 500 ° C to less than 550 ° C for 0.0075 to 0.01 hours · Heating at a material temperature of 550 ° C to less than 600 ° C for 0.005 to 0.0075 hours Heat for 0025 to 0.005 hours

以下、工程毎に好ましい実施形態を説明する。
1)インゴット製造工程
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の添加元素は、添加してから十分に攪拌したうで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素群の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.50質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造する。
Hereinafter, a preferred embodiment will be described for each process.
1) Ingot manufacturing process Manufacturing of an ingot by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to hold high-melting-point additive elements such as Fe and Cr for a certain period of time after being added and sufficiently stirred. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element group is dissolved. Therefore, Cu includes one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P in total from 0 to 0.0. It adds so that it may contain 50 mass%, and then adds Ti so that it may contain 2.0-4.0 mass%, and manufactures an ingot.

2)均質化焼鈍及び熱間圧延
ここでは凝固偏析や鋳造中に発生した晶出物をできるだけ無くすことが望ましい。後の溶体化処理において、第二相粒子の析出を微細かつ均一に分散させる為であり、混粒の防止にも効果があるからである。インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とするのが好ましい。
2) Homogenization annealing and hot rolling Here, it is desirable to eliminate solidified segregation and crystallized substances generated during casting as much as possible. This is because, in the subsequent solution treatment, the precipitation of the second phase particles is finely and uniformly dispersed, which is effective in preventing mixed grains. After the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, the temperature is preferably 960 ° C. or less before and during hot rolling.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、第二相粒子が析出しないようにするのが好ましい。
3) First solution treatment It is then preferable to perform the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. It is preferable to increase the heating rate and cooling rate at that time as much as possible so that the second phase particles do not precipitate.

4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における第二相粒子が均一かつ微細に析出する。但し、加工度をあまり高くして最終の溶体化処理を行うと、再結晶集合組織が発達して、塑性異方性が生じ、プレス整形性を害することがある。従って、中間圧延の加工度は好ましくは70〜99%ある。加工度は{(圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the degree of processing in the intermediate rolling before the final solution treatment is increased, the second phase particles in the final solution treatment are precipitated more uniformly and finely. However, if the final solution treatment is performed with a too high degree of processing, a recrystallized texture develops and plastic anisotropy occurs, which may impair the press formability. Therefore, the processing degree of intermediate rolling is preferably 70 to 99%. The degree of work is defined by {(thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化するので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度は730〜840℃であり、例えばTiの添加量が3質量%では800℃程度)。そしてこの温度まで急速に加熱し、冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。また、固溶温度での加熱時間は短い程、結晶粒が微細化する。従って、材料を730〜840℃のTiの固溶限が添加量よりも大きくなる温度で0.5〜3分加熱した後に水冷するのが好ましい。
5) Final solution treatment In the final solution treatment, it is desirable to completely dissolve the precipitate. However, when heated to a high temperature until it completely disappears, the crystal grains become coarse, so the heating temperature is the second phase. The temperature is close to the solid solubility limit of the particle composition (the temperature at which the solid solubility limit of Ti becomes equal to the addition amount in the range of 2.0 to 4.0% by mass of Ti is 730 to 840 ° C., for example, When the addition amount of Ti is 3% by mass, it is about 800 ° C.). And if it heats rapidly to this temperature and a cooling rate is also made fast, generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Further, the shorter the heating time at the solid solution temperature, the finer the crystal grains. Therefore, it is preferable that the material is heated for 0.5 to 3 minutes at a temperature at which the solid solubility limit of Ti at 730 to 840 ° C. is larger than the addition amount, and then cooled with water.

6)焼鈍
最終の溶体化処理の後、焼鈍を行う。焼鈍の条件は先述した通りである。
6) Annealing After the final solution treatment, annealing is performed. The annealing conditions are as described above.

7)最終の冷間圧延
上記焼鈍後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができる。この際、加工度が10%未満では充分な効果が得られないので加工度を10%以上とするのが好ましい。但し、加工度が高すぎると粒内析出による格子歪よりも結晶粒の扁平による加工歪が大きくなり、曲げ加工性が劣化する。さらに必要に応じて実施する時効処理や歪取焼鈍で粒界析出が起こり易いので、加工度を50%以下、より好ましくは25%以下とする。
7) Final cold rolling After the annealing, the final cold rolling is performed. The strength of titanium copper can be increased by the final cold working. At this time, if the degree of work is less than 10%, a sufficient effect cannot be obtained. However, if the working degree is too high, the working strain due to the flattening of crystal grains becomes larger than the lattice strain caused by intragranular precipitation, and the bending workability deteriorates. Furthermore, since grain boundary precipitation is likely to occur during aging treatment or strain relief annealing performed as necessary, the workability is set to 50% or less, more preferably 25% or less.

8)時効処理
最終の冷間圧延の後、必要に応じて、歪取焼鈍や時効処理を行う。時効処理の条件は慣用の条件でよいが、時効処理を従来に比べてと軽めに行うと、強度と曲げ加工性のバランスが更に向上する。具体的には、時効処理は材料温度300〜400℃で3〜12時間加熱の条件で行うのが好ましい。
8) Aging treatment After the final cold rolling, strain annealing and aging treatment are performed as necessary. The conditions for the aging treatment may be conventional conditions, but if the aging treatment is performed lighter than in the prior art, the balance between strength and bending workability is further improved. Specifically, the aging treatment is preferably performed under the conditions of heating at a material temperature of 300 to 400 ° C. for 3 to 12 hours.

時効処理は以下の何れかの条件で行うのがより好ましい。
・材料温度340℃以上360℃未満として5〜8時間加熱
・材料温度360℃以上380℃未満として4〜7時間加熱
・材料温度380℃以上400℃以下として3〜6時間加熱
The aging treatment is more preferably performed under any of the following conditions.
・ Material temperature is 340 ° C. or more and less than 360 ° C. for 5 to 8 hours ・ Material temperature is 360 to 380 ° C. for 4 to 7 hours ・ Material temperature is 380 to 400 ° C. for 3 to 6 hours

時効処理は以下の何れかの条件で行うのが更により好ましい。
・材料温度340℃以上360℃未満として6〜7時間加熱
・材料温度360℃以上380℃未満として5〜6時間加熱
・材料温度380℃以上400℃以下として4〜6時間加熱
It is even more preferable that the aging treatment is performed under any of the following conditions.
-Heat for 6 to 7 hours at a material temperature of 340 ° C to less than 360 ° C · Heat for 5 to 6 hours at a material temperature of 360 ° C to less than 380 ° C · Heat for 4 to 6 hours at a material temperature of 380 ° C to 400 ° C

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。   When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

Cuに必要に応じて表1の第3元素を添加した後、表1の濃度のTiを添加し、残部銅及び不可避的不純物の組成を有するインゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とし、素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で10分間加熱とした。次いで、中間の冷間圧延では最終板厚が0.10mmとなるように中間の板厚を調整して冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、その後、水冷した。このときの加熱条件は材料温度がTiの固溶限が添加量と同じになる温度(Ti濃度3.2質量%で約800℃、Ti濃度2.0質量%で約730℃、Ti濃度5.0質量%で約885℃)を基準として、表1に記載の加熱条件で各々1分間保持した。   Addition of the third element shown in Table 1 to Cu as required, and then add Ti at the concentration shown in Table 1 and homogenize by heating at 950 ° C. for 3 hours to the ingot having the composition of the remaining copper and inevitable impurities After annealing, hot rolling was performed at 900 to 950 ° C. to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (2.0 mm), and a primary solution treatment was performed on the strip. The conditions for the primary solution treatment were heating at 850 ° C. for 10 minutes. Next, in intermediate cold rolling, the intermediate plate thickness is adjusted so that the final plate thickness is 0.10 mm, cold rolling, and then inserted into an annealing furnace capable of rapid heating, and the final solution treatment is performed. And then water cooled. The heating conditions at this time were such that the material temperature was such that the solid solubility limit of Ti was the same as the addition amount (approximately 800 ° C. at a Ti concentration of 3.2% by mass, approximately 730 ° C. at a Ti concentration of 2.0% by mass, and a Ti concentration of 5 Each sample was held for 1 minute under the heating conditions shown in Table 1 on the basis of 0.0 mass% and about 885 ° C.).

次いで、試験片によっては冷間圧延を表1に記載の条件で行った後に、Ar雰囲気中で表1に記載の条件で焼鈍を行った。酸洗による脱スケール後、表1に記載の条件で最終の冷間圧延し、最後に表1に記載の各加熱条件で時効処理を行って、実施例、従来例及び比較例の試験片とした。   Then, depending on the test piece, after cold rolling was performed under the conditions described in Table 1, annealing was performed in the Ar atmosphere under the conditions described in Table 1. After descaling by pickling, the final cold rolling was performed under the conditions described in Table 1, and finally aging treatment was performed under each heating condition described in Table 1, and the test pieces of Examples, Conventional Examples and Comparative Examples were did.

Figure 0005319590
Figure 0005319590

得られた各試験片について、以下の条件で特性評価を行った。結果を表2に示す。
<強度>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
<曲げ加工性>
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<結晶方位>
各試験片について、理学電機社製型式rint Ultima2000のX線回折装置を用いて、以下の測定条件で圧延面の回折強度曲線を取得し、{220}結晶面のX線回線強度I{220}を測定した。同様の測定条件で、純銅粉標準試料についても、X線解析強度I0{220}を求め、I/I0を計算した。
・ターゲット:Cu管球
・管電圧:40kV
・管電流:40mA
・走査速度:5°/min
・サンプリング幅:0.02°
<半価幅>
各試験片について、理学電機社製型式rint Ultima2000のX線回折装置を用いて、以下の測定条件で圧延面の回折強度曲線を取得し、{220}結晶面のX線回線強度ピークの半価幅β{220}を測定した。同様の測定条件で、純銅粉標準試料についても、半価幅β0{220}を求め、β/β0を計算した。
・ターゲット:Cu管球
・管電圧:40kV
・管電流:40mA
・走査速度:5°/min
・サンプリング幅:0.02°
・測定範囲(2θ):60°〜80°
About each obtained test piece, characteristic evaluation was performed on the following conditions. The results are shown in Table 2.
<Strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.
<Bending workability>
In accordance with JIS H 3130, a W-bending test of Badway (the bending axis is the same direction as the rolling direction) was performed to measure the MBR / t value, which is the ratio of the minimum radius (MBR) to the thickness (t) at which no cracks occur.
<Conductivity>
In accordance with JIS H 0505, the conductivity (EC:% IACS) was measured by a four-terminal method.
<Crystal orientation>
For each test piece, a diffraction intensity curve of the rolled surface was obtained under the following measurement conditions using an X-ray diffractometer manufactured by Rigaku Electric Co., Ltd. model Ultima 2000, and the X-ray line intensity I {220} of the {220} crystal plane was obtained. Was measured. Under the same measurement conditions, the X-ray analysis intensity I 0 {220} was also obtained for the pure copper powder standard sample, and I / I 0 was calculated.
・ Target: Cu tube ・ Tube voltage: 40 kV
・ Tube current: 40 mA
・ Scanning speed: 5 ° / min
・ Sampling width: 0.02 °
<Half width>
For each test piece, a diffraction intensity curve of the rolled surface was obtained under the following measurement conditions using an X-ray diffractometer manufactured by Rigaku Electric Co., Ltd. model Ultima 2000, and the half value of the X-ray line intensity peak on the {220} crystal plane The width β {220} was measured. Under the same measurement conditions, the half-value width β 0 {220} was also obtained for the pure copper powder standard sample, and β / β 0 was calculated.
・ Target: Cu tube ・ Tube voltage: 40 kV
・ Tube current: 40 mA
・ Scanning speed: 5 ° / min
・ Sampling width: 0.02 °
Measurement range (2θ): 60 ° -80 °

Figure 0005319590
Figure 0005319590

<考察>
発明例No.1〜8によれば、曲げ性及び強度の面のバランスにおいて優れた銅合金が得られている。また、I/I0及びβ/β0の評価結果も良好であり金属組織全体に均一に結晶格子の歪みが分布していることが想定できる。
一方、従来例1は、溶体化→圧延→時効の従来の製造方法を用いた例である。従来例1では、最終冷間圧延前に焼鈍を行っていないので析出物が存在せず、本発明例と同等の冷間圧延加工度で最終圧延を行っても、析出歪及び加工歪ともに不足し、β/β0の値が実施例1〜8に比べて不足した。また、実施例1〜8に比べて強度が低かった。
従来例2は、従来例1と同様の従来の製造方法において、最終の冷間圧延加工度を実施例1〜8に比べて大きくした例である。従来例2では、圧延時の加工度を高くすることにより、加工歪が増加して強度は上昇しているが、時効析出による歪よりも加工歪の影響が大きく残りすぎたので曲げ加工性が劣化した。また析出による歪が少ないため、I/I0の値が実施例1〜8に比べて低くなったものと考えられる。
比較例1は、実施例と同様の製造工程において、焼鈍条件を適正な条件で行わなかった(材料温度が高く焼鈍時間が長い)例である。比較例1では、焼鈍条件が溶体化温度に近いので析出が進まず、焼鈍前後のEC差が小さく、析出歪が小さくなり、β/β0の値が実施例1〜8に比べて不足し、強度が不足した。
比較例2は、適切な焼鈍条件よりも低い温度で焼鈍したため、析出が不足して、焼鈍前後のEC差が小さく、析出歪が小さくなり、I/I0とβ/β0の値が実施例1〜8に比べて不足し、強度が不足した。
比較例3は、焼鈍時間が実施例1〜5に比べて長すぎる例を示す。比較例3では圧延加工度は適正なので加工歪は適当であるが、焼鈍時間が長すぎて焼鈍前後のEC差が高くなり、続く冷間圧延、時効処理後に析出歪の影響が大きくなりすぎて、β/β0が高くなったので、曲げ加工性が劣化した。
比較例4は、焼鈍時間を実施例1〜5に比べて長くするとともに最終冷間圧延加工度を低くした例である。比較例4では、析出歪の影響が大きくなりすぎてβ/β0が高くなったが、加工度が不足しているためI/I0が低くなり、強度が不足した。
比較例5は、Ti濃度を高くしすぎたため、焼鈍時の析出量が多すぎて焼鈍前後のECが高くなり、続く冷間圧延、時効処理後に析出歪の影響が大きくなりすぎてI/I0、β/β0がともに高くなって、曲げ加工性が劣化した。
<Discussion>
Invention Example No. According to 1-8, the copper alloy excellent in the balance of the surface of a bendability and an intensity | strength is obtained. Also, the evaluation results of I / I 0 and β / β 0 are good, and it can be assumed that the distortion of the crystal lattice is uniformly distributed throughout the metal structure.
On the other hand, Conventional Example 1 is an example using a conventional manufacturing method of solution treatment → rolling → aging. In Conventional Example 1, since there is no annealing before the final cold rolling, no precipitate is present, and even if the final rolling is performed at the same cold rolling degree as that of the present invention example, both precipitation strain and working strain are insufficient. However, the value of β / β 0 was insufficient as compared with Examples 1-8. Moreover, intensity | strength was low compared with Examples 1-8.
Conventional Example 2 is an example in which the final cold rolling work degree is increased as compared with Examples 1 to 8 in the conventional manufacturing method similar to Conventional Example 1. In Conventional Example 2, by increasing the degree of work during rolling, the work strain increases and the strength increases, but the effect of work strain remains much greater than the strain due to aging precipitation, so bending workability is increased. Deteriorated. Further, since the strain due to precipitation is small, it is considered that the value of I / I 0 is lower than those in Examples 1-8.
Comparative Example 1 is an example in which the annealing conditions were not performed under appropriate conditions (the material temperature was high and the annealing time was long) in the same manufacturing process as in the example. In Comparative Example 1, since the annealing condition is close to the solution temperature, precipitation does not proceed, the EC difference before and after annealing is small, the precipitation strain is small, and the value of β / β 0 is insufficient compared to Examples 1-8. , Lack of strength.
In Comparative Example 2, since annealing was performed at a temperature lower than appropriate annealing conditions, precipitation was insufficient, EC difference before and after annealing was small, precipitation strain was small, and the values of I / I 0 and β / β 0 were implemented. Compared to Examples 1 to 8, the strength was insufficient.
The comparative example 3 shows the example whose annealing time is too long compared with Examples 1-5. In Comparative Example 3, since the degree of rolling work is appropriate, the working strain is appropriate, but the annealing time is too long and the EC difference before and after annealing becomes high, and the influence of precipitation strain becomes too large after the subsequent cold rolling and aging treatment. Since β / β 0 increased, bending workability deteriorated.
Comparative Example 4 is an example in which the annealing time is made longer than in Examples 1 to 5 and the final cold rolling work degree is lowered. In Comparative Example 4, the effect of precipitation strain was too great and β / β 0 was high, but I / I 0 was low and the strength was insufficient because the workability was insufficient.
In Comparative Example 5, since the Ti concentration was too high, the amount of precipitation at the time of annealing was too high, and the EC before and after annealing was high, and the influence of the precipitation strain became too large after the subsequent cold rolling and aging treatments. Both 0 and β / β 0 increased and the bending workability deteriorated.

Claims (9)

Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、
圧延面の{220}結晶面からのX線回折強度の半価幅であるβ{220}が、純銅標準粉末の{220}結晶面からのX線回折強度の半価幅であるβ0{220}と次式:
1.5≦β{220}/β0{220}≦3.0
を満たし、且つ、
圧延面の{220}結晶面からのX線回折強度であるI{220}が、純銅標準粉末の{220}結晶面からのX線回折強度であるI0{220}と次式:
4.0≦I{220}/I0{220}≦7.0
を満たす銅合金。
It is a copper alloy for electronic parts containing 2.0 to 4.0% by mass of Ti, consisting of the remaining copper and inevitable impurities,
Β 0 {220} which is the half width of the X-ray diffraction intensity from the {220} crystal plane of the rolled surface is β 0 {which is the half width of the X-ray diffraction intensity from the {220} crystal plane of the pure copper standard powder. 220} and the following formula:
1.5 ≦ β {220} / β 0 {220} ≦ 3.0
And
I {220}, which is the X-ray diffraction intensity from the {220} crystal plane of the rolled surface, is I 0 {220}, which is the X-ray diffraction intensity from the {220} crystal plane of the pure copper standard powder, and the following formula:
4.0 ≦ I {220} / I 0 {220} ≦ 7.0
Satisfy copper alloy.
第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有する請求項1に記載の銅合金。   As a third element, one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Si, B and P are contained in a total amount of 0 to 0.5 mass%. The copper alloy according to claim 1. Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる銅合金の製造方法であって、
最終の溶体化処理後に、材料温度400℃以上500℃未満で0.1〜0.5時間の加熱条件で焼鈍を行った後、冷間圧延、時効処理を順に行うことを含む銅合金の製造方法。
A method for producing a copper alloy containing 2.0 to 4.0% by mass of Ti and comprising the remaining copper and inevitable impurities,
After the final solution treatment, after annealing at a material temperature of 400 ° C. or more and less than 500 ° C. for 0.1 to 0.5 hours, manufacturing a copper alloy including performing cold rolling and aging treatment in order Method.
Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金の製造方法であって、
最終の溶体化処理後に、材料温度500℃以上600℃未満で0.005〜0.01時間の加熱条件で焼鈍を行った後、冷間圧延、時効処理を順に行うことを含む銅合金の製造方法。
A method for producing a copper alloy for electronic parts comprising 2.0 to 4.0% by mass of Ti, the balance being copper and inevitable impurities,
After the final solution treatment, after annealing at a material temperature of 500 ° C. or more and less than 600 ° C. under a heating condition of 0.005 to 0.01 hours, manufacturing of a copper alloy including sequentially performing cold rolling and aging treatment Method.
Tiを2.0〜4.0質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金の製造方法であって、
最終の溶体化処理後に、材料温度600℃以上700℃未満で0.001〜0.005時間の加熱条件で焼鈍を行った後、冷間圧延、時効処理を順に行うことを含む銅合金の製造方法。
A method for producing a copper alloy for electronic parts comprising 2.0 to 4.0% by mass of Ti, the balance being copper and inevitable impurities,
After the final solution treatment, after annealing at a material temperature of 600 ° C. or more and less than 700 ° C. under a heating condition of 0.001 to 0.005 hours, manufacturing of a copper alloy including sequentially performing cold rolling and aging treatment Method.
第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有する請求項3〜5のいずれか1項に記載の銅合金の製造方法。   As a third element, one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Si, B and P are contained in a total amount of 0 to 0.5 mass%. The manufacturing method of the copper alloy of any one of Claims 3-5. 前記焼鈍が、導電率を0.5〜8%IACS上昇させる焼鈍である請求項3〜6のいずれか1項に記載の銅合金の製造方法。   The method for producing a copper alloy according to any one of claims 3 to 6, wherein the annealing is annealing that raises the conductivity by 0.5 to 8% IACS. 前記冷間圧延の加工度が10〜30%である請求項3〜7のいずれか1項に記載の銅合金の製造方法。   The method for producing a copper alloy according to any one of claims 3 to 7, wherein a workability of the cold rolling is 10 to 30%. 請求項3〜8のいずれか1項に記載の製造方法によって銅合金を製造する工程と、前記銅合金を加工する工程を含む電子部品の製造方法。   The manufacturing method of an electronic component including the process of manufacturing a copper alloy with the manufacturing method of any one of Claims 3-8, and the process of processing the said copper alloy.
JP2010078032A 2010-03-30 2010-03-30 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method Active JP5319590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078032A JP5319590B2 (en) 2010-03-30 2010-03-30 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078032A JP5319590B2 (en) 2010-03-30 2010-03-30 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method

Publications (2)

Publication Number Publication Date
JP2011208243A JP2011208243A (en) 2011-10-20
JP5319590B2 true JP5319590B2 (en) 2013-10-16

Family

ID=44939595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078032A Active JP5319590B2 (en) 2010-03-30 2010-03-30 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP5319590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755643A (en) * 2012-10-25 2015-07-01 Jx日矿日石金属株式会社 High-strength titanium-copper alloy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246456B2 (en) * 2012-03-29 2017-12-13 Jx金属株式会社 Titanium copper
JP6247812B2 (en) * 2012-03-30 2017-12-13 Jx金属株式会社 Titanium copper and method for producing the same
JP5723849B2 (en) 2012-07-19 2015-05-27 Jx日鉱日石金属株式会社 High strength titanium copper foil and method for producing the same
JP6618410B2 (en) * 2016-03-31 2019-12-11 Jx金属株式会社 Titanium copper foil, copper products, electronic equipment parts and autofocus camera module
JP6703878B2 (en) 2016-03-31 2020-06-03 Jx金属株式会社 Titanium copper foil and its manufacturing method
JP2016211077A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Titanium copper
JP2017014625A (en) * 2016-09-06 2017-01-19 Jx金属株式会社 Titanium copper and manufacturing method therefor
JP6609590B2 (en) 2017-03-30 2019-11-20 Jx金属株式会社 High-strength titanium copper strip and foil having a layered structure
JP6609589B2 (en) 2017-03-30 2019-11-20 Jx金属株式会社 High-strength titanium copper strip and foil having a layered structure
JP6650987B1 (en) * 2018-11-09 2020-02-19 Jx金属株式会社 Titanium copper foil, brass products, electronic equipment parts and autofocus camera modules
JP6745859B2 (en) 2018-11-09 2020-08-26 Jx金属株式会社 Titanium copper foil, copper products, electronic device parts and autofocus camera modules

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283142A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High-strength copper alloy superior in bending workability
JP4006467B1 (en) * 2006-09-22 2007-11-14 株式会社神戸製鋼所 Copper alloy with high strength, high conductivity, and excellent bending workability
JP5028657B2 (en) * 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
JP4117327B2 (en) * 2006-07-21 2008-07-16 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP4357548B2 (en) * 2007-06-14 2009-11-04 Dowaメタルテック株式会社 Cu-Ti-based copper alloy sheet and method for producing the same
JP5243744B2 (en) * 2007-08-01 2013-07-24 Dowaメタルテック株式会社 Connector terminal
JP5479798B2 (en) * 2009-07-22 2014-04-23 Dowaメタルテック株式会社 Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP4889801B2 (en) * 2009-11-25 2012-03-07 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755643A (en) * 2012-10-25 2015-07-01 Jx日矿日石金属株式会社 High-strength titanium-copper alloy

Also Published As

Publication number Publication date
JP2011208243A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5319590B2 (en) Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP4889801B2 (en) Manufacturing method of titanium copper for electronic parts
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP5226057B2 (en) Copper alloys, copper products, electronic components and connectors
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP5718436B1 (en) Titanium copper for electronic parts
WO2015098201A1 (en) Copper-titanium alloy for electronic component
JP6125409B2 (en) Titanium copper for electronic parts
JP6125410B2 (en) Titanium copper for electronic parts
JP6080823B2 (en) Titanium copper for electronic parts
JP2015127438A (en) Titanium copper for electronic component
JP5718021B2 (en) Titanium copper for electronic parts
JP4961049B2 (en) Titanium copper for electronic parts
JP2015127440A (en) Titanium copper for electronic component
JP5628712B2 (en) Titanium copper for electronic parts
JP5378286B2 (en) Titanium copper and method for producing the same
JP6629400B1 (en) Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts
JP6165071B2 (en) Titanium copper for electronic parts
JP6310131B1 (en) Titanium copper for electronic parts
JP2016117952A (en) Titanium copper for electronic component
JP2016145424A (en) Titanium copper for electronic component
JP2016117951A (en) Titanium copper for electronic component
JP2013204138A (en) Titanium copper and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250