JP5243744B2 - Connector terminal - Google Patents

Connector terminal Download PDF

Info

Publication number
JP5243744B2
JP5243744B2 JP2007201386A JP2007201386A JP5243744B2 JP 5243744 B2 JP5243744 B2 JP 5243744B2 JP 2007201386 A JP2007201386 A JP 2007201386A JP 2007201386 A JP2007201386 A JP 2007201386A JP 5243744 B2 JP5243744 B2 JP 5243744B2
Authority
JP
Japan
Prior art keywords
copper alloy
ray diffraction
diffraction intensity
crystal
crystal plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007201386A
Other languages
Japanese (ja)
Other versions
JP2009035775A (en
Inventor
久 須田
維林 高
宏人 成枝
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2007201386A priority Critical patent/JP5243744B2/en
Publication of JP2009035775A publication Critical patent/JP2009035775A/en
Application granted granted Critical
Publication of JP5243744B2 publication Critical patent/JP5243744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、電気接続部品、主として電気信号の伝達に使用する小型コネクタ端子に関する。   The present invention relates to an electrical connection component, mainly a small connector terminal used for transmission of an electrical signal.

自動車業界において自動車の高度電装化が進められている。これは安全性能、環境性能、快適性を向上させるために、数多くの電子装置、電装品を搭載する必要があるためである。このことは相互結線する回路数が増大することを意味しており、それに見合ってコネクタ、ワイヤーハーネスの数も増大する。しかしながら、これら電装品の増大は自動車重量の増加につながり、燃費を悪化させるために、搭載される電装品にはますますの小型、軽量化が求められている。   In the automobile industry, advanced electrical equipment for automobiles is being promoted. This is because it is necessary to mount many electronic devices and electrical components in order to improve safety performance, environmental performance, and comfort. This means that the number of circuits connected to each other increases, and the number of connectors and wire harnesses increases accordingly. However, the increase in these electrical components leads to an increase in the weight of the automobile, and in order to deteriorate fuel consumption, the mounted electrical components are required to be smaller and lighter.

同様に、民生の分野においても携帯電話、パソコン、AV機器やゲーム機などの電子製品では、高性能化・小型軽量化が進展し、それに用いられる電子部品、コネクタにも同様に小型・軽量化が求められている。   Similarly, in the consumer field, electronic products such as mobile phones, personal computers, AV equipment, and game machines have been improved in performance and size and weight, and the electronic components and connectors used therefor are also reduced in size and weight. Is required.

電子部品・コネクタの小型、軽量化のためには材料となる銅合金の板材を薄くする必要があり、それにより低下する端子強度およびバネ性を補うため、材料とする銅合金には高強度でバネ性の強い銅合金を適用する必要がある。そのような銅合金として、Cu−Ni−Si系、Cu−Ni−Sn−P系、Cu−Be系、Cu−Ti系などが知られている。   In order to reduce the size and weight of electronic components and connectors, it is necessary to make the copper alloy plate material thinner. To compensate for the reduced terminal strength and springiness, the copper alloy used as the material has high strength. It is necessary to apply a copper alloy with strong spring properties. As such a copper alloy, Cu—Ni—Si, Cu—Ni—Sn—P, Cu—Be, Cu—Ti, and the like are known.

特開2006−16629号公報JP 2006-16629 A 特開2002−294368号公報JP 2002-294368 A 特開2000−160312号公報Japanese Unexamined Patent Publication No. 2000-160312 特開2006−274289号公報JP 2006-274289 A

ところが高強度である銅合金は成形性に乏しく、小型コネクタ端子、さらには次世代の小型コネクタ端子のような微細かつ複雑形状に加工することは極めて困難であった。とりわけ雄型コネクタ端子のタブ部や雌型コネクタ端子の箱部コーナーの成形の際には、プレス成形後のスプリングバックを抑制して形状・寸法精度を得るために、材料の曲げ加工を施す部位にノッチを付ける加工(ノッチング)を施し、その後、そのノッチに沿って曲げ加工を行う加工法(以下「ノッチング後曲げ加工法」という)を適用することが必須となっている。しかし、この加工法は、ノッチングによってノッチ部近傍が加工硬化することから、その後の曲げ加工において割れを生じ易いという問題があった。この問題を回避するため、結晶粒が微細で曲げ加工性が良好な合金を用いるという常套手段があるが、そのような結晶粒が微細な合金は、端子バネ部の信頼性の指標となる耐応力緩和特性において劣っており、よってそれにより得られたコネクタ端子は長期に渡って高い電気的信頼性を得難いという欠点があった。従って電気的信頼性の高いコネクタ端子の小型、軽量化は困難を極めていた。   However, a high-strength copper alloy has poor moldability, and it has been extremely difficult to process it into a small and complicated shape such as a small connector terminal and a next-generation small connector terminal. In particular, when molding the tab part of the male connector terminal and the box part corner of the female connector terminal, the part where the material is bent to suppress the spring back after press molding and obtain the shape and dimensional accuracy It is indispensable to apply a processing method (hereinafter referred to as a “post-notching bending method”) in which a notching process is performed on the material and then bending is performed along the notch. However, this processing method has a problem that the vicinity of the notch portion is work-hardened by notching, so that cracking is likely to occur in subsequent bending. In order to avoid this problem, there is a conventional means of using an alloy with fine crystal grains and good bending workability. However, such an alloy with fine crystal grains is a resistance indicator that is an indicator of reliability of the terminal spring portion. Since the stress relaxation characteristics are inferior, the connector terminal obtained thereby has a drawback that it is difficult to obtain high electrical reliability over a long period of time. Accordingly, it has been extremely difficult to reduce the size and weight of highly reliable electrical connector terminals.

本発明は上記した点に着目してなされたものであり、特殊な結晶配向を持つ銅合金を材料として使用することにより、小型・軽量化しても寸法精度が高く電気的接触信頼性も高いコネクタ端子を提供することを目的とする。   The present invention has been made by paying attention to the above points, and by using a copper alloy having a special crystal orientation as a material, a connector with high dimensional accuracy and high electrical contact reliability even if it is reduced in size and weight. The purpose is to provide a terminal.

上記目的は、コネクタ端子の材料に、下記(1)式および(2)式を満たす結晶配向を有する銅合金板材を使用することにより達成される。
I{420}/I0{420}>1.0 ……(1)
I{220}/I0{220}≦3.0 ……(2)
ここで、I{420}は当該銅合金板材の板面における{420}結晶面のX線回折強度、I0{420}は純銅標準粉末の{420}結晶面のX線回折強度である。同様に、I{220}は当該銅合金板材の板面における{220}結晶面のX線回折強度、I0{220}は純銅標準粉末の{220}結晶面のX線回折強度である。
The object is achieved by using a copper alloy plate material having a crystal orientation satisfying the following formulas (1) and (2) as the material of the connector terminal.
I {420} / I 0 {420}> 1.0 (1)
I {220} / I 0 {220} ≦ 3.0 (2)
Here, I {420} is the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet, and I 0 {420} is the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder. Similarly, I {220} is the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet, and I 0 {220} is the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder.

上記の銅合金板材は、平均結晶粒径が5〜60μmである。10〜60μmであることが好ましく、15〜40μmであることがより好ましい。ここで、平均結晶粒径は、板面(圧延面)を研磨したのちエッチングし、その面を顕微鏡観察して、JIS H0501の切断法にて求めることができる。本発明で加工素材に使用する銅合金板材は、好ましくはリフローSnめっき等の表面処理を施したものである。   The copper alloy sheet has an average crystal grain size of 5 to 60 μm. It is preferable that it is 10-60 micrometers, and it is more preferable that it is 15-40 micrometers. Here, the average crystal grain size can be obtained by a cutting method of JIS H0501 by etching after polishing the plate surface (rolled surface), and observing the surface with a microscope. The copper alloy sheet used for the processing material in the present invention is preferably subjected to a surface treatment such as reflow Sn plating.

また上記の銅合金としては、Cu−Ni−Si系(いわゆるコルソン合金)、Cu−Ni−Sn−P系、Cu−Be系(いわゆるベリ銅)、Cu−Ti系(いわゆるチタン銅)などの成分系のものが使用できる。具体的には以下の組成の銅合金が挙げられる。   Moreover, as said copper alloy, Cu-Ni-Si type (so-called Corson alloy), Cu-Ni-Sn-P type, Cu-Be type (so-called beryl copper), Cu-Ti type (so-called titanium copper), etc. Components can be used. Specifically, the copper alloy of the following compositions is mentioned.

〔Cu−Ni−Si系〕
質量%で、Ni:0.7〜4.2%、Si:0.2〜1%、あるいはさらにFe、Zn、Mg、Sn、Co、Cr、Be、Zr、Ti、Mn、V、Ag、P、Bの1種以上を合計3%以下の範囲で含有し、残部実質的にCuの組成を有する銅合金
[Cu-Ni-Si system]
In mass%, Ni: 0.7-4.2%, Si: 0.2-1%, or even Fe, Zn, Mg, Sn, Co, Cr, Be, Zr, Ti, Mn, V, Ag, A copper alloy containing one or more of P and B within a total range of 3% or less, and the balance substantially having a composition of Cu

〔Cu−Ni−Sn−P系〕
質量%で、Ni:0.1〜5%、Sn:0.1〜5%、P:0.01〜0.5%、あるいはさらにFe、Zn、Mg、Si、Co、Cr、Be、Zr、Ti、Mn、V、Bの1種以上を合計3%以下の範囲で含有し、残部実質的にCuの組成を有する銅合金
[Cu-Ni-Sn-P system]
In mass%, Ni: 0.1-5%, Sn: 0.1-5%, P: 0.01-0.5%, or even Fe, Zn, Mg, Si, Co, Cr, Be, Zr , Ti, Mn, V, B containing at least one total in a range of 3% or less, copper alloy having the remainder substantially Cu composition

〔Cu−Be系〕
質量%で、Be:0.1〜5%、Ni:0.1〜2.5%、あるいはさらにFe、Zn、Mg、Co、Cr、Zr、Sn、Ti、Mn、V、P、Bの1種以上を合計3%以下の範囲で含有し、残部実質的にCuの組成を有する銅合金
[Cu-Be system]
By mass%, Be: 0.1~5%, Ni : 0.1~2.5%, or even Fe, Zn, Mg, Co, Cr, Z r, Sn, Ti, Mn, V, P, B A copper alloy containing at least one of the above in a total range of 3% or less and the balance substantially having a composition of Cu

〔Cu−Ti系〕
質量%で、Ti:0.1〜5%、あるいはさらにAl、Ni、Si、Fe、Zn、Sn、Co、Cr、Be、Zr、Mn、V、P、Bの1種以上を合計3%以下の範囲で含有し、残部実質的にCuの組成を有する銅合金
[Cu-Ti system]
In mass%, Ti: 0.1 to 5%, or further 3% in total of one or more of Al, Ni, Si, Fe, Zn, Sn, Co, Cr, Be, Zr, Mn, V, P, B Copper alloy containing in the following range, the balance substantially having a composition of Cu

本発明によれば、コネクタ端子のタブ部や箱部の成形に適した特殊な結晶配向をもつ銅合金板材を加工素材に使用しているため、小型・軽量化による厳しい加工を経たコネクタ端子において加工部に割れがなく、かつ寸法精度に優れたものが提供される。すなわち、従来のコネクタ端子には使用できなかった高強度材の薄板をコネクタ端子の材料として使用することが可能となり、これまでにない小型で軽量なコネクタ端子が実現できる。また上記の結晶配向をもつ銅合金は優れた曲げ加工性を有するため、結晶粒サイズを5〜60μm程度まで大きくすることができ、これにより雌型コネクタ端子では、バネ部の信頼性の指標となる材料の耐応力緩和特性を大きく改善したものが提供される。したがって本発明のコネクタ端子は、電気・電子機器の小型・軽量化、設計自由度の向上および電気的信頼性の向上に寄与しうる。   According to the present invention, since the copper alloy plate material having a special crystal orientation suitable for forming the tab portion and the box portion of the connector terminal is used as the processing material, in the connector terminal that has undergone severe processing by miniaturization and weight reduction. A machined part having no cracks and excellent dimensional accuracy is provided. That is, a thin plate of high strength material that could not be used for a conventional connector terminal can be used as a material for the connector terminal, and an unprecedented small and lightweight connector terminal can be realized. In addition, since the copper alloy having the above crystal orientation has an excellent bending workability, the crystal grain size can be increased to about 5 to 60 μm. The material having greatly improved stress relaxation resistance is provided. Therefore, the connector terminal of the present invention can contribute to the reduction in size and weight of electric / electronic devices, improvement in design flexibility, and improvement in electrical reliability.

《集合組織》
本発明では、コネクタ端子の加工素材として、特異な結晶配向の集合組織に調整されたる銅合金板材を使用する。
銅合金板材の板面(圧延面)からのX線回折パターンは、一般に{111}、{200}、{220}、{311}の4つの結晶面の回折ピークで構成され、他の結晶面からのX線回折強度はこれらの結晶面からのものに比べ非常に小さい。しかしながら発明者らは、{420}を主方位成分とする集合組織を持つ銅合金板材が得られること見出し、特願2007−032623、特願2007−071550、特願2007−147465および特願2007−157935(以下、これらを「先願」ということがある)においてその詳細な製造方法を明らかにした。発明者らの詳細な検討によれば、この{420}を主方位成分とする集合組織が強く発達しているほど、コネクタ端子のタブ部や箱部の成形には都合が良く、そのメカニズムについては以下のように考えている。
<< Texture
In the present invention, a copper alloy plate material adjusted to a texture with a specific crystal orientation is used as a connector terminal processing material.
An X-ray diffraction pattern from a plate surface (rolled surface) of a copper alloy sheet is generally composed of diffraction peaks of four crystal planes {111}, {200}, {220}, {311}, and other crystal planes. The X-ray diffraction intensity from is very small compared to those from these crystal planes. However, the inventors have found that copper alloy sheet materials having a texture with {420} as the main orientation component can be obtained. Japanese Patent Application Nos. 2007-032623, 2007-071550, 2007-147465 and 2007- 157935 (hereinafter, these may be referred to as “prior application”), the detailed production method was clarified. According to detailed examinations by the inventors, the stronger the texture with {420} as the main orientation component, the more convenient it is for forming the tab portion and the box portion of the connector terminal. Thinks as follows.

結晶のある方向に外力が加えられたときの塑性変形(すべり)の生じやすさを示す指標としてシュミット因子がある。結晶に加えられる外力の方向と、すべり面の法線とのなす角度をφ、結晶に加えられる外力の方向と、すべり方向とのなす角度をλとするとき、シュミット因子はcosφ・cosλで表され、その値は0.5以下の範囲をとる。シュミット因子が大きいほど(すなわち0.5に近いほど)すべり方向へのせん断応力が大きいことを意味する。したがって、ある結晶にある方向から外力を付与したとき、シュミット因子が大きいほど(すなわち0.5に近いほど)、その結晶は変形しやすいことになる。本発明で対象としている銅合金の結晶構造は面心立方(fcc)である。面心立方晶のすべり系は、すべり面{111}、すべり方向<110>であり、実際の結晶においてもシュミット因子が大きいほど変形しやすく加工硬化も小さくなることが知られている。   There is a Schmid factor as an index indicating the ease of plastic deformation (slip) when an external force is applied in a certain direction of the crystal. When the angle between the direction of the external force applied to the crystal and the normal of the slip surface is φ, and the angle between the direction of the external force applied to the crystal and the slip direction is λ, the Schmid factor is expressed as cos φ · cos λ. The value is in the range of 0.5 or less. A larger Schmid factor (that is, closer to 0.5) means a greater shear stress in the slip direction. Therefore, when an external force is applied to a certain crystal from a certain direction, the larger the Schmid factor (that is, the closer to 0.5), the easier the crystal is deformed. The crystal structure of the copper alloy which is the subject of the present invention is a face centered cubic (fcc). The slip system of the face-centered cubic crystal has a slip plane {111} and a slip direction <110>, and it is known that even in an actual crystal, the larger the Schmid factor, the easier the deformation and the less work hardening.

図3に、面心立方晶のシュミット因子の分布を表した標準逆極点図を示す。<120>方向のシュミット因子は0.490であり、0.5に近い。すなわち、<120>方向に外力が付与された場合、面心立方晶は非常に変形しやすい。その他の方向のシュミット因子は、<100>方向が0.408、<113>方向が0.445、<110>方向が0.408、<112>方向が0.408、<111>方向が0.272である。   FIG. 3 shows a standard inverse pole figure representing the Schmid factor distribution of face-centered cubic crystals. The Schmid factor in the <120> direction is 0.490, close to 0.5. That is, when an external force is applied in the <120> direction, the face-centered cubic crystal is very easily deformed. The Schmid factors in the other directions are 0.408 in the <100> direction, 0.445 in the <113> direction, 0.408 in the <110> direction, 0.408 in the <112> direction, and 0 in the <111> direction. .272.

{420}を主方位成分とする集合組織は、{420}面すなわち{210}面が板面(圧延面)とほぼ平行である結晶の存在割合が多い集合組織を意味する。主方位面が{210}面である結晶では、板面に垂直な方向(ND)が<120>方向であり、そのシュミット因子は0.5に近いから、NDへの変形は非常に容易であり加工硬化も小さい。一方、従来からコネクタ端子に使用されている各系の銅合金の一般的な圧延集合組織は{220}を主方位成分とするものであり、この場合、{220}面すなわち{110}面が板面(圧延面)とほぼ平行である結晶の存在割合が多い。主方位面が{110}面である結晶は、NDが<110>方向であり、そのシュミット因子は0.4程度であるから、主方位面が{210}面である結晶と比較してNDへの変形に伴う加工硬化が大きくなる。また、従来からコネクタ端子に使用されている各系の銅合金の一般的な再結晶集合組織は{311}を主方位成分とするものである。主方位面が{311}面である結晶は、NDが<113>方向であり、そのシュミット因子は0.45程度であるから、主方位面が{210}面である結晶と比較するとやはりNDへの変形に伴う加工硬化が大きくなる。   The texture having {420} as the main orientation component means a texture having a large amount of crystals in which the {420} plane, that is, the {210} plane is substantially parallel to the plate surface (rolled surface). In a crystal whose principal orientation plane is the {210} plane, the direction (ND) perpendicular to the plate surface is the <120> direction, and its Schmitt factor is close to 0.5, so that the transformation to ND is very easy. There is little work hardening. On the other hand, the general rolling texture of each type of copper alloy conventionally used for connector terminals has {220} as the main orientation component. In this case, the {220} plane, that is, the {110} plane, There is a large proportion of crystals that are substantially parallel to the plate surface (rolled surface). A crystal whose principal orientation plane is the {110} plane has ND in the <110> direction and its Schmitt factor is about 0.4, so that it is ND compared to a crystal whose principal orientation plane is the {210} plane. The work hardening accompanying the deformation to becomes larger. Moreover, the general recrystallization texture of each type of copper alloy conventionally used for connector terminals has {311} as the main orientation component. The crystal whose principal orientation plane is the {311} plane has the ND <113> direction and its Schmitt factor is about 0.45, so that it is still ND compared with the crystal whose principal orientation plane is the {210} plane. The work hardening accompanying the deformation to becomes larger.

「ノッチング後曲げ加工法」においては、板面に垂直な方向(ND)への変形に際しての加工硬化の程度が極めて重要である。ノッチングはまさにNDへの変形であり、ノッチングによって板厚が減少した部分の加工硬化の程度が、その後、ノッチに沿って曲げた場合の曲げ加工性を大きく支配するからである。(1)式を満たすような{420}を主方位成分とする集合組織の場合、従来の銅合金の圧延集合組織あるいは再結晶集合組織と比べて、ノッチングによる加工硬化が小さくなり、これが「ノッチング後曲げ加工法」における曲げ加工性を顕著に向上させる要因となっていると考えられる。   In the “bending method after notching”, the degree of work hardening at the time of deformation in the direction perpendicular to the plate surface (ND) is extremely important. This is because notching is exactly a deformation to ND, and the degree of work hardening of the portion where the plate thickness is reduced by notching largely governs the bending workability when bent along the notch. In the case of a texture having {420} as the main orientation component satisfying the expression (1), work hardening by notching is smaller than that of a conventional rolled texture or recrystallized texture of a copper alloy. This is considered to be a factor that significantly improves the bending workability in the “post-bending method”.

さらに、(1)式を満たすような{420}を主方位成分とする集合組織の場合、主方位面が{210}面である結晶において、板面内つまり{210}面内に、別の<120>方向と<100>方向があり、これらは互いに直交する。実際には、圧延方向(LD)が<100>方向、圧延方向に対して直角方向(TD)が<120>方向であることが確かめられている。具体的な結晶方向で例示すると、例えば主方位面が(120)面である結晶では、LDが[001]方向、TDが[−2,1,0]方向である。このような結晶のシュミット因子は、LDが0.408、TDが0.490である。これに対し、従来一般的な銅合金の圧延集合組織のように主方位面が{110}面である結晶の場合、LDが<112>方向、TDが<111>方向であり、そのシュミット因子は、LDが0.408、TDが0.272である。また、従来一般的な銅合金の再結晶集合組織のように主方位面が{113}面である結晶の場合、LDが<112>方向、TDが<110>方向であり、そのシュミット因子は、LDが0.408、TDが0.408である。このように、LDおよびTDのシュミット因子を見ると、{420}を主方位成分とする集合組織の場合、従来の銅合金の圧延集合組織あるいは再結晶集合組織と比べて、板面内における変形が容易であると言える。この点も、ノッチング後の曲げ加工における割れを防止する上で有利に作用していると考えられる。   Further, in the case of a texture having {420} as a main orientation component that satisfies the expression (1), in a crystal whose main orientation plane is a {210} plane, There are <120> direction and <100> direction, which are orthogonal to each other. Actually, it has been confirmed that the rolling direction (LD) is the <100> direction and the direction perpendicular to the rolling direction (TD) is the <120> direction. As a specific crystal direction, for example, in a crystal whose main orientation plane is the (120) plane, LD is the [001] direction and TD is the [−2, 1, 0] direction. The Schmid factor of such crystals is LD of 0.408 and TD of 0.490. On the other hand, in the case of a crystal whose principal orientation plane is the {110} plane as in the conventional rolling texture of a copper alloy, LD is in the <112> direction and TD is in the <111> direction, and its Schmitt factor. LD is 0.408 and TD is 0.272. In the case of a crystal whose principal orientation plane is the {113} plane as in the conventional recrystallization texture of a copper alloy, LD is in the <112> direction and TD is in the <110> direction, and the Schmitt factor is , LD is 0.408, and TD is 0.408. Thus, looking at the Schmid factor of LD and TD, in the case of a texture having {420} as the main orientation component, the deformation in the plate surface is compared with the rolling texture or recrystallized texture of the conventional copper alloy. Can be said to be easy. This point is also considered to be advantageous in preventing cracking in bending after notching.

金属板の曲げ加工においては、各結晶粒の結晶方位は異なるので、一様に変形するのではなく、曲げ加工時に変形しやすい結晶粒と変形しにくい結晶粒が存在する。曲げ加工の程度が増大するに伴って、変形しやすい結晶粒がますます優先的に変形し、板の曲げ部表面には結晶粒間での変形不均一に起因してミクロ的な凹凸が生じ、これがしわに発展し、場合によっては割れ(破壊)に至る。上述のように(1)式を満たすような集合組織を持つ金属板は、従来のものと比べ、各結晶粒がNDに変形しやすく、かつ板面内にも変形しやすくなっている。このことが、結晶粒を特段に微細化しなくても、ノッチング後の曲げ加工性および通常の曲げ加工性の顕著な向上をもたらしているものと推察される。   In the bending process of the metal plate, the crystal orientation of each crystal grain is different, so that there is a crystal grain that is not easily deformed but a crystal grain that is easily deformed during bending and a crystal grain that is difficult to deform. As the degree of bending increases, the deformable crystal grains become more preferentially deformed, and micro unevenness is generated on the surface of the bent part of the plate due to uneven deformation among the crystal grains. This develops into wrinkles, and in some cases leads to cracks (breaks). As described above, the metal plate having a texture satisfying the expression (1) is more likely to be deformed into ND and more easily deformed in the plate surface than the conventional metal plate. It can be inferred that this leads to a marked improvement in the bending workability after notching and the normal bending workability even if the crystal grains are not particularly refined.

発明者らの検討によれば、このような結晶配向は下記(1)式によって特定できる。
I{420}/I0{420}>1.0 ……(1)
ここで、I{420}は当該銅合金板材の板面における{420}結晶面のX線回折強度、I0{420}は純銅標準粉末の{420}結晶面のX線回折強度である。面心立方晶のX線回折パターンでは{420}面の反射は生じるが{210}面の反射は生じないので、{210}面の結晶配向は{420}面の反射によって評価される。下記(1)’式を満たすものが一層好ましい。
I{420}/I0{420}>1.5 ……(1)’
According to the study by the inventors, such crystal orientation can be specified by the following formula (1).
I {420} / I 0 {420}> 1.0 (1)
Here, I {420} is the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet, and I 0 {420} is the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder. In the face-centered cubic X-ray diffraction pattern, {420} plane reflection occurs, but {210} plane reflection does not occur, so the {210} plane crystal orientation is evaluated by {420} plane reflection. Those satisfying the following formula (1) ′ are more preferable.
I {420} / I 0 {420}> 1.5 (1) ′

{420}を主方位成分とする集合組織は前記の先願に開示したように溶体化処理による再結晶集合組織として形成される。ただし、銅合金板材を高強度化するためには、溶体化処理後に冷間圧延することが極めて有効である。この冷間圧延としては中間冷間圧延と仕上げ冷間圧延が適用されるが、これらの冷間圧延率が増加するに伴い{220}を主方位成分とする圧延集合組織が発達していく。{220}方位密度の増大に伴い{420}方位密度は減少するが、前記(1)式好ましくは(1)’式が維持されるように圧延率を調整すればよい。ただし、あまり{220}を主方位成分とする集合組織が発達しすぎると加工性低下を招く場合があるので、下記(2)式を満たすことが好ましい。また、「強度」と「曲げ加工性」を高いレベルでバランス良く両立させる意味では、下記(2)’式を満たすことが一層好ましい。
I{220}/I0{220}≦3.0 ……(2)
0.5≦I{220}/I0{220}≦3.0 ……(2)’
ここで、I{220}は当該銅合金板材の板面における{220}結晶面のX線回折強度、I0{220}は純銅標準粉末の{220}結晶面のX線回折強度である。
The texture having {420} as the main orientation component is formed as a recrystallized texture by solution treatment as disclosed in the previous application. However, cold rolling after the solution treatment is extremely effective for increasing the strength of the copper alloy sheet. As this cold rolling, intermediate cold rolling and finish cold rolling are applied. As the cold rolling rate increases, a rolling texture having {220} as a main orientation component develops. As the {220} orientation density increases, the {420} orientation density decreases. However, the rolling rate may be adjusted so that the formula (1), preferably the formula (1) ′ is maintained. However, if the texture having {220} as the main azimuth component is developed too much, the workability may be deteriorated. Therefore, it is preferable to satisfy the following formula (2). Further, in order to achieve both “strength” and “bending workability” at a high level with a good balance, it is more preferable to satisfy the following expression (2) ′.
I {220} / I 0 {220} ≦ 3.0 (2)
0.5 ≦ I {220} / I 0 {220} ≦ 3.0 (2) ′
Here, I {220} is the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet, and I 0 {220} is the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder.

《平均結晶粒径》
平均結晶粒径は小さいほど曲げ加工性の向上に有利であるが、小さすぎると耐応力緩和特性が悪くなりやすい。種々検討の結果、最終的に平均結晶粒径が5μm以上の値、好ましくは10μmを超える値であれば、車載用コネクターの用途でも満足できるレベルの耐応力緩和特性を確保しやすく、好適である。ただし、あまり平均結晶粒径が大きくなりすぎると曲げ部表面の肌荒を起こりやすく、曲げ加工性の低下を招く場合があるので、60μm以下の範囲とすることが望ましい。15〜40μmの範囲にあることがより好ましい。
<Average crystal grain size>
The smaller the average crystal grain size, the more advantageous the bending workability is. However, when the average crystal grain size is too small, the stress relaxation resistance tends to deteriorate. As a result of various studies, if the average crystal grain size is finally a value of 5 μm or more, preferably a value exceeding 10 μm, it is easy to secure a stress relaxation resistance level that is satisfactory even for use in a vehicle-mounted connector, which is suitable. . However, if the average crystal grain size becomes too large, the surface of the bent part is likely to be rough, which may lead to a decrease in bending workability. Therefore, the range of 60 μm or less is desirable. More preferably, it is in the range of 15-40 μm.

《組成》
本発明のコネクタ端子には、Cu−Ni−Si系(いわゆるコルソン合金)、Cu−Ni−Sn−P系、Cu−Be系(いわゆるベリ銅)、Cu−Ti系(いわゆるチタン銅)などの成分系のものが使用できるが、(1)式を満たす結晶配向を有するfcc型銅合金であれば、上記に限らず使用できる。各成分元素の含有量範囲は前述のとおりであり、その詳細は前記の先願に開示されている。
"composition"
The connector terminal of the present invention includes Cu—Ni—Si (so-called Corson alloy), Cu—Ni—Sn—P, Cu—Be (so-called beryl copper), Cu—Ti (so-called titanium copper), etc. Component-based materials can be used, but any fcc type copper alloy having a crystal orientation satisfying the formula (1) can be used without limitation. The content range of each component element is as described above, and details thereof are disclosed in the prior application.

《銅合金板材の製造》
本発明のコネクタ端子に適用できる前記の特異な結晶配向を有する銅合金板材は、例えば以下のような製造工程で製造することができる。
・Cu−Ni−Si系
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→中間冷間圧延→時効処理→仕上げ冷間圧延→低温焼鈍」
・Cu−Ni−Sn−P系
「溶解・鋳造→熱間圧延→冷間圧延→再結晶焼鈍→(時効処理)→仕上げ冷間圧延→(低温焼鈍)」
・Cu−Be系
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→仕上げ冷間圧延→(時効処理)」
・Cu−Ti系
「溶解・鋳造→熱間圧延→冷間圧延→溶体化処理→仕上げ冷間圧延→時効処理」
<Manufacture of copper alloy sheet>
The copper alloy sheet material having the unique crystal orientation applicable to the connector terminal of the present invention can be manufactured, for example, by the following manufacturing process.
・ Cu-Ni-Si system “Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → Intermediate Cold Rolling → Aging Treatment → Finish Cold Rolling → Low Temperature Annealing”
・ Cu-Ni-Sn-P system "Melting / Casting-> Hot rolling-> Cold rolling-> Recrystallization annealing-> (Aging treatment)-> Finishing cold rolling-> (Low temperature annealing)
・ Cu-Be series “Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → Finish Cold Rolling → (Aging Treatment)”
・ Cu-Ti system “Melting / Casting → Hot Rolling → Cold Rolling → Solution Treatment → Finish Cold Rolling → Aging Treatment”

各工程のうち、特に熱間圧延、溶体化処理前の冷間圧延(Cu−Ni−Sn−P系では再結晶焼鈍前の冷間圧延)、溶体化処理(Cu−Ni−Sn−P系では再結晶焼鈍)、および溶体化処理後の冷間圧延(Cu−Ni−Sn−P系では再結晶焼鈍後の冷間圧延)の工程に工夫を加えることによって前記特異な結晶配向をもつ板材を作り分けることができる。それ以外の工程は常法に従えばよい。具体的な製造方法は上記の先願に詳しく開示されているが、特徴的な工程についてまとめると以下のとおりである。   Among these steps, in particular, hot rolling, cold rolling before solution treatment (in the Cu-Ni-Sn-P system, cold rolling before recrystallization annealing), solution treatment (Cu-Ni-Sn-P system). In the case of recrystallization annealing), and a sheet material having the above-mentioned unique crystal orientation by devising cold rolling after solution treatment (cold rolling after recrystallization annealing in the Cu-Ni-Sn-P system) Can be made separately. Other steps may be performed in accordance with ordinary methods. Although the specific manufacturing method is disclosed in detail in the above-mentioned prior application, the characteristic steps are summarized as follows.

〔熱間圧延〕
通常、前記各系の銅合金の熱間圧延は、圧延途中に析出物を生成させないようにするため、700℃以上、あるいは750℃以上の高温域で圧延し、圧延終了後に急冷する手法で行われる。しかしながら、このような常識的な熱間圧延条件では本発明で適用可能な特異な集合組織を有する銅合金板材を製造することは困難である。すなわち、このような熱間圧延条件を採用した場合は、後工程の条件を広範囲に変化させても{420}を主方位方向に持つ銅合金板材を再現性良く製造することができない。発明者の詳細な検討の結果、700℃以上の温度域で最初の圧延パスを実施し、かつ700℃未満〜400℃の温度域(Cu−Ti系では700℃未満〜500℃)の温度域で圧延率40%以上(Cu−Ti系では30%以上)の圧延を行うという熱間圧延条件を採用することが重要である。
(Hot rolling)
Usually, the hot rolling of each of the above-described copper alloys is performed by a method of rolling in a high temperature range of 700 ° C. or higher or 750 ° C. or higher and quenching after the rolling is finished in order not to generate precipitates during rolling. Is called. However, it is difficult to produce a copper alloy sheet having a unique texture applicable in the present invention under such common-sense hot rolling conditions. That is, when such hot rolling conditions are adopted, a copper alloy sheet having {420} in the main orientation cannot be manufactured with good reproducibility even if the conditions of the post-process are changed over a wide range. As a result of detailed studies by the inventors, the first rolling pass was performed in a temperature range of 700 ° C. or higher, and a temperature range of less than 700 ° C. to 400 ° C. (in the Cu—Ti system, less than 700 ° C. to 500 ° C.). Therefore, it is important to adopt the hot rolling conditions in which rolling is performed at a rolling rate of 40% or more (30% or more in the case of Cu-Ti system).

鋳片を熱間圧延する際、再結晶が発生しやすい700℃より高温域で最初の圧延パスを実施することによって、鋳造組織が破壊され、成分と組織の均一化を図ることができる。ただし、あまり高温で圧延を行うと、合金成分の偏析箇所など、融点が低下している箇所で割れを生じる恐れがあるので好ましくない。熱間圧延工程中における完全再結晶の発生を確実に行うためには、固相線温度より30℃以上低い温度域で最初の圧延パスを行う。そして、700℃以上の温度域で圧延率60%以上の圧延を行うことが極めて有効である。これによって組織の均一化が一層促進される。ただし、1パスで60%を得るためには大きな圧延荷重が必要であるため、多パスに分けてトータル60%以上の圧延率を確保しても良い。また、本発明では圧延歪が生じやすい700℃未満〜400℃の温度域(Cu−Ti系では700℃未満〜500℃)で40%以上(Cu−Ti系では30%以上)の圧延率を確保することが重要である。これにより、一部の析出物を生成させ、後工程の「冷間圧延+溶体化処理」の組み合わせによって、{420}を主方位成分とする再結晶集合組織が形成されやすくなる。この際も、700℃未満の上記温度域で数パスの圧延を行うことができる。熱間圧延の最終パス温度は600℃以下とすることがより効果的である。熱間圧延でのトータル圧延率は概ね80〜97%程度とすればよい。   When the slab is hot-rolled, by performing the first rolling pass at a temperature higher than 700 ° C. where recrystallization is likely to occur, the cast structure is destroyed, and the components and the structure can be made uniform. However, rolling at an excessively high temperature is not preferable because cracks may occur at locations where the melting point is lowered, such as segregated locations of alloy components. In order to ensure complete recrystallization during the hot rolling process, the first rolling pass is performed in a temperature range lower by 30 ° C. than the solidus temperature. It is extremely effective to perform rolling at a rolling rate of 60% or more in a temperature range of 700 ° C. or higher. This further promotes tissue homogenization. However, in order to obtain 60% in one pass, a large rolling load is required, so that a rolling rate of 60% or more in total can be secured by dividing into multiple passes. Further, in the present invention, a rolling rate of 40% or more (30% or more in the Cu-Ti system) in a temperature range of less than 700 ° C to 400 ° C where the rolling distortion is likely to occur (less than 700 ° C to 500 ° C in the Cu-Ti system). It is important to ensure. Thereby, a part of precipitates are generated, and a recrystallized texture having {420} as a main orientation component is easily formed by a combination of “cold rolling + solution treatment” in the subsequent step. Also in this case, several passes of rolling can be performed in the above temperature range of less than 700 ° C. It is more effective to set the final pass temperature of hot rolling to 600 ° C. or lower. The total rolling rate in the hot rolling may be about 80 to 97%.

ここで、それぞれの温度域での圧延率ε(%)は(3)式によって算出される。
ε=(t0−t1)/t0×100 ……(3)
例えば950〜700℃の間で行う最初の圧延パスに供する鋳片の板厚が120mmであり、700℃以上の温度域で圧延を実施して(途中、炉に戻して再加熱しても構わない)、700℃以上の温度で実施された最後の圧延パス終了時に板厚が30mmになっており、引き続いて圧延を継続して、熱間圧延の最終パスを700℃未満〜400℃の範囲で行い、最終的に板厚10mmの熱間圧延材を得たとする。この場合、950℃〜700℃の温度域で行われた圧延の圧延率は(3)式により、(120−30)/120×100=75(%)である。また、700℃未満〜400℃の温度域での圧延率は同じく(3)式により、(30−10)/30×100=66.7(%)である。
Here, the rolling rate ε (%) in each temperature range is calculated by the equation (3).
ε = (t 0 −t 1 ) / t 0 × 100 (3)
For example, the plate thickness of the slab used for the first rolling pass performed between 950 and 700 ° C. is 120 mm, and rolling is performed in a temperature range of 700 ° C. or higher (returning to the furnace during the process may be performed again) The sheet thickness is 30 mm at the end of the last rolling pass carried out at a temperature of 700 ° C. or higher, and the rolling is continued continuously, and the final pass of hot rolling is in the range of less than 700 ° C. to 400 ° C. It is assumed that a hot rolled material having a thickness of 10 mm is finally obtained. In this case, the rolling rate of the rolling performed in the temperature range of 950 ° C. to 700 ° C. is (120−30) / 120 × 100 = 75 (%) according to the equation (3). Moreover, the rolling rate in the temperature range of less than 700 ° C. to 400 ° C. is (30−10) /30×100=66.7 (%) according to the same expression (3).

〔溶体化処理前の冷間圧延(Cu−Ni−Sn−P系では再結晶焼鈍前の冷間圧延)〕
上記熱延板を圧延するに際し、この段階で行う冷間圧延では圧延率を85%以上(Cu−Be系、Cu−Ti系では80%以上)とすることが重要であり、90%以上とすることがより好ましい。このような高い圧延率で加工された材料に対し、次工程で溶体化処理または再結晶焼鈍を施すことにより、{420}を主方位成分とする再結晶集合組織の形成が可能になる。特に再結晶集合組織は再結晶前の冷間圧延率に大きく依存する。具体的には、{420}を主方位成分とする結晶配向は、この工程の冷間圧延率が60%以下ではほとんど生成せず、約60〜80%の領域では冷間圧延率の増加に伴って漸増し、冷間圧延率が約80%を超えると急激な増加に転じる。{420}方位が十分に優勢な結晶配向を得るには上記の高い冷間圧延率を確保する必要がある。なお、冷間圧延率の上限はミルパワー等により必然的に制約を受けるので、特に規定する必要はないが、エッジ割れなどを防止する観点から概ね98%以下で良好な結果が得られやすい。
[Cold rolling before solution treatment (Cold rolling before recrystallization annealing in Cu-Ni-Sn-P system)]
When rolling the hot-rolled sheet, it is important that the cold rolling performed at this stage has a rolling rate of 85% or more (80% or more for Cu-Be type and Cu-Ti type), and 90% or more. More preferably. By subjecting the material processed at such a high rolling rate to solution treatment or recrystallization annealing in the next step, it becomes possible to form a recrystallized texture having {420} as the main orientation component. In particular, the recrystallization texture greatly depends on the cold rolling rate before recrystallization. Specifically, the crystal orientation with {420} as the main orientation component hardly generates when the cold rolling rate in this step is 60% or less, and increases the cold rolling rate in the region of about 60 to 80%. Along with this, it gradually increases, and when the cold rolling rate exceeds about 80%, it suddenly increases. In order to obtain a crystal orientation in which the {420} orientation is sufficiently dominant, it is necessary to ensure the high cold rolling rate. The upper limit of the cold rolling rate is inevitably restricted by the mill power or the like, and thus need not be specified. However, good results are likely to be obtained at approximately 98% or less from the viewpoint of preventing edge cracks and the like.

なお、熱間圧延後、溶体化処理または再結晶焼鈍前に、中間焼鈍を挟んで1回ないし複数回の冷間圧延を実施する工程は採用しない。熱間圧延後、溶体化処理前に中間焼鈍が行われると、溶体化処理によって形成される{420}を主方位成分とする再結晶集合組織が著しく弱化してしまう。   In addition, after hot rolling, before the solution treatment or recrystallization annealing, a step of performing cold rolling one or more times with intermediate annealing is not adopted. When the intermediate annealing is performed after the hot rolling and before the solution treatment, the recrystallized texture having {420} as a main orientation component formed by the solution treatment is significantly weakened.

〔溶体化処理(Cu−Ni−Sn−P系では再結晶焼鈍)〕
従来の溶体化処理は「溶質元素のマトリックス中への再固溶」と「再結晶化」を主目的とし、従来の再結晶焼鈍は「再結晶化」を主目的とするが、本発明の場合は更に「{420}を主方位成分とする再結晶集合組織の形成」をも重要な目的とする。この熱処理は、700〜850℃(Cu−Ni−Sn−P系では600〜750℃、Cu−Be系では700〜900℃)の炉温で行うことが望ましい。温度が低すぎると再結晶が不完全で溶体化処理の場合は溶質元素の固溶も不十分となる。温度が高すぎると結晶粒が粗大化してしまう。これらいずれの場合も、最終的に曲げ加工性の優れた高強度材を得ることが困難となる。
[Solution treatment (recrystallization annealing in Cu-Ni-Sn-P system)]
The conventional solution treatment is mainly aimed at “re-solution of solute elements in the matrix” and “recrystallization”, and the conventional recrystallization annealing is mainly aimed at “recrystallization”. In this case, an important objective is to “form a recrystallized texture having {420} as the main orientation component”. This heat treatment is desirably performed at a furnace temperature of 700 to 850 ° C. (600 to 750 ° C. for Cu—Ni—Sn—P system, 700 to 900 ° C. for Cu—Be system). If the temperature is too low, recrystallization is incomplete and in the case of a solution treatment, the solute elements are not sufficiently dissolved. If the temperature is too high, the crystal grains become coarse. In either case, it is difficult to finally obtain a high-strength material excellent in bending workability.

また、この溶体化処理は、再結晶粒の平均粒径(双晶境界を結晶粒界とみなさない)が5〜60μmとなるように熱処理温度・時間を設定して熱処理を実施することが望ましく、10〜60μmとなるように調整することがより好ましく、15〜40μmとすることが一層好ましい。再結晶粒径が微細になりすぎると、{420}を主方位成分とする再結晶集合組織が弱くなる。また、耐応力緩和特性を向上させる上でも不利となる。再結晶粒径が粗大になりすぎると、曲げ加工部の表面肌荒が発生し易い。再結晶粒径は、溶体化処理前の冷間圧延率や化学組成によって変動するが、予め実験によりそれぞれの合金について溶体化処理ヒートパターンと平均結晶粒径との関係を求めておくことにより、熱処理条件を設定することができる。具体的には、上記温度範囲に保持する時間は、溶体化処理の場合は10秒〜10分程度、再結晶焼鈍の場合は数秒〜数時間の範囲で最適な条件を見つけることができる。   In addition, it is desirable to perform the heat treatment by setting the heat treatment temperature and time so that the average grain size of recrystallized grains (not considering twin boundaries as crystal grain boundaries) is 5 to 60 μm. It is more preferable to adjust so that it may become 10-60 micrometers, and it is still more preferable to set it as 15-40 micrometers. When the recrystallized grain size becomes too fine, the recrystallized texture having {420} as the main orientation component becomes weak. It is also disadvantageous in improving the stress relaxation resistance. If the recrystallized grain size becomes too large, surface roughness of the bent portion is likely to occur. The recrystallized grain size varies depending on the cold rolling rate and chemical composition before the solution treatment, but by previously obtaining the relationship between the solution treatment heat pattern and the average crystal grain size for each alloy by experiment, Heat treatment conditions can be set. Specifically, the optimum time can be found in the temperature range of about 10 seconds to 10 minutes in the case of solution treatment and in the range of seconds to hours in the case of recrystallization annealing.

〔溶体化処理後の冷間圧延(Cu−Ni−Sn−P系では再結晶焼鈍後の冷間圧延)〕
この段階での冷間圧延によって、強度レベルの向上を図る。ただし、冷間圧延率の増大に伴い{220}を主方位成分とする圧延集合組織が発達していく。圧延率が高すぎると{220}方位の圧延集合組織が相対的に優勢となりすぎ、強度と曲げ加工性が高レベルで両立された結晶配向が実現できない。発明者らの詳細な研究の結果、この段階での冷間圧延は圧延率0〜50%の範囲(Cu−Ni−Sn−P系では30〜80%、Cu−Be系では0〜65%)で行うことが重要である。それによって、前記(1)式を満たす結晶配向を維持することができる。なお、ここで「圧延率0%」は、圧延を行わない場合を意味する。
[Cold rolling after solution treatment (Cold rolling after recrystallization annealing in Cu-Ni-Sn-P system)]
The strength level is improved by cold rolling at this stage. However, as the cold rolling rate increases, a rolling texture having {220} as the main orientation component develops. If the rolling rate is too high, the rolling texture in the {220} orientation becomes relatively dominant, and crystal orientation in which strength and bending workability are compatible at a high level cannot be realized. As a result of detailed studies by the inventors, cold rolling at this stage is performed in the range of 0 to 50% rolling ratio (30 to 80% for the Cu—Ni—Sn—P system, 0 to 65% for the Cu—Be system). ) Is important. Thereby, the crystal orientation satisfying the formula (1) can be maintained. Here, “rolling rate 0%” means a case where rolling is not performed.

《コネクタ端子への加工》
本発明のコネクタ端子は、上述の特異な結晶配向を有する銅合金板材(リフローSnめっき等の表面処理を施したものであっても構わない)を被加工材に用いて、例えば連続プレス成形により製造される。プレスとは、一般に上下一対の金型を用い、金型間に被加工材を挟んで成形加工する加工法である。連続プレス成形とは、複数台の独立したプレスを連続して配置しその間に被加工材を搬送する送り装置を配置したタンデムプレスや、複数台のプレスと送り装置を一体化したトランスファプレスを用いて、型抜き、ノッチング、曲げといった複数工程の加工を連続して行い、端子を成形する方法である。
<Processing into connector terminals>
The connector terminal of the present invention uses the above-described copper alloy plate material having a specific crystal orientation (may be subjected to surface treatment such as reflow Sn plating) as a workpiece, for example, by continuous press molding. Manufactured. The press is a processing method in which a pair of upper and lower molds is generally used and a workpiece is sandwiched between the molds. Continuous press molding uses a tandem press in which a plurality of independent presses are arranged continuously and a feeding device that conveys the workpiece is placed between them, or a transfer press in which a plurality of presses and feeding devices are integrated. In this method, a terminal is formed by continuously performing a plurality of processes such as die cutting, notching and bending.

図1に、銅合金板材の条を連続プレス成形することによりコネクタ端子部分を形成した段階の中間製品の形状を模式的に示す。各々のコネクタ端子部分10はまだパイロット部11でつながっている。このコネクタ端子は雌型であり、各端子は箱部21と圧着部22を有している。箱部21は箱曲げ部31の部分で折り曲げられることによって形成され、箱部21の内部にはバネ部32がある。コネクタ端子を連続プレス成形する場合、この図に示されるように、コネクタ端子の長手方向が被加工材である銅合金板材の条の長手方向(LD)に対して直角方向(TD)になるように配置されることが多い(いわゆる「横連鎖方式」)。このほか、コネクタ端子の長手方向がLDに一致するような配置で連続プレス成形を行うこともある(いわゆる「縦連鎖方式」)。   FIG. 1 schematically shows the shape of an intermediate product at a stage where a connector terminal portion is formed by continuously press-molding a strip of copper alloy sheet material. Each connector terminal portion 10 is still connected by a pilot portion 11. The connector terminals are female, and each terminal has a box portion 21 and a crimping portion 22. The box part 21 is formed by being bent at the box bending part 31, and a spring part 32 is provided inside the box part 21. When the connector terminal is continuously press-molded, as shown in this figure, the longitudinal direction of the connector terminal is perpendicular to the longitudinal direction (LD) of the strip of the copper alloy sheet material to be processed (TD). (So-called “horizontal chain method”). In addition, continuous press molding may be performed in such an arrangement that the longitudinal direction of the connector terminals coincides with the LD (so-called “vertical chain method”).

雄型コネクタ端子のタブ部や雌型コネクタ端子の箱部を成形する場合には、その曲げ加工に「ノッチング後曲げ加工法」を適用する。横連鎖方式でコネクタ端子を成形する場合、端子のタブ部や箱部を形成するための曲げ加工に必要なノッチの方向(すなわち溝に対して平行な方向)はTDとなり、被加工材の強度にもよるが、板厚に対して1/7〜1/2の深さのノッチを入れることにより、端子のタブ部や箱部を寸法精度良く成形することができる。   When forming the tab portion of the male connector terminal or the box portion of the female connector terminal, the “bending method after notching” is applied to the bending process. When forming connector terminals using the horizontal chain method, the notch direction (ie, the direction parallel to the grooves) required for bending to form the tabs and boxes of the terminals is TD, and the strength of the workpiece However, it is possible to form the tab portion and the box portion of the terminal with high dimensional accuracy by making a notch having a depth of 1/7 to 1/2 with respect to the plate thickness.

上述の特異な結晶配向に調整された銅合金板材を被加工材として使用すれば、例えば板厚0.08〜0.30mmといった薄い板材を用いて割れを発生させることなくコネクタ端子のタブ部や箱部を成形することが可能であり、従来の銅合金板材では安定して健全な部品に成形できなかったような小型のコネクタ端子を得ることができる。   If the copper alloy plate material adjusted to the above specific crystal orientation is used as a workpiece, for example, a tab portion of a connector terminal or the like can be formed without using a thin plate material having a plate thickness of 0.08 to 0.30 mm. The box part can be formed, and a small connector terminal that cannot be stably formed into a sound component with a conventional copper alloy sheet can be obtained.

表1、表2示す組成を有する板厚0.15mmの銅合金板材を、前記「銅合金板材の製造」で述べた条件を満たす手法(本発明例)、およびその条件を外れる手法により製造した。表1、表2中に記載の元素の残部はCuである。これら板材の特性は以下の通り評価を行い求めた。なお、表2中、引張強さ、曲げ加工性および応力緩和率の欄において、LDおよびTDは試験片の長手方向を意味する。   A copper alloy plate material having a composition shown in Tables 1 and 2 and having a thickness of 0.15 mm was manufactured by a method satisfying the conditions described in the above-mentioned "Manufacture of a copper alloy plate material" (example of the present invention) and a method deviating from the conditions. . The balance of the elements described in Tables 1 and 2 is Cu. The characteristics of these plate materials were evaluated and evaluated as follows. In Table 2, in the columns of tensile strength, bending workability and stress relaxation rate, LD and TD mean the longitudinal direction of the test piece.

Figure 0005243744
Figure 0005243744

Figure 0005243744
Figure 0005243744

〔結晶粒組織〕
供試材の板面(圧延面)を研磨したのちエッチングし、その面を光学顕微鏡で観察し、平均結晶粒径をJIS H0501の切断法で測定した。
(Grain structure)
The plate surface (rolled surface) of the test material was polished and etched, the surface was observed with an optical microscope, and the average crystal grain size was measured by the cutting method of JIS H0501.

〔X線回折強度〕
供試材の板面(圧延面)を#1500耐水ペーパーで研磨仕上げとした試料を準備し、X線回折装置(XRD)を用いて、Mo−Kα線、管電圧20kV、管電流2mAの条件で、前記研磨仕上げ面について{420}面の反射回折面強度を測定した。一方、上記と同じX線回折装置を用いて、上記と同じ測定条件で純銅標準粉末の{420}面のX線回折強度を測定した。これらの測定値を用いて前記(1)式中に示されるX線回折強度比I{420}/I0{420}と、(2)式中に示されるX線回折強度比I{220}/I0{220}を求めた。
[X-ray diffraction intensity]
A sample whose plate surface (rolled surface) was polished with # 1500 water-resistant paper was prepared, and using an X-ray diffractometer (XRD), Mo-Kα rays, tube voltage 20 kV, tube current 2 mA conditions Then, the reflection diffraction surface intensity of the {420} plane was measured for the polished surface. On the other hand, using the same X-ray diffractometer as described above, the X-ray diffraction intensity of the {420} plane of pure copper standard powder was measured under the same measurement conditions as described above. Using these measured values, the X-ray diffraction intensity ratio I {420} / I 0 {420} shown in the formula (1) and the X-ray diffraction intensity ratio I {220} shown in the formula (2) are used. / I 0 {220} was obtained.

〔導電率〕
JIS H0505に従って導電率を測定した。
〔引張強さ〕
各板材からLDの引張試験片(JIS 5号)を採取し、試験数n=3でJIS Z2241に準拠した引張試験を行い、n=3の平均値によって引張強さを求めた。
〔conductivity〕
The conductivity was measured according to JIS H0505.
〔Tensile strength〕
An LD tensile test piece (JIS No. 5) was collected from each plate material, a tensile test based on JIS Z2241 was performed with the number of tests n = 3, and the tensile strength was determined by the average value of n = 3.

〔応力緩和特性〕
各供試材から長手方向がTDの曲げ試験片(幅10mm)を採取し、試験片の長手方向における中央部の表面応力が0.2%耐力の80%の大きさとなるようにアーチ曲げした状態で固定した。上記表面応力は次式により定まる。
表面応力(MPa)=6Etδ/L0 2
ただし、
E:弾性係数(MPa)
t:試料の厚さ(mm)
δ:試料のたわみ高さ(mm)
[Stress relaxation characteristics]
A bending test piece (width: 10 mm) having a longitudinal direction of TD was taken from each test material, and arch-bent was performed so that the surface stress at the center in the longitudinal direction of the test piece was 80% of the 0.2% proof stress. Fixed in state. The surface stress is determined by the following equation.
Surface stress (MPa) = 6 Etδ / L 0 2
However,
E: Elastic modulus (MPa)
t: sample thickness (mm)
δ: Deflection height of sample (mm)

この状態の試験片を大気中150℃の温度で1000時間保持した後の曲げ癖から次式を用いて応力緩和率を算出した。
応力緩和率(%)=(L1−L2)/(L1−L0)×100
ただし、
0:治具の長さ、すなわち試験中に固定されている試料端間の水平距離(mm)
1:試験開始時の試料長さ(mm)
2:試験後の試料端間の水平距離(mm)
この応力緩和率が5%以下のものは、車載用コネクターとして高い耐久性を有すると評価される。
The stress relaxation rate was calculated using the following equation from the bending habit after holding the test piece in this state at a temperature of 150 ° C. in the atmosphere for 1000 hours.
Stress relaxation rate (%) = (L 1 −L 2 ) / (L 1 −L 0 ) × 100
However,
L 0 : Length of the jig, that is, horizontal distance (mm) between the sample ends fixed during the test
L 1 : Sample length at the start of the test (mm)
L 2 : Horizontal distance between the sample ends after the test (mm)
Those having a stress relaxation rate of 5% or less are evaluated as having high durability as in-vehicle connectors.

〔曲げ加工性〕
各供試材から長手方向がLDの曲げ試験片およびTDの曲げ試験片(いずれも幅10mm)を採取し、JIS H3110に準拠した90°W曲げ試験を行った。試験後の試験片について曲げ加工部の表面および断面を光学顕微鏡にて100倍の倍率で観察することにより、割れが発生しない最小曲げ半径Rを求め、これを供試材の板厚tで除することによりLD、TDそれぞれのR/t値を求めた。各供試材のLD、TDともn=3で実施し、n=3のうち最も悪い結果となった試験片の成績を採用してR/t値を表示した。
[Bending workability]
A bending test piece having a longitudinal direction of LD and a bending test piece of TD (both 10 mm in width) were sampled from each test material, and a 90 ° W bending test in accordance with JIS H3110 was performed. By observing the surface and cross section of the bent portion of the test piece after the test with an optical microscope at a magnification of 100 times, the minimum bending radius R at which no crack is generated is obtained, and this is divided by the thickness t of the specimen. Thus, R / t values of LD and TD were obtained. The LD and TD of each test material were carried out with n = 3, and the result of the test piece with the worst result among n = 3 was adopted to display the R / t value.

各銅合金板材にリフローSnめっき(めっき厚1.0μm,Cu下地層厚さ0.7μm)を施したものから、図1に示す形状の雌型コネクタ端子(口径0.64mm)を連続プレスにて横連鎖方式で作製した。ただし、雌型コネクタ端子の箱曲げ部では、曲げ加工前に図2に示す断面形状で深さ30μmのノッチング(溝付け)を行った後、曲げ加工を実施した。また、この雌型コネクタ端子に雄型コネクタ端子を挿入した際のバネ荷重が4Nとなるように、バネ部と箱部との間を調整した。なお、このリフローSnめっき後の銅合金板材については、金属組織(X線回折強度比および平均結晶粒径)がリフローSnめっき前と変わらないことを確認している。   Each copper alloy sheet material is subjected to reflow Sn plating (plating thickness: 1.0 μm, Cu underlayer thickness: 0.7 μm), and then a female connector terminal (caliber 0.64 mm) having the shape shown in FIG. And produced by the horizontal chain method. However, at the box bending portion of the female connector terminal, bending was performed after notching (grooving) with a depth of 30 μm in the cross-sectional shape shown in FIG. 2 before bending. Further, the space between the spring portion and the box portion was adjusted so that the spring load when the male connector terminal was inserted into the female connector terminal was 4N. In addition, about the copper alloy board | plate material after this reflow Sn plating, it has confirmed that a metal structure (X-ray diffraction intensity ratio and average crystal grain size) is not different from before reflow Sn plating.

〔コネクタ端子の成形性〕
得られた雌型コネクタ端子の箱曲げ部の表面および断面を光学顕微鏡にて100倍の倍率で観察することにより、割れの有無を判断し、割れが認められないものを「〇」、割れが認められたものを「×」と表示した。なお、箱曲げ部で破断したものは「破」と表示した。調査はn=3で実施し、n=3のうち最も悪い結果となったコネクタ端子の成績を採用して「○」、「×」、「破」の評価を行い、これが○評価のものを合格と判定した。
[Connector terminal moldability]
By observing the surface and cross section of the bent portion of the female connector terminal of the obtained female connector with an optical microscope at a magnification of 100 times, the presence or absence of cracks is judged. Recognized items were indicated as “x”. In addition, what fractured | ruptured in the box bending part was displayed as "break". The survey was conducted with n = 3, and the result of the connector terminal with the worst result among n = 3 was adopted to evaluate “○”, “×”, “Break”. It was determined to pass.

〔複合環境試験〕
コネクタ端子の電気的信頼性を評価するため、複合環境試験を実施した。板厚0.15mmのC2600リフローSnめっき材(めっき厚1.0μm、Cu下地層厚さ0.7μm)で作製した雄型コネクタ端子と前記雌型コネクタ端子を嵌合し、「80℃×30分保持→−40℃×30分保持」を1サイクルとし、前記2水準のそれぞれの保持温度において加速度3G、掃引周波数50Hzで振動を与える複合環境試験を1000サイクル実施した。この試験終了後端子嵌合部の接触抵抗を測定した。その結果を表3、表4に示す。ただし、端子加工時に箱曲げ部で破断し、端子形状に成形できなかったものについては、本試験を実施しておらず、表には未実施と記入した。
これらの結果を表3、表4に示す。
[Compound environment test]
In order to evaluate the electrical reliability of the connector terminals, a combined environmental test was conducted. A male connector terminal made of a C2600 reflow Sn plating material (plating thickness: 1.0 μm, Cu underlayer thickness: 0.7 μm) having a thickness of 0.15 mm was fitted to the female connector terminal, and “80 ° C. × 30 “Min hold → −40 ° C. × 30 min hold” is one cycle, and 1000 cycles of a combined environmental test in which vibration is applied at each of the two holding temperatures at an acceleration of 3 G and a sweep frequency of 50 Hz. After the test, the contact resistance of the terminal fitting portion was measured. The results are shown in Tables 3 and 4. However, this test was not carried out for those that could not be molded into the terminal shape due to breakage at the box bending part during terminal processing, and the table shows that the test was not performed.
These results are shown in Tables 3 and 4.

Figure 0005243744
Figure 0005243744

Figure 0005243744
Figure 0005243744

表3からわかるように、本発明例は(1)式を満たす結晶配向を有し、引張強さが600MPa以上という高強度を呈する銅合金板材を被加工材として採用したものであり、雌型コネクタ端子の箱曲げ部での割れは確認されない。さらに、車載用コネクタ等の用途において重要となるTDの応力緩和率が5%以下という優れた特性を兼ね備えた銅合金板材を使用しているため、得られたコネクタ端子は複合環境試験後も1mΩ以下の低い接触抵抗を示し、長期に渡って高い電気的信頼性を有するものである。   As can be seen from Table 3, the present invention example employs a copper alloy sheet material having a crystal orientation satisfying the formula (1) and a high strength of tensile strength of 600 MPa or more as a work material. Cracks at the box bent part of the connector terminal are not confirmed. Furthermore, because the copper alloy plate material has an excellent characteristic that the stress relaxation rate of TD, which is important in applications such as in-vehicle connectors, is 5% or less, the obtained connector terminal is 1 mΩ even after the composite environmental test. It exhibits the following low contact resistance and has high electrical reliability over a long period of time.

これに対し、表4に示されるように、比較例は平均結晶粒径または(1)式の規定を外れる銅合金板材を被加工材として採用したものであり、全ての比較例の雌型コネクタ端子箱曲げ部において割れが確認され、さらに一部の比較例では箱曲げ部が破断して端子形状を保てないものもあった。更に複合環境試験後の接触抵抗は、箱曲げ部の割れのために箱部が試験終了時点で開きかけたため、また応力緩和率が5%以上と高いために、全ての端子において4mΩを超えており、満足できる電気的信頼性は得られなかった。   On the other hand, as shown in Table 4, the comparative example employs an average crystal grain size or a copper alloy sheet that does not satisfy the definition of the formula (1) as a workpiece, and all the comparative female connectors Cracks were confirmed in the terminal box bent part, and in some comparative examples, the box bent part was broken and the terminal shape could not be maintained. Furthermore, the contact resistance after the combined environmental test exceeded 4 mΩ at all terminals because the box part was opened at the end of the test due to the cracking of the box bending part and the stress relaxation rate was as high as 5% or more. Therefore, satisfactory electrical reliability could not be obtained.

銅合金板材の条を連続プレス成形することによりコネクタ端子部分を形成した段階の中間製品の形状を模式的に示す図。The figure which shows typically the shape of the intermediate product of the stage which formed the connector terminal part by carrying out continuous press molding of the strip | belt of a copper alloy board | plate material. 実施例において箱曲げ加工を行う部位に形成したノッチの断面形状を示す図。The figure which shows the cross-sectional shape of the notch formed in the site | part which performs a box bending process in an Example. 面心立方晶のシュミット因子の分布を表す標準逆極点図。Standard inverse pole figure showing Schmid factor distribution of face-centered cubic crystal.

符号の説明Explanation of symbols

10 コネクタ端子部分
11 パイロット部
21 箱部
22 圧着部
31 箱曲げ部
32 バネ部
DESCRIPTION OF SYMBOLS 10 Connector terminal part 11 Pilot part 21 Box part 22 Crimp part 31 Box bending part 32 Spring part

Claims (8)

質量%で、Ni:0.7〜4.2%、Si:0.2〜1%、残部がCuおよび不可避的不純物である組成を有し、下記(1)式および(2)式を満たす結晶配向を有し、平均結晶粒径が5〜60μmである板厚0.08〜0.30mmの銅合金板材を素材に使用し、これに板厚に対して1/7〜1/2の深さのノッチを入れ、そのノッチに沿って曲げ加工を施してなるコネクタ端子。
I{420}/I0{420}>1.0 ……(1)
I{220}/I 0 {220}≦3.0 ……(2)
ここで、I{420}は当該銅合金板材の板面における{420}結晶面のX線回折強度、I0{420}は純銅標準粉末の{420}結晶面のX線回折強度である。同様に、I{220}は当該銅合金板材の板面における{220}結晶面のX線回折強度、I 0 {220}は純銅標準粉末の{220}結晶面のX線回折強度である。
In mass%, Ni has a composition of 0.7 to 4.2%, Si: 0.2 to 1%, the balance being Cu and inevitable impurities, and satisfies the following formulas (1) and (2) A copper alloy plate having a crystal orientation and an average crystal grain size of 5 to 60 μm and having a plate thickness of 0.08 to 0.30 mm is used as a material, and this is 1/7 to 1/2 of the plate thickness. A connector terminal that has a notch of depth and bends along the notch.
I {420} / I 0 {420}> 1.0 (1)
I {220} / I 0 {220} ≦ 3.0 (2)
Here, I {420} is the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet, and I 0 {420} is the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder. Similarly, I {220} is the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet, and I 0 {220} is the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder.
前記銅合金は、さらにFe、Zn、Mg、Sn、Co、Cr、Be、Zr、Ti、Mn、V、Ag、P、Bの1種以上を合計3%以下の範囲で含有する請求項1に記載のコネクタ端子。   The copper alloy further contains one or more of Fe, Zn, Mg, Sn, Co, Cr, Be, Zr, Ti, Mn, V, Ag, P, and B in a total range of 3% or less. Connector terminals as described in 1. 質量%で、Ni:0.1〜5%、Sn:0.1〜5%、P:0.01〜0.5%、残部がCuおよび不可避的不純物である組成を有し、下記(1)式および(2)式を満たす結晶配向を有し、平均結晶粒径が5〜60μmである板厚0.08〜0.30mmの銅合金板材を素材に使用し、これに板厚に対して1/7〜1/2の深さのノッチを入れ、そのノッチに沿って曲げ加工を施してなるコネクタ端子。
I{420}/I0{420}>1.0 ……(1)
I{220}/I 0 {220}≦3.0 ……(2)
ここで、I{420}は当該銅合金板材の板面における{420}結晶面のX線回折強度、I0{420}は純銅標準粉末の{420}結晶面のX線回折強度である。同様に、I{220}は当該銅合金板材の板面における{220}結晶面のX線回折強度、I 0 {220}は純銅標準粉末の{220}結晶面のX線回折強度である。
In mass%, Ni has a composition of 0.1 to 5%, Sn: 0.1 to 5%, P: 0.01 to 0.5%, the balance being Cu and inevitable impurities. ) And a crystal orientation satisfying the formula (2), and a copper alloy plate material having an average crystal grain size of 5 to 60 μm and a thickness of 0.08 to 0.30 mm is used as a raw material. A connector terminal formed by inserting a notch having a depth of 1/7 to 1/2 and bending along the notch.
I {420} / I 0 {420}> 1.0 (1)
I {220} / I 0 {220} ≦ 3.0 (2)
Here, I {420} is the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet, and I 0 {420} is the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder. Similarly, I {220} is the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet, and I 0 {220} is the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder.
前記銅合金は、さらにFe、Zn、Mg、Si、Co、Cr、Be、Zr、Ti、Mn、V、Bの1種以上を合計3%以下の範囲で含有する請求項3に記載のコネクタ端子。   The connector according to claim 3, wherein the copper alloy further contains one or more of Fe, Zn, Mg, Si, Co, Cr, Be, Zr, Ti, Mn, V, and B in a total range of 3% or less. Terminal. 質量%で、Be:0.1〜5%、Ni:0.1〜2.5%、残部がCuおよび不可避的不純物である組成を有し、下記(1)式および(2)式を満たす結晶配向を有し、平均結晶粒径が5〜60μmである板厚0.08〜0.30mmの銅合金板材を素材に使用し、これに板厚に対して1/7〜1/2の深さのノッチを入れ、そのノッチに沿って曲げ加工を施してなるコネクタ端子。
I{420}/I0{420}>1.0 ……(1)
I{220}/I 0 {220}≦3.0 ……(2)
ここで、I{420}は当該銅合金板材の板面における{420}結晶面のX線回折強度、I0{420}は純銅標準粉末の{420}結晶面のX線回折強度である。同様に、I{220}は当該銅合金板材の板面における{220}結晶面のX線回折強度、I 0 {220}は純銅標準粉末の{220}結晶面のX線回折強度である。
In mass%, Be: 0.1-5%, Ni: 0.1-2.5%, the balance is Cu and inevitable impurities, and satisfies the following formulas (1) and (2) A copper alloy plate having a crystal orientation and an average crystal grain size of 5 to 60 μm and having a plate thickness of 0.08 to 0.30 mm is used as a material, and this is 1/7 to 1/2 of the plate thickness. A connector terminal that has a notch of depth and bends along the notch.
I {420} / I 0 {420}> 1.0 (1)
I {220} / I 0 {220} ≦ 3.0 (2)
Here, I {420} is the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet, and I 0 {420} is the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder. Similarly, I {220} is the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet, and I 0 {220} is the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder.
前記銅合金は、さらにFe、Zn、Mg、Co、Cr、Zr、Sn、Ti、Mn、V、P、Bの1種以上を合計3%以下の範囲で含有する請求項5に記載のコネクタ端子。   The connector according to claim 5, wherein the copper alloy further contains one or more of Fe, Zn, Mg, Co, Cr, Zr, Sn, Ti, Mn, V, P, and B in a total range of 3% or less. Terminal. 質量%で、Ti:0.1〜5%、残部がCuおよび不可避的不純物である組成を有し、下記(1)式および(2)式を満たす結晶配向を有し、平均結晶粒径が5〜60μmである板厚0.08〜0.30mmの銅合金板材を素材に使用し、これに板厚に対して1/7〜1/2の深さのノッチを入れ、そのノッチに沿って曲げ加工を施してなるコネクタ端子。
I{420}/I0{420}>1.0 ……(1)
I{220}/I 0 {220}≦3.0 ……(2)
ここで、I{420}は当該銅合金板材の板面における{420}結晶面のX線回折強度、I0{420}は純銅標準粉末の{420}結晶面のX線回折強度である。同様に、I{220}は当該銅合金板材の板面における{220}結晶面のX線回折強度、I 0 {220}は純銅標準粉末の{220}結晶面のX線回折強度である。
In mass%, Ti has a composition of 0.1 to 5%, the balance is Cu and inevitable impurities, has a crystal orientation satisfying the following formulas (1) and (2) , and an average crystal grain size is A copper alloy plate material having a thickness of 5 to 60 μm and a thickness of 0.08 to 0.30 mm is used as a material, and a notch having a depth of 1/7 to 1/2 is added to the thickness of the copper alloy plate material. Connector terminals that are bent.
I {420} / I 0 {420}> 1.0 (1)
I {220} / I 0 {220} ≦ 3.0 (2)
Here, I {420} is the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet, and I 0 {420} is the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder. Similarly, I {220} is the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet, and I 0 {220} is the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder.
前記銅合金は、さらにAl、Ni、Si、Fe、Zn、Sn、Co、Cr、Be、Zr、Mn、V、P、Bの1種以上を合計3%以下の範囲で含有する請求項7に記載のコネクタ端子。   The copper alloy further contains one or more of Al, Ni, Si, Fe, Zn, Sn, Co, Cr, Be, Zr, Mn, V, P, and B in a total range of 3% or less. Connector terminals as described in 1.
JP2007201386A 2007-08-01 2007-08-01 Connector terminal Active JP5243744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201386A JP5243744B2 (en) 2007-08-01 2007-08-01 Connector terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201386A JP5243744B2 (en) 2007-08-01 2007-08-01 Connector terminal

Publications (2)

Publication Number Publication Date
JP2009035775A JP2009035775A (en) 2009-02-19
JP5243744B2 true JP5243744B2 (en) 2013-07-24

Family

ID=40437947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201386A Active JP5243744B2 (en) 2007-08-01 2007-08-01 Connector terminal

Country Status (1)

Country Link
JP (1) JP5243744B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930527B2 (en) * 2009-03-05 2012-05-16 日立電線株式会社 Copper alloy material and method for producing copper alloy material
JP5466879B2 (en) * 2009-05-19 2014-04-09 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5479798B2 (en) * 2009-07-22 2014-04-23 Dowaメタルテック株式会社 Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP5319590B2 (en) * 2010-03-30 2013-10-16 Jx日鉱日石金属株式会社 Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP5714863B2 (en) 2010-10-14 2015-05-07 矢崎総業株式会社 Female terminal and method for manufacturing female terminal
JP6247812B2 (en) * 2012-03-30 2017-12-13 Jx金属株式会社 Titanium copper and method for producing the same
JP6201716B2 (en) * 2013-12-16 2017-09-27 日本軽金属株式会社 Suspension parts for automobiles and manufacturing methods thereof
WO2016186107A1 (en) 2015-05-20 2016-11-24 古河電気工業株式会社 Copper alloy sheet material and production method therefor
JP2017014625A (en) * 2016-09-06 2017-01-19 Jx金属株式会社 Titanium copper and manufacturing method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226835A (en) * 1997-02-18 1998-08-25 Dowa Mining Co Ltd Copper base alloy for terminal and terminal using the same
JP4584692B2 (en) * 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4943099B2 (en) * 2005-09-09 2012-05-30 日本碍子株式会社 Beryllium copper alloy
US20080190523A1 (en) * 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP5075438B2 (en) * 2007-03-20 2012-11-21 Dowaメタルテック株式会社 Cu-Ni-Sn-P copper alloy sheet and method for producing the same
JP5135496B2 (en) * 2007-06-01 2013-02-06 Dowaメタルテック株式会社 Cu-Be based copper alloy sheet and method for producing the same
JP4357548B2 (en) * 2007-06-14 2009-11-04 Dowaメタルテック株式会社 Cu-Ti-based copper alloy sheet and method for producing the same

Also Published As

Publication number Publication date
JP2009035775A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP5243744B2 (en) Connector terminal
JP5260992B2 (en) Copper alloy sheet and manufacturing method thereof
JP4563480B2 (en) Copper alloy sheet and manufacturing method thereof
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP4357548B2 (en) Cu-Ti-based copper alloy sheet and method for producing the same
JP5109073B2 (en) Copper alloy sheet and manufacturing method thereof
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP5075438B2 (en) Cu-Ni-Sn-P copper alloy sheet and method for producing the same
CN106460099B (en) Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
KR20120104532A (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
KR101788497B1 (en) Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
JP5135496B2 (en) Cu-Be based copper alloy sheet and method for producing the same
WO2010134210A1 (en) Copper alloy material and manufacturing method therefor
JP4642119B2 (en) Copper alloy and method for producing the same
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP5507635B2 (en) Copper alloy sheet and manufacturing method thereof
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
JP2018070944A (en) Copper alloy sheet material and manufacturing method therefor
KR101895558B1 (en) Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP4831969B2 (en) Brass material manufacturing method and brass material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250