JP5507635B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5507635B2
JP5507635B2 JP2012194670A JP2012194670A JP5507635B2 JP 5507635 B2 JP5507635 B2 JP 5507635B2 JP 2012194670 A JP2012194670 A JP 2012194670A JP 2012194670 A JP2012194670 A JP 2012194670A JP 5507635 B2 JP5507635 B2 JP 5507635B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy sheet
mass
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012194670A
Other languages
Japanese (ja)
Other versions
JP2012255219A (en
Inventor
維林 高
久 須田
宏人 成枝
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2012194670A priority Critical patent/JP5507635B2/en
Publication of JP2012255219A publication Critical patent/JP2012255219A/en
Application granted granted Critical
Publication of JP5507635B2 publication Critical patent/JP5507635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、銅合金板材およびその製造方法に関し、特に、コネクタ、リードフレーム、リレー、スイッチなどの電気電子部品に使用するCu−Zn系銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly to a Cu—Zn-based copper alloy sheet used for electrical and electronic parts such as connectors, lead frames, relays, and switches, and a method for manufacturing the same.

コネクタ、リードフレーム、リレー、スイッチなどの電気電子部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な導電性が要求されるとともに、電気電子機器の組立時や作動時に付与される応力に耐えることができる高い強度が要求される。また、コネクタなどの電気電子部品は、一般に曲げ加工により成形されることから、優れた曲げ加工性も要求される。さらに、コネクタなどの電気電子部品間の接触信頼性を確保するために、接触圧力が時間とともに低下する現象(応力緩和)に対する耐久性、すなわち、耐応力緩和特性に優れていることも要求される。   Materials used for electrical and electronic parts such as connectors, lead frames, relays, and switches must have good electrical conductivity to suppress the generation of Joule heat due to energization, as well as during assembly and operation of electrical and electronic equipment. A high strength that can withstand the stress sometimes applied is required. In addition, since electrical and electronic parts such as connectors are generally formed by bending, excellent bending workability is also required. Furthermore, in order to ensure contact reliability between electrical and electronic components such as connectors, it is also required to have durability against a phenomenon (stress relaxation) in which the contact pressure decreases with time, that is, excellent stress relaxation characteristics. .

近年、コネクタなどの電気電子部品は、高集積化、小型化および軽量化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材には、薄肉化の要求が高まっている。そのため、素材に要求される強度レベルは一層厳しくなっている。また、コネクタなどの電気電子部品の小型化や形状の複雑化に対応するために、曲げ加工品の形状や寸法精度を向上させることが求められている。そのため、最近では、素材の曲げ加工を施す部位にノッチを付ける加工(ノッチング)を施し、その後、そのノッチに沿って曲げ加工を行う所謂ノッチング後曲げ加工法を適用することが多くなっている。しかし、このノッチング後曲げ加工法では、ノッチングによってノッチ部の近傍が加工硬化されるため、その後の曲げ加工において割れを生じ易くなる。そのため、ノッチング後曲げ加工法は、材料にとって非常に厳しい曲げ加工である。   In recent years, electrical and electronic parts such as connectors tend to be highly integrated, miniaturized, and lightened, and accordingly, there is an increasing demand for thinning of copper and copper alloy plate materials. For this reason, the strength level required for the material is becoming stricter. Further, in order to cope with the downsizing and complicated shape of electrical and electronic parts such as connectors, it is required to improve the shape and dimensional accuracy of the bent product. Therefore, recently, a so-called post-notching bending method in which notching is performed on a portion of a material to be bent (notching) and then bending along the notch is often applied. However, in this post-notching bending method, the vicinity of the notch portion is work-hardened by notching, so that cracking is likely to occur in subsequent bending. For this reason, the post-notching bending method is a very severe bending process for materials.

また、コネクタなどの電気電子部品が過酷な環境で使用される場合が多くなるに従って、耐応力緩和特性に対する要求も厳しくなっている。例えば、自動車用コネクタのように高温に曝される環境下で使用される場合には、耐応力緩和特性が特に重要になる。なお、応力緩和とは、コネクタなどの電気電子部品を構成する素材のばね部の接触圧力が、常温では一定の状態に維持されても、比較的高温(例えば100〜200℃)の環境下では時間とともに低下するという、一種のクリープ現象である。すなわち、応力緩和とは、金属材料に応力が付与されている状態において、マトリックスを構成する原子の自己拡散や固溶原子の拡散によって転位が移動して、塑性変形が生じることにより、付与されている応力が緩和される現象である。   In addition, as electrical and electronic parts such as connectors are often used in harsh environments, demands for stress relaxation resistance have become stricter. For example, when used in an environment exposed to high temperatures, such as an automobile connector, the stress relaxation resistance is particularly important. Note that stress relaxation means that under a relatively high temperature (for example, 100 to 200 ° C.) environment, even if the contact pressure of the spring portion of the material constituting the electrical / electronic component such as the connector is kept constant at room temperature. It is a kind of creep phenomenon that decreases with time. In other words, stress relaxation is given by the fact that dislocations move due to self-diffusion of atoms constituting the matrix or diffusion of solute atoms in the state where stress is applied to the metal material, resulting in plastic deformation. This is a phenomenon in which the stress is relaxed.

また、近年、環境負荷の低減や、省資源・省エネルギー化が進む傾向にあり、それに伴って、素材である銅や銅合金の板材では、原料コストや製造コストの低減や、製品のリサイクル性などの要求がますます高まっている。   In recent years, there has been a tendency to reduce the environmental burden and save resources and energy, and in connection with this, with copper and copper alloy plates, which are raw materials, reduction of raw material costs and manufacturing costs, product recyclability, etc. The demand for is increasing.

しかし、板材の強度と導電性の間、強度と曲げ加工性の間、曲げ加工性と耐応力緩和特性の間には、それぞれトレードオフの関係があるので、従来、このようなコネクタなどの電気電子部品の板材として、用途に応じて、導電性、強度、曲げ加工性または耐応力緩和特性が良好で比較的コストの低い板材が適宜選択されて使用されている。   However, since there is a trade-off relationship between the strength and conductivity of the plate material, between the strength and the bending workability, and between the bending workability and the stress relaxation resistance characteristic, conventionally, the electrical power of such a connector or the like has been used. As a plate material for an electronic component, a plate material having good conductivity, strength, bending workability or stress relaxation resistance and a relatively low cost is appropriately selected and used depending on the application.

また、従来、コネクタなどの電気電子部品用の汎用材料として、黄銅やりん青銅などが使用されている。りん青銅は、強度、耐食性、耐応力腐食割れ性および耐応力緩和特性のバランスが比較的に優れているが、例えば、りん青銅2種(C5191)の場合、導電率が15%IACS程度と小さく、また、熱間加工することができず、高価なSnを約6%含有し、コスト的にも不利である。   Conventionally, brass, phosphor bronze, and the like are used as general-purpose materials for electrical and electronic parts such as connectors. Phosphor bronze has a relatively good balance of strength, corrosion resistance, stress corrosion cracking resistance, and stress relaxation resistance. For example, in the case of two types of phosphor bronze (C5191), the conductivity is as small as about 15% IACS. Moreover, it cannot be hot-worked and contains about 6% of expensive Sn, which is disadvantageous in terms of cost.

一方、黄銅(Cu−Zn系銅合金)は、原料および製造コストが低く且つ製品のリサイクル性の優れた材料として、広範囲に使用されている。しかし、黄銅の強度は、りん青銅より低く、強度が最も高い黄銅の質別はEH(H06)であり、例えば、黄銅1種(C2600)の板条製品では、一般に引張強さが550N/mm程度であり、この引張強さはりん青銅2種の質別H(H04)の引張強さに相当する。また、黄銅1種(C2600)の板条製品では、応力緩和率がりん青銅2種の質別H(H04)の約2倍程度であり、耐応力緩和特性も劣っている。 On the other hand, brass (Cu—Zn-based copper alloy) is widely used as a material with low raw material and manufacturing costs and excellent product recyclability. However, the strength of brass is lower than that of phosphor bronze, and brass having the highest strength is EH (H06). For example, in the case of a plate product of one type of brass (C2600), the tensile strength is generally 550 N / mm. The tensile strength is about 2 , and this tensile strength corresponds to the tensile strength of two types of phosphor bronze H (H04). In addition, in the type 1 brass product (C2600), the stress relaxation rate is about twice that of the grade 2 H (H04) of phosphor bronze, and the stress relaxation resistance is also inferior.

また、黄銅の強度を向上させるためには、仕上げ圧延率の増大(質別増大)が必要であり、それに伴って、圧延方向に対して垂直な方向の曲げ加工性(すなわち、曲げ軸が圧延方向に対して平行な方向である曲げ加工性)が著しく悪化してしまう。そのため、強度レベルが高い黄銅でも、コネクタなどの電気電子部品に加工できなくなる場合がある。例えば、黄銅1種の仕上げ圧延率を上げて引張強さを570N/mmより高くすると、小型部品にプレス成形することが困難になる。 Further, in order to improve the strength of brass, it is necessary to increase the finish rolling rate (increased by grade), and accordingly, the bending workability in the direction perpendicular to the rolling direction (that is, the bending axis is rolled). Bending workability which is a direction parallel to the direction) is significantly deteriorated. Therefore, even brass with a high strength level may not be processed into electrical and electronic parts such as connectors. For example, if the finish rolling rate of one kind of brass is increased and the tensile strength is higher than 570 N / mm 2 , it becomes difficult to press-mold small parts.

特に、CuとZnからなる単純な合金系の黄銅では、強度を維持しながら曲げ加工性を向上させることは容易ではない。そのため、黄銅に種々の元素を添加して強度レベルを引き上げる工夫がなされている。例えば、Sn、Ni、Mn、Siなどの第3元素を添加したCu−Zn系銅合金が提案されている(例えば、特許文献1〜3参照)。しかし、Snなどを添加することは、本来安価であるCu−Zn系銅合金の原料および製造コストを増大させ、製品のリサイクル性を低下させるので好ましくない。また、Snなどを添加しても、曲げ加工性を十分に向上させることができない場合もある。   In particular, in the case of a simple alloy brass made of Cu and Zn, it is not easy to improve the bending workability while maintaining the strength. Therefore, a device has been devised to increase the strength level by adding various elements to brass. For example, a Cu—Zn-based copper alloy to which a third element such as Sn, Ni, Mn, and Si is added has been proposed (see, for example, Patent Documents 1 to 3). However, the addition of Sn or the like is not preferable because it increases the raw material and manufacturing cost of the Cu-Zn-based copper alloy, which is inherently inexpensive, and reduces the recyclability of the product. Moreover, even if Sn or the like is added, the bending workability may not be sufficiently improved.

一般に、銅合金の曲げ加工性を向上させるために、結晶粒微細化が行われている。しかし、結晶粒径が小さい程、単位体積当たりに存在する結晶粒界の面積が大きくなるので、結晶粒微細化は、クリープ現象の一種である応力緩和を助長する要因になる。特に、車載用コネクタのように高温環境で使用される場合には、原子の粒界に沿った拡散速度が粒内より著しく速いので、結晶粒微細化による耐応力緩和特性の低下が重大な問題になり易い。   Generally, crystal grain refinement is performed in order to improve the bending workability of a copper alloy. However, the smaller the crystal grain size, the larger the area of the crystal grain boundary that exists per unit volume. Therefore, the refinement of crystal grains becomes a factor that promotes stress relaxation, which is a kind of creep phenomenon. In particular, when used in a high-temperature environment such as an in-vehicle connector, the diffusion rate along the grain boundary of atoms is significantly faster than in the grains. It is easy to become.

また、Cu−Zn系銅合金には、多量の微細析出物が存在しないので、結晶粒微細化の制御が困難であり、最終再結晶処理条件およびその前の冷間圧延条件を厳格に制御しても、量産時の結晶粒径のバラツキが生じ易い。   In addition, since there is no large amount of fine precipitates in the Cu-Zn-based copper alloy, it is difficult to control grain refinement, and the final recrystallization treatment conditions and the preceding cold rolling conditions are strictly controlled. However, variations in crystal grain size during mass production are likely to occur.

また、曲げ加工性を低下させずに強度を向上させる銅として、微細なα相とβ相からなる2相混合組織の黄銅が提案されている(例えば、特許文献4参照)。しかし、一般に広く使用されている端子用黄銅は、α相単相組織の黄銅であり、このような2相混合組織の黄銅に多量のZnを含有させると、耐食性などの性質が異なる場合がある。   Further, brass having a two-phase mixed structure composed of a fine α phase and a β phase has been proposed as copper that improves strength without degrading bending workability (see, for example, Patent Document 4). However, generally used brass for terminals is brass having an α-phase single-phase structure, and when a large amount of Zn is contained in such a two-phase mixed structure brass, properties such as corrosion resistance may differ. .

特開平5−33087号公報公報(段落番号0006−0008)JP-A-5-33087 (paragraph numbers 0006-0008) 特開2000−38628号公報(段落番号0009−0012)JP 2000-38628 A (paragraph numbers 0009-0012) 特開2001−164328号公報(段落番号0013、0022)JP 2001-164328 A (paragraph numbers 0013 and 0022) 特開2000−129376号公報(段落番号0007−0009)JP 2000-129376 A (paragraph numbers 0007-0009)

Cu−Zn系銅合金は、典型的な固溶強化型合金であり、強度を向上させるためには、仕上げ圧延率の増大(質別増大)が必要である。しかし、仕上げ圧延率の増大(質別増大)により、圧延方向に平行な方向の曲げ加工性(すなわち、曲げ軸が圧延方向に対して垂直な方向である曲げ加工性)は悪くないものの、圧延方向に対して垂直な方向の曲げ加工性(すなわち、曲げ軸が圧延方向に対して平行な方向である曲げ加工性)が著しく悪化してしまう。   The Cu—Zn-based copper alloy is a typical solid solution strengthened alloy, and in order to improve the strength, it is necessary to increase the finish rolling rate (increased quality). However, due to the increase in finish rolling rate (increased by grade), the bending workability in the direction parallel to the rolling direction (that is, the bending workability in which the bending axis is perpendicular to the rolling direction) is not bad, but rolling The bending workability in the direction perpendicular to the direction (that is, the bending workability in which the bending axis is parallel to the rolling direction) is significantly deteriorated.

そのため、Cu−Zn系銅合金の曲げ加工性が要求される場合には、引張強さが500N/mm以下の低質別(大体H以下)のCu−Zn系銅合金しか使用することができず、強度不足でばね性が低くなり易い。一方、引張強さが570N/mm以上の高質別(大体EH以上)のCu−Zn系銅合金は、殆ど曲げ加工をしない平板状に近い部品にしか使用されていない。 Therefore, when the bending workability of the Cu—Zn-based copper alloy is required, only a low-quality (approximately H or less) Cu—Zn-based copper alloy having a tensile strength of 500 N / mm 2 or less can be used. In addition, the spring property tends to be low due to insufficient strength. On the other hand, Cu-Zn based copper alloys of high quality (generally EH or higher) having a tensile strength of 570 N / mm 2 or higher are used only for components that are almost flat and do not undergo bending.

上述したように、強度を維持しながら曲げ加工性を向上させる一般的な方法としては、Snなどの元素を多量に添加する方法や、結晶粒微細化などの方法がある。しかし、Snなどの元素を多量に添加すると、原料および製造コストが増大し、製品のリサイクル性が低下し易く、また、曲げ加工性を十分に向上させることができない。また、結晶粒微細化の場合には、耐応力緩和特性が劣っているCu−Zn系銅合金の耐応力緩和特性をさらに低下させる場合がある。   As described above, general methods for improving bending workability while maintaining strength include a method of adding a large amount of elements such as Sn and a method of refining crystal grains. However, when elements such as Sn are added in a large amount, raw materials and production costs are increased, product recyclability tends to be lowered, and bending workability cannot be sufficiently improved. Moreover, in the case of crystal grain refinement, the stress relaxation resistance of a Cu—Zn-based copper alloy having poor stress relaxation resistance may be further reduced.

また、銅合金板材にノッチング後曲げ加工法を適用することは、曲げ加工品の形状や寸法精度を向上させるのに効果的であるが、Cu−Zn系銅合金は、一般に圧延方向に平行な方向の曲げ加工性が良好であっても、ノッチング後曲げ加工法のような厳しい曲げ加工に耐えるには十分ではない。   Further, applying the notching after bending method to the copper alloy sheet is effective in improving the shape and dimensional accuracy of the bent product, but the Cu-Zn copper alloy is generally parallel to the rolling direction. Even good directional bendability is not sufficient to withstand severe bending such as post-notching bending.

したがって、本発明は、このような従来の問題点に鑑み、高強度を維持しながら、通常の曲げ加工性だけでなくノッチング後の曲げ加工性にも優れ、且つ耐応力緩和特性に優れた安価な銅合金板材およびその製造方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention is not only excellent in ordinary bending workability but also in bending workability after notching while maintaining high strength, and inexpensive with excellent stress relaxation resistance. An object of the present invention is to provide a copper alloy sheet and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、15〜37質量%のZnを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI{420}とすると、I{420}/I{420}>0.8を満たす結晶配向を有するようにすれば、高強度を維持しながら、通常の曲げ加工性だけでなくノッチング後の曲げ加工性にも優れ、且つ耐応力緩和特性に優れた安価な銅合金板材を得ることができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the inventors of the present invention have prepared a copper alloy sheet having a composition containing 15 to 37% by mass of Zn and the balance being Cu and inevitable impurities. Assuming that the X-ray diffraction intensity of the {420} crystal plane at I {420} and the X-ray diffraction intensity of the {420} crystal plane of pure copper standard powder is I 0 {420}, I {420} / I 0 {420 If the crystal orientation satisfies the condition of> 0.8, not only the normal bending workability but also the bending workability after notching is excellent while maintaining high strength, and the stress relaxation resistance is low. The present inventors have found that a copper alloy sheet can be obtained and have completed the present invention.

すなわち、本発明による銅合金板材は、15〜37質量%のZnを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI{420}とすると、I{420}/I{420}>0.8を満たす結晶配向を有することを特徴とする。 That is, the copper alloy sheet according to the present invention contains 15 to 37% by mass of Zn, with the balance being Cu and inevitable impurities. The copper alloy sheet has a composition of X of {420} crystal plane in the plate surface of the copper alloy sheet. A crystal satisfying I {420} / I 0 {420}> 0.8, where the line diffraction intensity is I {420} and the X-ray diffraction intensity of the {420} crystal plane of pure copper standard powder is I 0 {420}. It has an orientation.

この銅合金板材において、銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI{220}とすると、1.0≦I{220}/I{220}≦3.5を満たす結晶配向を有するのが好ましい。また、銅合金板材の平均結晶粒径が10〜60μmであるのが好ましい。また、銅合金板材が、2.0質量%以下のSn、2.0質量%以下のNi、2.0質量%以下のFeおよび1.0質量%以下のSiからなる群から選ばれる1種以上の元素をさらに含む組成を有してもよい。さらに、銅合金板材が、Co、Cr、Mg、Al、B、P、Zr、Ti、MnおよびVからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有してもよい。また、銅合金板材の引張強さが580MPa以上、導電率が20%IACS以上、応力緩和率が35%以下であるのが好ましい。 In this copper alloy sheet, the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet is I {220}, and the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder is I 0 {220}. Then, it is preferable to have a crystal orientation satisfying 1.0 ≦ I {220} / I 0 {220} ≦ 3.5. Moreover, it is preferable that the average crystal grain diameter of a copper alloy board | plate material is 10-60 micrometers. Further, one copper alloy sheet, which is selected from the group consisting of 2.0 wt% or less of Sn, 2.0 mass% of Ni, 2.0 mass% of Fe and 1.0 mass% of Si You may have the composition which further contains the above element. Further, the copper alloy plate material further includes a composition that further includes one or more elements selected from the group consisting of Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, and V in a total range of 3% by mass or less. You may have. The copper alloy sheet preferably has a tensile strength of 580 MPa or more, an electrical conductivity of 20% IACS or more, and a stress relaxation rate of 35% or less.

また、本発明による銅合金板材の製造方法は、15〜37質量%のZnを含み、必要に応じて2.0質量%以下のSnと2.0質量%以下のNiと2.0質量%以下のFeと1.0質量%以下のSiからなる群から選ばれる1種以上の元素を含み、さらに必要に応じてCo、Cr、Mg、Al、B、P、Zr、Ti、MnおよびVからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲で含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造した後、900℃〜300℃における熱間圧延として900℃〜600℃で最初の圧延パスを行った後に600℃未満〜300℃で圧延率40%以上の圧延を行い、次いで、圧延率85%以上で冷間圧延を行い、その後、350〜650℃における再結晶焼鈍と、圧延率30〜80%の仕上げ冷間圧延を順次行うことにより、銅合金板材を製造することを特徴とする。 A method of manufacturing a copper alloy sheet according to the invention comprises a 15 to 37 mass% of Zn, optionally 2.0 wt% or less of Sn and 2.0 mass% of Ni and 2.0 wt% It contains one or more elements selected from the group consisting of the following Fe and 1.0% by mass or less of Si, and further contains Co, Cr, Mg, Al, B, P, Zr, Ti, Mn and V as required. After melting and casting a raw material of a copper alloy having a composition containing at least one element selected from the group consisting of 3% by mass or less and the balance being Cu and inevitable impurities, 900 ° C. to 300 ° C. After performing the first rolling pass at 900 ° C. to 600 ° C. as the hot rolling in, rolling at a rolling rate of 40% or more is performed at less than 600 ° C. to 300 ° C., and then cold rolling is performed at a rolling rate of 85% or more, Then, recrystallization annealing at 350 to 650 ° C., A copper alloy sheet is produced by sequentially performing finish cold rolling at a rolling rate of 30 to 80%.

この銅合金板材の製造方法において、900℃〜600℃の圧延パスで圧延率60%以上の圧延を行うのが好ましい。また、再結晶焼鈍において、再結晶焼鈍後の平均結晶粒径が10〜60μmになるように、350〜650℃における保持時間および到達温度を設定して、熱処理を行うのが好ましい。さらに、仕上げ冷間圧延後に、150〜350℃で低温焼鈍を行うのが好ましい。   In this method for producing a copper alloy sheet, it is preferable to perform rolling at a rolling rate of 60% or more in a rolling pass at 900 ° C. to 600 ° C. Moreover, in recrystallization annealing, it is preferable to perform heat treatment by setting a holding time and an ultimate temperature at 350 to 650 ° C. so that the average crystal grain size after recrystallization annealing is 10 to 60 μm. Furthermore, it is preferable to perform low-temperature annealing at 150 to 350 ° C. after finish cold rolling.

また、本発明によるコネクタ端子は、上記の銅合金板材を材料として用いたことを特徴とする。   The connector terminal according to the present invention is characterized by using the above-described copper alloy sheet as a material.

本発明によれば、高強度を維持しながら、通常の曲げ加工性だけでなくノッチング後の曲げ加工性にも優れ、且つ耐応力緩和特性に優れた安価な銅合金板材およびその製造方法を提供することができる。   According to the present invention, while maintaining high strength, an inexpensive copper alloy sheet material excellent in not only normal bending workability but also bending workability after notching and excellent in stress relaxation resistance, and a method for producing the same are provided. can do.

面心立方晶のシュミット因子の分布を表した標準逆極点図である。It is a standard inverse pole figure showing distribution of the Schmid factor of a face centered cubic crystal. ノッチ形成治具の断面形状を模式的に示す図である。It is a figure which shows typically the cross-sectional shape of a notch formation jig | tool. ノッチングの方法を説明する図である。It is a figure explaining the method of notching. ノッチ付き曲げ試験片のノッチ形成部付近の断面形状を模式的に示す図である。It is a figure which shows typically the cross-sectional shape of the notch formation part vicinity of a bending test piece with a notch. 銅合金板材の条を連続プレス成形することによってコネクタ端子部分を形成した段階の中間製品の形状を模式的に示す図である。It is a figure which shows typically the shape of the intermediate product of the stage which formed the connector terminal part by carrying out the continuous press molding of the strip | belt of a copper alloy board | plate material.

本発明による銅合金板材の実施の形態は、15〜37質量%のZnを含み、必要に応じて2.0質量%以下のSnと2.0質量%以下のNiと2.0質量%以下のFeと1.0質量%以下のSiからなる群から選ばれる1種以上の元素を含み、さらに必要に応じてCo、Cr、Mg、Al、B、P、Zr、Ti、MnおよびVからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲で含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI{420}とすると、I{420}/I{420}>0.8を満たし、銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI{220}とすると、1.0≦I{220}/I{220}≦3.5を満たす結晶配向を有する。以下、この銅合金板材およびその製造方法について詳細に説明する。 The embodiment of the copper alloy sheet according to the present invention contains 15 to 37 mass% of Zn, and if necessary, 2.0 mass% or less of Sn, 2.0 mass% or less of Ni, and 2.0 mass% or less. And one or more elements selected from the group consisting of Si and 1.0% by mass or less, and optionally Co, Cr, Mg, Al, B, P, Zr, Ti, Mn and V. In a copper alloy sheet having a composition of one or more elements selected from the group consisting of 3% by mass or less and the balance being Cu and unavoidable impurities, the {420} crystal plane of the plate surface of the copper alloy sheet When the X-ray diffraction intensity is I {420} and the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder is I 0 {420}, I {420} / I 0 {420}> 0.8 is satisfied. , X-ray diffraction intensity of {220} crystal plane on the copper alloy sheet And I {220}, the X-ray diffraction intensity of the {220} crystal plane of standard pure copper powder When I 0 {220}, satisfy 1.0 ≦ I {220} / I 0 {220} ≦ 3.5 crystals Has an orientation. Hereinafter, this copper alloy sheet and its manufacturing method will be described in detail.

[合金組成]
本発明による銅合金板材の実施の形態は、CuとZnを含むCu−Zn系銅合金からなる板材、好ましくは、Cu−Znの2元系銅合金からなる板材であり、必要に応じて、少量のSn、Ni、Si、Fe、その他の元素を含有してもよい。
[Alloy composition]
The embodiment of the copper alloy sheet material according to the present invention is a sheet material composed of a Cu-Zn based copper alloy containing Cu and Zn, preferably a sheet material composed of a binary copper alloy of Cu-Zn. A small amount of Sn, Ni, Si, Fe, and other elements may be contained.

Znは、銅合金板材の強度やばね性を向上させる効果を有する。ZnはCuより安価であるため、Znを多量に添加するのが好ましい。しかし、Zn含有量が37質量%を超えると、β相の生成により、銅合金板材の冷間加工性が著しく低下するとともに、耐応力腐食割れ性も低下し、また、湿気や加熱によるめっき性やはんだ付け性も低下する。一方、Zn含有量が15質量%より少ないと、銅合金板材の0.2%耐力や引張強さなどの強度やばね性が不足し、ヤング率が大きくなり、また、銅合金板材の溶解時の水素ガス吸蔵量が多くなり、インゴットのブロ−ホ−ルが発生し易くなり、さらに、安価なZnの量が少なくて経済的にも不利になる。したがって、Zn含有量量は、15〜37質量%であるのが好ましく、20〜35質量%であるのがさらに好ましい。   Zn has the effect of improving the strength and springiness of the copper alloy sheet. Since Zn is cheaper than Cu, it is preferable to add a large amount of Zn. However, when the Zn content exceeds 37% by mass, the cold workability of the copper alloy sheet material is remarkably lowered due to the formation of the β phase, and the stress corrosion cracking resistance is also lowered. And solderability is also reduced. On the other hand, if the Zn content is less than 15% by mass, the strength and springiness such as 0.2% proof stress and tensile strength of the copper alloy sheet are insufficient, the Young's modulus increases, and the copper alloy sheet is dissolved. The amount of hydrogen gas occluded increases, ingot blowholes are easily generated, and the amount of inexpensive Zn is small, which is economically disadvantageous. Therefore, the Zn content is preferably 15 to 37% by mass, and more preferably 20 to 35% by mass.

Snは、銅合金板材の強度、耐応力緩和特性および耐応力腐食割れ特性を向上させる効果を有する。SnめっきなどのSnで表面処理した材料を再利用するためにも、銅合金板材がSnを含有するのが好ましい。しかし、Sn含有量が2.0質量%を超えると、銅合金板材の導電率が急激に低下し、また、Znとの共存下で粒界偏析が激しくなり、熱間加工性が著しく低下する。一方、Sn含有量が0.1質量%より少ないと、銅合金板材の機械的特性を向上させる効果が少なくなり、また、Snめっきなどを施したプレス屑などを原料として利用し難くなる。したがって、銅合金板材がSnを含有する場合には、Sn含有量は、0.1〜2.0質量%であるのが好ましく、0.2〜1.0質量%であるのがさらに好ましい。   Sn has the effect of improving the strength, stress relaxation resistance and stress corrosion cracking resistance of the copper alloy sheet. In order to reuse the material surface-treated with Sn such as Sn plating, the copper alloy sheet preferably contains Sn. However, if the Sn content exceeds 2.0% by mass, the electrical conductivity of the copper alloy sheet material is drastically reduced, and grain boundary segregation becomes severe in the coexistence with Zn, so that the hot workability is remarkably lowered. . On the other hand, when the Sn content is less than 0.1% by mass, the effect of improving the mechanical properties of the copper alloy sheet is reduced, and it is difficult to use press scraps subjected to Sn plating as a raw material. Therefore, when the copper alloy sheet contains Sn, the Sn content is preferably 0.1 to 2.0% by mass, and more preferably 0.2 to 1.0% by mass.

Niは、銅合金板材の固溶強化効果と耐応力緩和特性を向上させる効果を有し、特に、Niの亜鉛当量はマイナス値であり、β相の生成を抑制することにより、量産時の特性のバラツキを抑制する効果がある。これらの効果を十分に発揮させるためには、Ni含有量が0.1質量%以上であるのが好ましい。一方、Ni含有量が2.0質量%を超えると、導電率が著しく低下してしまう。したがって、銅合金板材がNiを含有する場合には、Ni含有量は、0.1〜2.0質量%であるのが好ましく、0.2〜1.0質量%であるのがさらに好ましい。   Ni has the effect of improving the solid solution strengthening effect and stress relaxation resistance of the copper alloy sheet, and in particular, the zinc equivalent of Ni is a negative value. There is an effect of suppressing the variation of the. In order to fully exhibit these effects, the Ni content is preferably 0.1% by mass or more. On the other hand, if the Ni content exceeds 2.0% by mass, the conductivity will be significantly reduced. Therefore, when the copper alloy sheet contains Ni, the Ni content is preferably 0.1 to 2.0% by mass, and more preferably 0.2 to 1.0% by mass.

Siは、少量でも銅合金板材の耐応力腐食割れ性を向上させる効果がある。この効果を十分に得るためには、Si含有量は、0.01質量%以上であるのが好ましい。しかし、Si含有量が1.0質量%を超えると、導電性が低下し易く、また、Siは酸化し易い元素であり、鋳造性を低下させ易いので、Si含有量は多過ぎない方がよい。したがって、銅合金板材がSiを含有する場合には、Si含有量は、0.01〜1.0質量%であるのが好ましく、0.05〜0.5質量%であるのがさらに好ましい。   Si has the effect of improving the stress corrosion cracking resistance of the copper alloy sheet even in a small amount. In order to sufficiently obtain this effect, the Si content is preferably 0.01% by mass or more. However, if the Si content exceeds 1.0% by mass, the conductivity tends to decrease, and Si is an element that easily oxidizes, and the castability tends to decrease, so the Si content should not be too much. Good. Therefore, when the copper alloy sheet contains Si, the Si content is preferably 0.01 to 1.0% by mass, and more preferably 0.05 to 0.5% by mass.

Feは、銅合金板材の固溶強化効果、鋳造中の脱酸効果および鋳造組織微細化効果を有する。これらの効果を十分に発揮させるためには、Fe含有量を0.01質量%以上にするのが好ましい。しかし、Feは酸化され易い元素であり、Fe含有量が2.0質量%を超えると、鋳造性が著しく低下する。したがって、銅合金板材がFeを含有する場合には、Fe含有量は、0.01〜2.0質量%であるのが好ましく、0.01〜1.0質量%であるのがさらに好ましく、0.1〜0.5質量%であるのが最も好ましい。   Fe has a solid solution strengthening effect of a copper alloy sheet, a deoxidation effect during casting, and a refinement effect of the cast structure. In order to sufficiently exhibit these effects, the Fe content is preferably set to 0.01% by mass or more. However, Fe is an element that is easily oxidized, and when the Fe content exceeds 2.0 mass%, the castability is significantly lowered. Therefore, when the copper alloy sheet contains Fe, the Fe content is preferably 0.01 to 2.0% by mass, more preferably 0.01 to 1.0% by mass, Most preferably, it is 0.1-0.5 mass%.

必要に応じて銅合金板材に添加するその他の元素として、Co、Cr、Mg、Al、B、P、Zr、Ti、Mn、Vなどがある。例えば、Co、Cr、B、P、Zr、Ti、Mn、Vは、合金強度をさらに高めるとともに、応力緩和を小さくする効果を有する。また、Cr、Zr、Ti、Mn、Vは、不可避的不純物として存在するSやPbなどと高融点化合物を形成し易く、また、B、P、Zr、Tiは、鋳造組織微細化効果を有し、熱間加工性を向上させる効果を有する。なお、銅合金板材がCo、Cr、Mg、Al、B、P、Zr、Ti、MnおよびVからなる群から選ばれる1種以上の元素を含有する場合には、各元素を添加した効果を十分に得るために、これらの総量が0.01質量%以上であるのが好ましい。しかし、これらの元素の含有量が多過ぎると、熱間加工性または冷間加工性に悪い影響を与え、コスト的にも不利になる。したがって、これらの元素の総量は、3質量%以下であるのが好ましく、2質量%以下であるのがさらに好ましく、1質量%以下であるのが最も好ましい。   Other elements added to the copper alloy sheet as necessary include Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, and V. For example, Co, Cr, B, P, Zr, Ti, Mn, and V have the effect of further increasing the alloy strength and reducing the stress relaxation. In addition, Cr, Zr, Ti, Mn, and V easily form a high melting point compound with S and Pb, which are unavoidable impurities, and B, P, Zr, and Ti have an effect of refining the cast structure. And has the effect of improving hot workability. When the copper alloy sheet contains one or more elements selected from the group consisting of Co, Cr, Mg, Al, B, P, Zr, Ti, Mn and V, the effect of adding each element is In order to obtain sufficiently, the total amount of these is preferably 0.01% by mass or more. However, when there is too much content of these elements, it will have a bad influence on hot workability or cold workability, and will become disadvantageous also in cost. Therefore, the total amount of these elements is preferably 3% by mass or less, more preferably 2% by mass or less, and most preferably 1% by mass or less.

[集合組織]
Cu−Zn系銅合金の板面(圧延面)からのX線回折パターンは、一般に{111}、{200}、{220}、{311}の4つの結晶面の回折ピークで構成されており、他の結晶面からのX線回折強度は、これらの結晶面からのX線回折強度に比べて非常に小さい。また、通常の製造方法によって製造されたCu−Zn系銅合金の板材では、{420}面からのX線回折強度は、無視される程度に弱くなるが、本発明による銅合金板材の製造方法の実施の形態によれば、{420}を主方位成分とする集合組織を有するCu−Zn系銅合金板材を製造することができる。また、この集合組織が強く発達している程、以下のように、曲げ加工性の向上に有利になることがわかった。
[Organization]
An X-ray diffraction pattern from a plate surface (rolled surface) of a Cu—Zn based copper alloy is generally composed of diffraction peaks of four crystal planes {111}, {200}, {220}, and {311}. The X-ray diffraction intensities from other crystal planes are much smaller than the X-ray diffraction intensities from these crystal planes. Moreover, in the Cu—Zn-based copper alloy plate produced by a normal production method, the X-ray diffraction intensity from the {420} plane is weakened to a negligible level, but the method for producing a copper alloy plate according to the present invention According to the embodiment, it is possible to manufacture a Cu—Zn-based copper alloy sheet having a texture having {420} as a main orientation component. It was also found that the stronger the texture, the more advantageous the bending workability as follows.

結晶のある方向に外力が加えられたときの塑性変形(すべり)の生じ易さを示す指標としてシュミット因子がある。結晶に加えられる外力の方向とすべり面の法線とのなす角度をφ、結晶に加えられる外力の方向とすべり方向とのなす角度をλとすると、シュミット因子はcosφ・cosλで表され、その値は0.5以下の範囲をとる。シュミット因子が大きい程(すなわち0.5に近い程)、すべり方向へのせん断応力が大きいことを意味する。したがって、ある結晶にある方向から外力を付与したとき、シュミット因子が大きい程(すなわち0.5に近い程)、その結晶は変形し易いことになる。Cu−Zn系銅合金の結晶構造は面心立方(fcc)であるが、面心立方晶のすべり系は、すべり面{111}、すべり方向<110>であり、実際の結晶においても、シュミット因子が大きい程、変形し易く、加工硬化の程度も小さくなることが知られている。   There is a Schmid factor as an index indicating the ease of plastic deformation (slip) when an external force is applied in a certain direction of the crystal. When the angle between the direction of the external force applied to the crystal and the normal of the slip surface is φ, and the angle between the direction of the external force applied to the crystal and the slip direction is λ, the Schmid factor is expressed as cos φ · cos λ. The value is in the range of 0.5 or less. The larger the Schmid factor (that is, the closer to 0.5), the greater the shear stress in the slip direction. Therefore, when an external force is applied to a certain crystal from a certain direction, the larger the Schmid factor (that is, closer to 0.5), the easier the crystal is to be deformed. The crystal structure of the Cu—Zn-based copper alloy is face-centered cubic (fcc), but the face-centered cubic slip system is the slip plane {111} and the slip direction <110>. It is known that the larger the factor, the easier it is to deform and the lower the degree of work hardening.

面心立方晶のシュミット因子の分布を表した標準逆極点図を図1に示す。図1に示すように、<120>方向のシュミット因子は0.490であり、0.5に近い。すなわち、<120>方向に外力が付与されると、面心立方晶は非常に変形し易い。その他の方向のシュミット因子は、<100>方向が0.408、<113>方向が0.445、<110>方向が0.408、<112>方向が0.408、<111>方向が0.272である。   A standard reverse pole figure showing the Schmid factor distribution of face-centered cubic crystals is shown in FIG. As shown in FIG. 1, the Schmid factor in the <120> direction is 0.490, which is close to 0.5. That is, when an external force is applied in the <120> direction, the face-centered cubic crystal is very easily deformed. The Schmid factors in the other directions are 0.408 in the <100> direction, 0.445 in the <113> direction, 0.408 in the <110> direction, 0.408 in the <112> direction, and 0 in the <111> direction. .272.

Cu−Zn系銅合金の一般的な圧延集合組織における主方位面が{110}面である結晶の場合、LD(圧延方向)が<112>方向、TD(圧延方向および板厚方向に対して垂直な方向)が<111>方向であり、そのシュミット因子は、LDが0.408、TDが0.272である。したがって、仕上げ圧延率が高い程、圧延集合組織における主方位面である{110}面の密度が強くなり、強度(特にTDの強度)が高いが、TDの曲げ加工性が著しく悪くなる。   In the case of a crystal whose main orientation plane in a general rolling texture of a Cu—Zn-based copper alloy is a {110} plane, LD (rolling direction) is in the <112> direction, TD (in the rolling direction and the plate thickness direction). (The vertical direction) is the <111> direction, and the Schmitt factors are LD of 0.408 and TD of 0.272. Therefore, the higher the finish rolling ratio, the higher the density of the {110} plane, which is the main orientation plane in the rolling texture, and the higher the strength (particularly the strength of TD), but the TD bending workability becomes significantly worse.

また、{420}を主方位成分とする集合組織は、{420}面、すなわち{210}面が板面(圧延面)とほぼ平行である結晶の存在割合が多い集合組織を意味する。主方位面が{210}面である結晶の場合、板面内、すなわち{210}面内に、別の<120>方向と<100>方向があり、これらは互いに直交する。実際には、LDが<100>方向、TDが<120>方向であり、そのシュミット因子は、LDが0.408、TDが0.490である。   Further, the texture having {420} as the main orientation component means a texture having a large abundance of crystals in which the {420} plane, that is, the {210} plane is substantially parallel to the plate surface (rolled surface). In the case of a crystal whose principal orientation plane is the {210} plane, there are another <120> direction and <100> direction in the plate plane, that is, in the {210} plane, which are orthogonal to each other. In practice, LD is in the <100> direction and TD is in the <120> direction, and the Schmitt factors are LD of 0.408 and TD of 0.490.

このように、LDおよびTDのシュミット因子を見ると、{420}を主方位成分とする集合組織の場合、{220}を主方位成分とする圧延集合組織と比べて、LDの曲げ加工性がほぼ同等であるが、TDの曲げ加工性が格段に優れている。   Thus, when looking at the Schmid factor of LD and TD, when the texture has {420} as the main orientation component, the bending workability of the LD is higher than that of the rolling texture with {220} as the main orientation component. Although it is almost equivalent, the bending workability of TD is remarkably excellent.

また、主方位面が{210}面である結晶では、板面に垂直な方向(ND)が<120>方向であり、そのシュミット因子は0.5に近いので、NDへの変形は非常に容易であり、加工硬化の程度も小さい。一方、Cu−Zn系銅合金の一般的な圧延集合組織は、{220}を主方位成分とし、この場合、{220}面、すなわち{110}面が板面(圧延面)とほぼ平行である結晶の存在割合が多い。主方位面が{110}面である結晶は、NDが<110>方向であり、そのシュミット因子は0.4程度であるから、主方位面が{210}面である結晶と比べて、NDへの変形に伴う加工硬化の程度が大きくなる。また、Cu−Zn系銅合金の一般的な再結晶集合組織は、{311}を主方位成分とする。主方位面が{311}面である結晶は、NDが<113>方向であり、そのシュミット因子は0.45程度であるので、主方位面が{210}面である結晶と比較すると、NDへの変形に伴う加工硬化の程度が大きくなる。   Moreover, in the crystal whose principal orientation plane is the {210} plane, the direction (ND) perpendicular to the plate plane is the <120> direction, and its Schmitt factor is close to 0.5. It is easy and the degree of work hardening is small. On the other hand, the general rolling texture of the Cu—Zn-based copper alloy has {220} as the main orientation component, and in this case, the {220} plane, that is, the {110} plane is substantially parallel to the plate surface (rolling surface). There are many existing ratios of crystals. A crystal whose principal orientation plane is the {110} plane has ND in the <110> direction and its Schmitt factor is about 0.4, so that it is ND compared to a crystal whose principal orientation plane is the {210} plane. The degree of work hardening associated with the deformation to becomes larger. Moreover, the general recrystallization texture of the Cu—Zn-based copper alloy has {311} as the main orientation component. A crystal whose principal orientation plane is the {311} plane has ND in the <113> direction and its Schmitt factor is about 0.45. Therefore, when compared with a crystal whose principal orientation plane is the {210} plane, ND The degree of work hardening associated with the deformation to becomes larger.

ノッチング後曲げ加工法においては、NDへの変形における加工硬化の程度が極めて重要である。ノッチングはNDへの変形であり、ノッチングによって板厚が減少した部分の加工硬化の程度が、その後、ノッチに沿って曲げた場合の曲げ加工性を大きく支配するからである。銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅粉末の{420}結晶面のX線回折強度をI{420}とすると、I{420}/I{420}>0.8を満たすような{420}を主方位成分とする集合組織の場合、従来のCu−Zn系銅合金の圧延集合組織または再結晶集合組織と比べて、ノッチングによる加工硬化の程度が小さくなり、これによってノッチング後の曲げ加工性を顕著に向上させると考えられる。 In the post-notching bending method, the degree of work hardening in the deformation to ND is extremely important. This is because notching is a deformation to ND, and the degree of work hardening of the portion where the plate thickness is reduced by notching largely governs the bending workability when bent along the notch. If the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet is I {420}, and the X-ray diffraction intensity of the {420} crystal plane of the pure copper powder is I 0 {420}, I {420} / I 0 {420}> In the case of a texture that satisfies {420} as a main orientation component, notching compared to a conventional rolled texture or recrystallized texture of a Cu—Zn based copper alloy It is considered that the degree of work hardening due to is reduced, and this significantly improves the bending workability after notching.

金属板の曲げ加工では、各結晶粒の結晶方位は異なるので、一様に変形するのではなく、曲げ加工時に変形し易い結晶粒と変形し難い結晶粒が存在する。曲げ加工の程度が増大するに伴って、変形し易い結晶粒が優先的に変形し、金属板の曲げ部の表面には、結晶粒間における不均一な変形に起因して微小の凹凸が生じ、これがしわに発展して、場合によっては割れ(破壊)に至る。上述したようにI{420}/I{420}>0.8を満たすような集合組織を有する金属板は、従来の集合組織の金属板と比べて、各結晶粒がNDに変形し易く、板面内にも変形し易くなっている。これにより、特に結晶粒を微細化しなくても、ノッチング後の曲げ加工性および通常の曲げ加工性を顕著に向上させることができると考えられる。 In the bending process of the metal plate, the crystal orientation of each crystal grain is different, so that there is a crystal grain that is easily deformed and a crystal grain that is not easily deformed during the bending process. As the degree of bending increases, the deformable crystal grains are preferentially deformed, and the surface of the bent portion of the metal plate has minute irregularities due to uneven deformation between the crystal grains. , This develops into wrinkles and in some cases leads to cracks (breaks). As described above, in the metal plate having a texture satisfying I {420} / I 0 {420}> 0.8, each crystal grain is easily deformed to ND as compared with a metal plate having a conventional texture. It is easy to be deformed in the plate surface. Thus, it is considered that the bending workability after notching and the normal bending workability can be remarkably improved without particularly refining the crystal grains.

このような結晶配向は、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI{420}とすると、I{420}/I{420}>0.8を満たす。面心立方晶のX線回折パターンでは、{420}面の反射は生じるが、{210}面の反射は生じないので、{210}面の結晶配向は、{420}面の反射によって評価される。また、I{420}/I{420}>1.0を満たすのがさらに好ましい。 Such crystal orientation is such that the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet is I {420}, and the X-ray diffraction intensity of the {420} crystal plane of the pure copper standard powder is I 0 {420. }, I {420} / I 0 {420}> 0.8 is satisfied. In the face-centered cubic X-ray diffraction pattern, {420} plane reflection occurs but {210} plane reflection does not occur, so the {210} plane crystal orientation is evaluated by {420} plane reflection. The Further, it is more preferable to satisfy I {420} / I 0 {420}> 1.0.

また、{420}を主方位成分とする集合組織は、再結晶焼鈍による再結晶集合組織として形成される。しかし、銅合金板材を高強度化するためには、再結晶焼鈍後に冷間圧延することが必要である。この冷間圧延率の増加に伴って、{220}を主方位成分とする圧延集合組織が発達していく。{220}方位密度の増大に伴って、{420}方位密度が減少するが、I{420}/I{420}>0.8、好ましくはI{420}/I{420}>1.0を維持するように、冷間圧延率を調整すればよい。しかし、{220}を主方位成分とする集合組織が発達し過ぎると、加工性が低下する場合があるので、銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI{220}とすると、1.0≦I{220}/I{220}≦3.5を満たすのが好ましい。また、強度と曲げ加工性の両方をさらに向上させるためには、1.5≦I{220}/I{220}≦3.0を満たすのが好ましい。 Further, the texture having {420} as the main orientation component is formed as a recrystallized texture by recrystallization annealing. However, in order to increase the strength of the copper alloy sheet, it is necessary to cold-roll after recrystallization annealing. As the cold rolling rate increases, a rolling texture with {220} as the main orientation component develops. As the {220} orientation density increases, the {420} orientation density decreases, but I {420} / I 0 {420}> 0.8, preferably I {420} / I 0 {420}> 1. What is necessary is just to adjust a cold rolling rate so that 0.0 may be maintained. However, if the texture having {220} as the main orientation component develops too much, the workability may deteriorate, so the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy plate material is I {220. and}, the X-ray diffraction intensity of the {220} crystal plane of standard pure copper powder When I 0 {220}, preferably satisfy 1.0 ≦ I {220} / I 0 {220} ≦ 3.5. In order to further improve both strength and bending workability, it is preferable to satisfy 1.5 ≦ I {220} / I 0 {220} ≦ 3.0.

[平均結晶粒径]
上述したように、平均結晶粒径が小さい程、曲げ加工性の向上に有利であるが、平均結晶粒径が小さ過ぎると、耐応力緩和特性が悪くなり易い。平均結晶粒径が10μm以上であれば、銅合金板材をコネクタに使用する場合でも、満足できるレベルの耐応力緩和特性を確保し易い。しかし、平均結晶粒径が大きくなり過ぎて60μmを超えると、曲げ部の表面が粗くなり易く、曲げ加工性を低下させる場合がある。したがって、平均結晶粒径は、10〜60μmであるのが好ましく、15〜30μmであるのがさらに好ましい。このような平均結晶粒径の制御は、再結晶焼鈍条件の調整によって行うことができる。
[Average crystal grain size]
As described above, the smaller the average crystal grain size, the better the bending workability. However, if the average crystal grain size is too small, the stress relaxation resistance is likely to deteriorate. When the average crystal grain size is 10 μm or more, it is easy to ensure a satisfactory level of stress relaxation resistance even when a copper alloy sheet is used for the connector. However, when the average crystal grain size becomes too large and exceeds 60 μm, the surface of the bent portion tends to become rough, and the bending workability may be lowered. Therefore, the average crystal grain size is preferably 10 to 60 μm, and more preferably 15 to 30 μm. Such control of the average crystal grain size can be performed by adjusting recrystallization annealing conditions.

[特性]
コネクタなどの電気電子部品をさらに小型化および薄肉化するためには、素材である銅合金板材の引張強さを580MPa以上にするのが好ましく、600MPa以上にするのがさらに好ましい。また、コネクタなどの電気電子部品の高集積化に伴って、通電によるジュ−ル熱の発生を抑えるために、銅合金板材の導電率が20%IACS以上であるのが好ましい。
[Characteristic]
In order to further reduce the size and thickness of electrical and electronic parts such as connectors, it is preferable that the tensile strength of the copper alloy plate material, which is a material, be set to 580 MPa or more, and more preferably 600 MPa or more. Moreover, in order to suppress the generation of the Joule heat due to energization as electrical and electronic parts such as connectors become highly integrated, it is preferable that the conductivity of the copper alloy sheet is 20% IACS or more.

また、銅合金板材の曲げ加工性の評価として、銅合金板材から長手方向がLD(圧延方向)になるように切り出した曲げ加工試験片を曲げ軸をTD(圧延方向および板厚方向に対して垂直な方向)にして90°W曲げ試験を行うとともに、長手方向がTDになるように切り出した曲げ加工試験片を曲げ軸をLDにして90°W曲げ試験を行った場合に、LDとTDのいずれも90°W曲げ試験における最小曲げ半径Rと板厚tの比R/tが、1.0以下であるのが好ましく、0.5以下であるのがさらに好ましい。また、曲げ加工品の形状や寸法精度を向上させるために、LDのノッチング後の曲げ加工性の評価として、R/tが0であるのが好ましい。   In addition, as an evaluation of the bending workability of the copper alloy sheet material, a bending test piece cut out from the copper alloy sheet material so that the longitudinal direction is LD (rolling direction) is used as a bending axis with respect to TD (rolling direction and sheet thickness direction). When the 90 ° W bending test is performed in the vertical direction) and the 90 ° W bending test is performed on the bending test piece cut out so that the longitudinal direction becomes TD, the bending axis is set to LD. In any case, the ratio R / t of the minimum bending radius R to the sheet thickness t in the 90 ° W bending test is preferably 1.0 or less, and more preferably 0.5 or less. Further, in order to improve the shape and dimensional accuracy of the bent product, it is preferable that R / t is 0 as an evaluation of the bending workability after notching of the LD.

耐応力緩和特性については、銅合金板材を車載用コネクタなどに使用する場合には、TDの耐応力緩和特性が特に重要であるため、長手方向がTDである試験片を用いた応力緩和率により応力緩和特性を評価するのが好ましい。また、銅合金板材の表面の最大負荷応力が0.2%耐力の80%の大きさになるようにして150℃で1000時間保持した場合に、応力緩和率を従来の黄銅一種の半分以下(りん青銅2種程度)にするのが好ましく、35%以下にするのがさらに好ましく、30%以下にするのが最も好ましい。   Regarding the stress relaxation resistance, when using a copper alloy sheet material for an in-vehicle connector, etc., the stress relaxation resistance of TD is particularly important, so the stress relaxation rate using a test piece whose longitudinal direction is TD It is preferable to evaluate the stress relaxation characteristics. Moreover, when the maximum load stress on the surface of the copper alloy sheet is 80% of the 0.2% proof stress and held at 150 ° C. for 1000 hours, the stress relaxation rate is less than half of the conventional brass type ( It is preferably about 2 types of phosphor bronze), more preferably 35% or less, and most preferably 30% or less.

また、後述するように、図5に示す形状の雌型コネクタ端子100を連続プレスによって横連鎖方式で作製し、得られた雌型コネクタ端子100の箱曲げ部124の表面および断面を光学顕微鏡によって100倍の倍率で観察し、割れが認められないようなコネクタ端子成形性を有する銅合金板材であるのが好ましい。なお、雌型コネクタ端子100の箱曲げ部124では、曲げ加工前にノッチング(構付け)を行って、図4に示すような略台形の断面形状の深さ30μmのノッチ12’aを形成した後、曲げ加工を行った。   Further, as will be described later, the female connector terminal 100 having the shape shown in FIG. 5 is produced in a horizontal chain manner by continuous pressing, and the surface and cross section of the box bending portion 124 of the obtained female connector terminal 100 are examined by an optical microscope. It is preferably a copper alloy plate material having connector terminal formability that is observed at a magnification of 100 times and no cracks are observed. In the box bending portion 124 of the female connector terminal 100, notching (installation) is performed before bending to form a substantially trapezoidal cross-sectional notch 12′a having a depth of 30 μm as shown in FIG. After that, bending was performed.

[製造方法]
上述したような銅合金板材は、本発明による銅合金板材の製造方法の実施の形態によって製造することができる。本発明による銅合金板材の製造方法の実施の形態は、上述した組成を有する銅合金の原料を溶解して鋳造する溶解・鋳造工程と、この溶解・鋳造工程の後に、900℃〜600℃で最初の圧延パスを行い、次いで、600℃未満〜300℃で圧延率40%以上の圧延を行う熱間圧延工程と、この熱間圧延工程の後に、圧延率85%以上で冷間圧延を行う冷間圧延工程と、この冷間圧延工程の後に、350℃〜650℃において再結晶焼鈍を行う再結晶焼鈍工程と、この再結晶焼鈍工程の後に、圧延率30〜80%の仕上げ冷間圧延を行う仕上げ冷間圧延工程と、この仕上げ冷間圧延工程の後に、必要に応じて低温焼鈍を行う低温焼鈍工程とを備えている。以下、これらの工程について詳細に説明する。なお、熱間圧延後には、必要に応じて面削を行い、各熱処理後には、必要に応じて酸洗、研磨、脱脂を行ってもよい。
[Production method]
The copper alloy sheet as described above can be produced by the embodiment of the method for producing a copper alloy sheet according to the present invention. An embodiment of a method for producing a copper alloy sheet according to the present invention includes a melting / casting step of melting and casting a copper alloy raw material having the above-described composition, and 900 ° C. to 600 ° C. after the melting / casting step. A first rolling pass is performed, and then a hot rolling process in which rolling is performed at a rolling rate of 40% or more at less than 600 ° C. to 300 ° C., and cold rolling is performed at a rolling rate of 85% or more after the hot rolling process. A cold rolling step, a recrystallization annealing step for performing recrystallization annealing at 350 ° C. to 650 ° C. after this cold rolling step, and a finish cold rolling with a rolling rate of 30 to 80% after this recrystallization annealing step And a finish cold rolling process, and after this finish cold rolling process, a low temperature annealing process is performed to perform low temperature annealing as necessary. Hereinafter, these steps will be described in detail. In addition, after hot rolling, chamfering may be performed as necessary, and after each heat treatment, pickling, polishing, and degreasing may be performed as necessary.

(溶解・鋳造工程)
一般的な黄銅の溶製方法と同様の方法により、銅合金の原料を溶解した後、連続鋳造や半連続鋳造などにより鋳片を製造する。なお、原料を溶解する際の雰囲気は、大気雰囲気で十分である。
(Melting and casting process)
A slab is produced by continuous casting or semi-continuous casting after melting the raw material of the copper alloy by a method similar to a general brass melting method. In addition, the atmosphere at the time of melt | dissolving a raw material is enough for an air atmosphere.

(熱間圧延工程)
通常、Cu−Zn系銅合金の熱間圧延は、650℃以上または700℃以上の高温域で圧延し、圧延中および圧延パス間の再結晶により、鋳造組織の破壊および材料の軟化のために行われる。しかし、このような一般的な熱間圧延条件では、本発明による銅合金板材の実施の形態のように特異な集合組織を有する銅合金板材を製造することは困難である。すなわち、このような一般的な熱間圧延条件では、後工程の条件を広範囲に変化させても、{420}を主方位方向に有する銅合金板材を製造するのが困難である。そのため、本発明による銅合金板材の製造方法の実施の形態では、熱間圧延工程において、900℃〜600℃の温度域で最初の圧延パスを行い、600℃未満〜300℃の温度域で圧延率40%以上の圧延を行う(所謂熱間圧延と温間圧延の組み合わせを行う)。
(Hot rolling process)
Usually, the hot rolling of Cu-Zn based copper alloy is performed at a high temperature range of 650 ° C or higher or 700 ° C or higher, for the purpose of breaking the cast structure and softening the material by recrystallization during rolling and between rolling passes. Done. However, under such general hot rolling conditions, it is difficult to produce a copper alloy sheet having a specific texture as in the embodiment of the copper alloy sheet according to the present invention. That is, under such general hot rolling conditions, it is difficult to produce a copper alloy sheet having {420} in the main azimuth direction even if the post-process conditions are changed over a wide range. Therefore, in the embodiment of the method for producing a copper alloy sheet according to the present invention, in the hot rolling process, the first rolling pass is performed in the temperature range of 900 ° C. to 600 ° C., and the rolling is performed in the temperature range of less than 600 ° C. to 300 ° C. Rolling is performed at a rate of 40% or more (so-called hot rolling and warm rolling are combined).

鋳片を熱間圧延する際に、再結晶が発生し易い600℃より高温域で最初の圧延パスを行うことによって、鋳造組織を破壊し、成分と組織の均一化を図ることができる。しかし、900℃を超える高温で圧延を行うと、合金成分の偏析部分など、融点が低下している部分で割れを生じるおそれがあるので好ましくない。したがって、熱間圧延工程中における完全再結晶が確実に生じるようにするためには、900℃〜600℃の温度域で圧延率60%以上の圧延を行うのが好ましく、これによって組織の均一化が一層促進される。なお、1パスで圧延率60%を得るためには大きな圧延荷重が必要であるので、多パスに分けてトータル60%以上の圧延率を確保してもよい。また、本発明による銅合金板材の製造方法の実施の形態では、圧延歪が生じ易い600℃未満〜300℃の温度域で40%以上の圧延率を確保する。このようにして、後工程の冷間圧延と再結晶焼鈍の組み合わせによって、{420}を主方位成分とする再結晶集合組織を形成し易くなる。なお、この際も600℃未満〜300℃の温度域で数パスの圧延を行うことができる。熱間圧延の最終パス温度は、500℃以下にするのが好ましく、熱間圧延におけるトータルの圧延率は80〜95%程度にすればよい。   When the slab is hot-rolled, by performing the first rolling pass at a temperature higher than 600 ° C. where recrystallization is likely to occur, the cast structure can be destroyed and the components and structure can be made uniform. However, rolling at a high temperature exceeding 900 ° C. is not preferable because cracking may occur in a portion where the melting point is lowered, such as a segregated portion of an alloy component. Therefore, in order to ensure complete recrystallization during the hot rolling process, it is preferable to perform rolling at a rolling rate of 60% or more in a temperature range of 900 ° C. to 600 ° C., thereby making the structure uniform Is further promoted. Since a large rolling load is necessary to obtain a rolling rate of 60% in one pass, a total rolling rate of 60% or more may be secured by dividing into multiple passes. Moreover, in embodiment of the manufacturing method of the copper alloy board | plate material by this invention, the rolling rate of 40% or more is ensured in the temperature range of less than 600 degreeC-300 degreeC which a rolling distortion tends to produce. In this way, it becomes easy to form a recrystallized texture having {420} as the main orientation component by a combination of the subsequent cold rolling and recrystallization annealing. In this case as well, several passes of rolling can be performed in a temperature range of less than 600 ° C. to 300 ° C. The final pass temperature of hot rolling is preferably 500 ° C. or less, and the total rolling rate in hot rolling may be about 80 to 95%.

それぞれの温度域における圧延率ε(%)は、熱間圧延前の鋳片の板厚をt、熱間圧延後の鋳片の板厚をtとすると、ε=(t−t)/t×100によって算出される。例えば、900〜600℃の間で行う最初の圧延パスに供する鋳片の板厚が120mmであり、600℃以上の温度域で圧延を行って、600℃以上の温度で行われた最後の圧延パス終了時に板厚が30mmになり、引き続いて圧延を継続して、熱間圧延の最終パスを600℃未満〜300℃の範囲で行い、最終的に板厚10mmの熱間圧延材を得たとする。この場合、900℃〜600℃の温度域で行われた圧延の圧延率は、(120−30)/120×100=75(%)になり、600℃未満〜300℃の温度域における圧延率は、(30−10)/30×100=66.7(%)になる。 The rolling rate ε (%) in each temperature range is ε = (t 0 −t) where t 0 is the thickness of the slab before hot rolling and t 1 is the thickness of the slab after hot rolling. 1 ) / t 0 × 100. For example, the final rolling performed at a temperature of 600 ° C. or higher is performed by rolling in a temperature range of 600 ° C. or higher, with the plate thickness of the slab provided for the first rolling pass performed between 900 and 600 ° C. being 120 mm. At the end of the pass, the plate thickness became 30 mm, and then the rolling was continued, and the final pass of the hot rolling was performed in a range of less than 600 ° C. to 300 ° C., and finally a hot rolled material having a plate thickness of 10 mm was obtained. To do. In this case, the rolling rate of the rolling performed in the temperature range of 900 ° C. to 600 ° C. is (120−30) / 120 × 100 = 75 (%), and the rolling rate in the temperature range of less than 600 ° C. to 300 ° C. Is (30-10) /30×100=66.7 (%).

(冷間圧延工程)
再結晶焼鈍前に行う冷間圧延工程では、圧延率を85%以上にする必要があり、90%以上にするのが好ましい。このような高い圧延率で加工された材料に対し、次工程で再結晶焼鈍を行うことにより、{420}を主方位成分とする再結晶集合組織を形成することができる。特に、再結晶集合組織は、再結晶前の冷間圧延率に大きく依存する。具体的には、{420}を主方位成分とする結晶配向は、冷間圧延率が60%以下では殆ど生成せず、約60〜80%の領域では冷間圧延率の増加に伴って漸増し、冷間圧延率が約80%を超えると急激な増加に転じる。{420}方位が十分に優勢な結晶配向を得るためには、85%以上の冷間圧延率にする必要があり、90%以上にするのが好ましい。なお、冷間圧延率の上限は、ミルパワーなどにより必然的に制約を受けるので、特に規定する必要はないが、エッジ割れなどを防止する観点から、98%程度以下で良好な結果を得ることができる。
(Cold rolling process)
In the cold rolling process performed before recrystallization annealing, the rolling rate needs to be 85% or more, and preferably 90% or more. A recrystallized texture having {420} as the main orientation component can be formed by performing recrystallization annealing on the material processed at such a high rolling rate in the next step. In particular, the recrystallization texture greatly depends on the cold rolling rate before recrystallization. Specifically, the crystal orientation having {420} as the main orientation component hardly generates when the cold rolling rate is 60% or less, and gradually increases with the increase of the cold rolling rate in the region of about 60 to 80%. However, when the cold rolling rate exceeds about 80%, it suddenly increases. In order to obtain a crystal orientation in which the {420} orientation is sufficiently dominant, it is necessary to achieve a cold rolling rate of 85% or more, and preferably 90% or more. Note that the upper limit of the cold rolling rate is inevitably restricted by mill power and the like, and thus need not be specified. However, from the viewpoint of preventing edge cracking and the like, good results can be obtained at about 98% or less. it can.

なお、本発明による銅合金板材の製造方法の実施の形態では、通常の銅合金板材の製造方法で行われているように、熱間圧延後で再結晶焼鈍前に中間焼鈍が行われると、再結晶焼鈍によって形成される{420}を主方位成分とする再結晶集合組織が著しく弱化してしまうので、熱間圧延と再結晶焼鈍の間に中間焼鈍を行わない。   In the embodiment of the method for producing a copper alloy sheet according to the present invention, as is performed in the ordinary method for producing a copper alloy sheet, when intermediate annealing is performed after hot rolling and before recrystallization annealing, Since the recrystallization texture having {420} as the main orientation component formed by recrystallization annealing is significantly weakened, intermediate annealing is not performed between hot rolling and recrystallization annealing.

(再結晶焼鈍工程)
従来の銅合金板材の製造方法では、再結晶焼鈍は再結晶化のために行われるが、本発明による銅合金板材の製造方法の実施の形態では、さらに集合組織を制御するために行われる。この再結晶焼鈍は、350〜650℃の炉温で行うのが好ましい。この温度が低過ぎると、再結晶が不完全になったり、再結晶粒が微細(例えば5μm以下)になり、{220}を主方位成分とする圧延集合組織が残留する。一方、温度が高過ぎると、結晶粒の粗大化とともに、{220}方位成分が強くなってしまう。これらのいずれの場合も、最終的に曲げ加工性の優れた高強度材を得ることが困難になる。
(Recrystallization annealing process)
In the conventional method for producing a copper alloy sheet, recrystallization annealing is performed for recrystallization, but in the embodiment of the method for producing a copper alloy sheet according to the present invention, it is further performed to control the texture. This recrystallization annealing is preferably performed at a furnace temperature of 350 to 650 ° C. When this temperature is too low, recrystallization becomes incomplete, recrystallized grains become fine (for example, 5 μm or less), and a rolling texture having {220} as the main orientation component remains. On the other hand, if the temperature is too high, the {220} orientation component becomes strong as the crystal grains become coarse. In any of these cases, it becomes difficult to finally obtain a high-strength material excellent in bending workability.

また、この再結晶焼鈍は、再結晶粒の平均粒径(双晶境界を結晶粒界とみなさない)が10〜60μmになるように、好ましくは15〜40μmになるように、350〜650℃で保持時間および到達温度を設定して熱処理を行うのが好ましい。再結晶粒の粒径が微細になり過ぎると、{220}を主方位成分とする圧延集合組織が残留し、{420}を主方位成分とする再結晶集合組織が弱くなり、また、耐応力緩和特性が向上し難くなる。一方、再結晶粒の粒径が粗大になり過ぎると、曲げ加工部の表面が粗くなり易い。なお、再結晶粒の粒径は、再結晶焼鈍前の冷間圧延率や化学組成によって変動するが、各々の合金について予め実験により再結晶焼鈍ヒートパターンと平均結晶粒径との関係を求めておけば、350〜650℃で保持時間および到達温度を設定することができる。具体的には、本発明による銅合金板材の化学組成では、350〜650℃で数秒〜数時間保持する加熱条件において適正な条件を設定することができる。   Further, this recrystallization annealing is performed at 350 to 650 ° C. so that the average grain size of recrystallized grains (a twin boundary is not regarded as a grain boundary) is 10 to 60 μm, preferably 15 to 40 μm. It is preferable to perform the heat treatment by setting the holding time and the reached temperature. When the grain size of the recrystallized grains becomes too fine, a rolling texture having {220} as a main orientation component remains, a recrystallization texture having {420} as a main orientation component becomes weak, and stress resistance Relaxation characteristics are difficult to improve. On the other hand, when the grain size of the recrystallized grains becomes too large, the surface of the bent portion tends to become rough. The grain size of the recrystallized grains varies depending on the cold rolling rate and chemical composition before the recrystallization annealing, but the relationship between the recrystallized annealing heat pattern and the average crystal grain size is determined in advance for each alloy by experiment. In this case, the holding time and the reached temperature can be set at 350 to 650 ° C. Specifically, in the chemical composition of the copper alloy sheet according to the present invention, appropriate conditions can be set in the heating condition of holding at 350 to 650 ° C. for several seconds to several hours.

(仕上げ冷間圧延工程)
仕上げ冷間圧延は、強度レベルを向上させるために行われる。仕上げ冷間圧延率が低過ぎると強度が低いが、仕上げ冷間圧延率の増大に伴って{220}を主方位成分とする圧延集合組織が発達していく。一方、仕上げ冷間圧延率が高過ぎると、{220}方位の圧延集合組織が相対的に優勢になり過ぎ、強度と曲げ加工性の両方を向上させた結晶配向を実現することができない。そのため、仕上げ冷間圧延は、20〜70%にするのが好ましく、30〜60%にするのがさらに好ましい。このような仕上げ冷間圧延を行うことによって、I{420}/I{420}>0.8を満たす結晶配向を維持することができる。なお、最終的な板厚は、0.05〜1.0mm程度にするのが好ましく、0.1〜0.8mmにするのがさらに好ましい。
(Finish cold rolling process)
Finish cold rolling is performed to improve the strength level. If the finish cold rolling rate is too low, the strength is low, but a rolling texture having {220} as the main orientation component develops as the finish cold rolling rate increases. On the other hand, if the finish cold rolling rate is too high, the rolling texture in the {220} orientation becomes relatively dominant, and crystal orientation with improved strength and bending workability cannot be realized. Therefore, the finish cold rolling is preferably 20 to 70%, and more preferably 30 to 60%. By performing such finish cold rolling, the crystal orientation satisfying I {420} / I 0 {420}> 0.8 can be maintained. The final plate thickness is preferably about 0.05 to 1.0 mm, and more preferably 0.1 to 0.8 mm.

(低温焼鈍工程)
仕上げ冷間圧延後には、銅合金板材の残留応力の低減による耐応力腐食割れ特性や曲げ加工性を向上させ、空孔やすべり面上の転位の低減による耐応力緩和特性を向上させるために、低温焼鈍を行ってもよい。特に、Cu−Zn系銅合金の場合、150〜350℃の加熱温度で低温焼鈍を行うのが好ましい。この低温焼鈍により、強度、耐応力腐食割れ特性、曲げ加工性および耐応力緩和特性を同時に向上させることができ、また、導電率を上昇させることができる。この加熱温度が高過ぎると、短時間で軟化し、バッチ式でも連続式でも特性のバラツキが生じ易くなる。一方、加熱温度が低過ぎると、上記の特性を向上させる効果を十分に得ることができない。また、この加熱温度における保持時間は、5秒間以上であるのが好ましく、通常1時間以内で良好な結果を得ることができる。
(Low temperature annealing process)
After finish cold rolling, in order to improve the stress corrosion cracking characteristics and bending workability by reducing the residual stress of the copper alloy sheet material, and to improve the stress relaxation characteristics by reducing dislocations on the pores and slip surface, Low temperature annealing may be performed. In particular, in the case of a Cu—Zn copper alloy, it is preferable to perform low temperature annealing at a heating temperature of 150 to 350 ° C. By this low temperature annealing, strength, stress corrosion cracking resistance, bending workability and stress relaxation resistance can be improved at the same time, and the electrical conductivity can be increased. If this heating temperature is too high, it softens in a short time, and variations in characteristics are likely to occur in both batch and continuous systems. On the other hand, if the heating temperature is too low, the effect of improving the above characteristics cannot be obtained sufficiently. The holding time at this heating temperature is preferably 5 seconds or longer, and usually good results can be obtained within 1 hour.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1〜11]
16.1質量%のZnと0.14質量%のZrと0.12質量%のCoを含み、残部がCuからなる銅合金(実施例1)、19.8質量%のZnを含み、残部がCuからなる銅合金(実施例2)、25.2質量%のZnを含み、残部がCuからなる銅合金(実施例3)、30.4質量%のZnを含み、残部がCuからなる銅合金(実施例4)、34.8質量%のZnを含み、残部がCuからなる銅合金(実施例5)、36.7質量%のZnと0.44質量%のNiを含み、残部がCuからなる銅合金(実施例6)、29.8質量%のZnと0.12質量%のMgと0.03質量%のPを含み、残部がCuからなる銅合金(実施例7)、26.2質量%のZnと0.23質量%のFeと0.003質量%のBを含み、残部がCuからなる銅合金(実施例8)、24.6質量%のZnと0.52質量%のSnと0.04質量%のTiを含み、残部がCuからなる銅合金(実施例9)、28.3質量%のZnと0.34質量%のSiと0.04質量%のAlを含み、残部がCuからなる銅合金(実施例10)、28.9質量%のZnと0.07質量%のMnと0.11質量%のCrを含み、残部がCuからなる銅合金(実施例11)をそれぞれ溶製し、縦型の小型連続鋳造機を用いて鋳造して、それぞれ厚さ50mmの鋳片を得た。
[Examples 1 to 11]
A copper alloy (Example 1) containing 16.1% by mass of Zn, 0.14% by mass of Zr and 0.12% by mass of Co, with the balance being Cu, 19.8% by mass of Zn, and the balance A copper alloy (Example 2) comprising Cu, 25.2% by mass of Zn, the remainder comprising Cu (Example 3), 30.4% by mass of Zn, the remainder comprising Cu Copper alloy (Example 4), containing 34.8% by weight of Zn, the balance comprising Cu (Example 5), containing 36.7% by weight of Zn and 0.44% by weight of Ni, the balance A copper alloy (Example 6), in which 29.8% by mass of Zn, 0.12% by mass of Mg and 0.03% by mass of P are contained, with the balance being Cu (Example 7). , 26.2% by mass of Zn, 0.23% by mass of Fe and 0.003% by mass of B, with the balance being Cu Example 8), a copper alloy (Example 9) containing 24.6% by mass of Zn, 0.52% by mass of Sn and 0.04% by mass of Ti with the balance being Cu, 28.3% by mass of A copper alloy (Example 10) containing Zn, 0.34% by mass of Si and 0.04% by mass of Al, the balance being Cu, 28.9% by mass of Zn, 0.07% by mass of Mn and 0 Each of the copper alloys (Example 11) containing 11 mass% Cr and the balance being Cu was melted and cast using a vertical compact continuous casting machine to obtain slabs each having a thickness of 50 mm. It was.

それぞれの鋳片を850℃に加熱した後に抽出し、熱間圧延を開始した。この熱間圧延では、850℃〜600℃の温度域における圧延率が60%以上になり且つ600℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。なお、600℃未満〜300℃における熱間圧延率をそれぞれ45%(実施例1)、50%(実施例2)、42%(実施例3)、47%(実施例4)、43%(実施例5)、52%(実施例6)、45%(実施例7)、45%(実施例8)、52%(実施例9)、46%(実施例10)、42%(実施例11)とし、熱間圧延の最終パス温度は500℃〜300℃の間とした。また、鋳片からのトータルの熱間圧延率は約90%であった。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。   Each slab was extracted after heating to 850 ° C., and hot rolling was started. In this hot rolling, the pass schedule was set so that the rolling rate in the temperature range of 850 ° C. to 600 ° C. was 60% or more and the rolling was performed in the temperature range of less than 600 ° C. In addition, the hot rolling rate in less than 600 degreeC-300 degreeC is 45% (Example 1), 50% (Example 2), 42% (Example 3), 47% (Example 4), 43% ( Example 5), 52% (Example 6), 45% (Example 7), 45% (Example 8), 52% (Example 9), 46% (Example 10), 42% (Example) 11), and the final pass temperature of hot rolling was between 500 ° C and 300 ° C. Moreover, the total hot rolling rate from the slab was about 90%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing.

次いで、それぞれ圧延率90%(実施例1)、92%(実施例2)、86%(実施例3)、95%(実施例4)、87%(実施例5)、85%(実施例6)、85%(実施例7)、90%(実施例8)、94%(実施例9)、91%(実施例10)、86%(実施例11)で冷間圧延を行った後、350〜650℃の炉温で再結晶焼鈍を行った。なお、試料表面に取り付けた熱電対により再結晶焼鈍時の温度変化をモニターした。再結晶焼鈍後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が10〜40μmになるように、到達温度を合金組成に応じて350〜650℃の範囲内で調整し、350〜650℃の温度域における保持時間を10秒間〜10分間の範囲で調整した。   Next, the rolling ratios are 90% (Example 1), 92% (Example 2), 86% (Example 3), 95% (Example 4), 87% (Example 5), 85% (Example), respectively. After cold rolling at 6), 85% (Example 7), 90% (Example 8), 94% (Example 9), 91% (Example 10), 86% (Example 11) Recrystallization annealing was performed at a furnace temperature of 350 to 650 ° C. The temperature change during recrystallization annealing was monitored by a thermocouple attached to the sample surface. The ultimate temperature is adjusted within the range of 350 to 650 ° C. according to the alloy composition so that the average crystal grain size after recrystallization annealing (a twin boundary is not regarded as a grain boundary) is 10 to 40 μm. The holding time in the temperature range of ˜650 ° C. was adjusted in the range of 10 seconds to 10 minutes.

次に、再結晶焼鈍後の板材に対して、それぞれ圧延率55%(実施例1)、50%(実施例2)、45%(実施例3)、50%(実施例4)、40%(実施例5)、45%(実施例6)、50%(実施例7)、35%(実施例8)、35%(実施例9)、45%(実施例10)、40%(実施例11)で仕上げ冷間圧延を行い、次いで、250℃の炉中に30分間装入する低温焼鈍を施した。   Next, the rolling rate of 55% (Example 1), 50% (Example 2), 45% (Example 3), 50% (Example 4), and 40% of the plate material after recrystallization annealing, respectively. (Example 5), 45% (Example 6), 50% (Example 7), 35% (Example 8), 35% (Example 9), 45% (Example 10), 40% (implemented) In Example 11), finish cold rolling was performed, and then low temperature annealing was performed in a furnace at 250 ° C. for 30 minutes.

このようにして実施例1〜11の銅合金板材を得た。なお、必要に応じて途中で面削を行い、銅合金板材の板厚を0.2mmに揃えた。   Thus, the copper alloy board | plate material of Examples 1-11 was obtained. In addition, chamfering was performed in the middle as needed, and the thickness of the copper alloy sheet was adjusted to 0.2 mm.

次に、これらの実施例で得られた銅合金板材から試料を採取し、結晶粒組織の平均結晶粒径、X線回折強度、導電率、引張強さ、応力緩和率、通常の曲げ加工性、ノッチング後の曲げ加工性、コネクタ端子成形性を以下のように調べた。   Next, samples were taken from the copper alloy sheet materials obtained in these examples, and the average crystal grain size, X-ray diffraction strength, conductivity, tensile strength, stress relaxation rate, and normal bending workability of the crystal grain structure were obtained. The bending workability after notching and the connector terminal formability were examined as follows.

結晶粒組織の平均結晶粒径は、銅合金板材の板面(圧延面)を研磨した後にエッチングし、その面を光学顕微鏡で観察して、JIS
H0501の切断法により測定した。その結果、平均結晶粒径は、それぞれ22μm(実施例1)、18μm(実施例2)、16μm(実施例3)、24μm(実施例4)、18μm(実施例5)、15μm(実施例6)、24μm(実施例7)、18μm(実施例8)、25μm(実施例9)、20μm(実施例10)、12μm(実施例11)であった。
The average grain size of the grain structure is determined by polishing the surface (rolled surface) of the copper alloy sheet, etching it, and observing the surface with an optical microscope.
It was measured by the cutting method of H0501. As a result, the average crystal grain sizes were 22 μm (Example 1), 18 μm (Example 2), 16 μm (Example 3), 24 μm (Example 4), 18 μm (Example 5), and 15 μm (Example 6), respectively. ), 24 μm (Example 7), 18 μm (Example 8), 25 μm (Example 9), 20 μm (Example 10), and 12 μm (Example 11).

X線回折強度(X線回折積分強度)の測定は、銅合金板材の板面(圧延面)を#1500耐水ペーパーで研磨仕上げした試料を用意し、X線回折装置(XRD)を用いて、Mo−Kα線、管電圧20kV、管電流2mAの条件で、試料の研磨仕上げ面について{420}面のX線回折強度I{420}と{220}面のX線回折強度I{220}を測定することによって行った。一方、同じX線回折装置を用いて、同じ測定条件で、純銅標準粉末の{420}面のX線回折強度I{420}と{220}面のX線回折強度I{220}も測定した。これらの測定値を用いて、X線回折強度比I{420}/I{420}と、X線回折強度比I{220}/I{220}を求めた。その結果、I{420}/I{420}とI{220}/I{220}は、それぞれ1.4と2.5(実施例1)、1.6と2.2(実施例2)、1.7と2.0(実施例3)、1.4と2.3(実施例4)、1.3と1.9(実施例5)、1.1と2.7(実施例6)、1.5と2.1(実施例7)、1.8と1.8(実施例8)、1.9と2.1(実施例9)、1.4と2.2(実施例10)、1.3と1.8(実施例11)であった。 X-ray diffraction intensity (X-ray diffraction integrated intensity) is measured by preparing a sample obtained by polishing the surface (rolled surface) of a copper alloy sheet with # 1500 water-resistant paper, and using an X-ray diffractometer (XRD). Under the conditions of Mo-Kα ray, tube voltage 20 kV, and tube current 2 mA, the X-ray diffraction intensity I {420} on the {420} plane and the X-ray diffraction intensity I {220} on the {220} plane are obtained for the polished surface of the sample. This was done by measuring. On the other hand, using the same X-ray diffractometer under the same measurement conditions, standard pure copper powder {420} plane X-ray diffraction intensity I 0 and {420} of the {220} plane X-ray diffraction intensity I 0 {220} is also a It was measured. Using these measured values, an X-ray diffraction intensity ratio I {420} / I 0 {420} and an X-ray diffraction intensity ratio I {220} / I 0 {220} were obtained. As a result, I {420} / I 0 {420} and I {220} / I 0 {220} are 1.4 and 2.5 (Example 1), 1.6 and 2.2 (Example), respectively. 2) 1.7 and 2.0 (Example 3), 1.4 and 2.3 (Example 4), 1.3 and 1.9 (Example 5), 1.1 and 2.7 ( Example 6), 1.5 and 2.1 (Example 7), 1.8 and 1.8 (Example 8), 1.9 and 2.1 (Example 9), 1.4 and 2. 2 (Example 10), 1.3 and 1.8 (Example 11).

銅合金板材の導電率は、JIS
H0505の導電率測定方法に従って測定した。その結果、導電率は、それぞれ36.6%IACS(実施例1)、31.7%IACS(実施例2)、30.1%IACS(実施例3)、27.7%IACS(実施例4)、26.6%IACS(実施例5)、25.6%IACS(実施例6)、28.3%IACS(実施例7)、27.7%IACS(実施例8)、23.8%IACS(実施例9)、24.6%IACS(実施例10)、24.8%IACS(実施例11)であった。
The electrical conductivity of copper alloy sheet is JIS
It was measured according to the H0505 conductivity measurement method. As a result, the electrical conductivity was 36.6% IACS (Example 1), 31.7% IACS (Example 2), 30.1% IACS (Example 3), and 27.7% IACS (Example 4), respectively. ), 26.6% IACS (Example 5), 25.6% IACS (Example 6), 28.3% IACS (Example 7), 27.7% IACS (Example 8), 23.8% IACS (Example 9), 24.6% IACS (Example 10), and 24.8% IACS (Example 11).

銅合金板材の機械的特性としての引張強さとして、銅合金板材のLD(圧延方向)およびTD(圧延方向および板厚方向に対して垂直な方向)の引張試験用の試験片(JIS
Z2201の5号試験片)をそれぞれ3個ずつ採取し、それぞれの試験片についてJIS Z2241に準拠した引張試験を行い、平均値によってLDおよびTDの引張強さを求めた。その結果、LDとTDの引張強さは、それぞれ586MPaと602MPa(実施例1)、603MPaと615MPa(実施例2)、614MPaと626MPa(実施例3)、619MPaと636MPa(実施例4)、624MPaと639MPa(実施例5)、635MPaと645MPa(実施例6)、624MPaと635MPa(実施例7)、598MPaと603MPa(実施例8)、617MPaと623MPa(実施例9)、626MPaと642MPa(実施例10)、617MPaと628MPa(実施例11)であった。
As tensile strength as a mechanical property of the copper alloy sheet material, a specimen for tensile test of LD (rolling direction) and TD (direction perpendicular to the rolling direction and sheet thickness direction) of the copper alloy sheet material (JIS).
Three Z2201 No. 5 test pieces) were sampled, and a tensile test based on JIS Z2241 was performed on each test piece, and the tensile strengths of LD and TD were determined by average values. As a result, the tensile strengths of LD and TD were 586 MPa and 602 MPa (Example 1), 603 MPa and 615 MPa (Example 2), 614 MPa and 626 MPa (Example 3), 619 MPa and 636 MPa (Example 4), and 624 MPa, respectively. And 639 MPa (Example 5), 635 MPa and 645 MPa (Example 6), 624 MPa and 635 MPa (Example 7), 598 MPa and 603 MPa (Example 8), 617 MPa and 623 MPa (Example 9), 626 MPa and 642 MPa (Example) 10), 617 MPa and 628 MPa (Example 11).

銅合金板材の応力緩和特性を評価するために、銅合金板材から長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(幅10mm)を採取し、試験片の長手方向中央部の表面応力が0.2%耐力の80%の大きさになるようにアーチ曲げした状態で固定した。なお、表面応力は、表面応力(MPa)=6Etδ/L (但し、Eは弾性係数(MPa)、tは試料の厚さ(mm)、δは試料のたわみ高さ(mm))により定められる。この状態の試験片を大気中において150℃で1000時間保持した後の曲げ癖から、応力緩和率(%)=(L−L)/(L−L)×100(但し、Lは治具の長さ、すなわち、試験中に固定されている試料端間の水平距離(mm)、Lは試験開始時の試料長さ(mm)、Lは試験後の試料端間の水平距離(mm))を用いて、応力緩和率を算出した。その結果、応力緩和率は、それぞれ33.4%(実施例1)、32.8%(実施例2)、31.4%(実施例3)、30.9%(実施例4)、33.3%(実施例5)、32.5%(実施例6)、28.7%(実施例7)、30.4%(実施例8)、31.4%(実施例9)、31.7%(実施例10)、32.6%(実施例11)であった。 In order to evaluate the stress relaxation characteristics of the copper alloy sheet, a bending test piece (width 10 mm) whose longitudinal direction is TD (direction perpendicular to the rolling direction and the plate thickness direction) is collected from the copper alloy sheet. It was fixed in an arch-bent state so that the surface stress at the center in the longitudinal direction was 80% of the 0.2% proof stress. The surface stress is determined by the surface stress (MPa) = 6 Etδ / L 0 2 (where E is the elastic modulus (MPa), t is the thickness (mm) of the sample, and δ is the deflection height (mm) of the sample). Determined. From the bending habit after holding the test piece in this state at 150 ° C. in the atmosphere for 1000 hours, the stress relaxation rate (%) = (L 1 −L 2 ) / (L 1 −L 0 ) × 100 (provided that L 0 is the length of the jig, that is, the horizontal distance (mm) between the sample ends fixed during the test, L 1 is the sample length (mm) at the start of the test, and L 2 is the distance between the sample ends after the test. The horizontal stress (mm) was used to calculate the stress relaxation rate. As a result, the stress relaxation rates were 33.4% (Example 1), 32.8% (Example 2), 31.4% (Example 3), 30.9% (Example 4), 33, respectively. 3% (Example 5), 32.5% (Example 6), 28.7% (Example 7), 30.4% (Example 8), 31.4% (Example 9), 31 It was 0.7% (Example 10) and 32.6% (Example 11).

銅合金板材の通常の曲げ加工性を評価するために、銅合金板材から長手方向がLD(圧延方向)の曲げ試験片と長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(いずれも幅10mm)をそれぞれ3個ずつ採取し、それぞれの試験片についてJIS
H3110に準拠した90°W曲げ試験を行った。この試験後の試験片について、曲げ加工部の表面および断面を光学顕微鏡によって100倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを銅合金板材の板厚tで除することによって、LDとTDのそれぞれのR/t値を求めた。LDおよびTDのそれぞれ3個の試験片のうち、それぞれ最も悪い結果の試験片の結果を採用してR/t値とした。その結果、LDとTDのR/tは、それぞれ0.0と0.5(実施例1、2、7〜9、11)、0.0と0.8(実施例3、4)、0.0と1.0(実施例5、6)、0.0と0.6(実施例10)であった。
In order to evaluate the normal bending workability of the copper alloy sheet, the bending test piece whose longitudinal direction is LD (rolling direction) from the copper alloy sheet and the longitudinal direction is TD (direction perpendicular to the rolling direction and the plate thickness direction). Three bend test pieces (each 10 mm wide) were collected, and JIS was used for each test piece.
A 90 ° W bending test in accordance with H3110 was performed. With respect to the test piece after this test, the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 100 times to obtain a minimum bending radius R at which no cracks occurred, and this minimum bending radius R was obtained from a copper alloy sheet. By dividing by the thickness t, each R / t value of LD and TD was determined. Among the three test pieces of LD and TD, the result of the worst test piece was adopted to obtain the R / t value. As a result, R / t of LD and TD are 0.0 and 0.5 (Examples 1, 2, 7 to 9, 11), 0.0 and 0.8 (Examples 3 and 4), 0, respectively. 0.0 and 1.0 (Examples 5 and 6) and 0.0 and 0.6 (Example 10).

銅合金板材のノッチング後の曲げ加工性を評価するために、銅合金板材から長手方向がLD(圧延方向)の短冊形試料(幅10mm)を採取し、図2および図3に示すように略台形の断面形状の凸部が上面に形成されたノッチ形成治具(凸部先端のフラット面の幅0.1mm、両側面角度45°)10を用いて、図3に示すように矢印A方向に10kNの荷重を付与することにより、試料12の全幅にわたって延びるノッチを形成した。なお、ノッチの方向(すなわち溝に対して平行な方向)は、試料の長手方向(矢印B方向)に対して垂直な方向であった。このようにして用意した3個のノッチ付き曲げ試験片12’のそれぞれのノッチ12’aの深さを実測したところ、図4に模式的に示すノッチ12’aの深さδは、板厚tの1/4〜1/6程度であった。これらの3個のノッチ付き曲げ試験片12’について、それぞれJIS
H3110に準拠した90°W曲げ試験を行った。この90°W曲げ試験は、下型の中央突起部先端のRを0mmとした治具を用いて、ノッチ付き曲げ試験片12’を、ノッチ形成面が下向きになり、下型の中央突起部先端がノッチ部分に合致するようにセットして行った。この試験後の3個の試験片について、それぞれ曲げ加工部の表面および断面を光学顕微鏡によって100倍の倍率で観察して、割れの有無を判断することによって、最も悪い試験片の結果を採用して、銅合金板材のノッチング後の曲げ加工性を評価した。その結果、いずれの実施例でも、ノッチング後の曲げ加工部の表面および断面に割れが認められず、ノッチング後の曲げ加工性は良好であった。
In order to evaluate the bending workability after notching of a copper alloy sheet, a strip sample (width 10 mm) whose longitudinal direction is LD (rolling direction) is taken from the copper alloy sheet, and is approximately as shown in FIGS. As shown in FIG. 3, using a notch forming jig 10 having a trapezoidal cross-sectional convex portion formed on the upper surface (flat surface width 0.1 mm, both side angle 45 ° at the tip of the convex portion) A notch extending over the entire width of the sample 12 was formed by applying a load of 10 kN. Note that the direction of the notch (that is, the direction parallel to the groove) was a direction perpendicular to the longitudinal direction of the sample (the direction of arrow B). When the depths of the notches 12′a of the three notched bending test pieces 12 ′ prepared in this manner were measured, the depth δ of the notches 12′a schematically shown in FIG. It was about 1/4 to 1/6 of t. Each of these three notched bending specimens 12 'is JIS.
A 90 ° W bending test in accordance with H3110 was performed. In this 90 ° W bending test, a notched bending test piece 12 ′ was placed with the notch forming surface facing downward using a jig whose R at the tip of the lower mold central projection was 0 mm, and the lower middle mold projection The tip was set so as to match the notch. For the three test pieces after this test, the result of the worst test piece was adopted by observing the surface and cross section of the bent part with an optical microscope at a magnification of 100 times and judging the presence or absence of cracks. The bending workability after notching of the copper alloy sheet was evaluated. As a result, in any of the examples, no cracks were observed on the surface and cross section of the bent portion after notching, and the bendability after notching was good.

銅合金板材のコネクタ端子成形性を評価するために、銅合金板材から図5に示す形状の雌型コネクタ端子(口径0.64mm)100を連続プレスによって横連鎖方式で作製した。但し、雌型コネクタ端子100の箱曲げ部124では、曲げ加工前にノッチング(構付け)を行って図4に示すような略台形の断面形状で深さ30μmのノッチを形成した後、曲げ加工を行った。なお、図5において、参照符号110はパイロット部、120は箱部、122は圧着部、126はバネ部を示している。得られた雌型コネクタ端子100の箱曲げ部124の表面および断面を光学顕微鏡によって100倍の倍率で観察し、割れの有無を判断することによって、最も悪いコネクタ端子の結果を採用して、銅合金板材のコネクタ端子成形性を評価した。その結果、いずれの実施例でも、雌型コネクタ端子100の箱曲げ部124の表面および断面に割れが認められず、コネクタ端子成形性は良好であった。   In order to evaluate the connector terminal formability of the copper alloy sheet material, a female connector terminal (caliber 0.64 mm) 100 having a shape shown in FIG. However, the box bending portion 124 of the female connector terminal 100 is notched (assembled) before bending to form a notch having a substantially trapezoidal cross section as shown in FIG. Went. In FIG. 5, reference numeral 110 denotes a pilot part, 120 denotes a box part, 122 denotes a crimping part, and 126 denotes a spring part. By observing the surface and cross section of the box bending portion 124 of the female connector terminal 100 obtained with an optical microscope at a magnification of 100 times and judging the presence or absence of cracks, the result of the worst connector terminal is adopted, and the copper The connector terminal formability of the alloy sheet was evaluated. As a result, in any of the examples, no cracks were observed on the surface and cross section of the box bending portion 124 of the female connector terminal 100, and the connector terminal moldability was good.

[比較例1〜5]
それぞれ実施例1〜5と同じ組成の銅合金を使用し、600℃未満〜300℃における熱間圧延率をそれぞれ15%(比較例1)、0%(比較例2)、0%(比較例3)、22%(比較例4)、22%(比較例5)とし、再結晶焼鈍前の冷間圧延率をいずれも90%、仕上げ冷間圧延率をそれぞれ25%(比較例1)、50%(比較例2)、15%(比較例3)、30%(比較例4)、25%(比較例5)とした以外は、実施例1〜11とほぼ同様の方法により、銅合金板材を得た。なお、これらの比較例では、通常の銅合金板材の製造方法として、熱間圧延後と再結晶焼鈍前の冷間圧延において、板厚が50%減少した時点で500℃で3時間中間焼鈍を施した。また、比較例2および3では、熱間圧延最終パス温度が600℃以上であった。
[Comparative Examples 1-5]
Copper alloys having the same composition as in Examples 1 to 5 were used, and the hot rolling ratios at temperatures below 600 ° C. to 300 ° C. were 15% (Comparative Example 1), 0% (Comparative Example 2), and 0% (Comparative Example), respectively. 3), 22% (Comparative Example 4), 22% (Comparative Example 5), the cold rolling rate before recrystallization annealing was 90%, and the final cold rolling rate was 25% (Comparative Example 1). A copper alloy was produced in the same manner as in Examples 1 to 11 except that 50% (Comparative Example 2), 15% (Comparative Example 3), 30% (Comparative Example 4), and 25% (Comparative Example 5). A board was obtained. In these comparative examples, as an ordinary method for producing a copper alloy sheet, in the cold rolling after hot rolling and before recrystallization annealing, intermediate annealing is performed at 500 ° C. for 3 hours when the sheet thickness is reduced by 50%. gave. In Comparative Examples 2 and 3, the final hot rolling pass temperature was 600 ° C. or higher.

それぞれの比較例で得られた銅合金板材から試料を採取し、結晶粒組織の平均結晶粒径、X線回折強度、導電率、引張強さ、応力緩和率、通常の曲げ加工性、ノッチング後の曲げ加工性、コネクタ端子成形性について、実施例1〜11と同様の方法により調べた。   Samples were taken from the copper alloy sheets obtained in the respective comparative examples, and the average crystal grain size, X-ray diffraction strength, conductivity, tensile strength, stress relaxation rate, normal bending workability, after notching of the grain structure The bendability and connector terminal formability were examined by the same method as in Examples 1-11.

その結果、平均結晶粒径は、それぞれ6μm(比較例1)、5μm(比較例2)、3μm(比較例3)、5μm(比較例4)、4μm(比較例5)であった。また、X線回折強度比I{420}/I{420}とI{220}/I{220}は、それぞれ0.6と3.7(比較例1)、0.4と5.1(比較例2)、0.2と3.9(比較例3)、0.5と4.2(比較例4)、0.5と3.7(比較例5)であった。また、導電率は、それぞれ37.1%IACS(比較例1)、32.2%IACS(比較例2)、30.6%IACS(比較例3)、28.1%IACS(比較例4)、26.9%IACS(比較例5)であった。また、LDとTDの引張強さは、それぞれ502MPaと533MPa(比較例1)、621MPaと654MPa(比較例2)、555MPaと596MPa(比較例3)、556MPaと586MPa(比較例4)、562MPaと591MPa(比較例5)であった。さらに、応力緩和率は、それぞれ48.4%(比較例1)、57.4%(比較例2)、59.4%(比較例3)、52.9%(比較例4)、53.3%(比較例5)であった。また、通常の曲げ加工性の評価として、LDとTDのR/tは、それぞれ0.0と1.5(比較例1)、1.0と4.0(比較例2)、0.0と2.0(比較例3)、0.5と1.5(比較例4)、0.5と1.5(比較例5)であった。また、比較例1および3〜5では、ノッチング後の曲げ加工部の表面および断面に割れが認められ、比較例2では、曲げ加工部で破断した。さらに、比較例1および3〜5では、雌型コネクタ端子の箱曲げ部の表面および断面に割れが認められ、比較例2では、箱曲げ部で破断した。 As a result, the average crystal grain sizes were 6 μm (Comparative Example 1), 5 μm (Comparative Example 2), 3 μm (Comparative Example 3), 5 μm (Comparative Example 4), and 4 μm (Comparative Example 5), respectively. The X-ray diffraction intensity ratios I {420} / I 0 {420} and I {220} / I 0 {220} are 0.6 and 3.7 (Comparative Example 1), 0.4 and 5. 1 (Comparative Example 2), 0.2 and 3.9 (Comparative Example 3), 0.5 and 4.2 (Comparative Example 4), 0.5 and 3.7 (Comparative Example 5). Further, the electrical conductivity was 37.1% IACS (Comparative Example 1), 32.2% IACS (Comparative Example 2), 30.6% IACS (Comparative Example 3), and 28.1% IACS (Comparative Example 4), respectively. 26.9% IACS (Comparative Example 5). The tensile strengths of LD and TD are 502 MPa and 533 MPa (Comparative Example 1), 621 MPa and 654 MPa (Comparative Example 2), 555 MPa and 596 MPa (Comparative Example 3), 556 MPa and 586 MPa (Comparative Example 4), and 562 MPa, respectively. It was 591 MPa (Comparative Example 5). Furthermore, the stress relaxation rates were 48.4% (Comparative Example 1), 57.4% (Comparative Example 2), 59.4% (Comparative Example 3), 52.9% (Comparative Example 4), and 53. 3% (Comparative Example 5). In addition, as an evaluation of ordinary bending workability, R / t of LD and TD are 0.0 and 1.5 (Comparative Example 1), 1.0 and 4.0 (Comparative Example 2), and 0.0, respectively. And 2.0 (Comparative Example 3), 0.5 and 1.5 (Comparative Example 4), and 0.5 and 1.5 (Comparative Example 5). In Comparative Examples 1 and 3 to 5, cracks were observed on the surface and cross section of the bent portion after notching, and in Comparative Example 2, the bent portion was broken. Furthermore, in Comparative Examples 1 and 3 to 5, cracks were observed on the surface and cross section of the box bent portion of the female connector terminal, and in Comparative Example 2, the box bent portion was broken.

[比較例6]
溶製した銅合金を9.3質量%のZnを含み、残部がCuからなる銅合金とし、600℃未満〜300℃における熱間圧延率を45%、再結晶焼鈍前の冷間圧延率を85%、仕上げ冷間圧延率を80%とした以外は、実施例1〜11と同様の方法により、銅合金板材を得た。
[Comparative Example 6]
The molten copper alloy contains 9.3% by mass of Zn, and the balance is made of Cu. The hot rolling rate at less than 600 ° C. to 300 ° C. is 45%, and the cold rolling rate before recrystallization annealing is A copper alloy sheet was obtained in the same manner as in Examples 1 to 11 except that 85% and the finish cold rolling rate were 80%.

得られた銅合金板材から試料を採取し、結晶粒組織の平均結晶粒径、X線回折強度、導電率、引張強さ、応力緩和率、通常の曲げ加工性、ノッチング後の曲げ加工性、コネクタ端子成形性について、実施例1〜11と同様の方法により調べた。   A sample is taken from the obtained copper alloy sheet, and the average grain size of the grain structure, X-ray diffraction strength, conductivity, tensile strength, stress relaxation rate, normal bending workability, bending workability after notching, The connector terminal moldability was examined by the same method as in Examples 1-11.

その結果、平均結晶粒径は15μmであり、X線回折強度比I{420}/I{420}は0.5、I{220}/I{220}は3.8であった。また、導電率は41.4%IACSであり、LDおよびTDの引張強さは、それぞれ518MPaおよび566MPaであった。また、応力緩和率は39.6%であり、通常の曲げ加工性の評価として、LDのR/tは0.0、TDのR/tは2.0であった。さらに、ノッチング後の曲げ加工部の表面および断面に割れが認められ、また、雌型コネクタ端子の箱曲げ部の表面および断面に割れが認められた。 As a result, the average crystal grain size was 15 μm, the X-ray diffraction intensity ratio I {420} / I 0 {420} was 0.5, and I {220} / I 0 {220} was 3.8. The electrical conductivity was 41.4% IACS, and the tensile strengths of LD and TD were 518 MPa and 566 MPa, respectively. Moreover, the stress relaxation rate was 39.6%, and R / t of LD was 0.0 and R / t of TD was 2.0 as evaluation of normal bending workability. Furthermore, cracks were observed on the surface and cross section of the bent part after notching, and cracks were observed on the surface and cross section of the box bent part of the female connector terminal.

[比較例7]
溶製した銅合金を41.7質量%のZnと0.37質量%のCoを含み、残部がCuからなる銅合金とした以外は、実施例1〜11と同様の方法により、銅合金板材を得た。この比較例では、Zn含有量が多過ぎたので、β相の生成により、熱間圧延途中で割れが生じないものの、仕上げ圧延の後期に割れの発生が激しくて、評価できるサンプルを取ることができなかった。
[Comparative Example 7]
A copper alloy sheet was produced in the same manner as in Examples 1 to 11 except that the melted copper alloy contained 41.7% by mass of Zn and 0.37% by mass of Co, and the balance was made of Cu. Got. In this comparative example, since there was too much Zn content, cracks did not occur during hot rolling due to the formation of β phase, but it was possible to take a sample that could be evaluated because cracking was severe in the latter stage of finish rolling. could not.

[比較例8〜12]
溶製した銅合金を30.4質量%のZnを含み、残部がCuからなる銅合金とし、600℃未満〜300℃における熱間圧延率をいずれも47%とし、再結晶焼鈍前の冷間圧延率をいずれも95%、仕上げ冷間圧延率をそれぞれ50%(比較例8)、50%(比較例9)、50%(比較例10)、10%(比較例11)、85%(比較例12)とした以外は、実施例1〜11とほぼ同様の方法により、銅合金板材を得た。なお、比較例8では、再結晶焼鈍温度を700℃と実施例1〜11よりも高い温度で行い、比較例9では、再結晶焼鈍温度を300℃と実施例1〜11よりも低い温度で行い、比較例10では、平均結晶粒径が3μm程度の微細な結晶粒になるように再結晶焼鈍時の保持時間を調整した。
[Comparative Examples 8-12]
The melted copper alloy contains 30.4% by mass of Zn, and the balance is made of Cu. The hot rolling rate at less than 600 ° C. to 300 ° C. is 47%, and cold before recrystallization annealing. Each of the rolling rates was 95%, and the finish cold rolling rates were 50% (Comparative Example 8), 50% (Comparative Example 9), 50% (Comparative Example 10), 10% (Comparative Example 11), and 85% ( A copper alloy sheet was obtained in the same manner as in Examples 1 to 11 except that Comparative Example 12) was used. In Comparative Example 8, the recrystallization annealing temperature is 700 ° C., which is higher than those in Examples 1 to 11, and in Comparative Example 9, the recrystallization annealing temperature is 300 ° C., which is lower than those in Examples 1 to 11. In Comparative Example 10, the holding time during recrystallization annealing was adjusted so that the average crystal grain size became fine crystal grains of about 3 μm.

それぞれの比較例で得られた銅合金板材から試料を採取し、結晶粒組織の平均結晶粒径、X線回折強度、導電率、引張強さ、応力緩和率、通常の曲げ加工性、ノッチング後の曲げ加工性、コネクタ端子成形性について、実施例1〜11と同様の方法により調べた。   Samples were taken from the copper alloy sheets obtained in the respective comparative examples, and the average crystal grain size, X-ray diffraction strength, conductivity, tensile strength, stress relaxation rate, normal bending workability, after notching of the grain structure The bendability and connector terminal formability were examined by the same method as in Examples 1-11.

その結果、平均結晶粒径は、それぞれ90μm(比較例8)、混粒(比較例9)、3μm(比較例10)、24μm(比較例11)、24μm(比較例12)であった。また、X線回折強度比I{420}/I{420}とI{220}/I{220}は、それぞれ0.7と3.8(比較例8)、0.2と4.5(比較例9)、0.5と4.0(比較例10)、2.1と1.6(比較例11)、0.6と4.4(比較例12)であった。また、導電率は、それぞれ27.4%IACS(比較例8)、28.9%IACS(比較例9)、28.1%IACS(比較例10)、28.6%IACS(比較例11)、27.1%IACS(比較例12)であった。また、LDとTDの引張強さは、それぞれ564MPaと601MPa(比較例8)、654MPaと697MPa(比較例9)、632MPaと661MPa(比較例10)、401MPaと423MPa(比較例11)、676MPaと721MPa(比較例12)であった。さらに、応力緩和率は、それぞれ26.4%(比較例8)、67.8%(比較例9)、59.5%(比較例10)、29.1%(比較例11)、39.6%(比較例12)であった。また、通常の曲げ加工性の評価として、LDとTDのR/tは、それぞれ1.0と2.5、1.5と4.0、0.5と3.0、0.0と0.0、1.0と3.0であった。また、比較例11では、ノッチング後の曲げ加工部の表面および断面に割れが認められなかったが、比較例8および10では、ノッチング後の曲げ加工部の表面および断面に割れが認められ、比較例9および12では、曲げ加工部で破断した。さらに、比較例11では、雌型コネクタ端子の箱曲げ部の表面および断面に割れが認められなかったが、比較例8では、雌型コネクタ端子の箱曲げ部の表面および断面に割れが認められ、比較例9、10および12では、箱曲げ部で破断した。 As a result, the average crystal grain sizes were 90 μm (Comparative Example 8), mixed grains (Comparative Example 9), 3 μm (Comparative Example 10), 24 μm (Comparative Example 11), and 24 μm (Comparative Example 12), respectively. The X-ray diffraction intensity ratios I {420} / I 0 {420} and I {220} / I 0 {220} are 0.7 and 3.8 (Comparative Example 8), 0.2 and 4. 5 (Comparative Example 9), 0.5 and 4.0 (Comparative Example 10), 2.1 and 1.6 (Comparative Example 11), and 0.6 and 4.4 (Comparative Example 12). Also, the electrical conductivity was 27.4% IACS (Comparative Example 8), 28.9% IACS (Comparative Example 9), 28.1% IACS (Comparative Example 10), and 28.6% IACS (Comparative Example 11), respectively. 27.1% IACS (Comparative Example 12). The tensile strengths of LD and TD are 564 MPa and 601 MPa (Comparative Example 8), 654 MPa and 697 MPa (Comparative Example 9), 632 MPa and 661 MPa (Comparative Example 10), 401 MPa and 423 MPa (Comparative Example 11), and 676 MPa, respectively. It was 721 MPa (Comparative Example 12). Furthermore, the stress relaxation rates were 26.4% (Comparative Example 8), 67.8% (Comparative Example 9), 59.5% (Comparative Example 10), 29.1% (Comparative Example 11), and 39. 6% (Comparative Example 12). Also, as a normal evaluation of bending workability, the R / t of LD and TD are 1.0 and 2.5, 1.5 and 4.0, 0.5 and 3.0, 0.0 and 0, respectively. 0.0, 1.0 and 3.0. In Comparative Example 11, no cracks were observed on the surface and cross section of the bent part after notching, but in Comparative Examples 8 and 10, cracks were observed on the surface and cross section of the bent part after notching. In Examples 9 and 12, fracture occurred at the bent portion. Further, in Comparative Example 11, no crack was observed on the surface and cross section of the female connector terminal box bending portion, but in Comparative Example 8, cracks were observed on the surface and cross section of the female connector terminal box bending portion. In Comparative Examples 9, 10 and 12, fracture occurred at the box bend.

[比較例13、14]
比較例13として市販の代表的な黄銅一種(C2600−H06、板厚0.2mm)の板材と、比較例14としてリン青銅2種(C5191−H06、板厚0.2mm)の板材を用意し、これらの銅合金板材から試料を採取し、結晶粒組織の平均結晶粒径、X線回折強度、導電率、引張強さ、応力緩和率、通常の曲げ加工性、ノッチング後の曲げ加工性、コネクタ端子成形性について、実施例1〜11と同様の方法により調べた。
[Comparative Examples 13 and 14]
As comparative example 13, a commercially available representative brass type (C2600-H06, plate thickness 0.2 mm) plate material and as comparative example 14 two types of phosphor bronze (C5191-H06, plate thickness 0.2 mm) plate material are prepared. Samples are taken from these copper alloy sheet materials, the average grain size of the grain structure, X-ray diffraction strength, conductivity, tensile strength, stress relaxation rate, normal bending workability, bending workability after notching, The connector terminal moldability was examined by the same method as in Examples 1-11.

その結果、平均結晶粒径は、それぞれ6μm(比較例13)、4μm(比較例14)であった。また、X線回折強度比I{420}/I{420}とI{220}/I{220}は、それぞれ0.6と3.9(比較例13)、0.4と0.4(比較例14)であった。また、導電率は、それぞれ28.2%IACS(比較例13)、14.2%IACS(比較例14)であった。また、LDとTDの引張強さは、それぞれ544MPaと583MPa(比較例13)、628MPaと653MPa(比較例14)であった。さらに、応力緩和率は、それぞれ51.4%(比較例13)、37.6%(比較例14)であった。また、通常の曲げ加工性の評価として、LDとTDのR/tは、それぞれ0.5と1.2(比較例13)、0.5と1.5(比較例14)であった。さらに、ノッチング後の曲げ加工部の表面および断面に割れが認められ、また、雌型コネクタ端子の箱曲げ部の表面および断面に割れが認められた。 As a result, the average crystal grain sizes were 6 μm (Comparative Example 13) and 4 μm (Comparative Example 14), respectively. The X-ray diffraction intensity ratios I {420} / I 0 {420} and I {220} / I 0 {220} are 0.6 and 3.9 (Comparative Example 13), 0.4 and 0. 4 (Comparative Example 14). The electrical conductivities were 28.2% IACS (Comparative Example 13) and 14.2% IACS (Comparative Example 14), respectively. The tensile strengths of LD and TD were 544 MPa and 583 MPa (Comparative Example 13), 628 MPa and 653 MPa (Comparative Example 14), respectively. Furthermore, the stress relaxation rates were 51.4% (Comparative Example 13) and 37.6% (Comparative Example 14), respectively. Moreover, as evaluation of normal bending workability, R / t of LD and TD were 0.5 and 1.2 (Comparative Example 13) and 0.5 and 1.5 (Comparative Example 14), respectively. Furthermore, cracks were observed on the surface and cross section of the bent part after notching, and cracks were observed on the surface and cross section of the box bent part of the female connector terminal.

これらの実施例および比較例の組成および製造条件をそれぞれ表1および表2に示し、組織および特性についての結果をそれぞれ表3および表4に示す。   The compositions and production conditions of these examples and comparative examples are shown in Table 1 and Table 2, respectively, and the results on the structure and properties are shown in Table 3 and Table 4, respectively.

Figure 0005507635
Figure 0005507635

Figure 0005507635
Figure 0005507635

Figure 0005507635
Figure 0005507635

Figure 0005507635
Figure 0005507635

なお、表4の銅合金板材のノッチング後の曲げ加工性を評価の欄では、ノッチング後の曲げ加工部の表面および断面に割れが認められないものを「〇」、割れが認められたものを「×」、曲げ加工部で破断したものを「破」と表示し、それぞれ3個の試験片のうち、最も悪い試験片の結果を採用して、「○」、「×」、「破」の評価を行い、○評価のものを合格と判定した。また、表4の銅合金板材のコネクタ端子成形性を評価の欄では、雌型コネクタ端子の箱曲げ部の表面および断面に割れが認められないものを「〇」、割れが認められたものを「×」、箱曲げ部で破断したものを「破」と表示し、それぞれ3個のコネクタ端子のうち、最も悪いコネクタ端子の結果を採用して、「○」、「×」、「破」の評価を行い、○評価のものを合格と判定した。   In addition, in the column of evaluation of the bending workability after notching of the copper alloy sheet material in Table 4, “◯” indicates that no cracks are observed on the surface and cross section of the bent part after notching, and indicates that cracks are observed. "X", the one that breaks at the bending part is displayed as "Break", and the result of the worst test piece among the three test pieces is adopted, and "○", "X", "Break" Evaluation was made, and those with ○ evaluation were determined to be acceptable. Moreover, in the column of evaluation of connector terminal formability of the copper alloy plate material in Table 4, “◯” indicates that no crack is observed on the surface and cross section of the box-bending portion of the female connector terminal, and indicates that crack is recognized. "X", the one that breaks at the box bending part is displayed as "Break", and the result of the worst connector terminal among the three connector terminals is adopted, and "○", "X", "Break" Evaluation was made, and those with ○ evaluation were determined to be acceptable.

表3および表4からわかるように、実施例1〜11の銅合金板材ではいずれも、I{420}/I{420}>0.8を満たす結晶配向を有し、導電率が20%IACS以上であり、引張強さが580MPa以上という高強度であるとともに、LDおよびTDのR/t値がいずれも1.0以下という優れた曲げ加工性を有する。また、実用的に重要なLDのノッチング後の曲げ加工性について、90°W曲げ試験においてR/t=0で厳しい曲げを行ったにもかかわらず、割れが生じなかった。また、車載用コネクタなどの用途において重要になるTDの応力緩和率が35%以下という従来の黄銅にない優れた特性を有する。さらに、箱曲げ部を有するコネクタ端子成形性も優れている。 As can be seen from Tables 3 and 4, all of the copper alloy sheet materials of Examples 1 to 11 have a crystal orientation satisfying I {420} / I 0 {420}> 0.8, and the conductivity is 20%. It has a high bending strength of not less than IACS, a tensile strength of not less than 580 MPa, and an R / t value of LD and TD of not more than 1.0. In addition, regarding the bending workability after notching of the LD, which is practically important, no cracking occurred despite severe bending at R / t = 0 in the 90 ° W bending test. Moreover, it has the characteristic which the stress relaxation rate of TD which becomes important in uses, such as a vehicle-mounted connector, has the characteristic which is not in the conventional brass that is 35% or less. Further, the connector terminal formability having a box bending portion is also excellent.

これに対し、比較例1〜5では、実施例1〜5と同じ組成の合金について、通常の製造方法により製造(比較例2および3では、熱間圧延最終パス温度を600℃以上とし、比較例1〜5では、熱間圧延後で再結晶焼鈍前に中間焼鈍工程を入れて製造)している。これらの比較例ではいずれも、{420}結晶面のX線回折強度が弱く、強度と曲げ加工性の間や、曲げ加工性と耐応力緩和特性の間にトレードオフ関係が見られた。また、これらの比較例ではいずれも、ノッチング後の曲げ加工性が悪かった。   On the other hand, in Comparative Examples 1-5, about the alloy of the same composition as Examples 1-5, it manufactures with a normal manufacturing method (In Comparative Examples 2 and 3, a hot rolling final pass temperature shall be 600 degreeC or more, and comparison. In Examples 1 to 5, an intermediate annealing process is performed after hot rolling and before recrystallization annealing. In all of these comparative examples, the X-ray diffraction intensity of the {420} crystal plane was weak, and a trade-off relationship was observed between the strength and the bending workability, and between the bending workability and the stress relaxation resistance. In all of these comparative examples, the bending workability after notching was poor.

比較例6および7は、それぞれZn含有量が少な過ぎる例と多過ぎる例である。比較例6では、Zn含有量が少な過ぎたことにより、仕上げ冷間圧延率を80%以上に高くしても、強度レベルが低かった。また、{420}を主方位成分とする結晶配向が弱くなり、強度レベルが低かったにもかかわらず、ノッチング後の曲げ加工性を向上させることができなかった。比較例7では、Zn含有量が多過ぎたので、β相の生成により、熱間圧延途中で割れが生じないものの、仕上げ圧延の後期に割れの発生が激しくて、評価できるサンプルを取れなかった。   Comparative Examples 6 and 7 are examples in which the Zn content is too low and too high, respectively. In Comparative Example 6, since the Zn content was too small, the strength level was low even when the finish cold rolling rate was increased to 80% or more. Moreover, although the crystal orientation with {420} as the main orientation component was weak and the strength level was low, the bending workability after notching could not be improved. In Comparative Example 7, since there was too much Zn content, cracks did not occur during the hot rolling due to the formation of the β phase, but cracking was severe in the latter stage of finish rolling, and a sample that could be evaluated could not be taken. .

比較例8では、再結晶焼鈍温度が700℃と高過ぎたので、結晶粒が粗大化し、良好な曲げ加工性が得られなかった。また、{420}を主方位成分とする結晶配向が弱くなり、ノッチング後の曲げ加工性も劣っていた。比較例9では、再結晶焼鈍温度が300℃と低過ぎたので、再結晶自体が十分に進行せずに混粒組織になり、引張強さ、曲げ加工性、耐応力緩和特性の全てが悪い結果となった。比較例10では、曲げ加工性の向上を図るために再結晶焼鈍時の保持温度を調整して平均結晶粒径を3μm程度の微細にしたが、通常の曲げ加工性は悪くないものの、{420}を主方位成分とする結晶配向が弱くなり、ノッチング後の曲げ加工性が劣っていた。また、結晶粒が微細になったために、耐応力緩和特性が悪化していた。   In Comparative Example 8, since the recrystallization annealing temperature was too high at 700 ° C., the crystal grains were coarsened, and good bending workability was not obtained. Further, the crystal orientation having {420} as the main orientation component was weak, and the bending workability after notching was also inferior. In Comparative Example 9, since the recrystallization annealing temperature was too low at 300 ° C., the recrystallization itself did not proceed sufficiently to form a mixed grain structure, and all of the tensile strength, bending workability, and stress relaxation resistance were poor. As a result. In Comparative Example 10, in order to improve bending workability, the holding temperature during recrystallization annealing was adjusted to make the average crystal grain size as fine as about 3 μm, but the normal bending workability is not bad, but {420 } Has become a main orientation component, and the bending workability after notching was inferior. Further, since the crystal grains became fine, the stress relaxation resistance was deteriorated.

比較例11では、仕上げ冷間圧延率が低かったので、良好な特性が得られなかった。比較例12では、仕上げ冷間圧延率が高過ぎたので、{420}を主方位成分とする結晶配向が弱くなり、強度は高いものの、曲げ加工性が著しく悪くなった。   In Comparative Example 11, since the finish cold rolling rate was low, good characteristics could not be obtained. In Comparative Example 12, since the finish cold rolling rate was too high, the crystal orientation having {420} as the main orientation component was weakened, and the bending workability was remarkably deteriorated although the strength was high.

また、実施例4の銅合金板材は、従来の代表的なコネクタなどの電気電子用材料である黄銅(比較例13)と比べて、引張強さ、曲げ加工性、耐応力緩和特性などが向上していることがわかる。また、りん青銅(比較例14)と比べても、強度がほぼ同等であり、導電率に優れている。また、りん青銅は、高価なSnを6%も含有し、原料費が高騰し易く且つ熱間圧延することができないため、製法が限定され、製造費を含めたト−タルコスト面で劣っている。したがって、実施例4の銅合金は、従来の黄銅やりん青銅と比べて十分に優れている。   In addition, the copper alloy sheet of Example 4 has improved tensile strength, bending workability, stress relaxation resistance, and the like compared to brass (Comparative Example 13), which is a conventional electrical and electronic material such as a connector. You can see that Moreover, compared with phosphor bronze (Comparative Example 14), the strength is almost the same and the conductivity is excellent. Further, phosphor bronze contains 6% of expensive Sn, and the raw material cost is likely to increase and cannot be hot-rolled. Therefore, the manufacturing method is limited and the total cost including the manufacturing cost is inferior. . Therefore, the copper alloy of Example 4 is sufficiently superior to conventional brass and phosphor bronze.

10 ノッチ形成治具
12 試料
12’ ノッチ付き曲げ試験片
12’a ノッチ
100 コネクタ端子
110 パイロット部
120 箱部
122 圧着部
124 箱曲げ部
126 バネ部
DESCRIPTION OF SYMBOLS 10 Notch formation jig | tool 12 Sample 12 'Bending test piece with a notch 12'a Notch 100 Connector terminal 110 Pilot part 120 Box part 122 Crimp part 124 Box bending part 126 Spring part

Claims (9)

15〜37質量%のZnと、2.0質量%以下のSn、2.0質量%以下のNi、2.0質量%以下のFeおよび1.0質量%以下のSiからなる群から選ばれる1種以上の元素とを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI{420}とすると、I{420}/I{420}>0.8を満たす結晶配向を有し、引張強さが580MPa以上、導電率が20%IACS以上、応力緩和率が35%以下であることを特徴とする、銅合金板材。 Selected from the group consisting of 15 to 37 mass% Zn, 2.0 mass% or less Sn, 2.0 mass% or less Ni, 2.0 mass% or less Fe and 1.0 mass% or less Si. In a copper alloy sheet having a composition containing one or more elements and the balance being Cu and inevitable impurities, the X-ray diffraction intensity of the {420} crystal plane on the plate surface of the copper alloy sheet is I {420}, and pure copper When the X-ray diffraction intensity of the {420} crystal plane of the standard powder and I 0 {420}, have a crystal orientation satisfying I {420} / I 0 { 420}> 0.8, a tensile strength of more than 580MPa a conductivity of 20% IACS or more, the stress relaxation rate is characterized der Rukoto 35% or less, the copper alloy sheet. 前記銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI{220}とすると、1.0≦I{220}/I{220}≦3.5を満たす結晶配向を有することを特徴とする、請求項1に記載の銅合金板材。 When the X-ray diffraction intensity of the {220} crystal plane on the plate surface of the copper alloy sheet is I {220} and the X-ray diffraction intensity of the {220} crystal plane of the pure copper standard powder is I 0 {220}, 2. The copper alloy sheet according to claim 1, having a crystal orientation satisfying 0 ≦ I {220} / I 0 {220} ≦ 3.5. 前記銅合金板材の平均結晶粒径が10〜60μmであることを特徴とする、請求項1または2に記載の銅合金板材。 The copper alloy sheet according to claim 1 or 2, wherein the copper alloy sheet has an average crystal grain size of 10 to 60 µm. 前記銅合金板材が、Co、Cr、Mg、Al、B、P、Zr、Ti、MnおよびVからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲でさらに含む組成を有することを特徴とする、請求項1乃至3のいずれかに記載の銅合金板材。 The copper alloy sheet has a composition further including one or more elements selected from the group consisting of Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, and V in a total range of 3% by mass or less. The copper alloy sheet material according to any one of claims 1 to 3, wherein 15〜37質量%のZnを含み、必要に応じて2.0質量%以下のSnと2.0質量%以下のNiと2.0質量%以下のFeと1.0質量%以下のSiからなる群から選ばれる1種以上の元素を含み、さらに必要に応じてCo、Cr、Mg、Al、B、P、Zr、Ti、MnおよびVからなる群から選ばれる1種以上の元素を合計3質量%以下の範囲で含み、残部がCuおよび不可避不純物である組成を有する銅合金の原料を溶解して鋳造した後、900℃〜300℃における熱間圧延として900℃〜600℃で最初の圧延パスを行った後に600℃未満〜300℃で圧延率40%以上の圧延を行い、次いで、圧延率85%以上で冷間圧延を行い、その後、350〜650℃における再結晶焼鈍と、圧延率30〜80%の仕上げ冷間圧延を順次行うことにより、引張強さが580MPa以上、導電率が20%IACS以上、応力緩和率が35%以下の銅合金板材を製造することを特徴とする、銅合金板材の製造方法。 Containing 15 to 37% by mass of Zn, and if necessary, from 2.0% by mass or less of Sn, 2.0% by mass or less of Ni, 2.0% by mass or less of Fe and 1.0% by mass or less of Si. A total of one or more elements selected from the group consisting of Co, Cr, Mg, Al, B, P, Zr, Ti, Mn, and V, if necessary. After melting and casting the raw material of the copper alloy having a composition containing 3% by mass or less and the balance being Cu and inevitable impurities, the first hot rolling at 900 ° C. to 300 ° C. is performed at 900 ° C. to 600 ° C. After performing the rolling pass, rolling is performed at a rolling rate of 40% or more at a temperature less than 600 ° C. to 300 ° C., followed by cold rolling at a rolling rate of 85% or more, and then recrystallization annealing at 350 to 650 ° C., rolling 30% to 80% finish cold rolling A method for producing a copper alloy sheet material, comprising producing a copper alloy sheet material having a tensile strength of 580 MPa or more, an electrical conductivity of 20% IACS or more, and a stress relaxation rate of 35% or less . 前記900℃〜600℃の圧延パスで圧延率60%以上の圧延を行うことを特徴とする、請求項に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 5 , wherein rolling is performed at a rolling rate of 60% or more in the rolling pass at 900 ° C to 600 ° C. 前記再結晶焼鈍において、再結晶焼鈍後の平均結晶粒径が10〜60μmになるように、350〜650℃における保持時間および到達温度を設定して、熱処理を行うことを特徴とする、請求項またはに記載の銅合金板材の製造方法。 In the recrystallization annealing, heat treatment is performed by setting a holding time and an ultimate temperature at 350 to 650 ° C so that an average crystal grain size after recrystallization annealing is 10 to 60 µm. 5. A method for producing a copper alloy sheet according to 5 or 6 . 前記仕上げ冷間圧延後に、150〜350℃で低温焼鈍を行うことを特徴とする、請求項乃至のいずれかに記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to any one of claims 5 to 7 , wherein low-temperature annealing is performed at 150 to 350 ° C after the finish cold rolling. 請求項1乃至のいずれかに記載の銅合金板材を材料として用いたことを特徴とする、コネクタ端子。 Characterized by using the copper alloy sheet according to any one of claims 1 to 4 as a material, connector terminals.
JP2012194670A 2012-09-05 2012-09-05 Copper alloy sheet and manufacturing method thereof Active JP5507635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194670A JP5507635B2 (en) 2012-09-05 2012-09-05 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194670A JP5507635B2 (en) 2012-09-05 2012-09-05 Copper alloy sheet and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008027150A Division JP5109073B2 (en) 2008-02-07 2008-02-07 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012255219A JP2012255219A (en) 2012-12-27
JP5507635B2 true JP5507635B2 (en) 2014-05-28

Family

ID=47527026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194670A Active JP5507635B2 (en) 2012-09-05 2012-09-05 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5507635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224230A1 (en) * 2022-05-19 2023-11-23 엘에스전선 주식회사 Terminal for av device harness and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018100075U1 (en) * 2018-01-09 2019-04-10 Otto Fuchs - Kommanditgesellschaft - Copper-zinc alloy
CN108893647B (en) * 2018-07-18 2020-09-01 上海电机学院 High-strength corrosion-resistant wear-resistant copper-based composite material
CN115305423B (en) * 2022-08-16 2023-11-14 江西省科学院应用物理研究所 Preparation method of copper alloy strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224230A1 (en) * 2022-05-19 2023-11-23 엘에스전선 주식회사 Terminal for av device harness and method for manufacturing same

Also Published As

Publication number Publication date
JP2012255219A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5109073B2 (en) Copper alloy sheet and manufacturing method thereof
JP5260992B2 (en) Copper alloy sheet and manufacturing method thereof
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP4563480B2 (en) Copper alloy sheet and manufacturing method thereof
JP5156316B2 (en) Cu-Sn-P copper alloy sheet, method for producing the same, and connector
JP4189435B2 (en) Cu-Ni-Si-based copper alloy sheet and method for producing the same
JP4357548B2 (en) Cu-Ti-based copper alloy sheet and method for producing the same
JP5075438B2 (en) Cu-Ni-Sn-P copper alloy sheet and method for producing the same
KR102254086B1 (en) Copper alloy for electronic/electrical devices, copper alloy thin plate for electronic/electrical devices, component for electronic/electrical devices, terminal and bus bar
JP5156317B2 (en) Copper alloy sheet and manufacturing method thereof
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP5734156B2 (en) Copper alloy sheet and manufacturing method thereof
JP3977376B2 (en) Copper alloy
JP5243744B2 (en) Connector terminal
JP2010090408A (en) Copper-alloy sheet and method for therefor
KR102385211B1 (en) Copper alloy plate and manufacturing method thereof
JP5135496B2 (en) Cu-Be based copper alloy sheet and method for producing the same
JP5507635B2 (en) Copper alloy sheet and manufacturing method thereof
JP4876225B2 (en) High-strength copper alloy sheet with excellent bending workability and manufacturing method thereof
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP6927844B2 (en) Copper alloy plate material and its manufacturing method
JP6858532B2 (en) Copper alloy plate material and its manufacturing method
JP6713074B1 (en) Copper alloy sheet and method for producing the same
JP7092524B2 (en) Copper alloy plate material and its manufacturing method
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250