JP5226057B2 - Copper alloys, copper products, electronic components and connectors - Google Patents

Copper alloys, copper products, electronic components and connectors Download PDF

Info

Publication number
JP5226057B2
JP5226057B2 JP2010244807A JP2010244807A JP5226057B2 JP 5226057 B2 JP5226057 B2 JP 5226057B2 JP 2010244807 A JP2010244807 A JP 2010244807A JP 2010244807 A JP2010244807 A JP 2010244807A JP 5226057 B2 JP5226057 B2 JP 5226057B2
Authority
JP
Japan
Prior art keywords
copper
copper alloy
treatment
strength
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010244807A
Other languages
Japanese (ja)
Other versions
JP2012097308A (en
Inventor
尚彦 江良
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010244807A priority Critical patent/JP5226057B2/en
Priority to TW100136252A priority patent/TWI426141B/en
Priority to CN201110342312.7A priority patent/CN102465215B/en
Priority to KR1020110110859A priority patent/KR101365380B1/en
Publication of JP2012097308A publication Critical patent/JP2012097308A/en
Application granted granted Critical
Publication of JP5226057B2 publication Critical patent/JP5226057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、銅合金、伸銅品、電子部品及びコネクタに関する。   The present invention relates to a copper alloy, a rolled copper product, an electronic component, and a connector.

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する素材には、必要なバネ性を得るための高い強度と、過酷な曲げ加工に耐え得る、優れた曲げ加工性が求められる。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used for such devices tend to have a narrow pitch and a low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the material used has high strength to obtain the necessary spring properties and excellent bending workability that can withstand severe bending work. Desired.

この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、特に素材強度が要求される信号系端子用素材として、古くから使用されてきた。チタン銅は時効硬化型の銅合金である。具体的には、溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。かかる強化機構を基本としてチタン銅の更なる特性向上を目指して種々の手法が研究されている。   In this regard, a copper alloy containing titanium (hereinafter referred to as “titanium copper”) has a relatively high strength and the best stress relaxation characteristics among copper alloys. It has been used for a long time as a signal system terminal material. Titanium copper is an age-hardening type copper alloy. Specifically, when a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment, and heat treatment is performed at a low temperature for a relatively long time from that state, periodic fluctuations in Ti concentration in the parent phase due to spinodal decomposition The modulation structure is developed and the strength is improved. Based on this strengthening mechanism, various methods have been studied with the aim of further improving the properties of titanium copper.

この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。そこで、Fe、Co、Ni、Siなどの第三元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする研究開発が従来なされてきた。   At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained. Therefore, a third element such as Fe, Co, Ni, Si or the like is added (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these elements are added to the second phase particles (Cu-Ti- X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3), etc., research and development have been made in order to achieve both the strength and bending workability of titanium copper.

特許文献1では0.2%耐力が最大で888MPaのチタン銅が得られており、このときのMBR/tが0.7であったことが記載されている(実施例No.10)。特許文献2では、0.2%耐力が最大で839MPaのチタン銅が得られており、このときのMBR/tが1.7であったことが記載されている(実施例No.10)。特許文献3では、0.2%耐力が最大で888MPaのチタン銅が得られており、このときのMBR/tが0.5であったことが記載されている(実施例No.10)。   Patent Document 1 describes that titanium copper having a maximum 0.2% proof stress of 888 MPa was obtained, and MBR / t at this time was 0.7 (Example No. 10). Patent Document 2 describes that titanium copper having a maximum 0.2% proof stress of 839 MPa was obtained, and MBR / t at this time was 1.7 (Example No. 10). Patent Document 3 describes that titanium copper having a maximum 0.2% proof stress of 888 MPa was obtained, and MBR / t at this time was 0.5 (Example No. 10).

また、特許文献4では、チタン銅の場合、母相であるα相に対して整合性の悪いβ相(TiCu3)と、整合性の良いβ’相(TiCu4)が存在し、β相は曲げ加工性に悪影響を与える一方で、β’相を均一かつ微細に分散させることが強度と曲げ加工性の両立に寄与するとして、β相を抑制しつつβ’相を微細分散させたチタン銅を開示している。特許文献4では、0.2%耐力が最大で1019MPaのチタン銅が得られており、このときのMBR/tが2であったことが記載されている(実施例No.4)。 Further, in Patent Document 4, in the case of titanium copper, there exists a β phase (TiCu 3 ) having poor consistency with the α phase as a parent phase and a β ′ phase (TiCu 4 ) having good consistency, and the β phase Titanium with finely dispersed β 'phase while suppressing β phase, while having an adverse effect on bendability, and that uniform and finely dispersing β' phase contributes to both strength and bending workability Copper is disclosed. Patent Document 4 describes that titanium copper having a maximum 0.2% proof stress of 1019 MPa was obtained, and MBR / t at this time was 2 (Example No. 4).

また、これらの文献にはチタン銅を、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造することが記載されている。特に、最終溶体化処理では安定相であるTiCu3又は母相に対して非整合な第2相粒子の析出を抑制することが重要とされている。 Also, in these documents, titanium copper is manufactured in the order of melting casting of ingot → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. It is described. In particular, in the final solution treatment, it is important to suppress the precipitation of second phase particles that are inconsistent with the stable phase of TiCu 3 or the parent phase.

特開2004−231985号公報Japanese Patent Laid-Open No. 2004-231985 特開2004−176163号公報JP 2004-176163 A 特開2005−97638号公報JP-A-2005-97638 特開2006−283142号公報JP 2006-283142 A

このように、チタン銅は、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造するのが一般的であり、この工程を基本として特性の改善を図ってきたのである。しかしながら、より優れた特性をもつチタン銅を得る上では既成概念に囚われない新たな製造方法を見出すことが有用であると考える。   In this way, titanium copper is generally manufactured in the order of melt casting of ingot → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. The improvement of the characteristics has been attempted on the basis of this process. However, it is useful to find a new manufacturing method that is not bound by the existing concept in obtaining titanium copper having superior characteristics.

そこで、本発明はチタン銅の特性改善を図ることのできる新たな銅合金、伸銅品、電子部品及びコネクタを提供することを主たる課題とする。   Therefore, the main object of the present invention is to provide a new copper alloy, copper-drawn product, electronic component, and connector that can improve the characteristics of titanium copper.

従来のチタン銅の製造方法は、最終の溶体化処理によってチタンを母相に充分に固溶させた後、冷間圧延を行って強度を一定程度上昇させ、最後に時効処理でスピノーダル分解を起こして高強度チタン銅を得るというものであった。そのため、せっかく固溶したチタンの安定相が析出しかねない熱処理を冷間圧延前に実施することは考えられなかった。   In the conventional titanium copper manufacturing method, titanium is sufficiently dissolved in the matrix by the final solution treatment, then cold rolled to increase the strength to a certain extent, and finally spinodal decomposition is caused by aging treatment. High strength titanium copper was obtained. For this reason, it has not been considered to carry out a heat treatment before the cold rolling, in which a stable phase of titanium that has been dissolved in a solid solution may precipitate.

しかしながら、本発明者は鋭意研究の結果、チタンの準安定相又は安定相が生成しないか又は一部生成する程度の熱処理によって冷間圧延前に予め一定程度スピノーダル分解を起こしておくと、その後に冷間圧延及び時効処理を行って最終的に得られるチタン銅の強度が有意に向上することを見出した。すなわち、従来のチタン銅の製造方法がスピノーダル分解を起こす熱処理工程を時効処理の一段階で行っていたのに対し、本発明のチタン銅の製造方法では、最終の溶体化処理後に、従来の時効処理よりも短時間で且つ亜時効となるような条件で熱処理を行った後に、冷間圧延し、更に冷間圧延後に従来よりも軽めの時効処理を行う2段階の時効処理を行う点で、従来方法とは大きく異なる。   However, as a result of diligent research, the present inventor has caused spinodal decomposition to some extent before cold rolling by heat treatment to such an extent that the metastable phase or stable phase of titanium does not form or partially forms. It has been found that the strength of titanium copper finally obtained by performing cold rolling and aging treatment is significantly improved. That is, while the conventional titanium copper production method performs the heat treatment step causing spinodal decomposition in one stage of aging treatment, the titanium copper production method of the present invention performs the conventional aging treatment after the final solution treatment. The heat treatment is performed in a time shorter than the treatment and under the condition of sub-aging, followed by cold rolling, and further performing a two-stage aging treatment in which a lighter aging treatment is performed after the cold rolling. This is very different from the conventional method.

更に、熱処理工程を追加した上で時効処理を従来に比べて低温側で行うことで、強度及び曲げ加工性のバランスが飛躍的に向上したチタン銅が得られることも分かった。   Furthermore, it was also found that titanium copper having a significantly improved balance between strength and bending workability can be obtained by performing an aging treatment on the low temperature side as compared with the prior art after adding a heat treatment step.

上記の製造工程を採用することによりチタン銅の特性が向上した理由は十分解明されていない。理論によって本発明が限定されることを意図するものではないが、これは以下のように推測される。チタン銅では、時効処理においてチタンの変調構造が発達していくにつれ、チタンの濃度変化の振幅(濃淡)が大きくなっていくが、一定の振幅にまで達すると、ゆらぎに耐えられなくなった頂点付近のチタンがより安定なβ’相、更にはβ相へと変化する。すなわち、溶体化処理によって母相に固溶したチタンは、その後に熱処理を加えていくことで、Ti濃度の周期的変動である変調構造が徐々に発達していき、これが準安定相であるβ’相へ変化し、最終的には安定相であるβ相へと変化するのである。ところが、最終溶体化処理後、冷間圧延前に、予めスピノーダル分解を起こすことのできる所定の熱処理を施すと、時効処理時に通常ではβ’相が析出するはずの振幅に達してもβ’相が析出しにくくなり、より大きな振幅を有する変調構造にまで成長したと考えられる。そして、このようなゆらぎの大きな変調構造がチタン銅に粘りを与えたと考えられる。ただし、チタン濃度の振幅を測定するのは技術的に困難を伴い、特性向上のメカニズムの詳細は明らかになっていなかった。いずれにしても、本発明の製造方法を採用することでスピノーダル分解を一段階しか行っていなかった従来の製造方法に比べて高強度のチタン銅を得ることが可能となる。   The reason why the characteristics of titanium copper have been improved by adopting the above manufacturing process has not been sufficiently elucidated. Although not intended to limit the invention by theory, this is presumed as follows. In titanium copper, as the titanium modulation structure develops in the aging treatment, the amplitude of the titanium concentration change (light and shade) increases, but when it reaches a certain amplitude, near the peak where it can no longer withstand fluctuations The titanium changes to a more stable β ′ phase and further to a β phase. That is, titanium dissolved in the mother phase by solution treatment gradually develops a modulation structure, which is a periodic variation of Ti concentration, by applying heat treatment thereafter, and this is a metastable phase β 'Change to phase, and finally to β phase, which is a stable phase. However, after the final solution treatment and before cold rolling, if a predetermined heat treatment that can cause spinodal decomposition is performed in advance, the β ' It is considered that the crystal has grown to a modulation structure having a larger amplitude. And it is thought that such a large modulation structure of fluctuation gave the titanium copper a stickiness. However, it is technically difficult to measure the amplitude of the titanium concentration, and details of the mechanism for improving the characteristics have not been clarified. In any case, by adopting the manufacturing method of the present invention, it becomes possible to obtain titanium copper having a higher strength than the conventional manufacturing method in which spinodal decomposition is performed only in one stage.

以上を基礎として完成した本発明は一側面において、Tiを2.0〜4.0質量%含有し、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Pの中から1種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、圧延面の電解研磨後の表面の電子顕微鏡による組織観察において、粒径0.5μm以上の第二相粒子の個数密度(X)が0.04〜0.11個/μm2であり、粒径0.5μm以上の第二相粒子が粒界に沿って析出する個数割合(Y)が45〜80%であること銅合金である。 The present invention completed based on the above, in one aspect, contains 2.0 to 4.0% by mass of Ti, and Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr as the third element. , Si, B, P containing a total of 0 to 0.5% by mass of copper alloy consisting of the remaining copper and unavoidable impurities, and an electron microscope of the surface after electrolytic polishing of the rolled surface In the structure observation, the number density (X) of the second phase particles having a particle size of 0.5 μm or more is 0.04 to 0.11 particles / μm 2 and the second phase particles having a particle size of 0.5 μm or more are particles. It is a copper alloy that the number ratio (Y) deposited along the boundary is 45 to 80%.

本発明に係る銅合金は、550〜1000℃においてTiの固溶限が添加量と同じになる固溶限温度に比べて0〜20℃高い温度になるまで加熱して急冷する溶体化処理を行い、溶体化処理に続いて、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式:0.5≦C≦(−0.50 [Ti]2−0.50[Ti]+14)を満たすように、導電率を上昇させる熱処理を行い、熱処理に続いて最終冷間圧延を行い、最終冷間圧延に続いて時効処理を行うことにより製造される。 The copper alloy according to the present invention is subjected to a solution treatment that is rapidly cooled by heating until a temperature higher by 0 to 20 ° C. than a solid solubility limit temperature at which the solid solubility limit of Ti becomes the same as the addition amount at 550 to 1000 ° C. When the titanium concentration (mass%) is [Ti] following the solution treatment, the conductivity increase value C (% IACS) is expressed by the following relational expression: 0.5 ≦ C ≦ (−0. 50 [Ti] 2 −0.50 [Ti] +14), a heat treatment for increasing the electrical conductivity is performed, the final cold rolling is performed following the heat treatment, and the aging treatment is performed following the final cold rolling. It is manufactured by.

本発明は別の一側面において、上記銅合金を用いた伸銅品である。   In another aspect, the present invention is a copper drawn product using the above copper alloy.

本発明は更に別の一側面において、上記銅合金を用いて作製した電子部品である。   In still another aspect of the present invention, an electronic component manufactured using the copper alloy is provided.

本発明は更に別の一側面において、上記銅合金を用いて作製したコネクタである。   In still another aspect, the present invention provides a connector manufactured using the copper alloy.

本発明によれば、チタン銅の強度を向上させることができる。また、本発明の好ましい実施形態では、強度と曲げ加工性を高次元で達成することのできるチタン銅が得られる。   According to the present invention, the strength of titanium copper can be improved. Moreover, in preferable embodiment of this invention, the titanium copper which can achieve intensity | strength and bending workability in a high dimension is obtained.

図1(a)及び図1(b)は、本発明の実施の形態に係るチタン銅の電解研磨後の圧延面に現出する第二相粒子の測定方法を説明する概略図である。1 (a) and 1 (b) are schematic diagrams for explaining a method of measuring second phase particles appearing on a rolled surface after electrolytic polishing of titanium copper according to an embodiment of the present invention.

Ti含有量
Tiが2質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2.0〜4.0質量%であり、好ましくは2.7〜3.5質量%である。このようにTiの含有量を適正化することで、電子部品に適した強度及び曲げ加工性を共に実現することができる。
If the Ti content Ti is less than 2% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of the original modulation structure of titanium copper. On the contrary, if the Ti content exceeds 4% by mass, coarse TiCu 3 Tends to precipitate, and the strength and bending workability tend to deteriorate. Therefore, the content of Ti in the copper alloy according to the present invention is 2.0 to 4.0 mass%, preferably 2.7 to 3.5 mass%. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

第3元素
第3元素は結晶粒の微細化に寄与するため、所定の第3元素を添加することができる。具体的には、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度が向上しやすい。また、第3元素は変調構造の形成を促進する。更に、TiCu3の析出を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。
Third Element Since the third element contributes to the refinement of crystal grains, a predetermined third element can be added. Specifically, even if the solution treatment is performed at a high temperature at which Ti is sufficiently dissolved, the crystal grains are easily refined and the strength is easily improved. The third element also promotes the formation of the modulation structure. Furthermore, there is an effect of suppressing precipitation of TiCu 3 . Therefore, the original age hardening ability of titanium copper can be obtained.

チタン銅において上記効果が最も高いのがFeである。そして、Mn、Mg、Co、Ni、Si、Cr、V、Nb、Mo、Zr、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。   In titanium copper, Fe has the highest effect. And in Mn, Mg, Co, Ni, Si, Cr, V, Nb, Mo, Zr, B, and P, the effect according to Fe can be expected, and even if added alone, the effect is seen, but two or more Multiple additions may be made.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有することができ、合計で0.05〜0.5質量%含有するのが好ましい。   When these elements contain a total of 0.05% by mass or more, the effect appears. However, when the total exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability deteriorates. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Accordingly, the total of one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element group is 0 to 0 in total. It can contain 0.5 mass%, and it is preferable to contain 0.05-0.5 mass% in total.

これら第3元素のより好ましい範囲は、Feにおいて0.17〜0.23質量%であり、Co、Mg、Ni、Cr、Si、V、Nb、Mn、Moにおいて0.15〜0.25質量%、Zr、B、Pにおいて0.05〜0.1質量%である。   A more preferable range of these third elements is 0.17 to 0.23 mass% in Fe, and 0.15 to 0.25 mass in Co, Mg, Ni, Cr, Si, V, Nb, Mn, and Mo. %, Zr, B, and P are 0.05 to 0.1% by mass.

第二相粒子
本発明において「第二相粒子」とは、母相の成分組成とは異なる組成の粒子を指す。第二相粒子は、種々の熱処理中に析出して母相と境界を形成するCuとTiを主成分とした粒子であり、具体的にはTiCu3粒子又は第3元素群の構成要素X(具体的にはMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPの何れか)を含むCu−Ti−X系粒子として現れる。
Second Phase Particle In the present invention, “second phase particle” refers to a particle having a composition different from the component composition of the parent phase. The second-phase particles are particles mainly composed of Cu and Ti that precipitate during various heat treatments to form a boundary with the parent phase. Specifically, TiCu 3 particles or a constituent element X (third element group X ( Specifically, it appears as Cu—Ti—X-based particles containing Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P).

第二相粒子の析出状態を観察することにより、スピノーダル分解による材料強化の度合いを間接的に評価することができる。本実施形態では、圧延面の電解研磨後の表面の電子顕微鏡による組織観察において、粒径0.5μm以上の第二相粒子の個数密度(X)が0.04〜0.11個/μm2であるのが、スピノーダル分解による変調構造を適切に発達させて強度及び曲げ加工性の良好なバランスを得る上で適切であり、より好ましくは0.04〜0.10個/μm2、更に好ましくは、0.05〜0.09個/μm2である。個数密度(X)が0.04個/μm2よりも少ないと強度(YS)が不足する場合があり、個数密度(X)が0.11個/μm2よりも多いと曲げ加工性が悪くなる場合があるため、強度と曲げ加工性の両立が図れない場合がある。 By observing the precipitation state of the second phase particles, the degree of material strengthening by spinodal decomposition can be indirectly evaluated. In the present embodiment, the number density (X) of second phase particles having a particle size of 0.5 μm or more is 0.04 to 0.11 particles / μm 2 in the observation of the structure of the surface after electrolytic polishing of the rolled surface by an electron microscope. It is suitable for appropriately developing a modulation structure by spinodal decomposition to obtain a good balance between strength and bending workability, more preferably 0.04 to 0.10 pieces / μm 2 , and still more preferably. Is 0.05 to 0.09 / μm 2 . If the number density (X) is less than 0.04 / μm 2 , the strength (YS) may be insufficient, and if the number density (X) is more than 0.11 / μm 2 , bending workability is poor. In some cases, it is not possible to achieve both strength and bending workability.

また、本実施形態に係るチタン銅では、粒径0.5μm以上の第二相粒子の粒界析出の個数割合(Y)が45〜80%であるのが適切であり、より好ましくは50〜78%、更に好ましくは、59〜71%である。個数割合(Y)が45%よりも低いと強度(YS)が不足する場合があり、個数割合(Y)が80%より高いと曲げ加工性(MBR/t)が悪くなる場合があるため、強度と曲げ加工性の両立が図れない場合がある。   Moreover, in the titanium copper according to the present embodiment, it is appropriate that the number ratio (Y) of grain boundary precipitation of the second phase particles having a particle size of 0.5 μm or more is 45 to 80%, more preferably 50 to 50%. 78%, more preferably 59 to 71%. If the number ratio (Y) is lower than 45%, the strength (YS) may be insufficient, and if the number ratio (Y) is higher than 80%, the bending workability (MBR / t) may deteriorate. In some cases, it is impossible to achieve both strength and bending workability.

本実施形態では、第二相粒子の粒径を、圧延面の電解研磨後の表面を電子顕微鏡によって観察したときに、第二相粒子に内接する最大円の直径(図1(a)参照)として定義することとする。即ち「粒径0.5μm以上の第二相粒子」とは、第二相粒子に内接する最大円の直径(図1(a)参照)が0.5μm以上の粒子を指す。また、個数密度(X)を評価する際の粒子の個数の計算方法に関しては、以下の計算方法を採用する。即ち、観察視野に分散する粒径0.5μm以上の第二相粒子のうち、
(A)粒径0.5μm以上1.0μ未満の第二相粒子については
(a)第二相粒子に外接する最小円の直径(図1(a)参照)が0.5μm以上1.0μm未満の粒子:「1個」
(b)第二相粒子に外接する最小円の直径(図1(a)参照)が1.0μm以上の粒子:「2個」
として数え、
(B)粒径1.0μm以上の第二相粒子については
観察視野に0.5μm間隔のメッシュを当てた場合に、0.5μm四方に囲まれる粒子の部分を「1個」、メッシュを超えて0.5μm四方の外側にはみ出す粒子の部分を「1/2個」(図1(b)参照)として計算する。
In the present embodiment, the diameter of the second phase particles is the diameter of the largest circle inscribed in the second phase particles when the surface of the rolled surface after electropolishing is observed with an electron microscope (see FIG. 1 (a)). We will define as That is, the “second phase particle having a particle size of 0.5 μm or more” refers to a particle having a maximum circle diameter (see FIG. 1A) inscribed in the second phase particle of 0.5 μm or more. Moreover, the following calculation method is employ | adopted regarding the calculation method of the number of the particles at the time of evaluating number density (X). That is, among the second phase particles having a particle size of 0.5 μm or more dispersed in the observation field,
(A) For second phase particles having a particle size of 0.5 μm or more and less than 1.0 μm (a) The diameter of the smallest circle circumscribing the second phase particles (see FIG. 1A) is 0.5 μm or more and 1.0 μm. Particles less than “1”
(B) Particles having a diameter of the smallest circle circumscribing the second phase particles (see FIG. 1A) of 1.0 μm or more: “two”
Count as
(B) For second-phase particles with a particle size of 1.0 μm or more, when a mesh with an interval of 0.5 μm is applied to the observation field, the particle part surrounded by 0.5 μm square is “one”, exceeding the mesh The portion of the particles protruding outside 0.5 μm square is calculated as “1/2” (see FIG. 1B).

「粒径0.5μm以上の第二相粒子の粒界析出の個数割合(Y)」に関しては、上述の手順で計数した観察視野に分散する粒径0.5μm以上の第二相粒子のうち、結晶粒界に沿って存在する粒子の個数を計算した。結晶粒界は、SEM観察で得られる反射電子像を利用して、コントラストの異なる界面と定義し、粒子の個数の計算方法は、個数密度(X)の計算方法と同様である。 Regarding the “number ratio (Y) of grain boundary precipitation of second phase particles having a particle size of 0.5 μm or more”, among the second phase particles having a particle size of 0.5 μm or more dispersed in the observation field counted in the above procedure The number of particles existing along the grain boundary was calculated. A crystal grain boundary is defined as an interface having a different contrast by using a reflected electron image obtained by SEM observation, and the method for calculating the number of particles is the same as the method for calculating the number density (X).

本発明に係る銅合金の製造方法
本発明に係る銅合金は、先述した特許文献1〜4に記載されているような公知のチタン銅の製造方法に所定の改変を加えることで製造可能である。すなわち、最終溶体化処理の後、冷間圧延前に予めスピノーダル分解を起こすことのできる熱処理を行うことである。
Manufacturing method of copper alloy according to the present invention The copper alloy according to the present invention can be manufactured by making a predetermined modification to a known manufacturing method of titanium copper as described in Patent Documents 1 to 4 described above. . That is, after the final solution treatment, heat treatment capable of causing spinodal decomposition is performed in advance before cold rolling.

従来のチタン銅の製造方法は、最終の溶体化処理によってチタンを母相に充分に固溶させた後、冷間圧延を行って強度を一定程度上昇させ、最後に時効処理でスピノーダル分解を起こして高強度チタン銅を得るものである。そこでは、最後の時効処理が重要で、最終の溶体化処理によってチタンを母相に充分に固溶させ、時効処理において適正な温度と時間で最大限のスピノーダル分解を起こさせることがポイントとなっていた。温度が低く時間が短くなり過ぎると時効処理においてスピノーダル分解によって生じる変調構造の発達が不十分となりやすく、温度を高く、時間を長くすることでスピノーダル分解によって生じる変調構造の成長することで適度な曲げ加工性を維持しつつ、強度が上昇していく。しかしながら、材料の温度が高く長くなり過ぎると、強度にそれほど寄与しないβ’相や曲げ加工性を悪化させるβ相の析出がしやすくなり、強度上昇が見られないまま、あるいは強度が減少しつつ、曲げ加工性が悪化する。   In the conventional titanium copper manufacturing method, titanium is sufficiently dissolved in the matrix by the final solution treatment, then cold rolled to increase the strength to a certain extent, and finally spinodal decomposition is caused by aging treatment. Thus, high strength titanium copper is obtained. Therefore, the final aging treatment is important, and it is important that the final solution treatment sufficiently dissolves titanium in the matrix and causes maximum spinodal decomposition at an appropriate temperature and time in the aging treatment. It was. If the temperature is too low and the time is too short, the development of the modulation structure caused by spinodal decomposition tends to be insufficient in the aging treatment, and the modulation structure generated by the spinodal decomposition grows by increasing the temperature and the time, so that an appropriate bending is achieved. Strength increases while maintaining processability. However, if the temperature of the material is too high and too long, the β ′ phase that does not contribute much to the strength and the β phase that deteriorates the bending workability tend to precipitate, and the strength is not increased or the strength is decreasing. , Bending workability deteriorates.

一方、本発明では、最終の溶体化処理後に熱処理を入れ、予めスピノーダル分解を起こし、その後に、従来レベルの冷間圧延、従来レベルの時効処理あるいはそれより低温・短時間の時効処理を行うことでチタン銅の高強度化を図る。即ち、ここではチタン銅の合金組成に応じて、その硬度がピーク付近に達する処理条件まで熱処理を行うのではなく、それよりも前段階で(亜時効となるような条件で)熱処理を終了する。溶体化処理後のチタン銅を熱処理すると、スピノーダル分解の進行に伴い導電率が上昇するので、本発明では、適切な熱処理の度合を熱処理の前後での導電率の変化を指標として規定することとした。本発明者の研究によれば、熱処理は導電率が0.5〜8%IACS上昇する条件で行うのが好ましい。なお、β’相やβ相は少量析出する程度であれば問題ないが、多量に析出すると本発明の意図する強度向上効果が得られなくなったり、強度が高くても負け加工性が顕著に悪化したりするので、より好ましくは1〜4%IACS上昇させるような条件で行うのが望ましい。このような導電率の上昇に対応する具体的加熱条件は、材料温度300〜700℃として0.001〜12時間加熱する条件である。   On the other hand, in the present invention, after the final solution treatment, heat treatment is performed and spinodal decomposition is caused in advance, and thereafter, conventional cold rolling, conventional level aging treatment or aging treatment at a lower temperature and shorter time is performed. To increase the strength of titanium copper. That is, according to the alloy composition of titanium copper, the heat treatment is not performed up to the treatment condition in which the hardness reaches the peak, but the heat treatment is terminated at a previous stage (under the condition of subaging). . When the titanium copper after solution treatment is heat-treated, the conductivity increases with the progress of spinodal decomposition, so in the present invention, an appropriate degree of heat treatment is defined by using the change in conductivity before and after the heat treatment as an index. did. According to the inventor's research, the heat treatment is preferably performed under the condition that the conductivity is increased by 0.5 to 8% IACS. Note that there is no problem as long as a small amount of β ′ phase or β phase is precipitated, but if it is precipitated in a large amount, the effect of improving the strength intended by the present invention cannot be obtained, or even if the strength is high, the loss workability is remarkably deteriorated. More preferably, it is desirable to carry out under conditions that raise IACS by 1 to 4%. Specific heating conditions corresponding to such an increase in electrical conductivity are conditions of heating for 0.001 to 12 hours at a material temperature of 300 to 700 ° C.

亜時効による適切な導電率の上昇の程度は、以下のように規定する。即ち、本実施形態に係る熱処理は、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(1)を満たすことができる。
0.5≦C≦(−0.50 [Ti]2−0.50[Ti]+14)・・・(1)
上記(1)式に従えば、例えば、Ti濃度2.0質量%の場合は、導電率を0.5〜11%IACS上昇させるような条件で行うのが望ましく、Ti濃度3.0質量%の場合は、導電率を0.5〜8%IACS上昇させるような条件で行うのが望ましく、Ti濃度4.0質量%の場合は、導電率を0.5〜4%IACS上昇させるような条件で行うのが望ましい。
The appropriate degree of increase in electrical conductivity due to sub-aging is specified as follows. That is, in the heat treatment according to the present embodiment, when the titanium concentration (% by mass) is [Ti], the increase value C (% IACS) of the conductivity can satisfy the following relational expression (1).
0.5 ≦ C ≦ (−0.50 [Ti] 2 −0.50 [Ti] +14) (1)
According to the above formula (1), for example, when the Ti concentration is 2.0% by mass, it is desirable that the conductivity be increased by 0.5 to 11% IACS, and the Ti concentration is 3.0% by mass. In this case, it is desirable that the conductivity be increased by 0.5 to 8% IACS. When the Ti concentration is 4.0% by mass, the conductivity is increased by 0.5 to 4% IACS. It is desirable to carry out under conditions.

より好ましくは、本実施形態に係る熱処理は、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式(2)を満たすことである。
1.0≦C≦(0.25[Ti]2−3.75[Ti]+13)・・・(2)
上記(2)式に従えば、例えば、Ti濃度2.0質量%の場合は、導電率を1.0〜6.5%IACS上昇させるような条件で行うのが望ましく、Ti濃度3.0質量%の場合は、導電率を1.0〜4%IACS上昇させるような条件で行うのが望ましく、Ti濃度4.0質量%の場合は、導電率を1.0〜2%IACS上昇させるような条件で行うのが望ましい。
More preferably, in the heat treatment according to the present embodiment, when the titanium concentration (% by mass) is [Ti], the increase C in conductivity (% IACS) satisfies the following relational expression (2). .
1.0 ≦ C ≦ (0.25 [Ti] 2 −3.75 [Ti] +13) (2)
According to the above formula (2), for example, when the Ti concentration is 2.0% by mass, it is desirable that the conductivity be increased by 1.0 to 6.5% IACS, and the Ti concentration is 3.0%. In the case of mass%, it is desirable to carry out under conditions that increase the conductivity by 1.0 to 4% IACS, and in the case of Ti concentration of 4.0 mass%, the conductivity is increased by 1.0 to 2% IACS. It is desirable to carry out under such conditions.

なお、最終の溶体化処理後の熱処理に銅合金の硬度がピークとなる時効を行った場合、導電率の差は、例えばTi濃度2.0質量%で13%IACS、Ti濃度3.0%で10%IACS、Ti濃度4.0%で5%IACS程度上昇することになる。即ち、本実施形態に係る最終溶体化処理後の熱処理は、硬度がピークとなる時効よりも、銅合金に与える熱量が非常に小さい。本実施形態に係る熱処理では、高温(例えば400℃以上)短時間(0.5時間以下)で熱処理を行うことにより、高強度のチタン銅を製造することができる。   In addition, when the aging at which the hardness of the copper alloy reaches a peak is performed in the heat treatment after the final solution treatment, the difference in conductivity is, for example, 13% IACS and Ti concentration of 3.0% at a Ti concentration of 2.0% by mass. Thus, 10% IACS and Ti concentration of 4.0% increase by about 5% IACS. That is, in the heat treatment after the final solution treatment according to the present embodiment, the amount of heat given to the copper alloy is much smaller than the aging at which the hardness reaches a peak. In the heat treatment according to the present embodiment, high-strength titanium copper can be produced by performing the heat treatment at a high temperature (for example, 400 ° C. or more) for a short time (0.5 hours or less).

よって、熱処理は以下の何れかの条件で行うのが好ましい。
・材料温度300℃以上400℃未満として0.5〜12時間加熱
・材料温度400℃以上500℃未満として0.01〜0.5時間加熱
・材料温度500℃以上600℃未満として0.005〜0.01時間加熱
・材料温度600℃以上700℃未満として0.001〜0.005時間加熱
Therefore, the heat treatment is preferably performed under any of the following conditions.
-Heating at a material temperature of 300 ° C or more and less than 400 ° C for 0.5 to 12 hours · Heating at a material temperature of 400 ° C or more and less than 500 ° C for 0.01 to 0.5 hours Heating for 0.01 hours-Heating for 0.001 to 0.005 hours at a material temperature of 600 ° C or higher and lower than 700 ° C

熱処理は以下の何れかの条件で行うのがより好ましい。
・材料温度400℃以上450℃未満として0.25〜0.5時間加熱
・材料温度450℃以上500℃未満として0.01〜0.25時間加熱
・材料温度500℃以上550℃未満として0.0075〜0.01時間加熱
・材料温度550℃以上600℃未満として0.005〜0.0075時間加熱
・材料温度600℃以上650℃未満として0.0025〜0.005時間加熱
The heat treatment is more preferably performed under any of the following conditions.
-Heating at a material temperature of 400 ° C to less than 450 ° C for 0.25 to 0.5 hours · Heating at a material temperature of 450 ° C to less than 500 ° C for 0.01 to 0.25 hours Heating from 0.00 to 0.0075 hours at a material temperature of 550 ° C. or more and less than 600 ° C. Heating at a material temperature of from 600 ° C. to less than 650 ° C. for 0.0025 to 0.005 hours

以下、工程毎に好ましい実施形態を説明する。
1)インゴット製造工程
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の添加元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素群の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.50質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造する。
Hereinafter, a preferred embodiment will be described for each process.
1) Ingot manufacturing process Manufacturing of an ingot by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high-melting-point additive element such as Fe or Cr, and after stirring sufficiently, hold it for a certain period of time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element group is dissolved. Therefore, Cu includes one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P in total from 0 to 0.0. It adds so that it may contain 50 mass%, and then adds Ti so that it may contain 2.0-4.0 mass%, and manufactures an ingot.

2)均質化焼鈍及び熱間圧延
ここでは凝固偏析や鋳造中に発生した晶出物をできるだけ無くすことが望ましい。後の溶体化処理において、第二相粒子の析出を微細かつ均一に分散させる為であり、混粒の防止にも効果があるからである。
インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の加工度が90%までのパスは900℃以上とするのが好ましい。そして、パス毎に適度な再結晶を起こしてTiの偏析を効果的に低減するために、パスごとの圧下量を10〜20mmで実施するとよい。
2) Homogenization annealing and hot rolling Here, it is desirable to eliminate solidified segregation and crystallized substances generated during casting as much as possible. This is because, in the subsequent solution treatment, the precipitation of the second phase particles is finely and uniformly dispersed, which is effective in preventing mixed grains.
After the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal brittleness, it is preferable that the temperature is 960 ° C. or less before and during hot rolling, and that the pass from the original thickness to 90% of the overall workability is 900 ° C. or more. And in order to raise | generate moderate recrystallization for every pass and to reduce the segregation of Ti effectively, it is good to implement the amount of rolling reduction for every pass at 10-20 mm.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、第二相粒子が析出しないようにするのが好ましい。
3) First solution treatment It is then preferable to perform the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. It is preferable to increase the heating rate and cooling rate at that time as much as possible so that the second phase particles do not precipitate.

4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における第二相粒子が均一かつ微細に析出する。但し、加工度をあまり高くして最終の溶体化処理を行うと、再結晶集合組織が発達して、塑性異方性が生じ、プレス整形性を害することがある。従って、中間圧延の加工度は好ましくは70〜99%ある。加工度は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the degree of processing in the intermediate rolling before the final solution treatment is increased, the second phase particles in the final solution treatment are precipitated more uniformly and finely. However, if the final solution treatment is performed with a too high degree of processing, a recrystallized texture develops and plastic anisotropy occurs, which may impair the press formability. Therefore, the processing degree of intermediate rolling is preferably 70 to 99%. The degree of work is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化するので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度(固溶限温度)は730〜840℃程度であり、例えばTiの添加量が3.0質量%では800℃程度)。そしてこの温度まで急速に加熱し、冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。以下の条件に制限されるものではないが、典型的には、溶体化前の銅合金素材が、550〜1000℃のTiの固溶限温度に比べて0〜20℃高い温度、好ましくは0〜10℃高い温度になるまで加熱することができる。また、固溶温度での加熱時間は短い程、結晶粒が微細化する。従って、材料を550〜1000℃のTiの固溶限が添加量よりも大きくなる温度で0.5〜3分加熱した後に水冷するのが好ましい。
5) Final solution treatment In the final solution treatment, it is desirable to completely dissolve the precipitate. However, when heated to a high temperature until it completely disappears, the crystal grains become coarse, so the heating temperature is the second phase. The temperature is around the solid solubility limit of the particle composition (the temperature at which the solid solubility limit of Ti becomes equal to the addition amount in the range of 2.0 to 4.0% by mass of Ti (solid solubility limit temperature) is 730 to For example, it is about 800 ° C. when the amount of Ti added is 3.0% by mass). And if it heats rapidly to this temperature and a cooling rate is also made fast, generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Although not limited to the following conditions, typically, the copper alloy material before solution treatment is 0 to 20 ° C higher than the solid solution limit temperature of Ti at 550 to 1000 ° C, preferably 0. It can heat up to a temperature higher by 10 ° C. Further, the shorter the heating time at the solid solution temperature, the finer the crystal grains. Therefore, it is preferable to heat the material at a temperature at which the solid solubility limit of Ti at 550 to 1000 ° C. is larger than the addition amount for 0.5 to 3 minutes and then water-cool.

6)熱処理
最終の溶体化処理の後、熱処理を行う。熱処理の条件は先述した通りである。
6) Heat treatment Heat treatment is performed after the final solution treatment. The conditions for the heat treatment are as described above.

7)最終の冷間圧延
上記熱処理後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができる。この際、加工度が10%未満では充分な効果が得られないので加工度を10%以上とするのが好ましい。但し、加工度が高いほど次の時効処理で粒界析出が起こり易いので、加工度を50%以下、より好ましくは25%以下とする。
7) Final cold rolling After the heat treatment, final cold rolling is performed. The strength of titanium copper can be increased by the final cold working. At this time, if the degree of work is less than 10%, a sufficient effect cannot be obtained. However, the higher the degree of work, the more likely grain boundary precipitation occurs in the next aging treatment, so the degree of work is 50% or less, more preferably 25% or less.

8)時効処理
最終の冷間圧延の後、時効処理を行う。時効処理の条件は慣用の条件でよいが、時効処理を従来に比べて軽めに行うと、強度と曲げ加工性のバランスが更に向上する。具体的には、時効処理は材料温度290〜400℃で3〜12時間加熱の条件で行うのが好ましい。時効を行わない場合、時効処理時間が短い(2時間未満)場合、又は時効処理温度が低い(290℃未満)場合には、強度および導電率が低下する場合がある。また、時効時間が長い場合(13時間以上)又は時効温度が高い場合(450℃以上)は、導電率は高くなるが、強度が低下する場合がある。
8) Aging treatment An aging treatment is performed after the final cold rolling. The conditions for the aging treatment may be conventional conditions, but if the aging treatment is performed lighter than the conventional one, the balance between strength and bending workability is further improved. Specifically, the aging treatment is preferably performed under the condition of heating at a material temperature of 290 to 400 ° C. for 3 to 12 hours. When aging is not performed, when the aging treatment time is short (less than 2 hours), or when the aging treatment temperature is low (less than 290 ° C.), strength and conductivity may be reduced. Further, when the aging time is long (13 hours or longer) or when the aging temperature is high (450 ° C. or higher), the electrical conductivity increases, but the strength may decrease.

時効処理は以下の何れかの条件で行うのがより好ましい。
・材料温度290℃以上320℃未満として7〜12時間加熱
・材料温度320℃以上340℃未満として6〜11時間加熱
・材料温度340℃以上360℃未満として5〜8時間加熱
・材料温度360℃以上400℃未満として2〜7時間加熱
The aging treatment is more preferably performed under any of the following conditions.
-Heat for 7 to 12 hours at a material temperature of 290 ° C to less than 320 ° C · Heat for 6 to 11 hours at a material temperature of 320 ° C to less than 340 ° C · Heat for 5 to 8 hours at a material temperature of 340 ° C to less than 360 ° C · Material temperature of 360 ° C Heat for less than 400 ° C for 2-7 hours

時効処理は以下の何れかの条件で行うのが更により好ましい。
・材料温度290℃以上320℃未満として8〜11時間加熱
・材料温度320℃以上340℃未満として7〜10時間加熱
・材料温度340℃以上360℃未満として6〜7時間加熱
・材料温度360℃以上400℃未満として3〜7時間加熱
It is even more preferable that the aging treatment is performed under any of the following conditions.
-Material temperature 290 ° C or higher and lower than 320 ° C for 8 to 11 hours · Material temperature 320 ° C or higher and lower than 340 ° C for 7 to 10 hours · Material temperature 340 ° C or higher and lower than 360 ° C for 6 to 7 hours · Material temperature 360 ° C Heat for less than 400 ° C for 3-7 hours

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

本発明に係る銅合金の特性
本発明に係る製造方法によって得られる銅合金は一実施形態において、以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が900〜1250MPa
(B)BadwayのW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値が0.5〜2.5
Characteristics of Copper Alloy According to the Present Invention In one embodiment, the copper alloy obtained by the production method according to the present invention can have the following characteristics.
(A) 0.2% proof stress in the rolling parallel direction is 900 to 1250 MPa
(B) The MBR / t value, which is the ratio of the minimum radius (MBR) at which cracks do not occur to the plate thickness (t) by performing a Badway W bending test, is 0.5 to 2.5.

本発明に係る製造方法によって得られる銅合金は好ましい一実施形態において、以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が900〜1050MPa
(B)BadwayのW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値が0.5〜2.0
In a preferred embodiment, the copper alloy obtained by the production method according to the present invention can have the following characteristics.
(A) 0.2% proof stress in the rolling parallel direction is 900 to 1050 MPa
(B) The MBR / t value, which is the ratio of the minimum radius (MBR) at which cracks do not occur to the plate thickness (t) after performing a Badway W bending test, is 0.5 to 2.0.

本発明に係る製造方法によって得られる銅合金は更に別の好ましい一実施形態において、以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が1050〜1250MPa
(B)BadwayのW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値が1.5〜2.5
In yet another preferred embodiment, the copper alloy obtained by the production method according to the present invention can have the following characteristics.
(A) 0.2% yield strength in the rolling parallel direction is 1050 to 1250 MPa
(B) The MBR / t value, which is the ratio of the minimum radius (MBR) at which cracks do not occur to the plate thickness (t) by performing a Badway W bending test, is 1.5 to 2.5.

本発明に係る製造方法によって得られる銅合金は一般に、導電率が9〜18%IACSであり、典型的には10〜15%IACSである。   The copper alloy obtained by the production method according to the present invention generally has a conductivity of 9-18% IACS, typically 10-15% IACS.

本発明に係る銅合金の用途
本発明に係る銅合金は種々の板厚の伸銅品に加工することができ、各種の電子部品の材料として有用である。本発明に係る銅合金は特に高い寸法精度が要求される小型のばね材として優れており、限定的ではないが、スイッチ、コネクタ、ジャック、端子、リレー等の材料として好適に使用することができる。
Uses of the copper alloy according to the present invention The copper alloy according to the present invention can be processed into copper products having various thicknesses and is useful as a material for various electronic components. The copper alloy according to the present invention is excellent as a small spring material requiring particularly high dimensional accuracy, and can be suitably used as a material for a switch, a connector, a jack, a terminal, a relay and the like, although not limited thereto. .

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

例1(製造工程がチタン銅の特性に与える影響)
本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。
Example 1 (Effect of manufacturing process on titanium copper properties)
When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

まず、Cuに、Mn、Fe、Mg、Co、Ni、Cr、Mo、V、Nb、Zr、Si、B及びPを表1に示す組成でそれぞれ添加した後、同表に示す組成のTiをそれぞれ添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, after adding Mn, Fe, Mg, Co, Ni, Cr, Mo, V, Nb, Zr, Si, B and P to Cu in the compositions shown in Table 1, Ti having the composition shown in the same table was added. Each was added. After sufficient consideration was given to the retention time after the addition so that there was no undissolved residue of the added elements, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingots.

Figure 0005226057
Figure 0005226057

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(1.5mm)とし、素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で7.5分間加熱とした。次いで、中間の板厚(0.10mm)まで冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行った。このときの加熱条件は約820℃で1分間とした。次いで、表2に記載の条件で熱処理を行った。酸洗による脱スケール後、冷間圧延して板厚0.075mmとし、不活性ガス雰囲気中で時効して発明例及び比較例の試験片とした。熱処理及び時効処理の条件は表2に記載した。   After the homogenization annealing which heats at 950 degreeC with respect to the said ingot for 3 hours, it hot-rolled at 900-950 degreeC, and obtained the hot-rolled sheet of 10 mm in thickness. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (1.5 mm), and a primary solution treatment was performed on the strip. The conditions for the first solution treatment were heating at 850 ° C. for 7.5 minutes. Next, after cold rolling to an intermediate plate thickness (0.10 mm), it was inserted into an annealing furnace capable of rapid heating and subjected to a final solution treatment. The heating conditions at this time were about 820 ° C. for 1 minute. Next, heat treatment was performed under the conditions described in Table 2. After descaling by pickling, it was cold-rolled to a plate thickness of 0.075 mm, and aged in an inert gas atmosphere to obtain test pieces of invention examples and comparative examples. The conditions for heat treatment and aging treatment are shown in Table 2.

得られた各試験片について、以下の条件で特性評価を行った。結果を表2に示す。
<強度>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
<曲げ加工性>
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(%IACS)を測定した。
<個数密度(X)>
得られた各試験片について、以下の条件で析出物の個数密度(X)及び粒界析出の個数割合(Y)を求めた。圧延面をリン酸67%+硫酸10%+水の溶液に15V60秒の条件で電解研磨することで組織を現出させ、水洗乾燥させて観察に供した。これをFE−SEM(電解放射型走査電子顕微鏡、Philips社製、XL30SFEG)を用いて加速電圧15kV、スポット径4.0μm、WD=6.0mmで組織のBSE像を観察し、析出物(第二相粒子)の個数密度(X)をカウントした。具体的には、100μm×100μmの観察視野に存在する粒界反応型の粒子として結晶粒界に沿って析出する複雑な形状のTi−Cu系の析出物(粒界反応相)を含む第二相粒子をマークし、マークした第二相粒子に内接する最大円の直径(図1(a)参照)が0.5μm以上の粒子を1個として、個数密度を計数した。
<個数割合(Y)>
上述の手順で計数した観察視野に分散する粒径0.5μm以上の第2相粒子のうち、観察視野中の粒径0.5μm以上の第2相粒子の全個数に対する粒界に存在する粒径0.5μm以上の析出物の個数割合(Y)を測定した。結晶粒界は、SEM観察で得られる反射電子像を利用して、コントラストの異なる界面と定義した。「粒径0.5μm以上の第二相粒子の粒界析出の個数割合(Y)」に関しては、観察視野に分散する粒径0.5μm以上の第二相粒子のうち、(A)粒径0.5μm以上1.0μ未満の第二相粒子については、(a)第二相粒子に外接する最小円の直径(図1(a)参照)が0.5μm以上1.0μm未満の粒子:「1個」、(b)第二相粒子に外接する最小円の直径(図1(a)参照)が1.0μm以上の粒子:「2個」として数え、(B)粒径1.0μm以上の第二相粒子については、 観察視野に0.5μm間隔のメッシュを当てた場合に、0.5μm四方に囲まれる部分を「1個」、メッシュを超えて0.5μm四方の外側にはみ出す部分を「1/2個」(図1(b)参照)として数えた。
About each obtained test piece, characteristic evaluation was performed on the following conditions. The results are shown in Table 2.
<Strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.
<Bending workability>
In accordance with JIS H 3130, a W-bending test of Badway (the bending axis is the same direction as the rolling direction) was performed to measure the MBR / t value, which is the ratio of the minimum radius (MBR) to the thickness (t) at which no cracks occur.
<Conductivity>
In accordance with JIS H 0505, the conductivity (% IACS) was measured by the 4-terminal method.
<Number density (X)>
About each obtained test piece, the number density (X) of the precipitate and the number ratio (Y) of grain boundary precipitation were calculated | required on condition of the following. The rolled surface was electropolished in a solution of 67% phosphoric acid + 10% sulfuric acid + water under conditions of 15 V 60 seconds to reveal the structure, washed with water and dried for observation. This was observed using a FE-SEM (electrolytic emission scanning electron microscope, Philips, XL30SFEG) at an acceleration voltage of 15 kV, a spot diameter of 4.0 μm, and a WD = 6.0 mm. The number density (X) of the two-phase particles) was counted. Specifically, a second containing a Ti-Cu-based precipitate (grain boundary reaction phase) having a complicated shape that precipitates along the crystal grain boundary as a grain boundary reaction type particle present in the observation field of 100 μm × 100 μm. The phase density was marked, and the number density was counted with one particle having a diameter of a maximum circle (see FIG. 1A) inscribed in the marked second phase particle of 0.5 μm or more as one particle.
<Number ratio (Y)>
Of the second phase particles having a particle size of 0.5 μm or more dispersed in the observation field counted in the above-described procedure, the particles existing at the grain boundaries with respect to the total number of second phase particles having a particle size of 0.5 μm or more in the observation field. The number ratio (Y) of precipitates having a diameter of 0.5 μm or more was measured. The crystal grain boundary was defined as an interface having a different contrast using a reflected electron image obtained by SEM observation. Regarding “number ratio of grain boundary precipitation of second phase particles having a particle size of 0.5 μm or more (Y)”, among the second phase particles having a particle size of 0.5 μm or more dispersed in the observation field, (A) the particle size For the second phase particles of 0.5 μm or more and less than 1.0 μm, (a) particles having a diameter of the smallest circle circumscribing the second phase particles (see FIG. 1A) of 0.5 μm or more and less than 1.0 μm: "1", (b) Particles having a diameter of the smallest circle circumscribing the second phase particles (see Fig. 1 (a)) of 1.0 µm or more: counted as "2", and (B) particle size of 1.0 µm For the second phase particles described above, when a mesh with an interval of 0.5 μm is applied to the observation field, “1 piece” is surrounded by 0.5 μm square, and protrudes outside the 0.5 μm square beyond the mesh. The part was counted as “1/2” (see FIG. 1B).

Figure 0005226057
Figure 0005226057

No.1は従来例である。No.1では溶体化後の熱処理(焼鈍)を行わず、更に最終時効温度が低いので、個数密度が少なく、粒界析出の個数割合も小さいので、強度が不足した。これに対して、熱処理を加えたNo.2の場合、強度が向上することが分かる。
No.3は熱処理を行わずに時効処理を低温で行った比較例である。No.3では溶体化後の焼鈍を行わず、更に最終時効温度が低いので、個数密度が少なく、粒界析出の個数割合も小さいので、強度が不足した。これに対して、熱処理を加えたNo.4の場合、強度が向上することが分かり、しかも、No.4は時効処理を低温で行ったため、強度と曲げ加工性が高い次元で両立できている
No.5は、発明例ではあるが、時効処理の温度を低くした例である。No.6は熱処理時の加熱温度をできるだけ高くした発明例である。No.7は熱処理時の加熱温度をできるだけ低くした発明例である。
No.8は熱処理の加熱温度が高すぎた比較例であり、No.9は熱処理の加熱温度が低すぎた比較例である。No.8は過焼鈍であるため個数密度が高くなり、強度が不足した。No.9は焼鈍不足のため、個数密度と粒界に析出する割合が少なくなった。また、総じて析出量が少ないので、強度が不足した。
No.10は熱処理による導電率の上昇度合いを大きくした発明例である。No.11及びNo.12は熱処理による導電率の上昇度合いが大きすぎた比較例である。No.11は、溶体化後の焼鈍で導電率が上昇しすぎたので、第二相粒子が増大し、その後に続く、圧延及び時効工程後に第二相粒子が更に増大したので、個数密度が高くなった。No.11では強度は上昇するが、曲げ加工性が劣化した。No.12は、No.11よりもさらに個数密度が増大したので、粒界析出の割合も高くなり、No.11より強度が低下し、曲げ加工性は更に劣化した。
No.13は従来例である。溶体化後の焼鈍を行わず、更に最終時効温度が低いので、個数密度が少なく、粒界析出の個数割合も小さいので、強度が不足した。
No.14、16は第三元素を添加した場合の本発明の効果を示したものである。
No.15、17は、従来例である。No,15では溶体化後の焼鈍を行わず、更に最終時効温度が低いので、個数密度が少なく、粒界析出の個数割合も小さいので、強度が不足した。No.17では溶体化後の焼鈍を行わなかったため個数密度が少なく、粒界析出の割合も小さいため、強度が不足した。
No.18〜20は、溶体化後の焼鈍を長時間行った例を示す。比較例18〜20では、溶体化後の焼鈍時間が長いため個数密度が増大して強度が低下し、曲げ加工性が劣化した。
No. Reference numeral 1 is a conventional example. No. In No. 1, heat treatment (annealing) after solution treatment was not performed, and since the final aging temperature was low, the number density was small and the number ratio of grain boundary precipitation was small, so the strength was insufficient. On the other hand, no. In the case of 2, it turns out that intensity | strength improves.
No. 3 is a comparative example in which the aging treatment was performed at a low temperature without performing the heat treatment. No. In No. 3, annealing after solution treatment was not performed, and since the final aging temperature was low, the number density was small and the number ratio of grain boundary precipitation was small, so the strength was insufficient. On the other hand, no. In the case of No. 4, it can be seen that the strength is improved. No. 4 is compatible with both high strength and bending workability because aging treatment was performed at a low temperature. Although 5 is an example of the invention, it is an example in which the temperature of the aging treatment is lowered. No. 6 is an invention example in which the heating temperature during the heat treatment is set as high as possible. No. 7 is an invention example in which the heating temperature during heat treatment is made as low as possible.
No. No. 8 is a comparative example in which the heating temperature of the heat treatment was too high. 9 is a comparative example in which the heating temperature of the heat treatment was too low. No. Since No. 8 was over-annealed, the number density was high and the strength was insufficient. No. Since No. 9 was insufficiently annealed, the number density and the rate of precipitation at the grain boundaries decreased. Moreover, since the amount of precipitation was generally small, the strength was insufficient.
No. Reference numeral 10 is an invention example in which the degree of increase in conductivity by heat treatment is increased. No. 11 and no. 12 is a comparative example in which the degree of increase in electrical conductivity due to heat treatment was too large. In No. 11, since the conductivity increased too much by annealing after solution treatment, the second phase particles increased, and the second phase particles further increased after the subsequent rolling and aging steps, so the number density was It became high. No. In 11, the strength increased but the bending workability deteriorated. No. 12 is No. Since the number density increased further than 11, the rate of grain boundary precipitation also increased, the strength decreased from No. 11, and the bending workability further deteriorated.
No. 13 is a conventional example. Since annealing after solution treatment was not performed and the final aging temperature was low, the number density was small and the number ratio of grain boundary precipitation was small, so the strength was insufficient.
No. 14 and 16 show the effects of the present invention when a third element is added.
No. 15 and 17 are conventional examples. In No. 15, annealing after solution treatment was not performed, and since the final aging temperature was low, the number density was small and the number ratio of grain boundary precipitation was small, so the strength was insufficient. No. In No. 17, since annealing after solution treatment was not performed, the number density was small and the ratio of grain boundary precipitation was small, so that the strength was insufficient.
No. 18-20 shows the example which annealed after solution treatment for a long time. In Comparative Examples 18 to 20, since the annealing time after solution treatment was long, the number density increased, the strength decreased, and the bending workability deteriorated.

例2(組成がチタン銅の特性に与える影響)
チタン銅の組成を表3のように変化させた他は、No.4の試験片と同様の製造条件で試験片を製造した。得られた各試験片の特性評価の結果を表4に示す。
Example 2 (Effect of composition on titanium copper properties)
Other than changing the composition of titanium copper as shown in Table 3, A test piece was produced under the same production conditions as the test piece 4. Table 4 shows the results of the characteristic evaluation of the obtained test pieces.

Figure 0005226057
Figure 0005226057

Figure 0005226057
Figure 0005226057

No.21はチタン濃度が低すぎた比較例であり、No.24はチタン濃度が高すぎた例である。NO.21ではチタン濃度が低いため、第二相粒子の個数が少なく、粒界に析出する個数割合も低くなり、強度が不足した。No.24はチタン濃度が高いため、優先的に粒界析出が発生し、個数割合が高くなり、曲げ加工性が劣化した。   No. No. 21 is a comparative example in which the titanium concentration was too low. 24 is an example in which the titanium concentration was too high. NO. In No. 21, since the titanium concentration was low, the number of second-phase particles was small, the number ratio precipitated at the grain boundaries was low, and the strength was insufficient. No. Since No. 24 had a high titanium concentration, grain boundary precipitation occurred preferentially, the number ratio increased, and bending workability deteriorated.

Claims (5)

Tiを2.0〜4.0質量%含有し、第3元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Pの中から1種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、
圧延面の電解研磨後の表面の電子顕微鏡による組織観察において、粒径0.5μm以上の第二相粒子の個数密度(X)が0.04〜0.11個/μm2であり、
粒径0.5μm以上の第二相粒子が粒界に沿って析出する個数割合(Y)が45〜80%であることを特徴とする銅合金。
It contains 2.0 to 4.0% by mass of Ti, and at least one of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element. A copper alloy containing 0 to 0.5% by mass in total, consisting of the remaining copper and inevitable impurities,
In the structure observation by the electron microscope of the surface after electrolytic polishing of the rolled surface, the number density (X) of the second phase particles having a particle size of 0.5 μm or more is 0.04 to 0.11 particles / μm 2 ,
A copper alloy, wherein the number ratio (Y) in which second phase particles having a particle size of 0.5 μm or more precipitate along the grain boundaries is 45 to 80%.
前記銅合金が、
550〜1000℃においてTiの固溶限が添加量と同じになる固溶限温度に比べて0〜20℃高い温度になるまで加熱して急冷する溶体化処理を行い、
溶体化処理に続いて、チタン濃度(質量%)を[Ti]とした場合に、導電率の上昇値C(%IACS)が以下の関係式:
0.5≦C≦(−0.50 [Ti]2−0.50[Ti]+14)
を満たすように、導電率を上昇させる熱処理を行い、
熱処理に続いて最終冷間圧延を行い、
最終冷間圧延に続いて時効処理を行うこと
により製造される請求項1に記載の銅合金。
The copper alloy is
At 550 to 1000 ° C., a solution treatment is performed in which the solid solubility limit of Ti is the same as the addition amount and heated to 0 to 20 ° C. higher than the solid solubility limit temperature and rapidly cooled.
Following the solution treatment, when the titanium concentration (% by mass) is [Ti], the conductivity increase value C (% IACS) is expressed by the following relational expression:
0.5 ≦ C ≦ (−0.50 [Ti] 2 −0.50 [Ti] +14)
Heat treatment to increase the conductivity so as to satisfy,
Following the heat treatment, the final cold rolling is performed,
The copper alloy according to claim 1, which is produced by performing an aging treatment subsequent to final cold rolling.
請求項1又は2に記載の銅合金を用いた伸銅品。   A copper product using the copper alloy according to claim 1. 請求項1又は2に記載の銅合金を用いて作製した電子部品。   The electronic component produced using the copper alloy of Claim 1 or 2. 請求項1又は2に記載の銅合金を用いて作製したコネクタ。   The connector produced using the copper alloy of Claim 1 or 2.
JP2010244807A 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors Active JP5226057B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010244807A JP5226057B2 (en) 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors
TW100136252A TWI426141B (en) 2010-10-29 2011-10-06 Copper alloy, copper products, electronic parts and connectors
CN201110342312.7A CN102465215B (en) 2010-10-29 2011-10-28 Copper alloy and wrought article, electric parts, and connector
KR1020110110859A KR101365380B1 (en) 2010-10-29 2011-10-28 Copper alloy and wrought article, electric parts, and connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244807A JP5226057B2 (en) 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors

Publications (2)

Publication Number Publication Date
JP2012097308A JP2012097308A (en) 2012-05-24
JP5226057B2 true JP5226057B2 (en) 2013-07-03

Family

ID=46069334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244807A Active JP5226057B2 (en) 2010-10-29 2010-10-29 Copper alloys, copper products, electronic components and connectors

Country Status (4)

Country Link
JP (1) JP5226057B2 (en)
KR (1) KR101365380B1 (en)
CN (1) CN102465215B (en)
TW (1) TWI426141B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723849B2 (en) * 2012-07-19 2015-05-27 Jx日鉱日石金属株式会社 High strength titanium copper foil and method for producing the same
JP5542898B2 (en) * 2012-10-24 2014-07-09 Jx日鉱日石金属株式会社 Camera module and titanium copper foil
JP6192916B2 (en) * 2012-10-25 2017-09-06 Jx金属株式会社 High strength titanium copper
JP6192917B2 (en) * 2012-10-25 2017-09-06 Jx金属株式会社 High strength titanium copper
JP6085146B2 (en) * 2012-11-14 2017-02-22 国立大学法人東北大学 Method for producing copper-titanium-hydrogen alloy
JP5885642B2 (en) * 2012-11-15 2016-03-15 Jx金属株式会社 Camera module and titanium copper foil
JP6263333B2 (en) 2013-03-25 2018-01-17 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP6286241B2 (en) * 2014-03-17 2018-02-28 Dowaメタルテック株式会社 Cu-Ti copper alloy sheet, method for producing the same, and energized component
JP6228941B2 (en) * 2015-01-09 2017-11-08 Jx金属株式会社 Titanium copper with plating layer
KR101875807B1 (en) 2018-03-14 2018-07-06 주식회사 풍산 Method for manufacturing a copper alloy material for automobiles and electric/electronic parts excellent in high strength and bending workability
CN113832366A (en) * 2021-09-26 2021-12-24 无锡市胜钢超硬材料有限公司 High-strength titanium copper strip and preparation method thereof
CN114836649B (en) * 2022-03-29 2023-10-13 兰州兰石集团有限公司铸锻分公司 Large titanium copper forging and manufacturing method thereof
CN116920180B (en) * 2023-09-14 2023-12-15 乐普(北京)医疗器械股份有限公司 Degradable metal material and preparation method and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020157741A1 (en) * 2001-02-20 2002-10-31 Nippon Mining & Metals Co., Ltd. High strength titanium copper alloy, manufacturing method therefor, and terminal connector using the same
JP3908987B2 (en) * 2002-06-21 2007-04-25 日鉱金属株式会社 Copper alloy excellent in bendability and manufacturing method thereof
JP3942505B2 (en) * 2002-07-16 2007-07-11 ヤマハメタニクス株式会社 Titanium copper alloy material and manufacturing method thereof
AU2003272276A1 (en) * 2002-09-13 2004-04-30 Olin Corporation Age-hardening copper-base alloy and processing
JP4193171B2 (en) * 2002-09-19 2008-12-10 三菱マテリアル株式会社 Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
JP3729454B2 (en) 2002-11-29 2005-12-21 日鉱金属加工株式会社 Copper alloy and manufacturing method thereof
JP4025632B2 (en) * 2002-11-29 2007-12-26 日鉱金属株式会社 Copper alloy
JP3748859B2 (en) 2003-01-28 2006-02-22 日鉱金属加工株式会社 High-strength copper alloy with excellent bendability
JP4191159B2 (en) * 2005-03-14 2008-12-03 日鉱金属株式会社 Titanium copper with excellent press workability
JP5170864B2 (en) * 2006-09-13 2013-03-27 古河電気工業株式会社 Copper-based precipitation type alloy sheet for contact material and method for producing the same
JP2008081767A (en) 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP4563480B2 (en) * 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP5490439B2 (en) * 2009-04-30 2014-05-14 Jx日鉱日石金属株式会社 Manufacturing method of titanium copper for electronic parts
JP4663030B1 (en) * 2010-06-25 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper

Also Published As

Publication number Publication date
TW201217551A (en) 2012-05-01
TWI426141B (en) 2014-02-11
KR20120046051A (en) 2012-05-09
CN102465215A (en) 2012-05-23
KR101365380B1 (en) 2014-02-19
CN102465215B (en) 2014-06-18
JP2012097308A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5226057B2 (en) Copper alloys, copper products, electronic components and connectors
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP4889801B2 (en) Manufacturing method of titanium copper for electronic parts
JP5319590B2 (en) Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP5368581B2 (en) Titanium copper for electronic parts
KR20160096696A (en) Copper-titanium alloy for electronic component
JP6080823B2 (en) Titanium copper for electronic parts
JP5718021B2 (en) Titanium copper for electronic parts
JP4961049B2 (en) Titanium copper for electronic parts
JP6246456B2 (en) Titanium copper
JP5628712B2 (en) Titanium copper for electronic parts
JP4663030B1 (en) Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP5378286B2 (en) Titanium copper and method for producing the same
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts
JP6629400B1 (en) Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP2016211077A (en) Titanium copper
JP6310131B1 (en) Titanium copper for electronic parts
JP2013204138A (en) Titanium copper and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5226057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250