JPWO2020004034A1 - Copper alloy plate material, method for manufacturing copper alloy plate material, and connector using copper alloy plate material - Google Patents

Copper alloy plate material, method for manufacturing copper alloy plate material, and connector using copper alloy plate material Download PDF

Info

Publication number
JPWO2020004034A1
JPWO2020004034A1 JP2019551487A JP2019551487A JPWO2020004034A1 JP WO2020004034 A1 JPWO2020004034 A1 JP WO2020004034A1 JP 2019551487 A JP2019551487 A JP 2019551487A JP 2019551487 A JP2019551487 A JP 2019551487A JP WO2020004034 A1 JPWO2020004034 A1 JP WO2020004034A1
Authority
JP
Japan
Prior art keywords
copper alloy
less
rolling
mass
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019551487A
Other languages
Japanese (ja)
Other versions
JP6684395B1 (en
Inventor
俊太 秋谷
俊太 秋谷
翔一 檀上
翔一 檀上
樋口 優
優 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Application granted granted Critical
Publication of JP6684395B1 publication Critical patent/JP6684395B1/en
Publication of JPWO2020004034A1 publication Critical patent/JPWO2020004034A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Abstract

プレス加工性に優れた銅合金板材及び銅合金板材の製造方法並びに銅合金材を用いたコネクタを提供すること。圧延平行方向と板厚方向を含む断面10において、100μmの圧延平行方向寸法と、板厚寸法とで区画される四角形の第1領域11を、圧延平行方向と板厚方向に10μm間隔でさらに分割して、10μm四方となる複数の正方形の第2領域12に細分化し、第1領域11を構成する複数の第2領域12のうち、第1領域11の4辺を形成する外側第2領域13を除いた内側第2領域14のそれぞれで、電子後方散乱回折法(EBSD)によってKAMの平均値を測定したとき、測定したKAMの平均値の最大値と最小値の差(Δθ)が25°以下である銅合金板材1。(EN) Provided are a copper alloy plate material excellent in press workability, a method for manufacturing the copper alloy plate material, and a connector using the copper alloy material. In a cross section 10 including the rolling parallel direction and the plate thickness direction, a quadrangular first region 11 partitioned by the rolling parallel direction dimension of 100 μm and the plate thickness dimension is further divided at intervals of 10 μm in the rolling parallel direction and the sheet thickness direction. Then, it is subdivided into a plurality of square second regions 12 having a size of 10 μm square, and out of the plurality of second regions 12 forming the first region 11, an outer second region 13 forming four sides of the first region 11. When the average value of KAM is measured by the electron backscattering diffraction method (EBSD) in each of the inner second regions 14 except for, the difference (Δθ) between the maximum value and the minimum value of the measured average values of KAM is 25°. The following copper alloy sheet 1.

Description

本発明は、電子機器用のコネクタや自動車車載用部品のコネクタ等に使用されるプレス加工性に優れた銅合金板材、銅合金板材の製造方法及び銅合金板材を用いて形成されたコネクタに関する。 TECHNICAL FIELD The present invention relates to a copper alloy plate material having excellent press workability, which is used for a connector for electronic devices, a connector for automobile parts, and the like, a method for manufacturing the copper alloy plate material, and a connector formed using the copper alloy plate material.

電子機器用のコネクタや自動車車載用部品のコネクタ等に使用される銅合金板材は、一般に減肉や打ち抜き等のプレス加工が施される。近年の電子機器や自動車車載用部品の小型化に伴い、プレス加工品の形状均一性がより求められるようになっている。 BACKGROUND ART Copper alloy plate materials used for connectors for electronic devices, connectors for in-vehicle components, etc. are generally subjected to press working such as thickness reduction and punching. With the recent miniaturization of electronic devices and parts mounted on automobiles, the shape uniformity of pressed products has been required more and more.

プレス加工品の形状均一性は、銅合金板材の結晶粒径や析出状態に影響されることが知られており、それらの組織制御によってプレス加工品の形状均一性の向上が試みられている。例えば、特許文献1では、プレス加工したときの寸法安定性を向上させることを目的として、Co:0.5〜3.0質量%、Si:0.1〜1.0質量%を含有し、残部がCu及び不可避不純物からなる電子材料用銅合金であって、圧延平行方向の0.2%耐力が500MPa以上、導電率が60%IACS以上、圧延平行断面における平均結晶粒径が10μm以下であり、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たす電子材料用銅合金とした技術が開示されている。しかしながら、特許文献1等、従来技術にかかる銅合金板材のプレス加工性では、市場の要求特性を十分満たしているとは言えない。 It is known that the shape uniformity of the pressed product is influenced by the crystal grain size and the precipitation state of the copper alloy sheet material, and it has been attempted to improve the shape uniformity of the pressed product by controlling their microstructure. For example, in Patent Document 1, Co: 0.5 to 3.0 mass% and Si: 0.1 to 1.0 mass% are contained for the purpose of improving dimensional stability when pressed. A copper alloy for electronic materials, the balance of which is Cu and unavoidable impurities, 0.2% proof stress in the rolling parallel direction of 500 MPa or more, conductivity of 60% IACS or more, and an average crystal grain size in the rolling parallel cross section of 10 μm or less. Yes, X-ray diffraction integrated intensity I{200} from the {200} crystal plane, X-ray diffraction integrated intensity I{220} from the {220} crystal plane, and X-ray diffraction from the {311} crystal plane on the surface A technique is disclosed in which the integrated strength I{311} and the copper alloy for electronic materials satisfy the relationship of (I{220}+I{311})/I{200}≧5.0. However, it cannot be said that the press workability of the copper alloy sheet according to the related art, such as Patent Document 1, sufficiently satisfies the required characteristics of the market.

なお、特許文献2や特許文献3には、Cu−Ni−Si系合金の結晶粒内の平均KAM値等を制御することによりエッチング後の加工面の表面平滑性を向上させる技術が開示されているが、これらの特許文献においては結晶粒内のKAMの値自体について着目しているのみであり、銅合金板材全体におけるKAM値のばらつき(すなわち歪分布)や、結晶粒内だけでなく結晶粒界等も含む銅合金板材全体については記載されておらず、プレス加工品の形状均一性は不十分であった。 Note that Patent Documents 2 and 3 disclose a technique for improving the surface smoothness of the processed surface after etching by controlling the average KAM value in the crystal grains of the Cu—Ni—Si alloy. However, in these patent documents, only the KAM value itself in the crystal grain is focused on, and the variation (that is, strain distribution) of the KAM value in the entire copper alloy sheet and the crystal grain not only in the crystal grain The entire copper alloy sheet including boundaries and the like is not described, and the shape uniformity of the pressed product was insufficient.

特許第6306632号公報Patent No. 6306632 特許第6154565号公報Japanese Patent No. 6154565 特許第6152212号公報Japanese Patent No. 6152212

本発明は、上記の状況に鑑みてなされたものであり、プレス加工性に優れた銅合金板材及び銅合金板材の製造方法並びに銅合金材を用いたコネクタを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a copper alloy sheet having excellent press workability, a method for manufacturing the copper alloy sheet, and a connector using the copper alloy.

本発明者らは、圧延平行方向と板厚方向を含む断面において、100μmの圧延平行方向寸法と、板厚寸法とで区画される四角形の第1領域を、圧延平行方向と板厚方向に10μm間隔でさらに分割して、10μm四方となる複数の正方形の第2領域に細分化し、第1領域を構成する複数の第2領域のうち、第1領域の4辺を形成する外側第2領域を除いた内側第2領域のそれぞれで、電子後方散乱回折法(EBSD)によってKAMの平均値を測定したとき、KAMの平均値の最大値と最小値の差(Δθ)が25°以下である銅合金板材とすることで、プレス打ち抜き加工を行った後に経時的に解放される歪量のばらつきが抑制され、プレス加工性に優れた銅合金板材となることを見出し、本発明を完成するに至った。なお、本明細書において、「プレス加工性に優れる」とは、所望の形状を有するプレス加工品が得られることであり、例えば、プレス加工により得られるプレス加工品の形状均一性に優れていることを言う。 In the cross section including the rolling parallel direction and the plate thickness direction, the present inventors defined a rectangular first region defined by the rolling parallel direction dimension of 100 μm and the plate thickness dimension as 10 μm in the rolling parallel direction and the plate thickness direction. It is further divided at intervals and subdivided into a plurality of square second regions of 10 μm square, and out of the plurality of second regions forming the first region, an outer second region forming four sides of the first region is divided. When the average value of KAM is measured by electron backscatter diffraction (EBSD) in each of the removed inner second regions, the difference (Δθ) between the maximum value and the minimum value of KAM is 25° or less. By using an alloy sheet material, it was found that the variation in strain amount released with time after press punching was suppressed, and a copper alloy sheet material with excellent press workability was obtained, and the present invention was completed. It was In the present specification, “excellent in press workability” means that a press work product having a desired shape can be obtained. For example, the press work product obtained by press work is excellent in shape uniformity. Say that.

すなわち、本発明の要旨構成は以下の通りである。
(1) 圧延平行方向と板厚方向を含む断面において、100μmの圧延平行方向寸法と、板厚寸法とで区画される四角形の第1領域を、圧延平行方向と板厚方向に10μm間隔でさらに分割して、10μm四方となる複数の正方形の第2領域に細分化し、前記第1領域を構成する複数の前記第2領域のうち、前記第1領域の4辺を形成する外側第2領域を除いた内側第2領域のそれぞれで、電子後方散乱回折法(EBSD)によってKAMの平均値を測定したとき、測定したKAMの平均値の最大値と最小値の差(Δθ)が25°以下である銅合金板材。
That is, the gist of the present invention is as follows.
(1) In a cross section including the rolling parallel direction and the plate thickness direction, a quadrangular first region partitioned by the rolling parallel direction dimension of 100 μm and the plate thickness dimension is further provided at intervals of 10 μm in the rolling parallel direction and the plate thickness direction. Of the plurality of second regions forming the first region, the outer second region forming four sides of the first region is divided into a plurality of square second regions of 10 μm square. When the average value of KAM is measured by electron backscatter diffraction (EBSD) in each of the removed inner second regions, the difference (Δθ) between the maximum value and the minimum value of the measured KAM average values is 25° or less. A copper alloy sheet material.

(2) 前記KAMの平均値の最大値と最小値の差Δθが、4°以上20°以下である(1)に記載の銅合金板材。 (2) The copper alloy sheet material according to (1), wherein the difference Δθ between the maximum value and the minimum value of the KAM average value is 4° or more and 20° or less.

(3) Co:0.20質量%以上2.00質量%以下、Si:0.05質量%以上0.50質量%以下、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種:合計0質量%以上1.00質量%以下を含有し、かつ、Siに対するCoの質量比(Co/Si)が2.5以上5.0以下であり、残部が銅及び不可避不純物からなる成分組成を有する(1)又は(2)に記載の銅合金板材。 (3) Co: 0.20 mass% or more and 2.00 mass% or less, Si: 0.05 mass% or more and 0.50 mass% or less, at least 1 selected from the group consisting of Sn, Zn, Mg, Mn, and Cr. Species: Total 0 mass% or more and 1.00 mass% or less, the mass ratio of Co to Si (Co/Si) is 2.5 or more and 5.0 or less, and the balance is copper and unavoidable impurities. The copper alloy sheet material according to (1) or (2), which has a component composition.

(4) Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種を合計0.01質量%以上1.00質量%以下含有する(3)に記載の銅合金材。 (4) The copper alloy material according to (3), which contains at least one selected from the group consisting of Sn, Zn, Mg, Mn, and Cr in a total amount of 0.01% by mass or more and 1.00% by mass or less.

(5) Sn、Zn、Mg、Mn、Cr及びCoからなる群から選ばれる少なくとも1種の元素と、Siとを含有するSi化合物を含み、前記圧延平行方向と板厚方向を含む断面において、直径Lが0.05μm以上5μm以下である前記Si化合物の密度Dが、10個/mm以上10個/mm以下である(1)〜(4)のいずれか1つに記載の銅合金板材。(5) In a cross section including a Si compound containing Si and at least one element selected from the group consisting of Sn, Zn, Mg, Mn, Cr and Co, and including the rolling parallel direction and the plate thickness direction, The density D of the Si compound having a diameter L of 0.05 μm or more and 5 μm or less is 10 3 pieces/mm 2 or more and 10 5 pieces/mm 2 or less. (1) to (4) Copper alloy plate material.

(6) 前記の圧延平行方向と板厚方向を含む断面において、結晶粒径は、圧延平行方向寸法(r(RD))が3μm以上35μm以下、板厚方向寸法(r(ND))が1μm以上15μm以下である(1)〜(5)のいずれか1つに記載の銅合金板材。(6) In the cross section including the rolling parallel direction and the plate thickness direction, the crystal grain size has a rolling parallel direction dimension (r (RD) ) of 3 μm or more and 35 μm or less and a plate thickness direction dimension (r (ND) ) of 1 μm. The copper alloy plate material according to any one of (1) to (5) having a thickness of 15 μm or less.

(7) 前記銅合金板材の表面における、圧延直角方向の算術平均粗さRa(TD)に対する圧延平行方向の算術平均粗さRa(RD)の比(Ra(RD)/Ra(TD))が、0.5以上2.0以下である(1)〜(6)のいずれか1つに記載の銅合金板材。(7) The ratio (Ra (RD) /Ra (TD) ) of the arithmetic mean roughness Ra (RD) in the rolling parallel direction to the arithmetic mean roughness Ra (TD) in the direction perpendicular to the rolling on the surface of the copper alloy sheet is , 0.5 or more and 2.0 or less, the copper alloy sheet material according to any one of (1) to (6).

(8) コネクタ用銅合金板材である、(1)〜(7)のいずれか1つに記載の銅合金板材。 (8) The copper alloy plate material according to any one of (1) to (7), which is a copper alloy plate material for a connector.

(9) (1)〜(8)のいずれか1つに記載の銅合金板材を用いて形成されたコネクタ。 (9) A connector formed using the copper alloy plate material according to any one of (1) to (8).

(10) (1)〜(8)のいずれか1つに記載の銅合金板材の製造方法であって、銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、面削[工程5]、冷間圧延[工程6]、中間熱処理[工程10]、仕上げ冷間圧延[工程12]、及び調質焼鈍[工程13]をこの順に施し、前記冷間圧延[工程6]の圧延機のロール径φが50mm以上200mm以下であり、前記仕上げ冷間圧延[工程12]の圧延加工率Rが5%以上30%以下であり、前記調質焼鈍[工程13]における焼鈍温度をT(℃)、付与される圧延平行方向への張力をF(N/mm)とするとき、前記焼鈍温度(T)が200℃以上400℃以下であり、かつ前記付与される圧延平行方向への張力(F)が、前記焼鈍温度との関係で下記式(1)を満たす銅合金板材の製造方法。
−0.1×T+45≦F≦−0.1×T+80・・・(1)
(10) The method for producing a copper alloy sheet material according to any one of (1) to (8), wherein the copper alloy material is cast [step 1], homogenized heat treatment [step 2], chamfered [ Step 5], cold rolling [Step 6], intermediate heat treatment [Step 10], finish cold rolling [Step 12], and temper annealing [Step 13] are performed in this order, and the cold rolling [Step 6] The roll diameter φ of the rolling mill is 50 mm or more and 200 mm or less, the rolling rate R of the finish cold rolling [step 12] is 5% or more and 30% or less, and the annealing temperature in the temper annealing [step 13] is T (° C.), where F (N/mm 2 ) is the applied tension in the rolling parallel direction, the annealing temperature (T) is 200° C. or higher and 400° C. or lower, and the applied rolling parallel direction is The tensile strength (F) of the copper alloy plate material satisfying the following formula (1) in relation to the annealing temperature.
−0.1×T+45≦F≦−0.1×T+80 (1)

本発明の銅合金板材は、Δθが25°以下であり、プレス打ち抜き加工等のプレス加工を行った後に経時的に解放される歪量のばらつきが抑制されるため、プレス加工性に優れる。したがって、本発明の銅合金板材を用いることにより、形状均一性が高いプレス加工品を得ることができる。また、本発明の銅合金板材は、引張強度も高くすることができる。よって、本発明の銅合金板材は、電子機器用のコネクタや自動車車載用部品のコネクタ等のコネクタ用の銅合金板材として好適である。 The copper alloy sheet material of the present invention has Δθ of 25° or less and suppresses the variation in the amount of strain released over time after performing press working such as press punching, and thus is excellent in press workability. Therefore, by using the copper alloy sheet material of the present invention, it is possible to obtain a pressed product with high shape uniformity. Further, the copper alloy sheet material of the present invention can also have high tensile strength. Therefore, the copper alloy plate material of the present invention is suitable as a copper alloy plate material for a connector such as a connector for electronic equipment or a connector for a vehicle-mounted part.

本発明におけるΔθの測定方法を説明する図である。It is a figure explaining the measuring method of (DELTA)(theta) in this invention. 本発明における調質焼鈍の焼鈍温度Tと張力Fとの関係を示す図である。It is a figure which shows the relationship between the annealing temperature T and tension F of temper annealing in this invention. プレス打ち抜き加工で得られるサンプルを上からみた模式図である。It is a schematic diagram which looked at the sample obtained by press punching from the above.

具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Specific embodiments (hereinafter, referred to as “this embodiment”) will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.

本実施の形態に係る銅合金板材は、圧延平行方向と板厚方向を含む断面において、100μmの圧延平行方向寸法と、板厚寸法とで区画される四角形の第1領域を、圧延平行方向と板厚方向に10μm間隔でさらに分割して、10μm四方となる複数の正方形の第2領域に細分化し、第1領域を構成する複数の第2領域のうち、第1領域の4辺を形成する外側第2領域を除いた内側第2領域のそれぞれで、電子後方散乱回折法(EBSD)によってKAMの平均値を測定したとき、測定したKAMの平均値の最大値と最小値の差Δθ(以下単に「Δθ」とも記載する)が25°以下である銅合金板材である。 In the cross section including the rolling parallel direction and the plate thickness direction, the copper alloy sheet material according to the present embodiment has a rectangular first region defined by the rolling parallel dimension of 100 μm and the sheet thickness dimension as the rolling parallel direction. It is further divided in the plate thickness direction at intervals of 10 μm and subdivided into a plurality of square second regions of 10 μm square, and among the plurality of second regions forming the first region, four sides of the first region are formed. When the average value of KAM is measured by electron backscatter diffraction (EBSD) in each of the inner second regions excluding the outer second region, the difference Δθ between the maximum value and the minimum value of the measured KAM average values (hereinafter It is a copper alloy sheet having a value of 25° or less).

EBSD法とは、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。 The EBSD method is a crystal orientation analysis technique that utilizes backscattered electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). The information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens nm where the electron beam penetrates the sample.

また、KAMとは、測定点とその隣接する全ての測定点間の結晶方位差の平均値である。KAM値は、転位密度と相関があり、結晶の格子歪量に対応するものであり、このことは特許文献3等にも記載されている。 Further, KAM is an average value of crystal orientation differences between a measurement point and all its adjacent measurement points. The KAM value has a correlation with the dislocation density and corresponds to the lattice strain amount of the crystal, which is also described in Patent Document 3 and the like.

本実施の形態においては、上記Δθを25°以下に限定している。換言すると、本実施の形態においては、銅合金板材全体としての内部歪の分布の偏りを抑制し均一になるようにしている。これにより、銅合金板材をプレス打ち抜き加工等のプレス加工を行った後に経時的に解放される歪量のばらつきが抑制される。したがって、プレス加工性が向上し、特にプレス打ち抜き加工性に優れており、例えばプレス打ち抜き加工で得られるプレス加工品のピンのピッチのばらつきが抑制され、得られるプレス加工品の形状均一性が向上する。 In the present embodiment, Δθ is limited to 25° or less. In other words, in the present embodiment, the uneven distribution of the internal strain of the copper alloy plate material as a whole is suppressed and made uniform. As a result, it is possible to suppress variations in the amount of strain that is released with time after performing press working such as press punching on the copper alloy sheet. Therefore, the press workability is improved, and particularly the press punching workability is excellent. For example, the pin pitch variation of the press work product obtained by the press punching process is suppressed, and the shape uniformity of the obtained press work product is improved. To do.

一方、Δθが25°より大きい場合には、銅合金板材のKAM値の分布状態に大きな偏りがあり、それは歪量の分布にも偏りがあることを意味する。銅合金板材をプレス加工すると、プレス加工後に歪が解放されるが、プレス加工前にKAM値の分布状態に大きな偏りがあり歪量の分布に偏りがあると、銅合金板材にプレス加工を行った後に経時的に解放される歪量に大きな差が生じることになる。解放される歪量に差があると、プレス加工で得られるプレス加工品の形状の均一性を損なう。例えば、プレス加工品のピッチ間隔のばらつきとして現れる。 On the other hand, when Δθ is larger than 25°, there is a large deviation in the distribution state of the KAM value of the copper alloy sheet material, which means that the distribution of strain amount is also uneven. When the copper alloy sheet is pressed, the strain is released after the pressing, but if there is a large deviation in the distribution of the KAM value before the pressing and there is a deviation in the strain distribution, the copper alloy sheet is pressed. After that, a large difference occurs in the amount of strain released with time. If there is a difference in the amount of strain released, the uniformity of the shape of the pressed product obtained by pressing will be impaired. For example, it appears as a variation in the pitch interval of the pressed product.

なお、特許文献2及び特許文献3等の従来の方法で製造される銅合金板材は、銅合金板材全体としての、内部歪の分布制御を全く行っておらず、そのため解放される歪量のばらつきによりプレス加工品は形状のばらつきが大きく、プレス加工性は市場ニーズを十分満足しているとは言えない。また、結晶粒内のKAM値自体を小さくしたとしても、結晶粒界については考慮していないため、プレス加工性は不十分である。 In addition, the copper alloy sheet materials manufactured by the conventional methods such as Patent Documents 2 and 3 do not control the distribution of internal strain of the entire copper alloy sheet material at all, and therefore the variation of the released strain amount. As a result, pressed products have large variations in shape, and press workability cannot be said to sufficiently satisfy market needs. Further, even if the KAM value itself in the crystal grain is made small, the press workability is insufficient because the grain boundary is not taken into consideration.

Δθは、よりプレス加工性を向上できるという観点で、4°以上20°以下であることが好ましい。 Δθ is preferably 4° or more and 20° or less from the viewpoint that the press workability can be further improved.

本実施の形態においては、内側第2領域14のそれぞれの、EBSDによって測定されるKAMの平均値自体は、特に限定されず、通常の銅合金板材の値と同様であればよい。例えば、4°以上40°以下、より好ましくは6°以上30°以下である。 In the present embodiment, the average value of KAM measured by EBSD in each of the inner second regions 14 is not particularly limited, and may be the same as the value of a normal copper alloy sheet material. For example, it is 4° or more and 40° or less, more preferably 6° or more and 30° or less.

本実施の形態においては、詳しくは後述するが、冷間圧延等の加工や、調質焼鈍における焼鈍温度・圧延平行方向への張力等の製造条件、及び、成分組成等を特定のものとし、好ましくは、結晶粒径、析出物サイズ、析出物密度、表面粗さを制御することにより、Δθを25°以下、さらには4°以上20°以下にすることができる。 In the present embodiment, as will be described in detail later, processing such as cold rolling, manufacturing conditions such as annealing temperature in temper annealing, tension in the rolling parallel direction, and the like, and the component composition and the like are specified, Preferably, Δθ can be set to 25° or less, further 4° or more and 20° or less by controlling the crystal grain size, the precipitate size, the precipitate density, and the surface roughness.

Δθは以下の方法によって求める。
[Δθの求め方]
図1は、本発明におけるΔθの測定方法を説明する図であり、図1(a)は銅合金板材1の斜視図であり、図1(b)は図1(a)の第1領域11を示す図である。
まず、図1(a)に示すように、銅合金板材1の圧延平行方向と板厚方向を含む断面10、すなわち、銅合金板材1を、その圧延平行方向と板厚方向を含む平面で切断して得られる断面10において、100μmの圧延平行方向寸法と、板厚寸法とで区画される四角形の領域(図1における斜線で示す断面)を第1領域11とする。
次に、この第1領域11を、図1(b)に示すように、圧延平行方向と板厚方向にそれぞれ10μm間隔でさらに分割して、10μm四方となる複数の正方形の第2領域12に細分化する。
これら複数の第2領域12のうち、第1領域11の4辺を形成するものを外側第2領域13とし、外側第2領域13を除いた領域を内側第2領域14とする。図1(b)においては、第1領域11は、第1領域11の4辺を形成する32個の外側第2領域13と、48個の内側第2領域14で構成されている例を示している。
そして、各内側第2領域14について、それぞれ電子後方散乱回折法(EBSD:Electron backscatter diffraction)によって0.1μmピッチでKAM(Kernel Average Misorientation)値の平均値を測定する。
測定された各内側第2領域14におけるKAMの平均値のうち、最大値と最小値との差を、Δθとする。
なお、第1領域11を分割して第2領域12に細分化する際に、板厚方向の寸法(長さ)が10μmに満たない小片領域が板厚方向の端部に発生する場合は、その小片領域は除くこととし、第1領域11や第2領域として扱わないものとする。すなわち、第1領域11を分割して第2領域12に細分化する際に、板厚方向の寸法が10μmに満たない小片領域が板厚方向の端部に発生する場合は、例えば、銅合金板材1の板厚方向の中心から上下方向にそれぞれ10μmの倍数分を第1領域11とし、板厚方向の両端部に発生する10μmに満たない小片領域は、第1領域11として扱わないものとする。
Δθ is obtained by the following method.
[How to obtain Δθ]
FIG. 1 is a diagram for explaining a method of measuring Δθ in the present invention, FIG. 1(a) is a perspective view of a copper alloy plate material 1, and FIG. 1(b) is a first region 11 of FIG. 1(a). FIG.
First, as shown in FIG. 1A, a cross section 10 of the copper alloy sheet 1 including the rolling parallel direction and the sheet thickness direction, that is, the copper alloy sheet 1 is cut along a plane including the rolling parallel direction and the sheet thickness direction. In the cross section 10 obtained in this manner, a rectangular area (cross section indicated by diagonal lines in FIG. 1) defined by the rolling parallel dimension of 100 μm and the plate thickness dimension is defined as a first area 11.
Next, as shown in FIG. 1(b), the first region 11 is further divided into 10 μm square-shaped second regions 12 each having 10 μm intervals in the rolling parallel direction and the plate thickness direction. Subdivide.
Of the plurality of second regions 12, those forming the four sides of the first region 11 are referred to as outer second regions 13, and regions excluding the outer second regions 13 are referred to as inner second regions 14. FIG. 1B shows an example in which the first region 11 is composed of 32 outer second regions 13 forming four sides of the first region 11 and 48 inner second regions 14. ing.
Then, with respect to each inner second region 14, an average value of KAM (Kernel Average Misorientation) values is measured at a pitch of 0.1 μm by an electron backscatter diffraction method (EBSD).
The difference between the maximum value and the minimum value among the measured average values of KAM in each inner second region 14 is Δθ.
In addition, when the first region 11 is divided into the second regions 12 and a small piece region whose dimension (length) in the plate thickness direction is less than 10 μm occurs at the end in the plate thickness direction, The small area is excluded and is not treated as the first area 11 or the second area. That is, when the first region 11 is divided and subdivided into the second regions 12, a small piece region whose dimension in the plate thickness direction is less than 10 μm occurs at the end in the plate thickness direction, for example, a copper alloy A multiple of 10 μm in each of the vertical direction from the center of the plate material 1 in the plate thickness direction is defined as the first region 11, and the small piece regions less than 10 μm generated at both ends in the plate thickness direction are not treated as the first region 11. To do.

<成分組成について>
本実施の形態にかかる銅合金板材は、例えばCu−Co−Si系であり、Co:0.20質量%以上2.00質量%以下、Si:0.05質量%以上0.50質量%以下、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種:合計0質量%以上1.00質量%以下を含有し、かつ、Siに対するCoの質量比(Co/Si)が2.5以上5.0以下であり、残部が銅及び不可避不純物からなる成分組成を有する。以下、Cu−Co−Si系の各成分について説明する。
<Ingredient composition>
The copper alloy sheet material according to the present embodiment is, for example, a Cu—Co—Si system, Co: 0.20 mass% or more and 2.00 mass% or less, Si: 0.05 mass% or more and 0.50 mass% or less. , Sn, Zn, Mg, Mn, and Cr at least one kind: a total of 0 mass% or more and 1.00 mass% or less, and a mass ratio of Co to Si (Co/Si) is 2 It is 0.5 or more and 5.0 or less, and the balance has a composition of copper and inevitable impurities. Hereinafter, each component of the Cu-Co-Si system will be described.

(1)Cu−Co−Si系
[Co成分]
Coの含有量は、0.20質量%以上2.00質量%以下である。Co含有量が、0.20質量%未満や2.00質量%より多い場合は、Δθが25°よりも大きくなり、プレス加工性が悪くなる。また、Co含有量が0.20質量%未満の場合には、十分な強度が得られず、プレス加工品のダレが大きくなり、プレス加工品の形状が悪化する。なお、ダレとは、プレス加工品のプレス切断面の上面側が丸く変形した部分を指し、プレス機の整備不良やプレス材料の強度低下により起こる。ダレは小型コネクタ等のばね特性の低下を引き起こし、基本的な特性を悪化させる。また、Co含有量が2.00質量%より多い場合は、溶体化熱処理でCoが固溶しきれなくなって銅合金の強化に寄与しなくなり、加えて、地金コストの高いCo添加量の増加は、銅合金板材のコストの上昇も招くことになる。このため、Co含有量は、好ましくは0.60質量%以上2.00質量%以下であり、より好ましくは0.70質量%以上2.00質量%以下である。
(1) Cu-Co-Si system [Co component]
The Co content is 0.20 mass% or more and 2.00 mass% or less. When the Co content is less than 0.20% by mass or more than 2.00% by mass, Δθ becomes larger than 25° and the press workability becomes poor. Further, when the Co content is less than 0.20 mass %, sufficient strength cannot be obtained, the sagging of the pressed product becomes large, and the shape of the pressed product deteriorates. The sagging refers to a portion where the upper surface side of the press cut surface of the pressed product is roundly deformed, and is caused by poor maintenance of the press machine or reduction in strength of the press material. The sagging causes deterioration of the spring characteristics of small connectors and the like, and deteriorates the basic characteristics. Further, when the Co content is more than 2.00 mass %, Co cannot be dissolved as a solid solution during the solution heat treatment and does not contribute to the strengthening of the copper alloy. Would also increase the cost of the copper alloy sheet. Therefore, the Co content is preferably 0.60 mass% or more and 2.00 mass% or less, and more preferably 0.70 mass% or more and 2.00 mass% or less.

[Si成分]
Siの含有量は、0.05質量%以上0.50質量%以下である。Si含有量が0.05質量%未満や0.50質量%より多い場合は、Δθが25°よりも大きくなり、プレス加工性が悪くなる。また、Si含有量が0.05質量%未満の場合は、Coと同じく銅合金の強度が得られずプレス加工品のダレが大きくなり、形状が悪化する。Si含有量が0.50質量%より多くなると、導電率の低下を招く。Si含有量は、好ましくは0.10%質量以上、0.45%質量以下である。
[Si component]
The Si content is 0.05% by mass or more and 0.50% by mass or less. When the Si content is less than 0.05% by mass or more than 0.50% by mass, Δθ becomes larger than 25° and the press workability deteriorates. Further, when the Si content is less than 0.05 mass %, the strength of the copper alloy cannot be obtained similarly to Co, the sagging of the pressed product becomes large, and the shape deteriorates. When the Si content is more than 0.50 mass%, the conductivity is lowered. The Si content is preferably 0.10% by mass or more and 0.45% by mass or less.

[Siに対するCoの質量比(Co/Si)]
Siに対するCoの質量比(Co/Si)は2.5以上5.0以下である。質量比Co/Siが2.5未満や5.0より大きい場合は、Δθが25°よりも大きくなり、プレス加工性が悪くなる。また、質量比Co/Siが2.5未満の場合、溶体化熱処理においてSiがCoに対し過剰に固溶され、時効熱処理で析出させた後においても母相に残存し、Si固溶量が多くなり導電率の低下を招く。質量比Co/Siが5.0より大きくなると、溶体化熱処理においてCoがSiに対して過剰に固溶され、時効熱処理後の導電率の低下を同じく引き起こす。質量比Co/Siは、好ましくは2.5以上4.5以下、より好ましくは2.6以上4.4以下である。
[Mass ratio of Co to Si (Co/Si)]
The mass ratio of Co to Si (Co/Si) is 2.5 or more and 5.0 or less. When the mass ratio Co/Si is less than 2.5 or larger than 5.0, Δθ becomes larger than 25° and the press workability becomes poor. Further, when the mass ratio Co/Si is less than 2.5, Si is excessively solid-solved with Co in the solution heat treatment and remains in the matrix even after precipitation by the aging heat treatment. As a result, the conductivity increases and the conductivity decreases. When the mass ratio Co/Si is larger than 5.0, Co is excessively solid-dissolved in Si in the solution heat treatment, and the conductivity also decreases after the aging heat treatment. The mass ratio Co/Si is preferably 2.5 or more and 4.5 or less, more preferably 2.6 or more and 4.4 or less.

[Sn、Zn、Mg、Mn、Cr]
本発明のCu−Co−Si系の銅合金板材は、上述したCo及びSiを必須の含有成分とするが、必要に応じて、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種を、任意添加成分として、合計で1.00質量%以下の範囲で含有することができる。Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種の含有量は、好ましくは0.01質量%以上1.00質量%以下であり、さらに好ましくは0.02質量%以上、1.00質量%以下である。
Sn、Zn、Mg、Mn及びCrの少なくとも1種を添加することで、引張強度が上昇し、プレス加工品のダレがより少なくなり、プレス加工性を向上させる効果がある。しかしながら、Sn、Zn、Mg、Mn及びCrの少なくとも1種の含有量が合計で1.00質量%より多い場合は、Δθが25°よりも大きくなり、プレス加工性が悪くなる。また、これらの元素は転位の動きを阻害するため、プレス加工後の歪の解放が阻害される。その結果、歪分布が不均一化することで、プレス加工品の形状にばらつきが生じると推測される。
[Sn, Zn, Mg, Mn, Cr]
The Cu-Co-Si-based copper alloy plate material of the present invention contains Co and Si described above as indispensable contained components, but at least selected from the group consisting of Sn, Zn, Mg, Mn and Cr, if necessary. One kind may be contained as an optional additive component in a range of 1.00 mass% or less in total. The content of at least one selected from the group consisting of Sn, Zn, Mg, Mn, and Cr is preferably 0.01% by mass or more and 1.00% by mass or less, more preferably 0.02% by mass or more, It is 1.00 mass% or less.
Addition of at least one of Sn, Zn, Mg, Mn, and Cr has the effect of increasing the tensile strength, reducing the sagging of the pressed product, and improving the press workability. However, when the total content of at least one of Sn, Zn, Mg, Mn, and Cr is more than 1.00 mass %, Δθ becomes larger than 25° and the press workability becomes poor. Further, since these elements hinder the movement of dislocations, the release of strain after pressing is hindered. As a result, it is assumed that the shape of the pressed product varies due to the non-uniform strain distribution.

[不可避不純物]
不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物としては、例えば、Bi、Se、As、Ag等が挙げられる。不可避不純物の含有量は、例えば不可避不純物成分の合計量で、0.10質量%以下である。
[Inevitable impurities]
The unavoidable impurities mean impurities at a content level that can be unavoidably included in the manufacturing process. Examples of the unavoidable impurities include Bi, Se, As, Ag and the like. The content of the unavoidable impurities is, for example, 0.10 mass% or less in terms of the total amount of the unavoidable impurity components.

上記では、Cu−Co−Si系についての成分組成について説明したが、本実施の形態においては、Δθが上記所定の範囲を満たせば、Cu−Co−Si系以外の成分組成を有するものでもよい。以下にCu−Co−Si系以外の成分組成である、Cu−Ni−Si系、リン青銅系、チタン銅系について、説明する。 Although the component composition for the Cu—Co—Si system has been described above, in the present embodiment, a component composition other than the Cu—Co—Si system may be used as long as Δθ satisfies the predetermined range. .. Below, Cu-Ni-Si system, phosphor bronze system, and titanium copper system, which are component compositions other than Cu-Co-Si system, will be explained.

(2)Cu−Ni−Si系
Cu−Ni−Si系では、Ni:2.00質量%以上4.30質量%以下、Si:0.10質量%以上0.90質量%以下、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種:合計0質量%以上1.00質量%以下を含有し、残部が銅及び不可避不純物からなる成分組成を有する。
(2) Cu-Ni-Si system In Cu-Ni-Si system, Ni: 2.00 mass% or more and 4.30 mass% or less, Si: 0.10 mass% or more and 0.90 mass% or less, Sn, Zn , Mg, Mn, and Cr, at least one selected from the group consisting of: 0 mass% or more and 1.00 mass% or less, with the balance being copper and inevitable impurities.

[Ni成分]
Niの含有量は、2.00質量%以上4.30質量%以下である。Ni含有量が2.00質量%未満や4.30質量%より多い場合は、Δθが25°よりも大きくなり、プレス加工性が悪くなる。また、Niの含有量が2.00質量%未満であると十分な材料強度が得られず、4.30質量%以上の場合には材料強度への寄与が小さい。
[Ni component]
The content of Ni is 2.00 mass% or more and 4.30 mass% or less. When the Ni content is less than 2.00% by mass or more than 4.30% by mass, Δθ becomes larger than 25° and the press workability becomes poor. Further, if the Ni content is less than 2.00 mass %, sufficient material strength cannot be obtained, and if it is 4.30 mass% or more, the contribution to the material strength is small.

[Si成分]
Cu−Ni−Si系では、Siの含有量は、0.10質量%以上0.90質量%以下である。Si含有量が0.10質量%未満や0.90質量%より多い場合は、Δθが25°よりも大きくなり、プレス加工性が悪くなる。
[Si component]
In the Cu-Ni-Si system, the Si content is 0.10 mass% or more and 0.90 mass% or less. When the Si content is less than 0.10% by mass or more than 0.90% by mass, Δθ becomes larger than 25° and the press workability becomes poor.

[Sn、Zn、Mg、Mn、Cr]
本発明のCu−Ni−Si系の銅合金板材は、上述したNi及びSiを必須の含有成分とするが、必要に応じて、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種を、任意添加成分として、合計で1.00質量%以下の範囲で含有することができる。Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種の含有量は、好ましくは0.01質量%以上1.00質量%以下含有であり、さらに好ましくは0.02質量%以上、1.00質量%以下である。
[Sn, Zn, Mg, Mn, Cr]
The Cu-Ni-Si-based copper alloy plate material of the present invention contains Ni and Si described above as essential components, but at least selected from the group consisting of Sn, Zn, Mg, Mn, and Cr, if necessary. One kind may be contained as an optional additive component in a range of 1.00 mass% or less in total. The content of at least one selected from the group consisting of Sn, Zn, Mg, Mn, and Cr is preferably 0.01 mass% or more and 1.00 mass% or less, and more preferably 0.02 mass% or more. , 1.00 mass% or less.

Sn、Zn、Mg、MnやCrを添加することで、引張強度が上昇し、プレス製品のダレがより少なくなりプレス加工性を向上させる効果がある。しかしながらSn、Zn、Mg、Mn、Crの含有量が合計で1.00質量%より多い場合は、Δθが大きくなる。また、これらの元素は転位の動きを阻害するため、プレス加工後の歪の解放が阻害される。その結果、歪分布が不均一化することで、プレス加工品の形状にばらつきが生じる。また、Sn、Zn、Mg、Mnが合計で0.01質量%より少ない場合、強度上昇の効果が得られず、プレス加工性向上には寄与しない。 Addition of Sn, Zn, Mg, Mn or Cr has the effect of increasing the tensile strength, reducing the sagging of the pressed product, and improving the press workability. However, when the total content of Sn, Zn, Mg, Mn, and Cr is more than 1.00 mass %, Δθ becomes large. Further, since these elements hinder the movement of dislocations, the release of strain after pressing is hindered. As a result, the strain distribution becomes non-uniform, resulting in variations in the shape of the pressed product. Further, when the total content of Sn, Zn, Mg, and Mn is less than 0.01% by mass, the effect of increasing the strength cannot be obtained and does not contribute to the improvement of press workability.

なお、不可避不純物については、Cu−Co−Si系と同様である。 The unavoidable impurities are the same as in the Cu-Co-Si system.

(3)リン青銅(Cu−Sn)系
リン青銅では、Sn:0.05質量%以上1.00質量%以下、P:0.01質量%以上0.45質量%以下を含有し、残部が銅及び不可避不純物からなる成分組成を有する。
(3) Phosphor bronze (Cu-Sn) system Phosphor bronze contains Sn: 0.05% by mass or more and 1.00% by mass or less, P: 0.01% by mass or more and 0.45% by mass or less, and the balance. It has a component composition consisting of copper and inevitable impurities.

[Sn成分]
Snの含有量は、0.05質量%以上1.00質量%以下である。Sn含有量が1.00質量%より多い場合は、プレス加工後の歪の解放を阻害するため好ましくない。
[Sn component]
The content of Sn is 0.05% by mass or more and 1.00% by mass or less. When the Sn content is more than 1.00% by mass, it is not preferable because it inhibits the release of strain after press working.

[P成分]
Pの含有量は、0.01質量%以上0.45質量%以下である。
[P component]
The content of P is 0.01% by mass or more and 0.45% by mass or less.

なお、不可避不純物については、Cu−Co−Si系と同様である。 The unavoidable impurities are the same as in the Cu-Co-Si system.

(4)チタン銅(Cu−Ti)系
チタン銅では、Ti:1.00質量%以上3.00質量%以下を含有し、残部が銅及び不可避不純物からなる成分組成を有する。
(4) Titanium Copper (Cu-Ti) System Titanium copper has a composition in which Ti: 1.00 mass% or more and 3.00 mass% or less is contained, and the balance is copper and inevitable impurities.

[Ti成分]
Tiの含有量は、1.00質量%以上3.00質量%以下である。それ以上の濃度では材料強度への寄与は小さい。
[Ti component]
The content of Ti is 1.00 mass% or more and 3.00 mass% or less. At higher concentrations, the contribution to material strength is small.

なお、不可避不純物については、Cu−Co−Si系と同様である。 The unavoidable impurities are the same as in the Cu-Co-Si system.

<組織について>
[Si化合物の直径及び密度]
本実施の形態の銅合金板材は、Siを含有するSi化合物を含むことが好ましい。Cu−Co−Si系では、銅合金板材が含有するSi化合物は、Sn、Zn、Mg、Mn、Cr及びCoからなる群から選ばれる少なくとも1種の元素と、Siとを含有するSi化合物であることが好ましい。また、Cu−Ni−Si系では、銅合金板材が含有するSi化合物は、Niと、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種の元素と、Siとを含有するSi化合物であることが好ましい。
<About organization>
[Diameter and Density of Si Compound]
The copper alloy sheet material of the present embodiment preferably contains a Si compound containing Si. In the Cu-Co-Si system, the Si compound contained in the copper alloy sheet material is a Si compound containing Si and at least one element selected from the group consisting of Sn, Zn, Mg, Mn, Cr and Co. It is preferable to have. Further, in the Cu-Ni-Si system, the Si compound contained in the copper alloy sheet material contains Ni, at least one element selected from the group consisting of Sn, Zn, Mg, Mn, and Cr, and Si. It is preferably a Si compound.

そして、圧延平行方向と板厚方向を含む断面(上記KAM値において用いた圧延平行方向と板厚方向を含む断面)において、上記Si化合物のうち、直径Lが0.05μm以上5μm以下であるSi化合物の密度Dが、10個/mm以上10個/mm以下であることが好ましい。Then, in the cross section including the rolling parallel direction and the plate thickness direction (the cross section including the rolling parallel direction and the plate thickness direction used in the above KAM value), the Si compound having a diameter L of 0.05 μm or more and 5 μm or less The density D of the compound is preferably 10 3 pieces/mm 2 or more and 10 5 pieces/mm 2 or less.

Si化合物の直径Lが0.05μm以上5μm以下であると、プレス加工性をより向上させることができる。直径Lが0.05μm未満の粒子では、プレス加工性を向上させる効果が小さく、直径Lが5μmを超える場合はSi化合物による材料強化、プレス性向上の双方への寄与が非常に小さい。 When the diameter L of the Si compound is 0.05 μm or more and 5 μm or less, press workability can be further improved. If the diameter L is less than 0.05 μm, the effect of improving press workability is small, and if the diameter L exceeds 5 μm, the contribution of the Si compound to both material strengthening and pressability improvement is very small.

そして、直径Lが0.05μm以上5μm以下であるSi化合物の密度Dが10個/mm以上10個/mm以下であると、プレス加工性と引張強度を高いレベルで両立させることができる。直径Lが0.05μm以上5μm以下であるSi化合物の密度Dが10個/mm未満であると、プレス打ち抜き加工する時の破断のクラックの起点が少ないため、プレス加工性を向上させる効果が小さい。直径Lが0.05μm以上5μm以下であるSi化合物の密度Dが10個/mmを超えると、直径Lが0.05μm未満のSi化合物と比べると比較的強度に対する寄与の小さい直径Lが0.05μm以上5μm以下であるSi化合物が全体の大きな割合を占める傾向があり、強度化ができず、製品に求められる特性が得られない。直径Lが0.05μm以上5μm以下であるSi化合物の密度Dは、好ましくは5×10個/mm以上、5×10個/mm以下である。When the density D of the Si compound having a diameter L of 0.05 μm or more and 5 μm or less is 10 3 pieces/mm 2 or more and 10 5 pieces/mm 2 or less, press workability and tensile strength are compatible at a high level. You can If the density D of the Si compound having a diameter L of 0.05 μm or more and 5 μm or less is less than 10 3 pieces/mm 2, the number of crack initiation points at the time of press punching is small, so that the press workability is improved. Is small. When the density D of the Si compound having a diameter L of 0.05 μm or more and 5 μm or less exceeds 10 5 pieces/mm 2 , the diameter L that has a relatively small contribution to the strength is smaller than that of the Si compound having a diameter L of less than 0.05 μm. The Si compound having a thickness of 0.05 μm or more and 5 μm or less tends to occupy a large proportion of the whole, so that the strength cannot be increased and the properties required for the product cannot be obtained. The density D of the Si compound having a diameter L of 0.05 μm or more and 5 μm or less is preferably 5×10 3 pieces/mm 2 or more and 5×10 4 pieces/mm 2 or less.

[結晶粒径]
本実施の形態の銅合金板材は、圧延平行方向と板厚方向を含む断面(上記KAM値において用いた圧延平行方向と板厚方向を含む断面)において、結晶粒径は、圧延平行方向寸法(r(RD))が3μm以上35μm以下、板厚方向寸法(r(ND))が1μm以上15μm以下であることが好ましい。結晶粒径が圧延平行方向寸法(r(RD))が3μm未満もしくは板厚方向寸法(r(ND))が1μm未満の場合には、溶体化熱処理における温度を低くする必要があり、CoとSiを十分に固溶させることができず、その後に行なう時効熱処理において析出量が減り、銅合金板材の強度が低下するおそれがある。一方、結晶粒径が、圧延平行方向寸法(r(RD))が35μmより大きいもしくは板厚方向寸法(r(ND))15μmより大きい場合には、強度が低下し、プレス加工時のダレがより大きくなる傾向がある。結晶粒径は、好ましくは、圧延平行方向寸法(r(RD))が5μm以上33μm以下、板厚方向寸法(r(ND))が2μm以上14μm以下である。
なお、圧延平行方向寸法(r(RD))は、板厚方向寸法r(ND)よりも大きいことが好ましい。
[Crystal grain size]
In the cross section including the rolling parallel direction and the plate thickness direction (cross section including the rolling parallel direction and the plate thickness direction used in the above KAM value), the copper alloy sheet material of the present embodiment has a crystal grain size in the rolling parallel direction dimension ( It is preferable that r (RD) ) is 3 μm or more and 35 μm or less, and the plate thickness direction dimension (r (ND) ) is 1 μm or more and 15 μm or less. When the crystal grain size is less than 3 μm in the rolling parallel direction (r (RD) ) or less than 1 μm in the plate thickness direction (r (ND) ), it is necessary to lower the temperature in the solution heat treatment, and Co Si cannot be sufficiently dissolved as a solid solution, and the amount of precipitation is reduced in the subsequent aging heat treatment, which may reduce the strength of the copper alloy sheet. On the other hand, when the grain size in the rolling parallel direction (r (RD) ) is greater than 35 μm or the dimension in the plate thickness direction (r (ND) ) is greater than 15 μm, the strength decreases and sagging during press working occurs. Tends to be larger. The crystal grain size is preferably 5 μm or more and 33 μm or less in the rolling parallel direction dimension (r (RD) ) and 2 μm or more and 14 μm or less in the plate thickness direction dimension (r (ND) ).
In addition, it is preferable that the dimension (r (RD) ) in the rolling parallel direction is larger than the dimension r (ND) in the plate thickness direction.

[表面粗さ]
本実施の形態の銅合金板材の表面における、圧延直角方向の算術平均粗さRa(TD)に対する圧延平行方向の算術平均粗さRa(RD)の比(Ra(RD)/Ra(TD)比)が、0.5以上2.0以下であることが好ましい。前記Ra(RD)/Ra(TD)比が、0.5以上2.0以下であると、圧延平行方向と圧延垂直方向の歪分布をより均一にすることができ、プレス加工品の形状均一性を向上させることができる。銅合金板材の表面の凸部と凹部では圧延加工時に導入される歪の量は凸部の方が多くなり、偏りが生じるため、Ra(RD)/Ra(TD)比を上記範囲に制御することにより、歪の量を均一にすることが好ましい。Ra(RD)/Ra(TD)比は、より好ましくは0.6以上1.9以下である。
[Surface roughness]
Ratio (Ra (RD) /Ra (TD) ) of the arithmetic mean roughness Ra (RD) in the rolling parallel direction to the arithmetic mean roughness Ra (TD) in the direction perpendicular to the rolling on the surface of the copper alloy sheet material of the present embodiment. ) Is preferably 0.5 or more and 2.0 or less. When the Ra (RD) /Ra (TD) ratio is 0.5 or more and 2.0 or less, the strain distribution in the rolling parallel direction and the rolling vertical direction can be made more uniform, and the shape of the pressed product can be made uniform. It is possible to improve the sex. The amount of strain introduced during rolling is larger in the convex portions and concave portions on the surface of the copper alloy plate material, and unevenness occurs, so the Ra (RD) /Ra (TD) ratio is controlled within the above range. Therefore, it is preferable to make the amount of strain uniform. The Ra (RD) /Ra (TD) ratio is more preferably 0.6 or more and 1.9 or less.

[銅合金板材の厚さ]
本実施の形態の銅合金板材の形態は特に限定されないが、例えば銅合金板や銅合金条等が挙げられる。銅合金板材の板厚は、例えば、0.03mm〜0.6mmが好ましい。板厚が0.03mm〜0.6mmの銅合金板材は、本実施の形態における効果が特に発揮され、例えば歪分布の均一化によるプレスピッチばらつきの抑制の効果が顕著に現れる。
[Copper alloy plate thickness]
The form of the copper alloy plate material of the present embodiment is not particularly limited, and examples thereof include a copper alloy plate and a copper alloy strip. The plate thickness of the copper alloy plate material is preferably 0.03 mm to 0.6 mm, for example. The copper alloy plate material having a plate thickness of 0.03 mm to 0.6 mm particularly exerts the effect in the present embodiment, and, for example, the effect of suppressing the press pitch variation due to the uniform strain distribution appears remarkably.

[銅合金板材の引張強度]
本実施の形態の銅合金板材は、引張強度を高くすることができ、例えば、引張強度TSは、400MPa以上、さらには500MPa以上、より好ましくは600MPa以上とすることができる。
[Tensile strength of copper alloy sheet]
The copper alloy sheet material of the present embodiment can have high tensile strength, and for example, the tensile strength TS can be 400 MPa or more, further 500 MPa or more, and more preferably 600 MPa or more.

<製造方法について>
上記本実施の形態に係る銅合金板材の製造方法は、上記銅合金板材の成分組成を有する銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、面削[工程5]、冷間圧延[工程6]、中間熱処理[工程10]、仕上げ冷間圧延[工程12]、及び調質焼鈍[工程13]をこの順に施し、冷間圧延[工程6]の圧延機のロール径φが50mm以上200mm以下であり、仕上げ冷間圧延[工程12]の圧延加工率Rが5%以上30%以下であり、調質焼鈍[工程13]における焼鈍温度をT(℃)、付与される圧延方向への張力をF(N/mm)とするとき、焼鈍温度(T)が200℃以上400℃以下であり、かつ付与される圧延方向への張力(F)が、焼鈍温度との関係で下記式(1)を満たす製造方法により製造することができる。一方、上記条件を満たさない製造方法では、本実施の形態に係る銅合金板材を製造することはできない。
−0.1×T+45≦F≦−0.1×T+80・・・(1)
<About manufacturing method>
In the method for manufacturing a copper alloy sheet according to the present embodiment, a copper alloy material having the composition of the copper alloy sheet is cast [step 1], homogenized heat treatment [step 2], chamfered [step 5], Cold rolling [step 6], intermediate heat treatment [step 10], finish cold rolling [step 12], and temper annealing [step 13] are performed in this order, and the roll diameter of the rolling mill for cold rolling [step 6] is performed. φ is 50 mm or more and 200 mm or less, the rolling work rate R of finish cold rolling [step 12] is 5% or more and 30% or less, and the annealing temperature in temper annealing [step 13] is T (° C.). When the tension in the rolling direction is F (N/mm 2 ), the annealing temperature (T) is 200° C. or higher and 400° C. or lower, and the applied tension (F) in the rolling direction is the same as the annealing temperature. It can be manufactured by a manufacturing method satisfying the following formula (1). On the other hand, with the manufacturing method that does not satisfy the above conditions, the copper alloy sheet material according to the present embodiment cannot be manufactured.
−0.1×T+45≦F≦−0.1×T+80 (1)

例えば、鋳造[工程1]、均質化熱処理[工程2]、熱間圧延[工程3]、冷却[工程4]、面削[工程5]、冷間圧延[工程6]、溶体化熱処理[工程7]、冷却[工程8]、冷間圧延[工程9]、中間熱処理[工程10]、時効熱処理[工程11]、仕上げ冷間圧延[工程12]、調質焼鈍[工程13]をこの順に施す。以下各工程について、説明する。 For example, casting [step 1], homogenization heat treatment [step 2], hot rolling [step 3], cooling [step 4], chamfering [step 5], cold rolling [step 6], solution heat treatment [step] 7], cooling [step 8], cold rolling [step 9], intermediate heat treatment [step 10], aging heat treatment [step 11], finish cold rolling [step 12], temper annealing [step 13] in this order. Give. Each step will be described below.

鋳造[工程1]
鋳造工程[工程1]では、Cu、Si等の銅合金板材の原料(銅合金素材)を、鋳造機内部(内壁)が好ましくは炭素製の、例えば黒鉛坩堝にて、溶解し鋳造する。溶解するときの鋳造機内部の雰囲気は、酸化物の生成を防止するために、真空もしくは窒素やアルゴンなどの不活性ガス雰囲気とすることが好ましい。鋳造方法には特に制限はなく、例えば横型連続鋳造機やアップキャスト法などを用いることができる。
Casting [Process 1]
In the casting step [step 1], a raw material (copper alloy material) of a copper alloy plate material such as Cu and Si is melted and cast in a casting machine (inner wall) preferably made of carbon, for example, a graphite crucible. The atmosphere inside the casting machine during melting is preferably vacuum or an inert gas atmosphere such as nitrogen or argon in order to prevent the formation of oxides. The casting method is not particularly limited, and for example, a horizontal continuous casting machine or an upcast method can be used.

均質化熱処理[工程2]
鋳造[工程1]において鋳塊時に生じた凝固偏析や晶出物は、粗大なので、均質化熱処理工程[工程2]において、できるだけ母相に固溶させて小さくし、可能な限り無くす。具体的には、例えば、不活性ガス中等で、800〜1000℃に加熱して1〜24時間の均質化熱処理を行う。
Homogenization heat treatment [Process 2]
Since solidification segregation and crystallized substances generated at the time of ingot in the casting [step 1] are coarse, in the homogenizing heat treatment step [step 2], the solidification is made as small as possible by forming a solid solution in the matrix phase and eliminated as much as possible. Specifically, for example, the homogenized heat treatment is performed at a temperature of 800 to 1000° C. for 1 to 24 hours in an inert gas or the like.

熱間圧延[工程3]
熱間圧延[工程3]では、例えば、処理温度850℃〜1000℃程度で、所望の板厚になるように圧延する。熱間加工については、圧延加工、もしくは押出加工のどちらでも特に制限は無い。均質化熱処理後の熱間圧延[工程3]は省略可能である。
Hot rolling [Process 3]
In the hot rolling [step 3], for example, rolling is performed at a processing temperature of about 850° C. to 1000° C. so as to obtain a desired plate thickness. The hot working is not limited to rolling or extrusion. The hot rolling [step 3] after the homogenizing heat treatment can be omitted.

冷却[工程4]
冷却工程[工程4]では、熱間圧延を施した銅合金板材を冷却する。熱間圧延を施した直後に冷却することが好ましい。冷却[工程4]は、熱間圧延[工程3]を行わない場合は省略可能である。
Cooling [Step 4]
In the cooling step [step 4], the hot-rolled copper alloy sheet material is cooled. It is preferable to cool immediately after hot rolling. The cooling [step 4] can be omitted if the hot rolling [step 3] is not performed.

面削[工程5]
面削工程[工程5]では、銅合金板材の表皮の酸化皮膜や変質層を除去する。通常公知の方法により行うことができ、例えば、機械研磨により行うことができる。
Chamfering [Process 5]
In the chamfering step [step 5], the oxide film and the altered layer on the skin of the copper alloy sheet are removed. It can be performed by a generally known method, for example, mechanical polishing.

冷間圧延[工程6]
本実施の形態においては、冷間圧延[工程6]で用いる圧延機のロール径(直径)φは、50mm以上200mm以下である。ロール径φが50mm未満の場合、圧延時のかみ込み角が小さくなり、圧延油の導入量が少なくなり、油膜破断が生じてロール材への焼き付きが生じることがあり、生産性が低下してしまう。また、ロール径φが200mmより大きい場合、逆に、かみ込み角が大きく圧延油の導入量が増え、ロール粗度が転写されづらくなり、適切な銅合金板材の表面粗さ制御ができない。その結果、オイルピットの生成を招き表面が粗くなり、後段の仕上げ冷間圧延[工程12]において不均一な歪分布を招く。
Cold rolling [Process 6]
In the present embodiment, the roll diameter (diameter) φ of the rolling mill used in cold rolling [step 6] is 50 mm or more and 200 mm or less. When the roll diameter φ is less than 50 mm, the biting angle at the time of rolling becomes small, the amount of rolling oil introduced becomes small, the oil film may break, and seizure may occur on the roll material, resulting in reduced productivity. I will end up. On the other hand, when the roll diameter φ is larger than 200 mm, conversely, the biting angle is large, the amount of rolling oil introduced increases, the roll roughness becomes difficult to be transferred, and the surface roughness of the copper alloy sheet cannot be controlled appropriately. As a result, oil pits are generated and the surface becomes rough, resulting in a non-uniform strain distribution in the finish cold rolling [step 12] in the subsequent stage.

なお、冷間圧延[工程6]では、圧延加工率が例えば30〜99%の冷間圧延を行う。本明細書において、圧延加工率は下記式で求められる値である。
圧延加工率(%)=(圧延前の板厚(mm)−圧延後の板厚(mm))/圧延前の板厚(mm)×100
In the cold rolling [step 6], cold rolling with a rolling work rate of, for example, 30 to 99% is performed. In the present specification, the rolling rate is a value obtained by the following formula.
Rolling rate (%)=(plate thickness before rolling (mm)-plate thickness after rolling (mm))/plate thickness before rolling (mm)×100

溶体化熱処理[工程7]
溶体化熱処理工程[工程7]では、含有元素濃度に応じた適切な溶体化温度条件を設定して、溶体化熱処理を行う。溶体化温度は、例えば650〜1000℃である。溶体化熱処理[工程7]は省略可能である。
Solution heat treatment [Process 7]
In the solution heat treatment step [Step 7], the solution heat treatment is performed by setting an appropriate solution temperature condition according to the concentration of the contained element. The solution temperature is, for example, 650 to 1000°C. The solution heat treatment [step 7] can be omitted.

冷却[工程8]
冷却工程では、溶体化熱処理を施した銅合金板材を冷却する。溶体化熱処理を施した直後に冷却することが好ましい。冷却[工程8]は、溶体化熱処理[工程7]を行わない場合は省略可能である。
Cooling [Process 8]
In the cooling step, the solution heat treated copper alloy sheet material is cooled. It is preferable to cool immediately after the solution heat treatment. The cooling [step 8] can be omitted if the solution heat treatment [step 7] is not performed.

冷間圧延[工程9]
冷間圧延では、圧延加工率が例えば1.0〜90%の冷間圧延を行う。第2冷間圧延は省略可能である。
Cold rolling [Process 9]
In the cold rolling, cold rolling is performed at a rolling rate of 1.0 to 90%, for example. The second cold rolling can be omitted.

中間熱処理[工程10]
中間熱処理[工程10]では、例えば、溶体化熱処理温度より低い温度で熱処理を行うことにより、材料を完全に再結晶させず、部分的に再結晶させた亜焼鈍組織を得ることができる。中間熱処理は、例えば、20℃〜500℃で、0.5〜2時間行う。
Intermediate heat treatment [Process 10]
In the intermediate heat treatment [Step 10], for example, by performing heat treatment at a temperature lower than the solution heat treatment temperature, it is possible to obtain a partially recrystallized subannealed structure without completely recrystallizing the material. The intermediate heat treatment is performed at 20° C. to 500° C. for 0.5 to 2 hours, for example.

時効熱処理[工程11]
時効熱処理[工程11]では、例えば、400℃〜500℃で1〜3時間の時効熱処理を行う。時効熱処理[工程11]は、省略可能である。
Aging heat treatment [Process 11]
In the aging heat treatment [step 11], for example, the aging heat treatment is performed at 400° C. to 500° C. for 1 to 3 hours. The aging heat treatment [Step 11] can be omitted.

仕上げ冷間圧延[工程12]
本実施の形態においては、仕上げ冷間圧延[工程12]では、圧延加工率Rが5%以上30%以下の冷間圧延を行う。圧延加工率Rが5%未満の場合、十分な材料強度が得られず、30%より大きい場合には、それ以上加工しても銅合金の強化の増加は鈍化し、圧延工程にかかる時間が長くなり製造コストのみが上がってしまう。仕上げ冷間圧延における圧延加工率Rは下記式で求められる値である。
圧延加工率R(%)=(圧延前の板厚(mm)−圧延後の板厚(mm))/圧延前の板厚(mm)×100
Finish cold rolling [Process 12]
In the present embodiment, in the finish cold rolling [step 12], cold rolling with a rolling work ratio R of 5% or more and 30% or less is performed. When the rolling rate R is less than 5%, sufficient material strength cannot be obtained, and when the rolling rate R is more than 30%, the increase in the strengthening of the copper alloy is slowed down even if it is further processed, and the time required for the rolling step is reduced. It becomes long and only the manufacturing cost rises. The rolling rate R in finish cold rolling is a value obtained by the following formula.
Rolling rate R (%) = (plate thickness before rolling (mm)-plate thickness after rolling (mm))/plate thickness before rolling (mm) x 100

調質焼鈍[工程13]
本実施の形態においては、調質焼鈍における焼鈍温度をT(℃)、付与される圧延平行方向への張力をF(N/mm)とするとき、焼鈍温度(T)が200℃以上400℃以下であり、かつ付与される圧延平行方向への張力(F)が、焼鈍温度との関係で下記式(1)を満たす。すなわち、本実施の形態における調質焼鈍の焼鈍温度Tと張力Fとの関係を示す図である図2に示すように、式(1)の左辺であるF=−0.1×T+45の式を表す下側の直線と、式(1)の右辺であるF=−0.1×T+80を表す上側の直線と、温度範囲を表す点線とで囲われた領域内で、調質焼鈍[工程13]を行う。
−0.1×T+45≦F≦−0.1×T+80・・・(1)
Tempering annealing [Process 13]
In the present embodiment, when the annealing temperature in temper annealing is T (° C.) and the applied tension in the rolling parallel direction is F (N/mm 2 ), the annealing temperature (T) is 200° C. or higher and 400° C. or higher. The tension (F) in the rolling parallel direction, which is equal to or lower than 0° C., satisfies the following formula (1) in relation to the annealing temperature. That is, as shown in FIG. 2, which is a diagram showing the relationship between the annealing temperature T and the tension F of the temper annealing in the present embodiment, the formula of F=−0.1×T+45 which is the left side of the formula (1). In the region surrounded by the lower straight line representing the above, the upper straight line representing F=−0.1×T+80, which is the right side of the formula (1), and the dotted line representing the temperature range. 13] is performed.
−0.1×T+45≦F≦−0.1×T+80 (1)

焼鈍温度Tが、200℃未満の場合、銅合金の伸びを損なうため加工性が悪化し、400℃より高い場合には材料の軟化を招く。 When the annealing temperature T is lower than 200°C, the elongation of the copper alloy is impaired and workability deteriorates, and when it is higher than 400°C, the material softens.

そして、焼鈍温度Tが高いほど、また特に張力Fが大きいほど歪の解放は促進され、Δθに影響を与えるため、本実施の形態の銅合金板材を得るためには、式(1)を満たすように、焼鈍温度Tに対し張力Fを適切にバランス良く制御する必要がある。 Then, the higher the annealing temperature T, and especially the higher the tension F, the more the release of strain is promoted, which affects Δθ. Therefore, in order to obtain the copper alloy sheet material of the present embodiment, the formula (1) is satisfied. As described above, it is necessary to control the tension F with respect to the annealing temperature T in an appropriate balance.

ここで、調質焼鈍において付与される圧延平行方向への張力Fは、従来、KAM値との相関が詳細に検討されていなかったが、本発明においては、影響することが見出された。この知見に基づき、調質焼鈍[工程13]の焼鈍温度T及びその時の張力Fを様々に変更した実験を行って、式(1)の関係が導き出された。本実施の形態の銅合金板材を得るためには、(1)式を満たすように制御する必要がある。例えば、張力Fが−0.1×T+45未満となる場合、歪の解放量が少なく、歪分布の均一化効果が発揮できない。一方で、張力Fが−0.1×T+80より大きくなると、圧延方向の張力の増加により圧延平行方向の歪が解放されやすく、圧延平行方向の歪量が圧延垂直方向よりも少なくなり、歪分布の均一性が低下する。 Here, although the tension F in the rolling parallel direction applied in the temper annealing has not been studied in detail in the related art, the tension F has been found to have an effect in the present invention. Based on this knowledge, an experiment was performed in which the annealing temperature T of the temper annealing [step 13] and the tension F at that time were variously changed, and the relationship of the formula (1) was derived. In order to obtain the copper alloy sheet material of the present embodiment, it is necessary to control so as to satisfy the expression (1). For example, when the tension F is less than −0.1×T+45, the amount of released strain is small, and the effect of equalizing the strain distribution cannot be exhibited. On the other hand, when the tension F is larger than −0.1×T+80, the strain in the rolling parallel direction is likely to be released due to the increase in the tension in the rolling direction, and the strain amount in the rolling parallel direction becomes smaller than that in the rolling vertical direction. Uniformity is reduced.

<銅合金板材の用途>
本実施の形態にかかる銅合金板材は、プレス打抜き性等のプレス加工性に優れており、例えばピンの形状均一性に優れた電子機器用のコネクタや自動車車載用部品のコネクタ等を形成することができる。
<Applications of copper alloy sheet materials>
The copper alloy plate material according to the present embodiment is excellent in press workability such as press punching property, and for example, it is necessary to form a connector for electronic equipment or a connector for automobile vehicle parts having excellent pin shape uniformity. You can

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

〔実施例1〜20及び比較例1〜19〕
大気下で高周波溶解炉により表1及び表2に示す合金成分を溶解し、これを鋳造[工程1]して厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。次に不活性ガス雰囲気中で1000℃に1時間加熱し均質化熱処理[工程2]を施した直後に熱間圧延[工程3]を施して板厚0.3mmとした直後に冷却[工程4]した。次いで、面削[工程5]、冷間圧延[工程6]を施し0.1〜0.2mmとした。次いで、700℃〜950℃で溶体化熱処理[工程7]を施した直後に冷却[工程8]し、冷間圧延[工程9]、20℃〜500℃で1時間の中間熱処理[工程10]、400℃〜500℃で2時間の時効熱処理[工程11]、仕上げ冷間圧延[工程12]、調質焼鈍[工程13]の処理をこの順に施し、厚さ0.100mmの銅合金板材を得た。時効熱処理[工程11]では、強度が最も高くなるように温度を設定した。なお、実施例18及び比較例17では、熱間圧延[工程3]、冷却[工程4]、溶体化熱処理[工程7]、冷却[工程8]及び時効熱処理[工程11]は、行わなかった。各実施例1〜20及び比較例1〜19における、冷間圧延[工程6]で用いた圧延機のロール径φ、仕上げ冷間圧延[工程12]の圧延加工率R、調質焼鈍[工程13]の温度T、圧延方向への張力Fを、表3及び表4に示す。
[Examples 1 to 20 and Comparative Examples 1 to 19]
The alloy components shown in Tables 1 and 2 were melted in a high-frequency melting furnace in the atmosphere and cast [Step 1] to obtain an ingot having a thickness of 30 mm, a width of 100 mm and a length of 150 mm. Next, it is heated at 1000° C. for 1 hour in an inert gas atmosphere, and immediately after being subjected to homogenizing heat treatment [step 2], hot rolling [step 3] is performed to obtain a plate thickness of 0.3 mm and immediately followed by cooling [step 4]. ]did. Then, chamfering [step 5] and cold rolling [step 6] were performed to obtain 0.1 to 0.2 mm. Then, immediately after the solution heat treatment [step 7] at 700° C. to 950° C., cooling is performed [step 8], cold rolling [step 9], and intermediate heat treatment at 20° C. to 500° C. for 1 hour [step 10]. , Aging heat treatment at 400° C. to 500° C. for 2 hours [step 11], finish cold rolling [step 12], and temper annealing [step 13] in this order to obtain a copper alloy sheet with a thickness of 0.100 mm. Obtained. In the aging heat treatment [Step 11], the temperature was set so that the strength was the highest. In Example 18 and Comparative Example 17, hot rolling [step 3], cooling [step 4], solution heat treatment [step 7], cooling [step 8] and aging heat treatment [step 11] were not performed. .. In each of Examples 1 to 20 and Comparative Examples 1 to 19, the roll diameter φ of the rolling mill used in the cold rolling [step 6], the rolling rate R in the finish cold rolling [step 12], and the temper annealing [step]. 13], temperature T and tension F in the rolling direction are shown in Tables 3 and 4.

得られた銅合金板材について、Δθ、直径Lが0.05μm以上5μm以下のSi化合物の密度D、結晶粒径(圧延平行方向寸法(r(RD))、板厚方向寸法(r(ND)))、銅合金板材の表面における算術平均粗さRa、引張強度TSの測定、及び、プレス打ち抜き加工性の評価を、下記の方法で行った。結果を表5及び表6に示す。Regarding the obtained copper alloy sheet material, Δθ, density L of Si compound having diameter L of 0.05 μm or more and 5 μm or less, crystal grain size (rolling parallel direction dimension (r (RD) ), sheet thickness direction dimension (r (ND)) )), the arithmetic mean roughness Ra and the tensile strength TS on the surface of the copper alloy sheet and the press punching workability were evaluated by the following methods. The results are shown in Tables 5 and 6.

[Δθ]
上記[Δθの求め方]に従い、SEM−EBSD(日本電子株式会社製、JSM−7001FA)を用いて、Δθを求めた。結果を表5及び表6に示す。EBSDの測定データの解析にはTSL社製の解析ソフトOIM Analysis(商品名)を用いた。
[Δθ]
According to the above [Method of obtaining Δθ], Δθ was obtained using SEM-EBSD (JSM-7001FA manufactured by JEOL Ltd.). The results are shown in Tables 5 and 6. The analysis software OIM Analysis (trade name) manufactured by TSL was used to analyze the EBSD measurement data.

[直径Lが0.05〜5μmのSi化合物の密度Dの測定]
圧延平行方向と板厚方向を含む断面において、100μmの圧延平行方向寸法と、板厚寸法(実施例においては100μm)となる四角形の領域(上記KAM値において用いた第1領域11)をSEM(Scannig Electron Microscope)により観察し、得られた二次電子像から観測される各Si化合物について、2箇所の外縁を結ぶ最も長い直線と最も短い直線の平均値を各Si化合物の直径Lとする。そして、直径Lが0.05μm以上5μm以下のSi化合物の個数から密度D(個/mm)を算出した。結果を、表5及び表6の「Si化合物の密度D」欄に示す。なお、Si化合物はSEMに付属のEDXにて構成元素にSiが含まれているかで判断した。
[Measurement of density D of Si compound having diameter L of 0.05 to 5 μm]
In a cross section including the rolling parallel direction and the plate thickness direction, a rolling parallel direction dimension of 100 μm and a rectangular region (the first region 11 used in the above KAM value) having a plate thickness dimension (100 μm in the example) are SEM ( The average value of the longest straight line and the shortest straight line connecting the two outer edges of each Si compound observed from the obtained secondary electron image is defined as the diameter L of each Si compound by observing with a Scanning Electron Microscope). Then, the density D (pieces/mm 2 ) was calculated from the number of Si compounds having a diameter L of 0.05 μm or more and 5 μm or less. The results are shown in the “Density D of Si compound” column in Tables 5 and 6. In addition, the Si compound was judged by EDX attached to the SEM depending on whether Si is contained as a constituent element.

[結晶粒径(前記断面10における結晶粒界の、圧延平行方向寸法(r(RD))、板厚方向寸法(r(ND)))の測定]
圧延平行方向と板厚方向を含む断面10(上記KAM値において用いた圧延平行方向と板厚方向を含む断面)を酸エッチングして結晶粒界を光学顕微鏡で観察しやすくした後、光学顕微鏡を用いて、任意の3箇所を500倍で写真撮影した。結晶粒径はその写真から圧延平行方向及び板厚方向(圧延垂直方向)に対し、それぞれJISH0501−1986に規定されている結晶粒度の測定方法(切断法)に基づいて測定した。
[Measurement of crystal grain size (dimension (r (RD) ) in the rolling parallel direction, grain size direction (r (ND) )) of the crystal grain boundary in the cross section 10]
The cross section 10 including the rolling parallel direction and the plate thickness direction (the cross section including the rolling parallel direction and the plate thickness direction used in the above KAM value) was acid-etched to facilitate observation of crystal grain boundaries with an optical microscope, and then an optical microscope was used. Photographs were taken at 500 times at any three locations. From the photograph, the crystal grain size was measured in the rolling parallel direction and the plate thickness direction (rolling vertical direction) based on the crystal grain size measuring method (cutting method) specified in JIS H0501-1986.

[銅合金板材の表面における算術平均粗さRa(圧延平行方向の算術平均粗さRa(RD)、圧延直角方向の算術平均粗さRa(TD))の測定]
銅合金板材の表面における算術平均粗さRaは、株式会社小坂研究所製のサーフコーダーSGA31を用いて、JIS B0601−1994に従って算出した。測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さ4.0をmm、測定速度を0.1mm/s、触針先端半径を2μmとした。表5及び表6には、表面における算術平均粗さの比Ra(RD)/Ra(TD)を示す。
[Measurement of Arithmetic Average Roughness Ra on Surface of Copper Alloy Sheet (Arithmetic Average Roughness Ra (RD) in Rolling Parallel Direction, Arithmetic Average Roughness Ra (TD) in Rolling Right Direction)]
The arithmetic mean roughness Ra on the surface of the copper alloy sheet was calculated according to JIS B0601-1994 using a surf coder SGA31 manufactured by Kosaka Laboratory Ltd. The measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.1 mm/s, and a stylus tip radius of 2 μm. Tables 5 and 6 show the ratio Ra (RD) /Ra (TD) of the arithmetic mean roughness on the surface.

[プレス打ち抜き加工性の評価(プレスピッチばらつきの評価)]
得られた銅合金板材に対して、プレス打ち抜き加工を行って、プレス打ち抜き加工性を評価した。プレス打ち抜き加工方法及びプレス打ち抜き加工性の評価方法を、図3を参照して説明する。
[Evaluation of press punching workability (evaluation of press pitch variation)]
Press punching was performed on the obtained copper alloy sheet material to evaluate the press punching workability. The press punching method and the press punching workability evaluation method will be described with reference to FIG.

図3は、プレス打ち抜き加工で得られるサンプル(プレス加工品)を上からみた模式図であり、図3(a)はピンのピッチにばらつきのない理想的なプレス打ち抜き後のサンプルを示し、図3(b)は、ピンのピッチにばらつきのある状態を示している。そして、図3に示すように、ピンとピンの先端間隔をd[mm]、根元間隔をd[mm]、ピン長さをL[mm]、ピン幅をW[mm]とし、プレス打ち抜きピッチのばらつきを示す指標であるVを下記式で定義した。
V=|100−(d/d)×100|/L
FIG. 3 is a schematic view of a sample (press-processed product) obtained by press-punching, viewed from above, and FIG. 3A shows an ideal sample after press-punching without variations in pin pitch. 3(b) shows a state in which the pin pitch varies. Then, as shown in FIG. 3, the tip spacing of the pins and the pin d T [mm], the root gap d B [mm], the pin length L [mm], the pin width is W [mm], press punching V, which is an index showing the variation in pitch, is defined by the following formula.
V=|100−(d T /d B )×100|/L

プレス打ち抜き加工は、クリアランスが6%であり、プレス材の形状がピンのピッチにばらつきのない理想的なサンプルとなる場合にd=d=0.4mm、L=1.0mm、W=0.3mmとなる金型を用いた。The press punching process has a clearance of 6%, and when the shape of the pressed material is an ideal sample with no variation in the pin pitch, d T =d B =0.4 mm, L=1.0 mm, W= A mold having a size of 0.3 mm was used.

プレス打ち抜き加工で得られたサンプルにおいて、隣り合うピンについて、連続10万個のVを算出し、Vが10[mm−1]以下となる割合を求め、以下の基準でピッチばらつきを評価した。◎はピッチばらつきが少なく、×はピッチばらつきが多いことを示している。
◎:95%以上100%以下
〇:90%以上95%未満
×:90%未満
In the sample obtained by press punching, 100,000 consecutive Vs of adjacent pins were calculated, the ratio at which V was 10 [mm −1 ] or less was obtained, and the pitch variation was evaluated according to the following criteria. ⊚ indicates that there are few pitch variations, and x indicates that there are many pitch variations.
◎: 95% to 100% ◯: 90% to less than 95% ×: less than 90%

[引張強度]
試験片の圧延平行方向から切り出したJIS Z2241の13B号の試験片をJIS Z2241に準じて3本測定しその平均値を表5及び6に示した。
[Tensile strength]
Three test pieces of No. 13B of JIS Z2241 cut out from the direction parallel to the rolling of the test piece were measured according to JIS Z2241, and the average values thereof are shown in Tables 5 and 6.

Figure 2020004034
Figure 2020004034

Figure 2020004034
Figure 2020004034

Figure 2020004034
Figure 2020004034

Figure 2020004034
Figure 2020004034

Figure 2020004034
Figure 2020004034

Figure 2020004034
Figure 2020004034

表1及び表2に示すように、実施例1〜14及び比較例1〜14はCu−Co−Si系、実施例15〜17及び比較例15〜16はCu−Ni−Si系、実施例18及び比較例17はCu−Sn系、実施例19〜20及び比較例18〜19はCuーTi系である。
成分組成及び製造条件が上記所定の範囲内でありΔθが25°以下であった実施例1〜20では、ピッチのばらつきが少なく、プレス打ち抜き加工性に優れていた。そして、Cu−Co−Si系の実施例1〜14の中でも、Δθが4°以上20°以下を満たす実施例2、6、7、10、11は、評価は◎であり、特にプレス打ち抜き加工性に優れていた。なお、Cu−Co−Si系以外の実施例においては、Δθが4°以上20°以下を満たすものでも評価は〇であり、Δθ等がピッチのばらつきに与える影響の大きさは、合金系によって異なっていた。
一方、成分組成及び製造条件が上記所定の範囲外でありΔθが25°より大きかった比較例1〜14は、ピッチばらつきが大きく、プレス打ち抜き加工性が悪かった。
As shown in Table 1 and Table 2, Examples 1 to 14 and Comparative Examples 1 to 14 are Cu-Co-Si-based, Examples 15 to 17 and Comparative Examples 15 to 16 are Cu-Ni-Si-based, and Examples. 18 and Comparative Example 17 are Cu-Sn based, and Examples 19 to 20 and Comparative Examples 18 to 19 are Cu-Ti based.
In Examples 1 to 20 in which the component composition and the manufacturing conditions were within the above-described predetermined ranges and Δθ was 25° or less, the pitch variation was small and the press punching workability was excellent. Then, among the Cu-Co-Si-based Examples 1 to 14, Examples 2, 6, 7, 10 and 11 satisfying Δθ of 4° or more and 20° or less are evaluated as ⊚, and particularly press punching is performed. It was excellent. In the examples other than the Cu-Co-Si system, even if Δθ satisfies 4° or more and 20° or less, the evaluation is ◯, and the degree of influence of Δθ and the like on the pitch variation depends on the alloy system. It was different.
On the other hand, in Comparative Examples 1 to 14 in which the component composition and manufacturing conditions were out of the predetermined ranges and Δθ was larger than 25°, the pitch variation was large and the press punching workability was poor.

1 銅合金板材
10 銅合金板材の圧延平行方向と板厚方向を含む断面
11 第1領域
12 第2領域
13 外側第2領域
14 内側第2領域
1 Copper Alloy Sheet Material 10 Cross Section Including Rolling Parallel Direction and Plate Thickness Direction of Copper Alloy Sheet Material 11 First Region 12 Second Region 13 Outer Second Region 14 Inner Second Region

Claims (10)

圧延平行方向と板厚方向を含む断面において、
100μmの圧延平行方向寸法と、板厚寸法とで区画される四角形の第1領域を、圧延平行方向と板厚方向に10μm間隔でさらに分割して、10μm四方となる複数の正方形の第2領域に細分化し、前記第1領域を構成する複数の前記第2領域のうち、前記第1領域の4辺を形成する外側第2領域を除いた内側第2領域のそれぞれで、電子後方散乱回折法(EBSD)によってKAMの平均値を測定したとき、測定したKAMの平均値の最大値と最小値の差(Δθ)が25°以下である銅合金板材。
In the cross section including the rolling parallel direction and the plate thickness direction,
A square first region defined by a rolling parallel dimension of 100 μm and a plate thickness dimension is further divided at intervals of 10 μm in the rolling parallel direction and the plate thickness direction to form a plurality of square second regions of 10 μm square. Electron backscattering diffraction method in each of the inner second regions excluding the outer second regions forming the four sides of the first region among the plurality of second regions that are subdivided into A copper alloy sheet material having a difference (Δθ) between the maximum and minimum values of the measured KAM average of 25° or less when the average KAM is measured by (EBSD).
前記KAMの平均値の最大値と最小値の差Δθが、4°以上20°以下である請求項1に記載の銅合金板材。 The copper alloy plate material according to claim 1, wherein a difference Δθ between the maximum value and the minimum value of the KAM is 4° or more and 20° or less. Co:0.20質量%以上2.00質量%以下、Si:0.05質量%以上0.50質量%以下、Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種:合計0質量%以上1.00質量%以下を含有し、かつ、Siに対するCoの質量比(Co/Si)が2.5以上5.0以下であり、残部が銅及び不可避不純物からなる成分組成を有する請求項1又は2に記載の銅合金板材。 Co: 0.20 mass% or more and 2.00 mass% or less, Si: 0.05 mass% or more and 0.50 mass% or less, at least one selected from the group consisting of Sn, Zn, Mg, Mn, and Cr: total. A component composition containing 0 mass% or more and 1.00 mass% or less, a mass ratio of Co to Si (Co/Si) of 2.5 or more and 5.0 or less, and the balance being copper and inevitable impurities. The copper alloy plate material according to claim 1 or 2. Sn、Zn、Mg、Mn及びCrからなる群から選ばれる少なくとも1種を合計0.01質量%以上1.00質量%以下含有する請求項3に記載の銅合金材。 The copper alloy material according to claim 3, containing at least one selected from the group consisting of Sn, Zn, Mg, Mn, and Cr in a total amount of 0.01% by mass or more and 1.00% by mass or less. Sn、Zn、Mg、Mn、Cr及びCoからなる群から選ばれる少なくとも1種の元素と、Siとを含有するSi化合物を含み、
前記圧延平行方向と板厚方向を含む断面において、直径Lが0.05μm以上5μm以下である前記Si化合物の密度Dが、10個/mm以上10個/mm以下である請求項1〜4のいずれか1項に記載の銅合金板材。
A Si compound containing at least one element selected from the group consisting of Sn, Zn, Mg, Mn, Cr and Co, and Si,
In a cross section including the rolling parallel direction and the plate thickness direction, the density D of the Si compound having a diameter L of 0.05 μm or more and 5 μm or less is 10 3 pieces/mm 2 or more and 10 5 pieces/mm 2 or less. The copper alloy plate material according to any one of 1 to 4.
前記の圧延平行方向と板厚方向を含む断面において、結晶粒径は、圧延平行方向寸法(r(RD))が3μm以上35μm以下、板厚方向寸法(r(ND))が1μm以上15μm以下である請求項1〜5のいずれか1項に記載の銅合金板材。In the cross section including the rolling parallel direction and the plate thickness direction, the crystal grain size has a rolling parallel direction dimension (r (RD) ) of 3 μm or more and 35 μm or less and a sheet thickness direction dimension (r (ND) ) of 1 μm or more and 15 μm or less. The copper alloy sheet material according to any one of claims 1 to 5. 前記銅合金板材の表面における、圧延直角方向の算術平均粗さRa(TD)に対する圧延平行方向の算術平均粗さRa(RD)の比(Ra(RD)/Ra(TD))が、0.5以上2.0以下である請求項1〜6のいずれか1項に記載の銅合金板材。The ratio (Ra (RD) /Ra (TD) ) of the arithmetic mean roughness Ra (RD) in the rolling parallel direction to the arithmetic mean roughness Ra (TD) in the direction perpendicular to the rolling on the surface of the copper alloy sheet is 0. It is 5 or more and 2.0 or less, The copper alloy plate material of any one of Claims 1-6. コネクタ用銅合金板材である、請求項1〜7のいずれか1項に記載の銅合金板材。 The copper alloy plate material according to any one of claims 1 to 7, which is a copper alloy plate material for a connector. 請求項1〜8のいずれか1項に記載の銅合金板材を用いて形成されたコネクタ。 A connector formed using the copper alloy plate material according to claim 1. 請求項1〜8のいずれか1項に記載の銅合金板材の製造方法であって、
銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、面削[工程5]、冷間圧延[工程6]、中間熱処理[工程10]、仕上げ冷間圧延[工程12]、及び調質焼鈍[工程13]をこの順に施し、
前記冷間圧延[工程6]の圧延機のロール径φが50mm以上200mm以下であり、
前記仕上げ冷間圧延[工程12]の圧延加工率Rが5%以上30%以下であり、
前記調質焼鈍[工程13]における焼鈍温度をT(℃)、付与される圧延平行方向への張力をF(N/mm)とするとき、前記焼鈍温度(T)が200℃以上400℃以下であり、かつ前記付与される圧延平行方向への張力(F)が、前記焼鈍温度との関係で下記式(1)を満たす銅合金板材の製造方法。
−0.1×T+45≦F≦−0.1×T+80・・・(1)
It is a manufacturing method of the copper alloy plate material according to any one of claims 1 to 8,
Casting [step 1], homogenizing heat treatment [step 2], chamfering [step 5], cold rolling [step 6], intermediate heat treatment [step 10], finish cold rolling [step 12] on copper alloy material, And temper annealing [step 13] in this order,
The roll diameter φ of the rolling mill in the cold rolling [step 6] is 50 mm or more and 200 mm or less,
The rolling rate R of the finish cold rolling [step 12] is 5% or more and 30% or less,
When the annealing temperature in the temper annealing [step 13] is T (° C.) and the tension applied in the rolling parallel direction is F (N/mm 2 ), the annealing temperature (T) is 200° C. or higher and 400° C. A method for producing a copper alloy sheet material, which has the following value and in which the applied tension (F) in the direction parallel to the rolling satisfies the following expression (1) in relation to the annealing temperature.
−0.1×T+45≦F≦−0.1×T+80 (1)
JP2019551487A 2018-06-28 2019-06-12 Copper alloy plate material, method of manufacturing copper alloy plate material, and connector using copper alloy plate material Active JP6684395B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018123303 2018-06-28
JP2018123303 2018-06-28
PCT/JP2019/023252 WO2020004034A1 (en) 2018-06-28 2019-06-12 Copper alloy sheet, copper alloy sheet manufacturing method, and connector using copper alloy sheet

Publications (2)

Publication Number Publication Date
JP6684395B1 JP6684395B1 (en) 2020-04-22
JPWO2020004034A1 true JPWO2020004034A1 (en) 2020-07-02

Family

ID=68985013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551487A Active JP6684395B1 (en) 2018-06-28 2019-06-12 Copper alloy plate material, method of manufacturing copper alloy plate material, and connector using copper alloy plate material

Country Status (5)

Country Link
JP (1) JP6684395B1 (en)
KR (1) KR102443059B1 (en)
CN (1) CN111971406B (en)
TW (1) TWI794514B (en)
WO (1) WO2020004034A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852228B2 (en) * 2019-03-28 2021-03-31 古河電気工業株式会社 Copper alloy strips and their manufacturing methods, resistor materials for resistors using them, and resistors
JP7042979B2 (en) * 2020-03-31 2022-03-28 古河電気工業株式会社 Copper alloy plate material and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2850542C2 (en) 1978-11-22 1982-07-01 Kernforschungsanlage Jülich GmbH, 5170 Jülich Process for etching surfaces made of copper or copper alloys
JPS57203713A (en) 1981-06-10 1982-12-14 Nippon Steel Corp Method of decarburization refining in reaction vessel with small free board
JPS5948102A (en) 1982-04-24 1984-03-19 太田 正之 Device for constructing veneer
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
US9845521B2 (en) * 2010-12-13 2017-12-19 Kobe Steel, Ltd. Copper alloy
KR20140025607A (en) * 2011-08-04 2014-03-04 가부시키가이샤 고베 세이코쇼 Copper alloy
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
JP6080823B2 (en) * 2014-09-19 2017-02-15 Jx金属株式会社 Titanium copper for electronic parts
JP6389414B2 (en) * 2014-10-17 2018-09-12 Dowaメタルテック株式会社 Method for producing copper alloy sheet
JP2016156056A (en) * 2015-02-24 2016-09-01 株式会社神戸製鋼所 Copper alloy sheet strip for lead frame of led
JP6533402B2 (en) * 2015-03-23 2019-06-19 Dowaメタルテック株式会社 Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP2017057476A (en) * 2015-09-18 2017-03-23 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method therefor
WO2017168803A1 (en) * 2016-03-31 2017-10-05 Dowaメタルテック株式会社 Cu-ni-si copper alloy sheet and manufacturing method
JP6788471B2 (en) * 2016-10-14 2020-11-25 Dowaメタルテック株式会社 Cu-Ni-Co-Si based copper alloy thin plate material and manufacturing method and conductive member
JP6807211B2 (en) * 2016-10-24 2021-01-06 Dowaメタルテック株式会社 Cu-Zr-Sn-Al-based copper alloy plate material, manufacturing method, and energizing member
JP2018070916A (en) * 2016-10-26 2018-05-10 株式会社神戸製鋼所 Copper alloy

Also Published As

Publication number Publication date
CN111971406A (en) 2020-11-20
CN111971406B (en) 2021-10-26
KR102443059B1 (en) 2022-09-13
JP6684395B1 (en) 2020-04-22
WO2020004034A1 (en) 2020-01-02
KR20210002465A (en) 2021-01-08
TW202000937A (en) 2020-01-01
TWI794514B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP4191159B2 (en) Titanium copper with excellent press workability
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
US11104977B2 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
KR102545312B1 (en) Copper alloy sheet and its manufacturing method
US11655523B2 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
KR20120043773A (en) Copper alloy sheet for electrical and electronic parts excelling in strength and formability
JP2019178398A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
US11725258B2 (en) Copper alloy for electronic/electrical devices, copper alloy planar bar stock for electronic/electrical devices, component for electronic/electrical devices, terminal and bus bar
JP2017179493A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP2016125126A (en) Copper alloy sheet material and manufacturing method therefor
JP6869119B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member
JP6684395B1 (en) Copper alloy plate material, method of manufacturing copper alloy plate material, and connector using copper alloy plate material
JP6928597B2 (en) Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts
JP2009062592A (en) Copper alloy sheet superior in stress relaxation resistance property and bendability
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
WO2021145043A1 (en) Copper alloy plate, method for manufacturing same, and electrical/electronic component member
JP2018062705A (en) Copper alloy for electronic material
KR20140114059A (en) Copper alloy
JP6246174B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP5514762B2 (en) Cu-Co-Si alloy with excellent bending workability
JP2020097793A (en) Copper alloy sheet material, manufacturing method therefor, contraction processed article, member for electric and electronic component, electromagnetic wave-shielding material and heat release member
JP2019203202A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190918

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R151 Written notification of patent or utility model registration

Ref document number: 6684395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350