JP6928597B2 - Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts - Google Patents

Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts Download PDF

Info

Publication number
JP6928597B2
JP6928597B2 JP2018233487A JP2018233487A JP6928597B2 JP 6928597 B2 JP6928597 B2 JP 6928597B2 JP 2018233487 A JP2018233487 A JP 2018233487A JP 2018233487 A JP2018233487 A JP 2018233487A JP 6928597 B2 JP6928597 B2 JP 6928597B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy plate
plate material
rolling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018233487A
Other languages
Japanese (ja)
Other versions
JP2020094242A (en
Inventor
俊太 秋谷
俊太 秋谷
樋口 優
優 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2018233487A priority Critical patent/JP6928597B2/en
Priority to PCT/JP2019/045712 priority patent/WO2020121775A1/en
Priority to KR1020217007855A priority patent/KR20210100078A/en
Priority to CN201980064171.1A priority patent/CN112789359B/en
Publication of JP2020094242A publication Critical patent/JP2020094242A/en
Application granted granted Critical
Publication of JP6928597B2 publication Critical patent/JP6928597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Description

本発明は、銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品に関する。 The present invention relates to a copper alloy plate material, a method for manufacturing the same, a drawn product, a member for electric / electronic parts, an electromagnetic wave shielding material, and a heat radiating part.

銅合金板材、例えば、電気・電子部品用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、液晶補強板、液晶のシャーシ、有機ELディスプレイの補強板や、自動車車載用のコネクタ、シールドケース、シールドキャンなどに使用される銅合金板材は、通常、打ち抜き、曲げ、絞り、張り出し等のプレス加工が施される。 Copper alloy plates, such as connectors for electrical and electronic components, lead frames, relays, switches, sockets, shield cases, shield cans, liquid crystal reinforcing plates, liquid crystal chassis, organic EL display reinforcing plates, and connectors for automobiles. , Copper alloy plates used for shield cases, shield cans, etc. are usually pressed by punching, bending, drawing, overhanging, and the like.

従来の銅合金板材を用いた場合、本来は実現困難なはずの難加工形状を実現するには、機械的・電気的特性を犠牲にせざるをえなかった。ここでいう「難加工形状」とは、例えば、絞り加工品を製造する際に、コーナーやエッジ部の曲率半径が通常よりも小さいポンチ等の治具で加工した場合に成形される形状を意味する。このような難加工形状を有する絞り加工品を製造する場合、銅合金板材の本来の機械的・電気的特性が十分に生かされているとはいえない。また、銅合金板材の機械的・電気的特性を重視した場合には、目的とする難加工形状への加工は、断念するしかなく、電子機器の小型化に対する要求を満足することができない。これは、治具(ポンチ)の曲率半径をある程度大きくせざるをえない結果、電子部品を構成する絞り加工品の実装空間が自ずと大きくなってしまうことがひとつの原因である。さらには、絞り加工品の形状を最適化することにより、絞り加工性を重視した分だけ犠牲にした放熱性を向上させる余地はあるものの、その最適形状への絞り加工は現状困難であるという問題がある。 When a conventional copper alloy plate material is used, mechanical and electrical characteristics have to be sacrificed in order to realize a difficult-to-process shape that would otherwise be difficult to realize. The term "difficult-to-process shape" as used herein means, for example, a shape formed when a drawn product is manufactured and processed with a jig such as a punch whose corners and edges have a smaller radius of curvature than usual. do. When manufacturing a drawn product having such a difficult-to-process shape, it cannot be said that the original mechanical and electrical characteristics of the copper alloy plate material are fully utilized. Further, when the mechanical and electrical characteristics of the copper alloy plate material are emphasized, there is no choice but to give up the processing into the desired difficult-to-process shape, and the demand for miniaturization of electronic devices cannot be satisfied. One of the reasons for this is that as a result of having to increase the radius of curvature of the jig (punch) to some extent, the mounting space of the drawn product constituting the electronic component naturally increases. Furthermore, by optimizing the shape of the drawn product, there is room to improve the heat dissipation at the expense of the emphasis on drawing workability, but there is a problem that it is currently difficult to draw to the optimum shape. There is.

特に、近年の電気・電子部品や自動車車載用部品の高性能化に伴い、それらを構成する部品の一つであるプレス加工製品には、機械的・電気的特性や放熱性だけではなく、目的形状への変形を可能にするため、厳しい加工条件であっても優れた加工性を具備することが強く求められるようになってきた。しかしながら、特に目的とする難加工形状への加工の過程において、顧客が要求するレベルの絞り加工性が達成できていないのが現状である。 In particular, with the recent improvement in the performance of electrical and electronic parts and parts for automobiles, press-processed products, which are one of the components that compose them, have not only mechanical and electrical characteristics and heat dissipation, but also the purpose. In order to enable deformation into a shape, it has been strongly required to have excellent workability even under severe processing conditions. However, the current situation is that the level of drawability required by customers has not been achieved, especially in the process of processing into a difficult-to-process shape, which is the target.

例えば、特許文献1には、NiとCoの1種又は2種を0.8〜4.0mass%含み、Siを0.2〜1.0mass%含み、NiとCoの1種又は2種とSiの質量比が3.0〜7.0であり、残部がCu及び不可避不純物からなり、圧延平行方向の引張強さが570MPa以上、耐力が500MPa以上、伸びが5%以上、圧延直角方向の引張強さが550MPa以上、耐力が480MPa以上、伸びが5%以上であり、導電率が35%IACSを超え、曲げ半径Rと板厚tの比R/tを0.5とし曲げ線を圧延垂直方向とした90度曲げを行ったときの曲げ加工限界幅が70mm以上、曲げ線を圧延垂直方向とした密着曲げを行ったときの曲げ加工限界幅が20mm以上、ランクフォード値が0.9以上であり、構造部材としての強度、特に変形及び落下衝撃性に耐える強度、複雑形状への加工に耐えうる曲げ、張出し及び絞りなどの成形加工性、及び半導体素子等からの熱に対する高放熱性を有する放熱部品用銅合金板が記載されている。 For example, Patent Document 1 contains 0.8 to 4.0 mass% of Ni and Co, 0.2 to 1.0 mass% of Si, and 1 or 2 of Ni and Co. The mass ratio of Si is 3.0 to 7.0, the balance is composed of Cu and unavoidable impurities, the tensile strength in the parallel rolling direction is 570 MPa or more, the strength is 500 MPa or more, the elongation is 5% or more, and the direction perpendicular to rolling. The tensile strength is 550 MPa or more, the strength is 480 MPa or more, the elongation is 5% or more, the conductivity exceeds 35% IACS, the ratio R / t of the bending radius R and the plate thickness t is 0.5, and the bending line is rolled. The bending limit width when bending 90 degrees in the vertical direction is 70 mm or more, the bending limit width when performing close contact bending with the bending line in the rolling vertical direction is 20 mm or more, and the Rankford value is 0.9. As described above, the strength as a structural member, particularly the strength to withstand deformation and drop impact resistance, the moldability such as bending, overhanging and rolling to withstand processing into complicated shapes, and the high heat dissipation to heat from semiconductor elements and the like. A copper alloy plate for heat-dissipating parts is described.

また、特許文献2には、0.5〜3.0質量%のCo、0.1〜2.0質量%のNi、0.1〜1.5質量%のSiを含有し、質量割合で(Ni+Co)/Siが3〜5であり、残部が銅および不可避的不純物からなり、圧延平行方向の0.2%耐力が630MPa以上、導電率が50%IACS以上、圧延平行断面における平均結晶粒径が10〜20μmであり、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たし、電子材料に用いて好適な0.2%耐力および導電率を有し、コネクタ形状等にプレス加工した際の寸法安定性を向上させることのできる電子材料用銅合金が記載されている。 Further, Patent Document 2 contains 0.5 to 3.0% by mass of Co, 0.1 to 2.0% by mass of Ni, and 0.1 to 1.5% by mass of Si in terms of mass ratio. (Ni + Co) / Si is 3 to 5, the balance is composed of copper and unavoidable impurities, 0.2% resistance in the rolling parallel direction is 630 MPa or more, conductivity is 50% IACS or more, and average crystal grains in the rolled parallel cross section. X-ray diffraction integrated intensity I {200} from the {200} crystal plane, X-ray diffraction integrated intensity I {220} from the {220} crystal plane, and {311} crystal with a diameter of 10 to 20 μm. The X-ray diffraction integrated intensity I {311} from the plane satisfies the relationship of (I {220} + I {311}) / I {200} ≧ 5.0, and is 0.2% suitable for use in electronic materials. A copper alloy for electronic materials, which has strength and conductivity and can improve dimensional stability when pressed into a connector shape or the like, is described.

さらに、特許文献3には、1.0〜3.0質量%のNiを含有し、Niの質量%濃度に対し1/6〜1/4の濃度のSiを含有し、残部がCu及び不可避的不純物からなり、表面の算術平均粗さRaが0.02〜0.2μmで、表面粗さ平均線を基準とした時の各々の山部と谷部の値の絶対値についての標準偏差が0.1μm以下であり、合金組織中の結晶粒のアスペクト比(結晶粒の短径/結晶粒の長径)の平均値が0.4〜0.6であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、GOSの全結晶粒における平均値が1.2〜1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60〜70%であり、ばね限界値が450〜600N/mmであり、150℃で1000時間でのはんだ耐熱剥離性が良好で、耐疲労特性の変動が少なく、優れた深絞り加工性を有するCu−Ni−Si系銅合金(コルソン合金)板が記載されている。 Further, Patent Document 3 contains 1.0 to 3.0% by mass of Ni, contains Si at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, and the balance is Cu and unavoidable. It consists of target impurities, the arithmetic average roughness Ra of the surface is 0.02 to 0.2 μm, and the standard deviation of the absolute value of each peak and valley value with respect to the surface roughness average line is It is 0.1 μm or less, the average value of the aspect ratio (minor axis of crystal grains / major axis of crystal grains) of the crystal grains in the alloy structure is 0.4 to 0.6, and it is equipped with a backscattered electron diffraction image system. The whole crystal of GOS when the orientation of all pixels within the measurement area range is measured by the EBSD method using a scanning electron microscope and the boundary where the orientation difference between adjacent pixels is 5 ° or more is regarded as a grain boundary. The average value in the grain is 1.2 to 1.5 °, and the ratio (Lσ / L) of the total special grain boundary length Lσ of the special grain boundary to the total grain boundary length L of the crystal grain boundary is 60 to 70%. Cu-Ni has a spring limit value of 450 to 600 N / mm 2 , good solder heat-resistant peeling resistance at 150 ° C. for 1000 hours, little fluctuation in fatigue resistance characteristics, and excellent deep drawing workability. -Si-based copper alloy (Corson alloy) plates are described.

上記特許文献1〜3は、いずれもNiおよびCoの少なくとも1種と、Siとを含有した銅合金板材に関する発明であって、良好な絞り加工性を有することを記載しているものの、銅合金板材の製造方法を構成する工程のうち、特に仕上げ冷間圧延工程から調質焼鈍工程までの一連の工程において、絞り加工性を悪化させる結晶粒の生成を抑制するための制御を行なっていないため、特に深絞り試験を行なう際の加工条件が厳しい場合、特にコーナー部の曲率半径Rが小さい(例えば曲率半径Rが0.9mm以下)ポンチで絞り加工を施した場合には、満足レベルの絞り加工性が安定して得られないという問題がある。 Although Patent Documents 1 to 3 are inventions relating to a copper alloy sheet material containing at least one of Ni and Co and Si, and have good drawability, the copper alloy Of the steps that make up the sheet metal manufacturing method, especially in the series of steps from the finish cold rolling step to the temper annealing step, control is not performed to suppress the formation of crystal grains that deteriorate the drawability. Especially when the processing conditions are severe when performing a deep drawing test, especially when drawing is performed with a punch with a small radius of curvature R at the corner (for example, radius of curvature R is 0.9 mm or less), the drawing is at a satisfactory level. There is a problem that workability cannot be obtained stably.

特開2017−89003号公報Japanese Unexamined Patent Publication No. 2017-89003 特開2018−62705号公報Japanese Unexamined Patent Publication No. 2018-62705 国際公開第2012/160684号International Publication No. 2012/1606684

本発明の目的は、従来の銅合金板材の基本特性(特に放熱性)を損なうことなく、厳しい絞り加工条件であったとしても、優れた絞り加工性を安定して得ることができる銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品を提供することにある。 An object of the present invention is a copper alloy plate material capable of stably obtaining excellent drawing workability even under severe drawing conditions without impairing the basic characteristics (particularly heat dissipation) of the conventional copper alloy plate material. The purpose of the present invention is to provide a method for manufacturing the same, a drawn product, a member for electric / electronic parts, an electromagnetic wave shielding material, and a heat radiating part.

上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)NiおよびCoの1種以上を合計で1.0〜5.0質量%、ならびにSiを0.1〜1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、導電率が38%IACS以上であり、圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線から求められる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0〜13.0GPa・%の範囲であることを特徴とする銅合金板材。

Figure 0006928597
但し、S:Cube方位面積率(%)、σは公称応力(GPa)、εは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure 0006928597
(2)前記算術平均値Aave.および前記パラメータAxの値を下記(3)式に代入して算出されるパラメータBx(x:0°、45°、90°)の前記各方向の値B0°、B45°およびB90が、いずれも10%以下となる、上記(1)に記載の銅合金板材。
Figure 0006928597
(3)エリクセン試験におけるエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たす、上記(1)または(2)に記載の銅合金板材。
Figure 0006928597
(4)前記組成は、さらに、Sn、Mg、Mn、Cr、Zr、Ti、FeおよびZnからなる群から選ばれる少なくとも1種の成分を、合計で0.2〜1.2質量%以下含有する上記(1)〜(3)のいずれか1項に記載の銅合金板材。
(5)上記(1)〜(4)のいずれか1項に記載の銅合金板材を絞り加工して得られた絞り加工品。
(6)上記(1)〜(4)のいずれか1項に記載の銅合金板材または上記(5)に記載の絞り加工品を用いて作製された電気・電子部品用部材。
(7)上記(1)〜(4)のいずれか1項に記載の銅合金板材または上記(5)に記載の絞り加工品を用いて作製された電磁波シールド材。
(8)上記(1)〜(4)のいずれか1項に記載の銅合金板材または請求項5に記載の絞り加工品を用いて作製された放熱部品。
(9)上記(1)〜(4)のいずれか1項に記載の銅合金板材の製造方法であって、銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度Tを、75℃以上100℃以下に制御し、前記矯正[工程9]における材料の伸び率δを、0.1〜1.0%とし、そして、前記調質焼鈍[工程10]の材料温度T(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することを特徴とする銅合金板材の製造方法。
55×δ+450≧T≧55×δ+350 ・・・(5) In order to achieve the above object, the gist structure of the present invention is as follows.
(1) It has a composition in which one or more of Ni and Co are contained in a total of 1.0 to 5.0% by mass and Si is contained in an amount of 0.1 to 1.5% by mass, and the balance is Cu and unavoidable impurities. It is obtained by performing a tensile test on three types of test pieces cut out in each of the rolling parallel direction, the direction of 45 ° with respect to the rolling direction, and the direction of the rolling vertical direction, each having a conductivity of 38% IACS or more. Substituting the value obtained from the nominal stress-nominal strain curve and the value of the Cube azimuth area ratio obtained by the electron backscatter diffraction (EBSD) method into the following equation (1), the parameter Ax (x: 0 °) , 45 °, 90 °) in each direction A 0 ° , A 45 ° and A 90 ° were obtained, and the obtained values A 0 ° , A 45 ° and A 90 ° in each direction were obtained in (2) below. A copper alloy plate material characterized in that the arithmetic average value Aave. Calculated by substituting it into an equation is in the range of 4.0 to 13.0 GPa ·%.
Figure 0006928597
However, Sc : Cube azimuth area ratio (%), σ n represents the nominal stress (GPa), ε n represents the nominal strain (%), and EL represents the elongation at break (%).
Figure 0006928597
(2) The value B 0 of the parameter Bx (x: 0 °, 45 °, 90 °) calculated by substituting the arithmetic mean value Aave. And the value of the parameter Ax into the following equation (3). The copper alloy plate material according to (1) above, wherein ° , B 45 ° and B 90 are all 10% or less.
Figure 0006928597
(3) The ratio (Er / t ratio) of the Elixin value (Er) to the plate thickness (t) in the Elixin test and the breaking elongation EL (%) when pulled in the rolling parallel direction are calculated by the following equation (4). The copper alloy plate material according to (1) or (2) above, which satisfies the relationship of inequality.
Figure 0006928597
(4) The composition further contains at least one component selected from the group consisting of Sn, Mg, Mn, Cr, Zr, Ti, Fe and Zn in an amount of 0.2 to 1.2% by mass or less in total. The copper alloy plate material according to any one of (1) to (3) above.
(5) A drawn product obtained by drawing the copper alloy plate material according to any one of (1) to (4) above.
(6) A member for electrical / electronic parts manufactured by using the copper alloy plate material according to any one of (1) to (4) above or the drawn product according to (5) above.
(7) An electromagnetic wave shielding material produced by using the copper alloy plate material according to any one of (1) to (4) above or the drawn product according to (5) above.
(8) A heat-dissipating component produced by using the copper alloy plate material according to any one of (1) to (4) above or the drawn product according to claim 5.
(9) The method for producing a copper alloy plate according to any one of (1) to (4) above, wherein the copper alloy material is cast [step 1], homogenized [step 2], and hot. Rolling [process 3], face milling [process 4], cold rolling [process 5], solution heat treatment [process 6], intermediate heat treatment [process 7], finish cold rolling [process 8], straightening [process 9] sequentially subjected and temper annealing [step 10], the maximum temperature T R of the rolling time of the material in the finish cold rolling [step 8], and controls the 75 ° C. or higher 100 ° C. or less, the correction [step 9] the elongation of the material [delta] in, and 0.1% to 1.0%, and the material temperature T a of the temper annealing [step 10] (° C.) and below in relation to the elongation [delta] (5) A method for producing a copper alloy plate material, which comprises controlling so as to satisfy the relation of inequality shown in the formula.
55 × δ + 450 ≧ T A ≧ 55 × δ + 350 ··· (5)

本発明の銅合金板材は、NiおよびCoの1種以上を合計で1.0〜5.0質量%、ならびにSiを0.1〜1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、導電率が38%IACS以上であり、圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線から得られる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、上記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、上記(2)式に代入して算出される算術平均値Aave.が、4.0〜13.0GPa・%の範囲であることによって、従来の銅合金板材の基本特性(特に放熱性)を損なうことなく、厳しい絞り加工条件であったとしても、優れた絞り加工性を安定して得ることができる。 The copper alloy plate material of the present invention contains one or more of Ni and Co in a total of 1.0 to 5.0% by mass, and Si in an amount of 0.1 to 1.5% by mass, with the balance being Cu and unavoidable impurities. Tensile tests are performed on three types of test pieces that have a certain composition, have a conductivity of 38% IACS or more, and are cut out in each of the rolling parallel direction, the direction of 45 ° with respect to the rolling direction, and the rolling vertical direction. Substituting the value obtained from the nominal stress-nominal strain curve obtained by the above and the value of the Cube azimuth area ratio obtained by the electron backscattering diffraction (EBSD) method into the above equation (1), the parameter Ax The values A 0 ° , A 45 ° and A 90 ° in each direction of (x: 0 °, 45 °, 90 °) were obtained, and the obtained values A 0 ° , A 45 ° and A 90 ° in each direction were obtained. , The arithmetic average value Aave. Calculated by substituting into the above equation (2) is in the range of 4.0 to 13.0 GPa ·%, so that the basic characteristics (particularly heat dissipation) of the conventional copper alloy plate material can be improved. Excellent drawing workability can be stably obtained even under severe drawing conditions without impairing.

本発明の銅合金板材の製造方法は、銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度Tを、75℃以上100℃以下に制御し、前記矯正[工程9]における材料の伸び率δを、0.1〜1.0%とし、そして、前記調質焼鈍[工程10]の材料温度T(℃)を、前記伸び率δとの関係で上記(5)式に示す不等式の関係を満たすように制御することによって、上述した銅合金板材を製造することができる。 The method for producing a copper alloy plate material of the present invention is to cast [step 1], homogenize treatment [step 2], hot rolling [step 3], face milling [step 4], and cold rolling [step 1] on a copper alloy material. 5], solution heat treatment [step 6], intermediate heat treatment [step 7], finish cold rolling [step 8], straightening [step 9], and temper tempering [step 10] are sequentially performed, and the finish cold rolling is performed. the maximum temperature T R of the rolling time of the material in [step 8], is controlled to 75 ° C. or higher 100 ° C. or less, the correction of elongation of the material δ in [step 9], and 0.1% to 1.0%, then, the material temperature T a of the temper annealing [step 10] C.), by controlling so as to satisfy the relation of inequality shown in equation (5) in relation to the elongation [delta], described above copper An alloy plate material can be manufactured.

図1は、本発明の一の実施形態に従う銅合金板材から、圧延平行方向に切り出した試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線を例として示した図である。FIG. 1 is a diagram showing, for example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out in a rolling parallel direction from a copper alloy plate material according to an embodiment of the present invention. .. 図2は、種々の銅合金板材について、エリクセン試験を行なうことによって得られたエリクセン値(Er)の板厚(t)に対する比(Er/t比)を、圧延平行方向に引っ張ったときの破断伸びEL(%)との関係でプロットしたときの図である。FIG. 2 shows breakage when the ratio (Er / t ratio) of the Elixin value (Er) obtained by performing the Elixin test to the plate thickness (t) of various copper alloy plates is pulled in the rolling parallel direction. It is a figure when it is plotted in relation to the elongation EL (%). 図3は、深絞り試験機で絞り加工性を評価するため、試験板材Wの中央部を、先端部が円柱状でかつコーナー部の曲率半径Rが小さいパンチで押し込んだときの状態を概念的に示した図である。FIG. 3 conceptually shows a state when the central portion of the test plate material W is pushed in with a punch having a columnar tip and a small radius of curvature R at the corners in order to evaluate drawing workability with a deep drawing tester. It is a figure shown in. 図4は、エリクセン試験機でエリクセン値を求めるため、試験板材Wの中央部を、先端部が半球状のパンチで押し込んだときの状態を概念的に示した図である。FIG. 4 is a diagram conceptually showing a state when the central portion of the test plate material W is pushed by a hemispherical punch at the tip portion in order to obtain the Eriksen value with the Eriksen testing machine.

以下、本発明の銅合金板材の好ましい実施形態について、詳細に説明する。
本発明に従う銅合金板材は、NiおよびCoの1種以上を合計で1.0〜5.0質量%、ならびにSiを0.1〜1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、導電率が38%IACS以上であり、圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線から得られる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0〜13.0GPa・%の範囲である。
Hereinafter, preferred embodiments of the copper alloy plate material of the present invention will be described in detail.
The copper alloy plate material according to the present invention contains 1.0 to 5.0% by mass of one or more of Ni and Co in total, and 0.1 to 1.5% by mass of Si, and the balance is Cu and unavoidable impurities. Tension tests are performed on three types of test pieces that have a certain composition, have a conductivity of 38% IACS or more, and are cut out in each of the rolling parallel direction, the direction of 45 ° with respect to the rolling direction, and the rolling vertical direction. Substituting the value obtained from the nominal stress-nominal strain curve obtained by this and the value of the Cube azimuth area ratio obtained by the electron backscatter diffraction (EBSD) method into the following equation (1), the parameter Ax The values A 0 ° , A 45 ° and A 90 ° in each direction of (x: 0 °, 45 °, 90 °) were obtained, and the obtained values A 0 ° , A 45 ° and A 90 ° in each direction were obtained. , The arithmetic average value Aave. Calculated by substituting into the following equation (2) is in the range of 4.0 to 13.0 GPa ·%.

Figure 0006928597
但し、S:Cube方位面積率(%)、σは公称応力(GPa)、εは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure 0006928597
However, Sc : Cube azimuth area ratio (%), σ n represents the nominal stress (GPa), ε n represents the nominal strain (%), and EL represents the elongation at break (%).

Figure 0006928597
Figure 0006928597

(I)銅合金板材の組成
まず、本発明の銅合金板材の組成を限定した理由について説明する。
本発明の銅合金板材は、NiおよびCoの1種以上を合計で1.0〜5.0質量%、ならびにSiを0.1〜1.5質量%含有させたものである。
(I) Composition of Copper Alloy Plate First, the reason for limiting the composition of the copper alloy plate of the present invention will be described.
The copper alloy plate material of the present invention contains one or more of Ni and Co in a total amount of 1.0 to 5.0% by mass and Si in an amount of 0.1 to 1.5% by mass.

<NiおよびCoの1種以上を合計で1.0〜5.0質量%>
Ni(ニッケル)およびCo(コバルト)は、銅合金板材の強度を高めるために必要な元素であり、NiおよびCoの1種以上を合計で1.0〜5.0質量%含有することが必要である。NiおよびCoの1種以上の合計含有量が1.0質量%未満だと、材料強度が低下し、絞り加工によって製造される絞り加工品であるシールドケース等の電子部品に必要な強度が得られない。また、NiおよびCoの1種以上の合計含有量が5.0質量%よりも多いと、後述する溶体化熱処理[工程6]において、NiやCoが固溶しきれずに第二相として金属組織(マトリックス)中に残存するようになり、その後に行なう、後述する中間熱処理[工程7]において、発現するはずの強度向上には寄与しないばかりか、地金コストの上昇を招くことになるからである。このため、NiおよびCoの1種以上の合計含有量は1.0〜5.0質量%の範囲とする。
<A total of 1.0 to 5.0% by mass of one or more of Ni and Co>
Ni (nickel) and Co (cobalt) are elements necessary to increase the strength of the copper alloy plate material, and it is necessary to contain at least one of Ni and Co in a total of 1.0 to 5.0% by mass. Is. If the total content of one or more of Ni and Co is less than 1.0% by mass, the material strength decreases, and the strength required for electronic parts such as shield cases, which are drawn products manufactured by drawing, is obtained. I can't. Further, when the total content of one or more of Ni and Co is more than 5.0% by mass, Ni and Co cannot be completely dissolved in the solution heat treatment [step 6] described later, and the metal structure is formed as the second phase. This is because it remains in the (matrix) and does not contribute to the improvement of the strength that should be exhibited in the intermediate heat treatment [step 7] described later, and also causes an increase in the metal cost. be. Therefore, the total content of one or more of Ni and Co is in the range of 1.0 to 5.0% by mass.

<Si:0.1〜1.5質量%>
Si(ケイ素)は、NiやCoと化合物を形成し、銅合金板材の強度を高めるために必要な元素であり、Siを0.1〜1.5質量%含有させることが必要である。Si含有量が0.1質量%未満だと、NiやCoとともに形成する化合物量が低下し、材料強度が低下するからである。また、Si含有量が1.5質量%よりも多いと、銅合金板材の熱伝導率が低下して放熱性が悪くなるからである。このため、Si含有量は0.1〜1.5質量%の範囲とする。
<Si: 0.1 to 1.5% by mass>
Si (silicon) is an element necessary for forming a compound with Ni and Co and increasing the strength of the copper alloy plate material, and it is necessary to contain Si in an amount of 0.1 to 1.5% by mass. This is because if the Si content is less than 0.1% by mass, the amount of the compound formed together with Ni and Co decreases, and the material strength decreases. Further, if the Si content is more than 1.5% by mass, the thermal conductivity of the copper alloy plate material is lowered and the heat dissipation property is deteriorated. Therefore, the Si content is in the range of 0.1 to 1.5% by mass.

本発明の銅合金板材は、NiおよびCoの1種以上の成分とSiを必須の基本含有成分とするが、さらに、任意の副添加成分として、さらに、Sn、Mg、Mn、Cr、Zr、Ti、FeおよびZnからなる群から選ばれる少なくとも1種の成分を、合計で0.2〜1.2質量%以下含有することができる。これらの成分はいずれも、材料強度を向上させる効果を有する成分であり、かかる効果を発揮するには、これらの成分の合計含有量を0.2質量%以上とすることが好ましい。また、これらの成分の合計含有量が1.2質量%を超えると、導電率が低下する傾向があることから、上記成分の合計含有量は0.2〜1.2質量%の範囲とすることが好ましく、特に0.5質量%〜1.0質量%がより好ましい。 The copper alloy plate material of the present invention contains one or more components of Ni and Co and Si as essential basic components, but further, as optional sub-additive components, Sn, Mg, Mn, Cr, Zr, At least one component selected from the group consisting of Ti, Fe and Zn can be contained in an amount of 0.2 to 1.2% by mass or less in total. All of these components are components having an effect of improving the material strength, and in order to exert such an effect, the total content of these components is preferably 0.2% by mass or more. Further, when the total content of these components exceeds 1.2% by mass, the conductivity tends to decrease. Therefore, the total content of the above components is set in the range of 0.2 to 1.2% by mass. It is preferable, and 0.5% by mass to 1.0% by mass is more preferable.

<Sn:0.1〜0.45質量%>
Sn(スズ)は、銅合金を固溶強化する効果が高い元素であり、0.1質量%以上添加することが好ましいが、0.45質量%よりも添加量が多くなると、導電率を低下させる傾向がある。このため、Si添加量は、0.1〜0.45質量%の範囲とすることが好ましい。
<Sn: 0.1 to 0.45% by mass>
Sn (tin) is an element having a high effect of solid solution strengthening the copper alloy, and it is preferable to add 0.1% by mass or more, but when the addition amount is larger than 0.45% by mass, the conductivity decreases. Tends to let. Therefore, the amount of Si added is preferably in the range of 0.1 to 0.45% by mass.

<Mg:0.1〜0.25質量%>
Mg(マグネシウム)は、銅合金を固溶強化する効果が高い元素であり、0.1質量%以上添加することが好ましいが、0.25質量%よりも添加量が多くなると、導電率を低下させる傾向がある。このため、Mg添加量は、0.1〜0.25質量%の範囲とすることが好ましい。
<Mg: 0.1 to 0.25% by mass>
Mg (magnesium) is an element having a high effect of solidifying and strengthening a copper alloy, and it is preferable to add 0.1% by mass or more, but if the amount added is more than 0.25% by mass, the conductivity decreases. Tends to let. Therefore, the amount of Mg added is preferably in the range of 0.1 to 0.25% by mass.

<Mn:0.1〜0.2質量%>
Mn(マンガン)は、銅合金を固溶強化する効果と熱間加工性を向上させる効果を有する元素であり、0.1質量%以上添加することが好ましいが、0.2質量%よりも添加量が多くなると、導電率を低下させる傾向がある。このため、Mn添加量は、0.1〜0.2質量%の範囲とすることが好ましい。
<Mn: 0.1 to 0.2% by mass>
Mn (manganese) is an element having an effect of solidifying and forging a copper alloy and an effect of improving hot workability, and is preferably added in an amount of 0.1% by mass or more, but more than 0.2% by mass. As the amount increases, the conductivity tends to decrease. Therefore, the amount of Mn added is preferably in the range of 0.1 to 0.2% by mass.

<Cr:0.1〜0.25質量%>
Cr(クロム)は、クロムとシリコンを含有する第二相化合物を形成し、その化合物により溶体化熱処理工程における結晶粒径の粗大化を抑制することで、材料を強化する効果があり、0.1質量%以上の添加が望ましいが、0.25質量%よりも添加量が多いと、鋳造時に粗大な晶出物を形成してプレス加工時の破断の起点に成りやすい。このため、Cr添加量は、0.1〜0.25質量%の範囲とすることが好ましい。
<Cr: 0.1 to 0.25% by mass>
Cr (chromium) has the effect of strengthening the material by forming a second-phase compound containing chromium and silicon, and suppressing the coarsening of the crystal grain size in the solution heat treatment step by the compound. It is desirable to add 1% by mass or more, but if the amount added is more than 0.25% by mass, coarse crystals are formed during casting and easily become a starting point of breakage during press working. Therefore, the amount of Cr added is preferably in the range of 0.1 to 0.25% by mass.

<Zr:0.05〜 0.15質量%>
Zr(ジルコニウム)は、材料中に固溶し、材料の再結晶温度を上昇させることで溶体化熱処理における再結晶粒の成長を抑制する効果を有する元素であり、0.05質量%以上の添加が望ましいが、0.15質量%よりも添加量が多いと、鋳造時に粗大な晶出物を生じてプレス加工時の破断の起点になりやすい。このため、Zr添加量は、0.05〜0.15質量%の範囲とすることが好ましい。
<Zr: 0.05 to 0.15% by mass>
Zr (zirconium) is an element that dissolves in the material and has the effect of suppressing the growth of recrystallized grains in the solution heat treatment by raising the recrystallization temperature of the material, and is added in an amount of 0.05% by mass or more. However, if the amount added is more than 0.15% by mass, coarse crystallization is generated during casting and tends to be a starting point of breakage during press working. Therefore, the amount of Zr added is preferably in the range of 0.05 to 0.15% by mass.

<Ti:0.02〜0.1質量%>
Ti(チタン)は、材料中に固溶し、材料の再結晶温度を上昇させることで溶体化熱処理における再結晶粒の成長を抑制する効果を有する元素であり、0.02質量%以上の添加が望ましいが、0.1質量%よりも添加量が多いと、導電率を低下させる傾向がある。このため、Ti添加量は、0.02〜0.1質量%の範囲とすることが好ましい。
<Ti: 0.02 to 0.1% by mass>
Ti (titanium) is an element that dissolves in the material and has the effect of suppressing the growth of recrystallized grains in the solution heat treatment by raising the recrystallization temperature of the material, and is added in an amount of 0.02% by mass or more. However, if the amount added is more than 0.1% by mass, the conductivity tends to decrease. Therefore, the amount of Ti added is preferably in the range of 0.02 to 0.1% by mass.

<Fe:0.05〜0.1質量%>
Fe(鉄)は、銅合金を固溶強化する効果が高い元素であり、0.05質量%以上の添加が望ましいが、0.1質量%よりも添加量が多いと、導電率を低下させる傾向がある。このため、Fe添加量は、0.05〜0.1質量%の範囲とすることが好ましい。
<Fe: 0.05 to 0.1% by mass>
Fe (iron) is an element having a high effect of solid solution strengthening a copper alloy, and it is desirable to add 0.05% by mass or more, but if the amount added is more than 0.1% by mass, the conductivity is lowered. Tend. Therefore, the amount of Fe added is preferably in the range of 0.05 to 0.1% by mass.

<Zn:0.2〜0.6質量%>
Zn(亜鉛)は、、曲げ加工性を改善するとともに、Snめっきやはんだめっきの密着性やマイグレーション特性を改善する作用を有する元素である。かかる作用を発揮させる場合には、Zn含有量を0.2質量%以上とすることが好ましい。しかしながら、Zn含有量が0.6質量%を超えると、導電性の低下により、十分な放熱性が得られなくおそれがある。このため、Zn添加量は、0.2〜0.6質量%の範囲とすることが好ましい。
<Zn: 0.2 to 0.6% by mass>
Zn (zinc) is an element having an action of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating. In order to exert such an action, the Zn content is preferably 0.2% by mass or more. However, if the Zn content exceeds 0.6% by mass, sufficient heat dissipation may not be obtained due to a decrease in conductivity. Therefore, the amount of Zn added is preferably in the range of 0.2 to 0.6% by mass.

<残部:Cuおよび不可避不純物>
上述した成分以外の残部は、Cu(銅)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を考慮して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Bi、Se、As、Ag等が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.03質量%、上記成分の総量で0.10質量%とすればよい。
<Remaining: Cu and unavoidable impurities>
The rest other than the components mentioned above are Cu (copper) and unavoidable impurities. The unavoidable impurities referred to here mean impurities at a content level that can be unavoidably contained in the manufacturing process. Since the unavoidable impurities can be a factor of lowering the conductivity depending on the content, it is preferable to suppress the content of the unavoidable impurities to some extent in consideration of the lowering of the conductivity. Examples of the components listed as unavoidable impurities include Bi, Se, As, Ag and the like. The upper limit of the content of these components may be 0.03% by mass for each of the above components and 0.10% by mass for the total amount of the above components.

(II)導電率
本発明の銅合金板材は、導電率が38%IACS以上であることが必要である。熱伝導率は、ウィーデマン・フランツの法則(Wiedemann-Franz law)によって、導電率から算出することができ、温度が一定であれば、金属の種類に依らず、導電率と比例関係にあることが知られている。このため、本発明の銅合金板材は、導電率を38%IACS以上とすることによって、高い熱伝導率を有することができる結果、優れた熱伝導性を有することができる。導電率は、例えば端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出することができる。
(II) Conductivity The copper alloy plate material of the present invention needs to have a conductivity of 38% IACS or more. Thermal conductivity can be calculated from conductivity according to the Wiedemann-Franz law, and if the temperature is constant, it may be proportional to conductivity regardless of the type of metal. Are known. Therefore, the copper alloy plate material of the present invention can have high thermal conductivity by setting the conductivity to 38% IACS or more, and as a result, can have excellent thermal conductivity. The resistivity can be calculated by measuring the specific resistance by the four-terminal method in a constant temperature bath kept at 20 ° C. (± 0.5 ° C.), for example, when the distance between terminals is 100 mm.

(III)算術平均値Aave.が、4.0〜13.0GPa・%の範囲であること
本発明の銅合金板材は、算術平均値Aave.が、4.0〜13.0GPa・%の範囲であることが必要である。算術平均値Aave.は、圧延平行方向、圧延方向に対し45°の方向(単に「45°方向」という場合がある。)、および圧延垂直方向(単に「90°方向」という場合がある。)の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線から求められる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される。
(III) Arithmetic mean value Aave. Is in the range of 4.0 to 13.0 GPa ·% The copper alloy plate material of the present invention has an arithmetic mean value Aave. In the range of 4.0 to 13.0 GPa ·%. It is necessary to be. The arithmetic mean value Aave. Is the direction parallel to rolling, the direction 45 ° with respect to the rolling direction (sometimes simply referred to as "45 ° direction"), and the vertical direction of rolling (sometimes simply referred to as "90 ° direction"). The values obtained from the nominal stress-nominal strain curve obtained by performing a tensile test on the three types of test pieces cut out in each of the above directions, and the Cube azimuth area obtained by the electron backscattering diffraction (EBSD) method. By substituting the value of the rate into the following equation (1), the values A 0 ° , A 45 ° and A 90 ° in each direction of the parameters Ax (x: 0 °, 45 °, 90 °) were obtained and obtained. It is calculated by substituting the values A 0 ° , A 45 ° and A 90 ° in each direction into the following equation (2).

Figure 0006928597
但し、S:Cube方位面積率(%)、σは公称応力(GPa)、εは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure 0006928597
However, Sc : Cube azimuth area ratio (%), σ n represents the nominal stress (GPa), ε n represents the nominal strain (%), and EL represents the elongation at break (%).

Figure 0006928597
Figure 0006928597

本発明者らは、パラメータAave.が、材料との絞り加工性によく相関するという知見を、本発明に至るまでの実験により得た。従来より、銅および銅合金における結晶方位の中で、特にCube方位が集積すると、材料の絞り加工性を低下させることは知られていた。しかしながら、Cube方位の集積度と絞り加工性の定量的な相関およびCube方位の集積度を用いた絞り加工性の定量的な評価は行われていない。そもそも、析出強化型銅合金、例えば本発明の成分系のようなCu−Ni−Si系およびCu−Co−Si系合金は、従来より絞り加工に用いられる銅および銅合金、例えば純銅や黄銅、洋白といった純金属や固溶強化型と比べて、材料成分以外に製造プロセス、例えば第二相化合物のサイズや存在密度、存在割合等の制御工程や圧延工程が材料の機械的特性に及ぼす影響は非常に大きいこと、さらには複数の材料特性が相互に影響し合うため、同時に変動する、例えば第二相化合物の存在割合と材料強度が同時に変動するなどにより、単一の材料特性の絞り加工性への影響を抽出できない点が析出強化型合金の絞り加工性を向上させることと絞り加工性の評価を難しくさせていた。 The present inventors have obtained the finding that the parameter Aave. Correlates well with the drawability with the material through experiments leading up to the present invention. Conventionally, it has been known that among the crystal orientations of copper and copper alloys, when the Cube orientation is accumulated, the drawability of the material is lowered. However, the quantitative correlation between the degree of integration of the Cube orientation and the drawability and the quantitative evaluation of the drawability using the degree of integration of the Cube orientation have not been performed. In the first place, precipitation-hardened copper alloys, for example, Cu-Ni-Si-based and Cu-Co-Si-based alloys such as the component system of the present invention, are copper and copper alloys conventionally used for drawing, such as pure copper and brass. Compared to pure metals such as Western white and solid solution strengthened types, the effects of manufacturing processes such as the size, abundance density, and abundance ratio of second-phase compounds and rolling processes on the mechanical properties of materials in addition to the material components. Is very large, and because multiple material properties affect each other, it fluctuates at the same time, for example, the abundance ratio of the second phase compound and the material strength fluctuate at the same time. The fact that the influence on the properties cannot be extracted has made it difficult to improve the draw workability of the precipitation-hardened alloy and to evaluate the draw workability.

そこで本発明者らは、(2)式により、絞り加工性が析出強化型合金でよく評価できること、さらには(2)式と絞り加工性の相関があることを見出し、従来よりも絞り加工性が向上した析出強化型合金を発明するに至った。 Therefore, the present inventors have found that the draw workability can be evaluated well by the precipitation-strengthening alloy according to the equation (2), and that there is a correlation between the draw workability and the equation (2). Has led to the invention of a precipitation-strengthening alloy with improved results.

(1)式では、絞り加工性に悪影響を及ぼすCube方位の集積度をパラメータAxに対して負の相関となるように表現し、公称応力−公称歪曲線の積分値は、大きいほど絞り加工性に良い影響を及ぼすため、正の相関となるように表現した。図1は、本発明の一の実施形態に従う銅合金板材から、圧延平行方向に切り出した試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線を例として示した図である。 In equation (1), the degree of integration of the Cube orientation, which adversely affects drawability, is expressed so as to have a negative correlation with respect to the parameter Ax, and the larger the integral value of the nominal stress-nominal strain curve, the better the drawability. Since it has a positive effect on, it is expressed so as to have a positive correlation. FIG. 1 is a diagram showing, for example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out in a rolling parallel direction from a copper alloy plate material according to an embodiment of the present invention. ..

さらに、(1)式から求めた3方向のパラメータA0°、A45°およびA90°を(2)式に代入して算出した算術平均値Aave.が、絞り加工性とよく相関するパラメータであることを見出した。この相関を得たことにより、絞り加工性を(2)式により評価することが可能になった。 Furthermore, the arithmetic mean value Aave. Calculated by substituting the parameters A 0 ° , A 45 ° and A 90 ° in the three directions obtained from Eq. (1) into Eq. (2) is a parameter that correlates well with drawability. I found that. By obtaining this correlation, it became possible to evaluate the drawability by equation (2).

ここで、算術平均値Aave.は、4.0GPa・%未満の場合では、特に厳しい深絞り加工条件だと、満足レベルの絞り加工性が得られず、また、13.0GPa・%より大きい場合では、材料の伸びが大きくなって、相反する特性である強度が十分に得られなくなる。このため、本発明では、算術平均値Aave.は4.0〜13.0GPa・%の範囲とする。 Here, when the arithmetic mean value Aave. Is less than 4.0 GPa ·%, a satisfactory level of drawability cannot be obtained under particularly severe deep drawing conditions, and when it is larger than 13.0 GPa ·%. Then, the elongation of the material becomes large, and the strength, which is a contradictory property, cannot be sufficiently obtained. Therefore, in the present invention, the arithmetic mean value Aave. Is in the range of 4.0 to 13.0 GPa ·%.

パラメータAxを算出するために用いる公称応力−公称歪曲線から求めた積分値は、圧延平行方向、45°方向および90°方向の各方向にそれぞれ切り出した3種類のJIS
Z2241の13B号の試験片を、JIS Z2241に準じて各9本(n=9)ずつ用意して測定し、最も破断伸びが大きかった場合を1番目とするとき、破断伸びが5番目に大きかった試験片を用いて測定されたときの公称応力−公称歪曲線を用いて求めることとし、式(1)に示される積分値は、前述で得られた公称応力−公称歪曲線のプロットから台形近似により得られる面積から算出することができる。なお、公称応力は、例えば、公称歪が0.001%以上0.300%以下毎に測定すればよい。
The integral value obtained from the nominal stress-nominal strain curve used to calculate the parameter Ax is three types of JIS cut out in each of the rolling parallel direction, 45 ° direction, and 90 ° direction.
Nine (n = 9) test pieces of Z2241 No. 13B were prepared and measured according to JIS Z2241, and when the case with the largest breaking elongation was the first, the breaking elongation was the fifth largest. It is determined using the nominal stress-nominal strain curve when measured using the test piece, and the integrated value shown in Eq. (1) is trapezoidal from the plot of the nominal stress-nominal strain curve obtained above. It can be calculated from the area obtained by approximation. The nominal stress may be measured, for example, every time the nominal strain is 0.001% or more and 0.300% or less.

また、パラメータAxを算出するために用いるCube方位面積率(%)は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、商品名:JSM−7001FA)に付属するEBSD検出器を用いて連続して測定された結晶方位データから解析ソフト(TSL社製、商品名:OIM−Analysis)を用いて算出することができる。ここで、「EBSD」とは、Electron BackScatter Diffractionの略で、走査型電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことであり、また、「OIM−Analysis」とは、EBSDにより測定されたデータの解析ソフトである。 The Cube azimuth area ratio (%) used to calculate the parameter Ax is continuously obtained by using the EBSD detector attached to the high-resolution scanning analysis electron microscope (manufactured by JEOL Ltd., trade name: JSM-7001FA). It can be calculated from the crystal orientation data measured by using analysis software (manufactured by TSL, trade name: OIM-Anysis). Here, "EBSD" is an abbreviation for Electron Backscatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction generated when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). Yes, and "OIM-Anallysis" is an analysis software for data measured by EBSD.

よって、パラメータAxの各方向の値A0°、A45°およびA90°は、上述した方法によって算出した積分値とCube方位面積率(%)を上記(1)式に代入することによって、パラメータAxの各方向の値A0°、A45°およびA90°を算出することができ、算術平均値Aave.は、算出したA0°、A45°およびA90°を(2)式に代入することによって算出することができる。 Therefore, the values A 0 ° , A 45 °, and A 90 ° in each direction of the parameter Ax are obtained by substituting the integral value calculated by the above method and the Cube azimuth area ratio (%) into the above equation (1). The values A 0 ° , A 45 ° and A 90 ° in each direction of the parameter Ax can be calculated, and the arithmetic mean value Aave. Is the calculated A 0 ° , A 45 ° and A 90 ° in Eq. (2). It can be calculated by substituting into.

絞り加工性は、深絞り試験機(例えばエリクセン社製薄板成形試験機)10により、図3に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部をパンチ14で押し込んでいき、円筒型カップを成形した。割れが生じることなく円筒型カップを成形できる最小のポンチコーナー半径Rとそのときに円筒型カップの縁のうねりの最大谷深さと最大山高さの差を考慮して評価した。また、張り出し試験(エリクセン試験)により貫通割れが発生するまでのパンチの移動距離(くぼみの深さ)の値、すなわち、エリクセン値Erを測定し、このエリクセン値Erの他、試験板材Wの厚さ(mm)、圧延方向に引っ張ったときの破断伸び(%)、結果を考慮して、総合的に評価した。 The drawability is determined after the edge of the test plate material W is tightened between the die 12 and the wrinkle pressing member 16 by a deep drawing tester (for example, a thin plate forming tester manufactured by Ericssen) 10 as shown in FIG. , The central portion of the test plate material W was pushed in with the punch 14 to form a cylindrical cup. The evaluation was made in consideration of the minimum punch corner radius R capable of forming the cylindrical cup without cracking and the difference between the maximum valley depth and the maximum peak height of the swell of the edge of the cylindrical cup at that time. Further, the value of the moving distance (depth of the dent) of the punch until the through crack occurs by the overhang test (Eriksen test), that is, the Eriksen value Er is measured, and in addition to this Eriksen value Er, the thickness of the test plate material W. Comprehensive evaluation was made in consideration of the value (mm), the elongation at break (%) when pulled in the rolling direction, and the result.

(IV)パラメータBx(x:0°、45°、90°)の各方向の値B0°、B45°およびB90が、いずれも10%以下となること
本発明の銅合金板材は、前記算術平均値Aave.および前記パラメータAxの値を下記(3)式に代入して算出されるパラメータBx(x:0°、45°、90°)の前記各方向の値が、いずれも10%以下となることが好ましい。
(IV) The values B 0 ° , B 45 ° and B 90 in each direction of the parameter Bx (x: 0 °, 45 °, 90 °) shall be 10% or less, respectively. The values of the parameter Bx (x: 0 °, 45 °, 90 °) calculated by substituting the arithmetic mean value Aave. And the value of the parameter Ax into the following equation (3) are 10 in each of the above directions. It is preferably% or less.

Figure 0006928597
Figure 0006928597

上記(3)式で定義されるパラメータBxの各方向の値B0°、B45°およびB90が、それぞれ10%以下と小さくなるように制御することで、絞り加工後の縁のうねりを安定して小さくすることができ、形状が均一になって、絞り加工性を撚り一層向上させることができる。パラメータBxのいずれかの方向の値B0°、B45°、B90が10%より大きくなると、絞り加工品の製造における歩留まりが低下する傾向があることから、パラメータBxの各方向の値B0°、B45°およびB90は、いずれも10%以下となることが好ましい。 By controlling the values B 0 ° , B 45 ° and B 90 of the parameter Bx defined in the above equation (3) in each direction to be as small as 10% or less, the undulation of the edge after drawing can be reduced. It can be stably reduced in size, the shape becomes uniform, and the drawability can be further improved by twisting. When the values B 0 ° , B 45 ° , and B 90 in any direction of the parameter Bx are larger than 10%, the yield in the production of the drawn product tends to decrease. Therefore, the value B in each direction of the parameter Bx It is preferable that 0 ° , B 45 ° and B 90 are all 10% or less.

パラメータBxは、上述のように、算出したパラメータAxと算術平均値Aave.を式(3)に代入することによって算出することができる。 The parameter Bx can be calculated by substituting the calculated parameter Ax and the arithmetic mean value Aave. In the equation (3) as described above.

(V)エリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たすこと
本発明の銅合金板材は、エリクセン試験におけるエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たすことが好ましい。
(V) The ratio of the Elixin value (Er) to the plate thickness (t) (Er / t ratio) and the breaking elongation EL (%) when pulled in the rolling parallel direction are related to the inequality of the following equation (4). The copper alloy plate material of the present invention has the ratio (Er / t ratio) of the Ericsen value (Er) to the plate thickness (t) in the Elixin test and the breaking elongation EL (%) when pulled in the rolling parallel direction. Satisfies the relation of the inequality of the following equation (4).

Figure 0006928597
Figure 0006928597

本発明者らは、さらにエリクセン試験によって得られたエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)が、絞り加工性に及ぼす影響について検討を行なった。図2は、エリクセン値(Er)の板厚(t)に対する比(Er/t比)を縦軸にとり、圧延平行方向に引っ張ったときの破断伸びEL(%)を横軸にとり、表1に示す実施例と比較例についてプロットしたものである。図2に示す結果から、一次関数:Er/t=1.5ELを境にして、全ての実施例が上側領域にあるとともに、全ての比較例は下側領域にあることがわかる。このため、本発明では、上記(4)式を満たすことによって、優れた絞り加工性を有する銅合金板材であるかを判別することができる。 The present inventors further determine the ratio (Er / t ratio) of the Eriksen value (Er) obtained by the Eriksen test to the plate thickness (t) and the breaking elongation EL (%) when pulled in the rolling parallel direction. The effect on drawability was investigated. In FIG. 2, the ratio (Er / t ratio) of the Elixin value (Er) to the plate thickness (t) is taken on the vertical axis, and the breaking elongation EL (%) when pulled in the rolling parallel direction is taken on the horizontal axis. It is a plot of the example shown and the comparative example. From the results shown in FIG. 2, it can be seen that all the examples are in the upper region and all the comparative examples are in the lower region with the linear function: Er / t = 1.5EL as a boundary. Therefore, in the present invention, it is possible to determine whether the copper alloy plate material has excellent drawability by satisfying the above equation (4).

エリクセン値(Er値)は、エリクセン試験機により、図4に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部を、先端が半球状のパンチ14Aで押し込んでいき、貫通割れが発生するまでのパンチの移動距離(くぼみの深さ)の値を測定し、その測定した値とした。 As shown in FIG. 4, the Eriksen value (Er value) is determined by tightening the edge portion of the test plate material W between the die 12 and the wrinkle pressing member 16 by the Eriksen tester, and then the central portion of the test plate material W. The value of the moving distance (depth of the dent) of the punch until the tip was pushed in by the hemispherical punch 14A and the through crack occurred was measured, and the value was used as the measured value.

(VI)本発明の一実施例による銅合金板材の製造方法
上述した銅合金板材は、合金組成や製造プロセスを組み合わせて制御することにより、実現できる。以下、本発明の銅合金板材の好適な製造方法について説明する。
(VI) Method for Producing Copper Alloy Plate Material According to One Example of the Present Invention The above-mentioned copper alloy plate material can be realized by controlling the alloy composition and the production process in combination. Hereinafter, a suitable manufacturing method for the copper alloy plate material of the present invention will be described.

このような本発明の一実施例による銅合金板材は、上述した銅合金板材の組成と同様の組成を有する銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施すことによって製造されるが、特に仕上げ冷間圧延工程から調質焼鈍工程までの一連の工程の適正化を図ることによって、より具体的には、仕上げ冷間圧延[工程8]における圧延時の材料の最大温度Tを、75℃以上100℃以下に制御し、矯正[工程9]における材料の伸び率δを、0.1〜1.0%とし、そして、調質焼鈍[工程10]の材料温度T(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することによって、特に放熱性を損なうことなく、厳しい絞り加工条件であったとしても、優れた絞り加工性を有する銅合金板材を製造することができる。 Such a copper alloy plate material according to an embodiment of the present invention is obtained by casting [step 1], homogenizing treatment [step 2], and hot rolling on a copper alloy material having the same composition as the above-mentioned copper alloy plate material. [Step 3], Face milling [Step 4], Cold rolling [Step 5], Solution heat treatment [Step 6], Intermediate heat treatment [Step 7], Finish cold rolling [Step 8], Straightening [Step 9], It is manufactured by sequentially performing tempering and annealing [step 10], and more specifically, by optimizing a series of processes from the finish cold rolling process to the tempering and annealing process, more specifically, finish cooling. the maximum temperature T R of the rolling time of the material during rolling [step 8], and controls the 75 ° C. or higher 100 ° C. or less, correct the elongation of the material δ in [step 9], and 0.1% to 1.0% and temper annealing the material temperature T a [step 10] C.), by controlling so as to satisfy the relation of inequality shown in the following formula (5) in relation to the elongation [delta], in particular heat radiation It is possible to produce a copper alloy plate material having excellent drawing workability even under severe drawing conditions without impairing the above.

55×δ+450≧T≧55×δ+350 ・・・(5) 55 × δ + 450 ≧ T A ≧ 55 × δ + 350 ··· (5)

(i)鋳造工程[工程1]
鋳造工程は、大気下で高周波溶解炉により表1に示す合金成分を溶解し、これを鋳造することによって所定形状(例えば厚さ30mm、幅100mm、長さ150mm)の鋳塊を製造する。
(I) Casting process [Step 1]
In the casting step, the alloy components shown in Table 1 are melted in an air by a high-frequency melting furnace, and the alloy components are cast to produce an ingot having a predetermined shape (for example, thickness 30 mm, width 100 mm, length 150 mm).

(ii)均質化処理工程[工程2]
均質化処理工程は、不活性ガス雰囲気中で所定温度(例えば1000℃)に1時間加熱し均質化熱処理[工程2]を施した。
(Ii) Homogenization treatment step [Step 2]
In the homogenization treatment step, the homogenization heat treatment [step 2] was performed by heating to a predetermined temperature (for example, 1000 ° C.) for 1 hour in an atmosphere of an inert gas.

(iii)熱間圧延工程[工程3]
熱間圧延工程は、均質化熱処理の直後に施し、所定の板厚(例えば10mm)とした直後に冷却した。
(Iii) Hot rolling process [Step 3]
The hot rolling step was performed immediately after the homogenization heat treatment, and was cooled immediately after the plate thickness was adjusted to a predetermined value (for example, 10 mm).

(iv)面削工程[工程4]
面削工程は、熱延板の表面から所定の厚さ(例えば1mmから2mm程度)の面削を行い、酸化層を除去した。
(Iv) Surface cutting step [Step 4]
In the face-cutting step, the surface of the hot-rolled plate was face-cut to a predetermined thickness (for example, about 1 mm to 2 mm) to remove the oxide layer.

(v)冷間圧延工程[工程5]
冷間圧延工程で1〜0.25mmまで冷間圧延を施した。
(V) Cold rolling process [Step 5]
In the cold rolling step, cold rolling was performed from 1 to 0.25 mm.

(vi)溶体化熱処理工程[工程6]
溶体化熱処理工程は、所定の昇温速度(例えば、5秒から10秒かけて900℃から990℃)で昇温し、1秒から1時間保持後、250℃/sから500℃/sの速度で冷却した。
(Vi) Solution heat treatment step [Step 6]
In the solution heat treatment step, the temperature is raised at a predetermined heating rate (for example, 900 ° C. to 990 ° C. over 5 seconds to 10 seconds), held for 1 second to 1 hour, and then 250 ° C./s to 500 ° C./s. Cooled at speed.

(vii)中間熱処理工程[工程7]
中間熱処理工程は、所定の温度(例えば300℃から600℃)で10秒から10時間熱処理を行った。
(Vii) Intermediate heat treatment step [Step 7]
In the intermediate heat treatment step, heat treatment was performed at a predetermined temperature (for example, 300 ° C. to 600 ° C.) for 10 seconds to 10 hours.

(viii)仕上げ冷間圧延工程[工程8]
仕上げ冷間圧延工程は、目的の板厚への加工、材料強度の向上、結晶方位の制御を主な目的に行う工程であって、圧延時の材料の最大温度Tを75℃以上100℃以下に制御することが必要である。圧延時の材料の最大温度Tが75℃以上にすることによって、圧延による結晶回転が促進され、絞り加工性に悪影響を及ぼすCube方位粒の面積率が減少しやすくなる。しかし、圧延時の材料の最大温度Tが100℃よりも温度が高くなると、圧延加工に用いる潤滑油の粘性が低下することで、焼き付きなどの圧延不良により板材の表面粗さが局所的に高くなることで破断の起点となるなど、絞り加工性の劣化を起こす可能性が高くなる。このため、圧延時の材料の最大温度Tは、75℃以上100℃以下とする。
(Viii) Finishing cold rolling process [Step 8]
Finish cold rolling step, the processing of the plate thickness of the object, the improvement of material strength, comprising the steps of performing the main purpose of controlling the crystal orientation, the maximum temperature T R of 75 ° C. or higher 100 ° C. rolling time of the material It is necessary to control the following. By maximum temperature T R of the rolling when the material is above 75 ° C., crystal rotation is promoted by rolling, the area ratio of the negative impact Cube orientation grains drawability is likely to decrease. However, the maximum temperature T R of the rolling time of the material becomes higher temperature than is 100 ° C., the rolling viscous processed into lubricating oil used is that decreased, it burns like rolling defects by a surface roughness of the plate material locally in The higher the value, the more likely it is that the drawability will deteriorate, such as becoming the starting point of breakage. Therefore, the maximum temperature T R of the rolling time of the material shall be 75 ° C. or higher 100 ° C. or less.

(ix)矯正工程[工程9]
矯正工程は、材料の残留応力を除去・均一化することを目的として行なう工程であって、テンションレベラーによる矯正の際の材料の伸び率δを0.1〜1.0%の範囲とすることが必要である。前記伸び率δが0.1%未満だと、残留応力の除去・均一化効果が小さく、絞り加工後の形状均一性が低下する。また、前記伸び率δが1.0%より大きいと、テンションレベラーの繰り返し曲げによる加工歪が大きくなって、絞り加工時に割れの生じないパンチ先端のコーナー半径を小さくすることができず、厳しい絞り加工条件での絞り加工性が低下する。このため、矯正工程における材料の伸び率δは、0.1〜1.0%の範囲とする。
(Ix) Correction step [Step 9]
The straightening step is a step performed for the purpose of removing and homogenizing the residual stress of the material, and the elongation rate δ of the material at the time of straightening by the tension leveler is in the range of 0.1 to 1.0%. is required. If the elongation rate δ is less than 0.1%, the effect of removing and homogenizing the residual stress is small, and the shape uniformity after drawing is lowered. Further, if the elongation rate δ is larger than 1.0%, the machining strain due to repeated bending of the tension leveler becomes large, and the corner radius of the punch tip that does not crack during drawing cannot be reduced, resulting in severe drawing. The drawability under processing conditions is reduced. Therefore, the elongation rate δ of the material in the straightening step is in the range of 0.1 to 1.0%.

(x)調質焼鈍工程[工程10]
調質焼鈍工程は、材料の伸びを回復させること、さらに伸びを含めて機械的特性の異方性を低減するための工程であって、調質焼鈍[工程10]の材料温度T(℃)を、矯正工程における材料の伸び率δ(%)との関係で、(5)式に示す不等式の関係を満たすように制御することが必要である。
(X) Tempering and annealing step [Step 10]
Temper annealing step, to restore the elongation of the material, a process for reducing the anisotropy of mechanical properties further include elongation, the material temperature T A (° C. temper annealing [step 10] ) Is required to be controlled so as to satisfy the relationship of the inequality shown in Eq. (5) in relation to the elongation rate δ (%) of the material in the straightening step.

55×δ+450≧T≧55×δ+350 ・・・(5) 55 × δ + 450 ≧ T A ≧ 55 × δ + 350 ··· (5)

調質焼鈍工程における材料温度Tを(5)式に従って制御することにより、絞り加工性が向上する。調質焼鈍工程により、矯正工程までの一連の工程で導入された転位を回復させることで、材料のパラメータである算術平均値Aave.と、エリクセン値Erとが大きくなる。調質焼鈍工程における材料温度Tが、(5)式での下限値を下回ると、圧延による転位の回復(すなわち加工歪の除去)が十分ではなくなる。また、調質焼鈍工程における材料温度Tが、(5)式での上限値を上回ると、NiもしくはCoとSiの化合物の析出量が増加し、これに伴って、材料強度が低下する。このため、調質焼鈍[工程10]の材料温度T(℃)は、矯正工程における材料の伸び率δ(%)との関係で、(5)式に示す不等式の関係を満たすようにする。 By controlling in accordance with the material temperature T A (5) formula in the temper annealing step, drawing is improved. By recovering the dislocations introduced in the series of steps up to the straightening step by the tempering annealing step, the arithmetic mean value Aave., Which is a parameter of the material, and the Elixin value Er become large. Material temperature T A in the temper annealing step, (5) falls below the lower limit of the formula, the recovery of dislocations due to rolling (i.e. removal of working strain) is not sufficient. The material temperature T A in the temper annealing step, when the upper limit of the equation (5), increases the amount of precipitation of the compound of Ni or Co and Si, along with this, the material strength decreases. Therefore, the temper annealing [step 10] the material temperature T A (° C.), in relation to the elongation of the material in the straightening step [delta] (%), to satisfy the relation of inequality shown in (5) ..

(VII)銅合金板材の用途
本発明の銅合金材は、特に絞り加工を施して絞り加工品を作製するのに用いるのに好適であり、例えば、電気・電子部品用部材、電磁波シールド材および放熱部品に用いることができる。例えば、電気・電子部品用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、液晶補強板、液晶のシャーシ、有機ELディスプレイの補強板や、自動車車載用のコネクタ、シールドケース、シールドキャンなどを作製することができる。
(VII) Application of Copper Alloy Plate Material The copper alloy material of the present invention is particularly suitable for use in drawing and producing a drawn product, for example, a member for electric / electronic parts, an electromagnetic wave shielding material, and an electromagnetic wave shielding material. It can be used for heat dissipation parts. For example, connectors for electrical and electronic components, lead frames, relays, switches, sockets, shield cases, shield cans, liquid crystal reinforcing plates, liquid crystal chassis, reinforcing plates for organic EL displays, connectors for automobiles, shield cases, etc. Shield cans and the like can be manufactured.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present invention and the scope of claims, and varies within the scope of the present invention. Can be modified to.

次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, in order to further clarify the effect of the present invention, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples.

(実施例1〜15および比較例1〜11)
大気下で高周波溶解炉により、表1に示す組成を有する銅合金素材を溶解し、これを鋳造して厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。次に、不活性ガス雰囲気中にて1000℃で1時間加熱・保持する均質化熱処理を施した直後に、熱間圧延を施して、板厚10mmの熱延板とした直後に冷却した。次いで、面削、冷間圧延を順次施し、板厚を0.25〜1.0mmとした。その後、800〜990℃で溶体化熱処理を1分間施した直後に冷却し、300℃〜600℃で1時間の中間熱処理、。次いで、表3に示す材料の最大温度Tで仕上げ冷間圧延を0.1%から60%施した後、表3に示す伸び率δで矯正し、その後、表3に示す材料温度Tで調質焼鈍を施し、板厚が0.25〜0.3mmの銅合金板材を得た。なお、比較例11については、仕上げ冷間圧延時の材料の最大温度Tが高かったため、焼き付きにより板材表面の不良が生じたため、種々のパラメータの算出ができず、性能評価もできなかった。
(Examples 1 to 15 and Comparative Examples 1 to 11)
A copper alloy material having the composition shown in Table 1 was melted in an air by a high-frequency melting furnace, and this was cast to obtain an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm. Next, immediately after the homogenization heat treatment of heating and holding at 1000 ° C. for 1 hour in an inert gas atmosphere, hot rolling was performed to obtain a hot-rolled plate having a plate thickness of 10 mm, and immediately after cooling. Next, face milling and cold rolling were sequentially performed to adjust the plate thickness to 0.25 to 1.0 mm. Then, the solution heat treatment was performed at 800 to 990 ° C. for 1 minute, immediately cooled, and the intermediate heat treatment was performed at 300 ° C. to 600 ° C. for 1 hour. Then, after applying 60% finish cold rolling 0.1% at maximum temperature T R of the materials shown in Table 3, were corrected with elongation δ shown in Table 3, then, the material temperature T A shown in Table 3 A copper alloy plate having a plate thickness of 0.25 to 0.3 mm was obtained by tempering and annealing. In Comparative Example 11, since the maximum temperature T R of the material during finish cold rolling was high, since the failure of the sheet surface caused by seizure can not calculate various parameters, could not even performance evaluation.

[各種測定および評価方法]
上記実施例および比較例に係る銅合金板材を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。
[Various measurement and evaluation methods]
The characteristics shown below were evaluated using the copper alloy plate materials according to the above Examples and Comparative Examples. The evaluation conditions for each characteristic are as follows.

[1]銅合金板材の組成の測定方法
合金組成は、蛍光X線分析により測定した。
[1] Method for measuring the composition of the copper alloy plate The alloy composition was measured by fluorescent X-ray analysis.

[2]導電率の測定方法
導電率は、例えば端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測することによって算出した。
[2] Method for measuring conductivity The resistivity was calculated by measuring the specific resistance by the four-terminal method in a constant temperature bath kept at 20 ° C (± 0.5 ° C), for example, when the distance between terminals was 100 mm. ..

[3](1)式中の積分値の算出方法
(1)式中の積分値は、圧延平行方向、45°方向および90°方向の各方向にそれぞれ切り出した3種類のJIS Z2241の13B号の試験片を、JIS Z2241に準じて各9本(n=9)ずつ用意して測定し、最も破断伸びが大きかった場合を1番目とするとき、破断伸びが5番目に大きかった試験片を用いて測定されたときの公称応力−公称歪曲線を用いて求めることとし、式(1)に示される積分値は、前述で得られた公称応力−公称歪曲線のプロットから台形近似により得られる面積から算出した。なお、公称応力は、公称歪が0.01%ごとに測定した。
[3] Method of calculating the integrated value in the formula (1) The integrated value in the formula (1) is No. 13B of three types of JIS Z2241 cut out in each of the rolling parallel direction, the 45 ° direction and the 90 ° direction, respectively. 9 pieces (n = 9) of each of the test pieces (n = 9) were prepared according to JIS Z2241 and measured. It is determined using the nominal stress-nominal strain curve when measured using, and the integral value shown in Eq. (1) is obtained by trapezoidal approximation from the plot of the nominal stress-nominal strain curve obtained above. Calculated from the area. The nominal stress was measured every 0.01% of the nominal strain.

[4]Cube方位面積率の算出方法
Cube方位面積率は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、商品名:JSM−7001FA)に付属するEBSD検出器を用いて連続して測定された結晶方位データから解析ソフト(TSL社製、商品名:OIM−Analysis)を用いて算出した。
[4] Method for calculating Cube Orientation Area Ratio The Cube Orientation Area Ratio is continuously measured using the EBSD detector attached to a high-resolution scanning analysis electron microscope (manufactured by JEOL Ltd., trade name: JSM-7001FA). It was calculated from the obtained crystal orientation data using analysis software (manufactured by TSL, trade name: OIM-Anysis).

[5]パラメータBxの算出方法
パラメータBxは、上記[3]で算出した積分値と、上記[4]で算出したCube方位面積率を式(1)に代入することによって求められるパラメータAxの各方向の値A0°、A45°およびA90°と、これらの値A0°、A45°およびA90°を(2)式に代入して求められる算術平均値Aave.とを、式(3)に代入することによって算出することができる。
[5] Calculation method of parameter Bx Parameter Bx is each of parameter Ax obtained by substituting the integral value calculated in the above [3] and the Cube directional area ratio calculated in the above [4] into the equation (1). The directional values A 0 ° , A 45 ° and A 90 ° and the arithmetic mean value Aave. Obtained by substituting these values A 0 ° , A 45 ° and A 90 ° into equation (2) are expressed in the equation. It can be calculated by substituting into (3).

[6]エリクセン値Erの測定方法
エリクセン値Erは、エリクセン試験機により、図4に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部をパンチ14Aで押し込んでいき、、貫通割れが発生するまでのパンチの移動距離(くぼみの深さ)の値を測定し、その測定した値とした。
[6] Method for measuring Elixin value Er The Elixin value Er is determined by tightening the edge of the test plate material W between the die 12 and the wrinkle pressing member 16 by an Elixin testing machine as shown in FIG. The central portion of W was pushed in by the punch 14A, and the value of the movement distance (depth of the dent) of the punch until the through crack occurred was measured and used as the measured value.

[7]放熱性の評価
放熱性は、上記[2]で測定した導電率によって評価した。放熱性の評価基準を以下に示す。なお、本実施例では、下記に示す放熱性の評価基準における、「1」および「2」を合格レベルにあるとした。表2に、放熱性の評価結果を示す。
[7] Evaluation of heat dissipation The heat dissipation was evaluated by the conductivity measured in [2] above. The evaluation criteria for heat dissipation are shown below. In this example, "1" and "2" in the heat dissipation evaluation criteria shown below were regarded as acceptable levels. Table 2 shows the evaluation results of heat dissipation.

<放熱性の評価基準>
1(優):導電率が50%IACS以上の場合
2(良):導電率が30%IACS以上50%IACS未満の場合
3(不可):導電率が30%IACS未満である場合
<Evaluation criteria for heat dissipation>
1 (excellent): When the conductivity is 50% IACS or more 2 (Good): When the conductivity is 30% IACS or more and less than 50% IACS 3 (impossible): When the conductivity is less than 30% IACS

[8]絞り加工性の評価
絞り加工性は、深絞り試験機(例えばエリクセン社製薄板成形試験機)10により、図3に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部を、先端部が円柱状でかつコーナー部の曲率半径Rが小さいパンチ14で押し込んでいき、円筒型カップを成形し、割れの生じないパンチの先端のコーナー部の曲率半径Rの最小値と、成形後のカップ縁のうねりの最大山高さと最大谷深さの差の最大値から総合的に評価した。絞り加工性の評価基準を以下に示す。表2に、絞り加工性の評価結果を示す。なお、上記試験は、パンチとダイのクリアランスは2.3mmとし、試験板材Wの表面に塗布される潤滑油としては、R−303Pを用い、パンチ直径のブランク直径に対する比(パンチ直径/ブランク直径)は0.64の試験条件で行なった。
[8] Evaluation of drawing workability The drawing workability is determined by using a deep drawing tester (for example, a thin plate forming tester manufactured by Ericssen) 10 to press the edge of the test plate material W with a die 12 as shown in FIG. After tightening between the members 16, the central portion of the test plate material W is pushed in by a punch 14 having a columnar tip and a small radius of curvature R at the corner to form a cylindrical cup, and cracks do not occur. Comprehensive evaluation was made from the minimum value of the radius of curvature R at the corner of the tip of the punch and the maximum value of the difference between the maximum peak height and the maximum valley depth of the swell of the cup edge after molding. The evaluation criteria for drawability are shown below. Table 2 shows the evaluation results of drawability. In the above test, the clearance between the punch and the die was set to 2.3 mm, R-303P was used as the lubricating oil applied to the surface of the test plate material W, and the ratio of the punch diameter to the blank diameter (punch diameter / blank diameter). ) Was carried out under the test conditions of 0.64.

(a)パンチの先端のコーナー部の曲率半径Rの最小値の評価基準
◎(優):曲率半径Rの最小値が0.5mm以下の場合
○(良):曲率半径Rの最小値が0.5mm超え1.0mm未満の場合
×(不可):曲率半径Rの最小値が1.0mm以上の場合
(A) Evaluation criteria for the minimum value of the radius of curvature R at the corner of the tip of the punch ◎ (excellent): When the minimum value of the radius of curvature R is 0.5 mm or less ○ (Good): The minimum value of the radius of curvature R is 0 When more than .5 mm and less than 1.0 mm × (impossible): When the minimum value of radius of curvature R is 1.0 mm or more

(b)カップ縁のうねりの最大山高さと最大谷深さの差の最大値の評価基準
◎(優):前記差の最大値が0.5mm以下の場合
○(良):前記差の最大値が0.5mm超え1.0mm未満の場合
×(不可):前記差の最大値が1.0mm以上の場合
(B) Evaluation criteria for the maximum value of the difference between the maximum peak height and the maximum valley depth of the swell of the cup edge ◎ (excellent): When the maximum value of the difference is 0.5 mm or less ○ (good): The maximum value of the difference Is more than 0.5 mm and less than 1.0 mm × (impossible): When the maximum value of the difference is 1.0 mm or more

<絞り加工性の評価>
1(優):前記(a)および(b)の評価のいずれもが「◎」である場合
2(良):前記(a)および(b)の評価のいずれもが「○」以上である場合
3(不可):前記(a)および(b)の評価の少なくとも一方が「×」である場合
<Evaluation of drawability>
1 (excellent): When both of the evaluations of (a) and (b) are "◎" 2 (good): Both of the evaluations of (a) and (b) are "○" or more. Case 3 (impossible): When at least one of the evaluations of (a) and (b) above is "x".

Figure 0006928597
Figure 0006928597

Figure 0006928597
Figure 0006928597

Figure 0006928597
Figure 0006928597

Figure 0006928597
Figure 0006928597

表1〜4の結果から、実施例1〜15の銅合金板材はいずれも、合金組成が本発明の適正範囲内であり、導電率が38%IACS以上であり、算術平均値Aave.が4.0〜13.0GPa・%の範囲であるため、放熱性および絞り加工性のいずれもが合格レベル以上であることが分かる。特に、実施例3、6、8、12は、合金組成および製造条件が適切であったため、導電率が特に優れている。実施例1、7、12は、鋳造から調質焼鈍までの条件が適切であり、パラメータAとBが良い値を示したことから、割れの生じないパンチ先端のコーナー部の曲率半径の最小値と、カップ縁のうねりの山谷間の差の最大値がいずれも小さくなったため、絞り加工性が特に優れていた。 From the results of Tables 1 to 4, all of the copper alloy plates of Examples 1 to 15 have an alloy composition within the appropriate range of the present invention, a conductivity of 38% IACS or more, and an arithmetic mean value of Aave. Since it is in the range of 0 to 13.0 GPa ·%, it can be seen that both the heat dissipation property and the drawing workability are above the acceptable level. In particular, Examples 3, 6, 8 and 12 have particularly excellent conductivity because the alloy composition and production conditions are appropriate. In Examples 1, 7 and 12, since the conditions from casting to temper annealing were appropriate and the parameters A and B showed good values, the minimum value of the radius of curvature of the corner portion of the punch tip where cracks did not occur. Since the maximum value of the difference between the peaks and valleys of the swell of the cup edge became smaller, the drawability was particularly excellent.

一方、比較例1,2、4、5、8、はいずれも、Ni+Co量あるいはSiが少なかったため、算術平均値Aave.が本発明の適正範囲外となったため、絞り加工性が劣っていた。比較例6はテンションレベラーでの矯正が行われず伸び率は0%であったために異方性が高いため、Bxが規定外となった。比較例8、10は仕上げ冷間圧延での圧延温度が低くCube方位が多く残留したために算術平均値Aave.が規定外となった。比較例5は、パラメータB90°が規定外となり、絞り加工後の最大高低差が大きくなった。比較例3、7、9はいずれも、成分含有量が本発明の適正範囲よりも多いため、特に導電率が低くなった。特に、比較例7は、矯正での伸びが規定値より大きく、エリクセン値/板厚の値が規定外ともなったため、絞り加工性も劣っていた。比較例11は仕上げ圧延時の材料温度が高くなり、材料と圧延ロールの焼き付きが生じ、材料表面に大きな凹凸などの欠陥が生じたため、特性評価は行わなかったが、絞り加工性は著しく低下するのは明らかであった。 On the other hand, in Comparative Examples 1, 2, 4, 5, and 8, since the amount of Ni + Co or Si was small, the arithmetic mean value Aave. Was out of the appropriate range of the present invention, and thus the drawability was inferior. In Comparative Example 6, the tension leveler was not corrected and the elongation rate was 0%, so that the anisotropy was high, and therefore Bx was out of specification. In Comparative Examples 8 and 10, the arithmetic mean value Aave. Was out of the regulation because the rolling temperature in the finish cold rolling was low and a large amount of Cube orientation remained. In Comparative Example 5, the parameter B 90 ° was out of specification, and the maximum height difference after drawing was large. In all of Comparative Examples 3, 7 and 9, since the component content was larger than the appropriate range of the present invention, the conductivity was particularly low. In particular, in Comparative Example 7, the elongation in straightening was larger than the specified value, and the Eriksen value / plate thickness value was out of the specified value, so that the drawability was also inferior. In Comparative Example 11, the material temperature during finish rolling became high, seizure occurred between the material and the rolling roll, and defects such as large irregularities occurred on the surface of the material. Therefore, the characteristics were not evaluated, but the drawability was significantly reduced. Was clear.

10 エリクセン試験機
12 ダイ
14、14A パンチ(ポンチ)
16 しわ押さえ部材
W 試験板材
R パンチのコーナー部の曲率半径
10 Eriksen tester 12 die 14, 14A punch (punch)
16 Wrinkle holding member W Test plate material R Radius of curvature at the corner of the punch

Claims (7)

NiおよびCoの1種以上を合計で1.0〜5.0質量%、ならびにSiを0.1〜1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、
導電率が38%IACS以上であり、
圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線から求められる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0〜13.0GPa・%の範囲であることを特徴とする銅合金板材。
Figure 0006928597
但し、S:Cube方位面積率(%)、σは公称応力(GPa)、εは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure 0006928597
It has a composition in which one or more of Ni and Co are contained in a total amount of 1.0 to 5.0% by mass, and Si is contained in an amount of 0.1 to 1.5% by mass, and the balance is Cu and unavoidable impurities.
Conductivity is 38% IACS or higher,
A value obtained from the nominal stress-nominal strain curve obtained by performing a tensile test on three types of test pieces cut out in each of the rolling parallel direction, the direction of 45 ° with respect to the rolling direction, and the rolling vertical direction. And, by substituting the value of the Cube azimuth area ratio obtained by the electron backscatter diffraction (EBSD) method into the following equation (1), in each direction of the parameter Ax (x: 0 °, 45 °, 90 °). The arithmetic average value calculated by obtaining the values A 0 ° , A 45 ° and A 90 ° and substituting the obtained values A 0 ° , A 45 ° and A 90 ° in each direction into the following equation (2). A copper alloy plate material having Aave. In the range of 4.0 to 13.0 GPa ·%.
Figure 0006928597
However, Sc : Cube azimuth area ratio (%), σ n represents the nominal stress (GPa), ε n represents the nominal strain (%), and EL represents the elongation at break (%).
Figure 0006928597
前記組成は、さらに、Sn、Mg、Mn、Cr、Zr、Ti、FeおよびZnからなる群から選ばれる少なくとも1種の成分を、合計で0.2〜1.2質量%以下含有する請求項に記載の銅合金板材。 Claimed that the composition further contains at least one component selected from the group consisting of Sn, Mg, Mn, Cr, Zr, Ti, Fe and Zn in an amount of 0.2 to 1.2% by mass or less in total. copper alloy sheet according to 1. 請求項1または2に記載の銅合金板材を絞り加工して得られた絞り加工品。 A drawn product obtained by drawing the copper alloy plate material according to claim 1 or 2. 請求項1または2に記載の銅合金板材または請求項に記載の絞り加工品を用いて作製された電気・電子部品用部材。 A member for electrical / electronic parts manufactured by using the copper alloy plate material according to claim 1 or 2 or the drawn product according to claim 3. 請求項1または2に記載の銅合金板材または請求項に記載の絞り加工品を用いて作製された電磁波シールド材。 An electromagnetic wave shielding material produced by using the copper alloy plate material according to claim 1 or 2 or the drawn product according to claim 3. 請求項1または2に記載の銅合金板材または請求項に記載の絞り加工品を用いて作製された放熱部品。 A heat-dissipating component manufactured by using the copper alloy plate material according to claim 1 or 2 or the drawn product according to claim 3. 請求項1または2に記載の銅合金板材の製造方法であって、
銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、
前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度Tを、75℃以上100℃以下に制御し、
前記矯正[工程9]における材料の伸び率δを、0.1〜1.0%とし、そして、
前記調質焼鈍[工程10]の材料温度T(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することを特徴とする銅合金板材の製造方法。
55×δ+450≧T≧55×δ+350 ・・・(5)
The method for producing a copper alloy plate according to claim 1 or 2.
Casting [process 1], homogenization treatment [process 2], hot rolling [process 3], face milling [process 4], cold rolling [process 5], solution heat treatment [process 6], Intermediate heat treatment [step 7], finish cold rolling [step 8], straightening [step 9], and temper tempering [step 10] are performed in sequence.
Wherein the maximum temperature T R of the rolling time of the material in the finish cold rolling [step 8], and controls the 75 ° C. or higher 100 ° C. or less,
The elongation rate δ of the material in the straightening [step 9] is set to 0.1 to 1.0%, and
A copper alloy plate material characterized in that the material temperature TA (° C.) of the temper annealing [step 10] is controlled so as to satisfy the relationship of the inequality shown in the following equation (5) in relation to the elongation rate δ. Manufacturing method.
55 × δ + 450 ≧ T A ≧ 55 × δ + 350 ··· (5)
JP2018233487A 2018-12-13 2018-12-13 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts Active JP6928597B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018233487A JP6928597B2 (en) 2018-12-13 2018-12-13 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts
PCT/JP2019/045712 WO2020121775A1 (en) 2018-12-13 2019-11-21 Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component
KR1020217007855A KR20210100078A (en) 2018-12-13 2019-11-21 Copper alloy plate and its manufacturing method, and drawing processing products, members for electric/electronic parts, electromagnetic wave shielding materials and heat dissipation parts
CN201980064171.1A CN112789359B (en) 2018-12-13 2019-11-21 Copper alloy sheet material, method for producing same, and drawn product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233487A JP6928597B2 (en) 2018-12-13 2018-12-13 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020019213A Division JP7113039B2 (en) 2020-02-06 2020-02-06 Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components

Publications (2)

Publication Number Publication Date
JP2020094242A JP2020094242A (en) 2020-06-18
JP6928597B2 true JP6928597B2 (en) 2021-09-01

Family

ID=71075955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233487A Active JP6928597B2 (en) 2018-12-13 2018-12-13 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts

Country Status (4)

Country Link
JP (1) JP6928597B2 (en)
KR (1) KR20210100078A (en)
CN (1) CN112789359B (en)
WO (1) WO2020121775A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111670A (en) * 2020-09-21 2020-12-22 江西理工大学 Cu-Fe-Cr-Mg electromagnetic shielding material and preparation method thereof
WO2023149121A1 (en) * 2022-02-04 2023-08-10 古河電気工業株式会社 Copper alloy sheet material, and drawn component produced using copper alloy sheet material
CN116287851A (en) * 2022-09-09 2023-06-23 昆明冶金研究院有限公司北京分公司 Tin phosphor bronze strip, preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642701B2 (en) * 2006-05-26 2011-03-02 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy strips with excellent plating adhesion
JP5170864B2 (en) * 2006-09-13 2013-03-27 古河電気工業株式会社 Copper-based precipitation type alloy sheet for contact material and method for producing the same
JP4875768B2 (en) * 2008-06-03 2012-02-15 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP2011017072A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material
JP5961335B2 (en) * 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
TWI539013B (en) * 2010-08-27 2016-06-21 Furukawa Electric Co Ltd Copper alloy sheet and method of manufacturing the same
WO2012160684A1 (en) 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP6228725B2 (en) * 2011-11-02 2017-11-08 Jx金属株式会社 Cu-Co-Si alloy and method for producing the same
JP5437519B1 (en) * 2013-07-31 2014-03-12 Jx日鉱日石金属株式会社 Cu-Co-Si-based copper alloy strip and method for producing the same
TWI521075B (en) * 2013-09-26 2016-02-11 三菱伸銅股份有限公司 Copper alloy
JP5840310B1 (en) * 2014-07-09 2016-01-06 古河電気工業株式会社 Copper alloy sheet, connector, and method for producing copper alloy sheet
EP3348657B1 (en) * 2015-09-09 2021-11-10 Mitsubishi Materials Corporation Copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
JP6542817B2 (en) * 2016-10-12 2019-07-10 Jx金属株式会社 Copper alloy for electronic materials
JP6883456B2 (en) * 2017-03-31 2021-06-09 Jx金属株式会社 Manufacturing method of laminates and molded products

Also Published As

Publication number Publication date
JP2020094242A (en) 2020-06-18
CN112789359B (en) 2022-05-03
CN112789359A (en) 2021-05-11
WO2020121775A1 (en) 2020-06-18
KR20210100078A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
TWI381397B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
JP6928597B2 (en) Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6306632B2 (en) Copper alloy for electronic materials
JP2017179493A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP6869119B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member
CN111971406B (en) Copper alloy sheet material, method for producing copper alloy sheet material, and connector using copper alloy sheet material
JP2016050326A (en) Copper alloy for electronic and electric device, copper alloy thin sheet for electronic and electric device, component and terminal for electronic and electric device
JP6542817B2 (en) Copper alloy for electronic materials
JP7178454B2 (en) Copper alloy sheet material, its manufacturing method, and members for electrical and electronic parts
JP2013104078A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP7113039B2 (en) Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components
JP6845885B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP7328471B1 (en) Copper alloy sheet material, manufacturing method thereof, electronic component and drawn product
JP7328472B1 (en) Copper alloy sheet materials and drawn parts made from copper alloy sheet materials
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP6845884B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
TW202403787A (en) Copper alloy sheet and drawn component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190821

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200624

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210420

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210622

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210720

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R151 Written notification of patent or utility model registration

Ref document number: 6928597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531