JP5840310B1 - Copper alloy sheet, connector, and method for producing copper alloy sheet - Google Patents

Copper alloy sheet, connector, and method for producing copper alloy sheet Download PDF

Info

Publication number
JP5840310B1
JP5840310B1 JP2014559967A JP2014559967A JP5840310B1 JP 5840310 B1 JP5840310 B1 JP 5840310B1 JP 2014559967 A JP2014559967 A JP 2014559967A JP 2014559967 A JP2014559967 A JP 2014559967A JP 5840310 B1 JP5840310 B1 JP 5840310B1
Authority
JP
Japan
Prior art keywords
mass
less
rolling
copper alloy
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014559967A
Other languages
Japanese (ja)
Other versions
JPWO2016006053A1 (en
Inventor
洋 金子
洋 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Application granted granted Critical
Publication of JP5840310B1 publication Critical patent/JP5840310B1/en
Publication of JPWO2016006053A1 publication Critical patent/JPWO2016006053A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Abstract

高導電率で、かつ、圧延方向から圧延垂直方向に向けて0?、45?または90?方向のいずれの方向においても高強度の銅合金板材とそれを用いたコネクタ、及びその銅合金板材の製造方法を提供する。NiとCoのいずれか1種又は2種を合計で1.80〜8.00質量%、Siを0.40〜2.00質量%、並びにSn、Zn、Ag、Mn、P、Mg、Cr、Zr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.000〜2.000質量%含有し、残部が銅と不可避不純物からなる組成を有し、導電率が20〜40%IACS以上であり、圧延方向から圧延垂直方向に向けて0?、45?、90?の方向の引張強度がいずれも1020〜1400MPaである銅合金板材、それを用いたコネクタおよびその銅合金板材の製造方法。High electrical conductivity and high strength copper alloy plate material in any direction of 0 ?, 45? Or 90? Direction from the rolling direction to the vertical direction of rolling, a connector using the same, and the copper alloy plate material A manufacturing method is provided. One or two of Ni and Co in total 1.80 to 8.00 mass%, Si 0.40 to 2.00 mass%, and Sn, Zn, Ag, Mn, P, Mg, Cr , Zr, Fe, and Ti at least one element selected from the group consisting of 0.000 to 2.000 mass% in total, the balance is composed of copper and inevitable impurities, and the conductivity is 20 to Copper alloy plate material of 40% IACS or more and tensile strength in the direction of 0 ?, 45 ?, 90? From the rolling direction to the rolling vertical direction is 1020 to 1400 MPa, a connector using the same, and its copper alloy A method for manufacturing a plate material.

Description

本発明は、銅合金板材とそれを用いたコネクタ、及びその銅合金板材の製造方法に関する。  The present invention relates to a copper alloy sheet, a connector using the same, and a method for producing the copper alloy sheet.

電子機器と外部機器等とを接続するための端子やコネクタは、電子機器の小型化、薄肉化に伴って、更なる小型化が求められている。また、これらの端子やコネクタは、一日に何十回もの挿抜や嵌合が行われる場合もあるため、バネ部の強度や耐疲労特性(繰り返し特性)も求められている。端子やコネクタは、強度や導電性を必要とすることから銅合金を用いて製造されることが多い。従って、小型成形が可能で、かつ強度と耐疲労特性に優れた端子・コネクタ用の銅合金材が望まれている。  Terminals and connectors for connecting electronic devices to external devices and the like are required to be further miniaturized as electronic devices become smaller and thinner. In addition, since these terminals and connectors may be inserted and removed and fitted several times a day, the strength and fatigue resistance characteristics (repetitive characteristics) of the spring portion are also required. Since terminals and connectors require strength and conductivity, they are often manufactured using a copper alloy. Therefore, a copper alloy material for a terminal / connector that can be compactly formed and has excellent strength and fatigue resistance is desired.

特に、端子やコネクタは、銅合金の板材を打ち抜き、プレス成型することで製造される。この際、端子やコネクタのバネ部の応力負荷方向は、銅合金板材の圧延方向(RD;Rolling Direction)から圧延垂直方向(TD;Transverse Direction)に向けて90°の方向または45°の方向となる場合が多い。このため、端子やコネクタ用の銅合金板材は、これらの方向のいずれにおいても耐疲労特性が優れることが求められる。また、端子やコネクタの小型化に伴って、バネ部の長さが短くなると、バネ部に掛かる応力が大きくなる。このため、銅合金板材は、前記耐疲労特性が良好なことに加えて、高い応力が付与されても永久変形し難いことが求められる。  In particular, the terminals and connectors are manufactured by punching a copper alloy plate and press-molding it. At this time, the stress load direction of the spring portion of the terminal or the connector is 90 ° or 45 ° from the rolling direction (RD; Rolling Direction) of the copper alloy sheet to the vertical direction of rolling (TD; Transverse Direction). There are many cases. For this reason, the copper alloy plate material for terminals and connectors is required to have excellent fatigue resistance in any of these directions. Further, when the length of the spring portion is shortened with the miniaturization of the terminal and the connector, the stress applied to the spring portion is increased. For this reason, the copper alloy sheet is required to be hard to be permanently deformed even when a high stress is applied in addition to the good fatigue resistance.

従来、バネ用の銅合金としてはリン青銅系が最も多く使用されてきた。リン青銅系のバネ用銅合金は、強度や耐疲労特性に優れるものの、導電率が10%IACS前後と低い。このため、今後の小型で高い信頼性が求められる端子には、リン青銅系のバネ用銅合金は使用が制限される場合があると考えられる。小型で高い信頼性が求められる端子用のバネ材には、20%IACS以上の導電率が求められるためである。  Conventionally, phosphor bronze has been most frequently used as a copper alloy for springs. Phosphor bronze copper alloys for springs are excellent in strength and fatigue resistance, but have a conductivity as low as around 10% IACS. For this reason, it is considered that the use of phosphor bronze-based spring copper alloys may be restricted for future terminals that are small and require high reliability. This is because a spring material for terminals that is small and requires high reliability is required to have a conductivity of 20% IACS or more.

Cu−Ni−Si系の銅合金、いわゆるコルソン系合金は、リードフレーム用として開発され、コネクタ用としても使用されている合金である。これまでのコルソン系合金は、導電率がリン青銅系よりも良好である。しかし、これまでのコルソン系合金は、強度や耐疲労特性が、昨今の要求を満足しない場合があった。特に、圧延方向から圧延垂直方向に向けて0°の方向(すなわち圧延方向)では特性が良好であっても、45°または90°の方向の耐疲労特性が劣っていた。  Cu-Ni-Si copper alloys, so-called Corson alloys, are alloys that have been developed for lead frames and are also used for connectors. Conventional Corson alloys have better electrical conductivity than phosphor bronze alloys. However, conventional Corson-based alloys sometimes do not satisfy recent demands in terms of strength and fatigue resistance. In particular, the fatigue resistance in the direction of 45 ° or 90 ° was inferior even in the direction of 0 ° from the rolling direction to the vertical direction of the rolling (that is, the rolling direction) even though the properties were good.

このような電子機器の技術動向から、高導電率を有し、かつ、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれの強度および耐疲労特性も優れる材料が必要とされている。  Due to such technical trends in electronic equipment, a material having high electrical conductivity and excellent strength and fatigue resistance in any direction of 0 °, 45 ° or 90 ° from the rolling direction to the vertical direction of rolling is required. It is said that.

特許文献1では、Cu−Ni−Sn系合金の含有成分を含む合金組成を選定し、特定の工程で時効析出硬化させることで、導電率を低下させることなく、疲労特性の良好な銅合金とすることが提案されている。
特許文献2では、Cu−Sn系合金の結晶粒径と仕上げ圧延条件を調整して、高強度の銅合金とすることが提案されている。
特許文献3では、Cu−Ni−Si系合金の中でもNi濃度が高い場合に、特定の工程で調製することで高強度とすることが提案されている。
特許文献4では、Cu−Ti系合金の含有成分を含む合金組成を選定し、特定の工程で時効析出硬化させることで高強度とすることが提案されている。
In Patent Document 1, an alloy composition including a Cu-Ni-Sn alloy-containing component is selected, and a copper alloy with good fatigue characteristics is obtained without decreasing the conductivity by aging precipitation hardening in a specific process. It has been proposed to do.
Patent Document 2 proposes adjusting the crystal grain size and finish rolling conditions of a Cu-Sn alloy to obtain a high-strength copper alloy.
In Patent Document 3, it is proposed that when the Ni concentration is high among Cu-Ni-Si-based alloys, the strength is increased by preparing in a specific process.
Patent Document 4 proposes selecting an alloy composition containing a Cu-Ti alloy-containing component and increasing the strength by age-precipitation hardening in a specific process.

特許文献5では、Cu−Ni−Si系合金条を特定の製造工程で得ることで、所定の{110}<001>方位密度とKAM(Karnel Average Misorientation)値とを有し、深絞り加工性と耐疲労特性を向上させることが提案されている。
特許文献6では、圧延方向の引張強さと、圧延方向となす角度が45°方向の引張強さと、圧延方向となす角度が90°方向の引張強さの3つの引張強さ間の各差の最大値が100MPa以下である、Cu−Ni−Si系の接点材用銅基析出型合金板材が提案されている。
特許文献7では、Cu−Ni−Si系合金のCube方位及びBR方位の面積率を適正に制御することで、高強度で、曲げ加工性、耐応力緩和特性、耐疲労特性を向上させることが提案されている。
In Patent Document 5, Cu-Ni-Si-based alloy strips are obtained in a specific manufacturing process, thereby having a predetermined {110} <001> orientation density and a KAM (Carnel Average Misorientation) value, and deep drawing workability. It has been proposed to improve fatigue resistance.
In Patent Document 6, the difference between the three tensile strengths, that is, the tensile strength in the rolling direction, the tensile strength in the direction of 45 ° with respect to the rolling direction, and the tensile strength in the direction of 90 ° with respect to the rolling direction. A Cu-Ni-Si-based copper-based precipitation type alloy sheet for a contact material having a maximum value of 100 MPa or less has been proposed.
In Patent Document 7, it is possible to improve bending workability, stress relaxation resistance, and fatigue resistance with high strength by appropriately controlling the area ratio of the Cube orientation and BR orientation of the Cu—Ni—Si based alloy. Proposed.

特開昭63−312937号公報Japanese Unexamined Patent Publication No. Sho 63-312937 特開2002−294367号公報JP 2002-294367 A 特開2006−152392号公報JP 2006-152392 A 特開2011−132594号公報JP 2011-132594 A 特開2012−122114号公報JP2012-122114A 特開2008−095186号公報JP 2008-095186 A 特開2012−246549号公報JP 2012-246549 A

ところで、特許文献1〜4では、一般的な銅合金から比べると、高い強度は得られているものの、合金系と製造方法によっては導電率が依然低い場合があった。
特許文献5では、深絞り加工性と耐疲労特性は得られているものの、強度と導電率の点ではなお向上の余地があった。
特許文献6では、高い導電率が得られているものの、高い強度と両立させる点ではなお向上の余地があった。
特許文献7では、曲げ加工性、耐応力緩和特性、耐疲労特性は得られているものの、高い強度と高い導電率を両立させる点ではなお向上の余地があった。
また、これらの特許文献1〜7では、圧延方向から圧延垂直方向に向けて0°、45°または90°いずれの方向でも高強度とすることは着目されておらず、実際にこれらいずれの方向でも引張強度が高いかどうかは不明である。
そこで、良好な導電性を有しながら、かつ、圧延方向から圧延垂直方向に向けて0°、45°または90°いずれの方向でも高い引張強度を有する銅合金板材が求められている。
By the way, in patent documents 1-4, although compared with the general copper alloy, although high intensity | strength was acquired, depending on the alloy type | system | group and the manufacturing method, the electrical conductivity might still be low.
In Patent Document 5, although deep drawing workability and fatigue resistance characteristics are obtained, there is still room for improvement in terms of strength and conductivity.
In Patent Document 6, although high electrical conductivity is obtained, there is still room for improvement in terms of compatibility with high strength.
In Patent Document 7, although bending workability, stress relaxation resistance, and fatigue resistance are obtained, there is still room for improvement in terms of achieving both high strength and high electrical conductivity.
Moreover, in these patent documents 1-7, it is not paying attention to making it high intensity | strength in any direction of 0 degree, 45 degrees, or 90 degrees toward a rolling perpendicular direction from a rolling direction, and actually any of these directions However, it is unclear whether the tensile strength is high.
Accordingly, there is a demand for a copper alloy sheet material having good electrical conductivity and high tensile strength in any direction of 0 °, 45 ° or 90 ° from the rolling direction to the vertical direction of rolling.

上記従来技術における問題点に鑑み、本発明の課題は、高導電率で、かつ、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれの方向においても高強度であり、好ましくはいずれの方向においても耐疲労特性にも優れる銅合金板材を提供することにある。また、この銅合金板材を用いたコネクタ、及びこの銅合金板材の製造方法を提供することにある。特に、本発明は、ドックコネクタやUSBコネクタに代表される外部接続コネクタの他、カメラモジュール用の薄板バネ材、リレーの可動片などに適した銅合金板材とそれを用いたコネクタ、及びその銅合金板材の製造方法を提供することを課題とする。  In view of the above problems in the prior art, the object of the present invention is high conductivity and high strength in any direction of 0 °, 45 ° or 90 ° from the rolling direction to the rolling vertical direction. It is preferable to provide a copper alloy sheet material that is also excellent in fatigue resistance in any direction. Moreover, it is providing the connector using this copper alloy board | plate material, and the manufacturing method of this copper alloy board | plate material. In particular, the present invention provides a copper alloy plate suitable for a thin spring material for a camera module, a movable piece of a relay, and a connector using the same, as well as an external connection connector represented by a dock connector or a USB connector, and a copper thereof. It is an object to provide a method for producing an alloy sheet.

本発明者は、上記課題を解決する為に鋭意検討を重ねた結果、特定のCu−(Ni,Co)−Si系合金組成を有して、特定の製造条件で製造した銅合金板材が、良好な導電性を有しながら、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれの方向においても高い強度とすることができることを見いだした。本発明は、この知見に基づき完成されるに至ったものである。  As a result of intensive studies to solve the above problems, the present inventor has a specific Cu- (Ni, Co) -Si-based alloy composition, and a copper alloy sheet material manufactured under specific manufacturing conditions. It has been found that high strength can be achieved in any direction of 0 °, 45 ° or 90 ° from the rolling direction to the vertical direction of rolling while having good conductivity. The present invention has been completed based on this finding.

すなわち、本発明によれば以下の手段が提供される。
(1)NiとCoのいずれか1種又は2種を合計で1.80〜8.00質量%、Siを0.40〜2.00質量%含有し、さらに、Sn0.31質量%以下、Zn0.47質量%以下、Ag0.08質量%以下、Mn0.1質量%以下、P0.05質量%以下、Mg0.11質量%以下、Cr0.12質量%以下、Fe0.11質量%以下及びTi0.14質量%以下の範囲であって、かつ該Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.000〜2.000質量%含有し、残部が銅と不可避不純物からなる組成を有し、導電率が20〜40%IACS以上であり、圧延方向(RD)から圧延垂直方向(TD)に向けて0°、45°、90°の方向の引張強度がいずれも1020〜1400MPaである、銅合金板材。
(2)前記Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素合計の含有量が、0.005〜2.000質量%である(1)項に記載の銅合金板材。
(3)(1)または(2)項に記載の銅合金板材からなるコネクタ。
(4)導電率が20〜40%IACS以上であり、圧延方向(RD)から圧延垂直方向(TD)に向けて0°、45°、90°の方向の引張強度がいずれも1020〜1400MPaである銅合金板材の製造方法であって、NiとCoのいずれか1種又は2種を合計で1.80〜8.00質量%、Siを0.40〜2.00質量%含有し、さらに、Sn0.31質量%以下、Zn0.47質量%以下、Ag0.08質量%以下、Mn0.1質量%以下、P0.05質量%以下、Mg0.11質量%以下、Cr0.12質量%以下、Fe0.11質量%以下及びTi0.14質量%以下の範囲であって、かつ該Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.000〜2.000質量%含有し、残部が銅と不可避不純物からなる銅合金の原料を溶解し鋳造する溶解・鋳造工程と、900〜1040℃で1時間以上の熱処理を行う均質化熱処理工程と、熱間加工開始から終了までの温度範囲が500〜1040℃であり、加工率が10〜90%である熱間加工工程と、加工率が0〜95%の中間冷間圧延工程と、300〜430℃で5分間から10時間の熱処理を行う熱処理工程と、加工率が60〜99%の最終冷間圧延工程と、をこの順で行う銅合金板材の製造方法。
(5)前記溶解・鋳造工程に供される銅合金に、Sn0.31質量%以下、Zn0.47質量%以下、Ag0.08質量%以下、Mn0.1質量%以下、P0.05質量%以下、Mg0.11質量%以下、Cr0.12質量%以下、Fe0.11質量%以下及びTi0.14質量%以下の範囲であって、かつ該Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.005〜2.000質量%含有する(4)項に記載の銅合金板材の製造方法。
(6)前記最終冷間圧延工程の後に、200〜500℃で5秒〜2時間保持する歪取り焼鈍を行う(4)または(5)項に記載の銅合金板材の製造方法。
That is, according to the present invention, the following means are provided.
(1) A total of 1.80 to 8.00% by mass of any one or two of Ni and Co, 0.40 to 2.00% by mass of Si , and further Sn 0.31% by mass or less, Zn 0.47 mass% or less, Ag 0.08 mass% or less, Mn 0.1 mass% or less, P 0.05 mass% or less, Mg 0.11 mass% or less, Cr 0.12 mass% or less, Fe 0.11 mass% or less, and Ti0 a range of .14 wt% or less, and the Sn, Zn, Ag, Mn, P, Mg, Cr, at least one element selected from the group consisting of F e, and Ti in a total from 0.000 to 2 .000% by mass, the balance is composed of copper and inevitable impurities, the electrical conductivity is 20 to 40% IACS or more, and 0 ° from the rolling direction (RD) to the rolling vertical direction (TD). Both the tensile strength in the direction of 45 ° and 90 ° It is a 020~1400MPa, copper alloy sheet.
(2) the Sn, Zn, Ag, Mn, P, Mg, Cr, the content of total of at least one element selected from the group consisting of F e, and Ti, with 0.005 to 2.000 wt% there (1) the copper alloy sheet according to item.
(3) A connector comprising the copper alloy sheet according to (1) or (2).
(4) The electrical conductivity is 20 to 40% IACS or more, and the tensile strength in the direction of 0 °, 45 °, and 90 ° from the rolling direction (RD) to the rolling vertical direction (TD) is 1020 to 1400 MPa. A method for producing a copper alloy sheet, comprising a total of 1.80 to 8.00 mass% of Ni or Co, or two or more of Ni and Co, 0.40 to 2.00 mass% of Si , and Sn 0.31 mass% or less, Zn 0.47 mass% or less, Ag 0.08 mass% or less, Mn 0.1 mass% or less, P 0.05 mass% or less, Mg 0.11 mass% or less, Cr 0.12 mass% or less, At least one element selected from the group consisting of Sn, Zn, Ag, Mn, P, Mg, Cr , Fe, and Ti, in a range of Fe 0.11% by mass or less and Ti 0.14% by mass or less. In total 0.000-2.0 A melting / casting step for melting and casting a copper alloy raw material containing 0% by mass and the balance consisting of copper and inevitable impurities, a homogenization heat treatment step for performing heat treatment at 900 to 1040 ° C. for 1 hour or more, and hot working The temperature range from the start to the end is 500 to 1040 ° C., the hot working step in which the working rate is 10 to 90%, the intermediate cold rolling step in which the working rate is 0 to 95%, and 300 to 430 ° C. A method for producing a copper alloy sheet, in which a heat treatment step for performing heat treatment for 5 minutes to 10 hours and a final cold rolling step with a processing rate of 60 to 99% are performed in this order.
(5) For the copper alloy used in the melting and casting process, Sn 0.31 mass% or less, Zn 0.47 mass% or less, Ag 0.08 mass% or less, Mn 0.1 mass% or less, P 0.05 mass% or less Mg 0.11 mass% or less, Cr 0.12 mass% or less, Fe 0.11 mass% or less, and Ti 0.14 mass% or less, and the Sn, Zn, Ag, Mn, P, Mg, Cr , The method for producing a copper alloy sheet according to the item (4), which contains in total 0.005 to 2.000 mass% of at least one element selected from the group consisting of Fe and Ti.
(6) The method for producing a copper alloy sheet according to (4) or (5), wherein after the final cold rolling step, strain relief annealing is performed at 200 to 500 ° C. for 5 seconds to 2 hours.

本発明の銅合金板材は、その有する特性により、ドックコネクタやUSBコネクタに代表される外部接続コネクタの他、カメラモジュール用の薄板バネ材、リレーの可動片などに好適に用いることができる。
本発明の銅合金板材は、バネへの応力負荷方向として、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれの方向でも従来よりも著しく高い強度を有するため、特性が劣化しにくいバネ用材料として用いることができる。この為、例えば、コネクタ材として好適である。
また、本発明の銅合金板材の製造方法によれば、前記優れた特性を有する銅合金板材を好適に製造することができる。
The copper alloy plate material of the present invention can be suitably used for a thin spring material for a camera module, a movable piece of a relay, etc., in addition to an external connection connector typified by a dock connector or a USB connector, due to its characteristics.
The copper alloy sheet of the present invention has a significantly higher strength than conventional ones in the direction of 0 °, 45 ° or 90 ° from the rolling direction to the vertical direction of rolling as the stress load direction to the spring. It can be used as a spring material that is difficult to deteriorate. For this reason, it is suitable as a connector material, for example.
Moreover, according to the manufacturing method of the copper alloy plate material of this invention, the copper alloy plate material which has the said outstanding characteristic can be manufactured suitably.

本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。  The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1は、銅合金板材と、圧延方向(RD)、圧延垂直方向(TD)および圧延面垂直方向(ND)の関係を示す模式図である。FIG. 1 is a schematic diagram showing a relationship between a copper alloy sheet, a rolling direction (RD), a rolling vertical direction (TD), and a rolling surface vertical direction (ND). 図2は、引張試験、疲労試験における試験片として、圧延方向から圧延垂直方向に向けて0°、45°、90°方向の試験片を示す模式図である。FIG. 2 is a schematic diagram showing test pieces in 0 °, 45 °, and 90 ° directions from the rolling direction to the vertical direction of rolling as test pieces in the tensile test and fatigue test. 図3は、局部伸びの説明図である。図3には代表的な例として、発明例205の0°方向での応力−歪み曲線を示す。局部伸び(e)とは、図示した均一伸び(e)の後で試験材が破断するまでの伸びをいう。FIG. 3 is an explanatory diagram of local elongation. FIG. 3 shows a stress-strain curve in the 0 ° direction of Invention Example 205 as a representative example. The local elongation (e L ) refers to the elongation until the test material breaks after the illustrated uniform elongation (e U ). 図4(A)は発明例205、図4(B)は比較例256、図4(C)は比較例257についての、X線による{100}極点図である。4A is a {100} pole figure of the invention example 205, FIG. 4B is a comparative example 256, and FIG. 4C is a comparative example 257 by X-ray.

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材や箔材、板を管状とした管材を含む意味である。  A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). Among them, the term “plate material” refers to a material having a specific thickness and being stable in shape and having a spread in the plane direction. In a broad sense, it includes a strip material, a foil material, and a tube material in which the plate is tubular. .

図1に、本実施形態の銅合金板材1と、圧延方向(RD)、圧延垂直方向(TD)および圧延面垂直方向(ND;Normal Direction)の関係を示す。圧延方向とは、銅合金板材の製造時に、圧延ロール等によって板材が圧延されて伸延していく方向を示す。これに対して、圧延垂直方向は、圧延方向に垂直であり、圧延面に平行な方向である。圧延面垂直方向は、圧延面に垂直な方向である。工業的な銅合金板材はロール状に巻きながら製造・出荷する。したがって、銅合金板材の製造直後では、通常は板材の長手方向が圧延方向であり、板材の幅方向が圧延垂直方向である。  In FIG. 1, the relationship of the copper alloy sheet material 1 of this embodiment, and a rolling direction (RD), a rolling vertical direction (TD), and a rolling surface vertical direction (ND; Normal Direction) is shown. The rolling direction indicates a direction in which the plate material is rolled and stretched by a rolling roll or the like when the copper alloy plate material is manufactured. On the other hand, the rolling vertical direction is a direction perpendicular to the rolling direction and parallel to the rolling surface. The rolling surface vertical direction is a direction perpendicular to the rolling surface. Industrial copper alloy sheets are manufactured and shipped while being rolled. Therefore, immediately after the production of the copper alloy sheet, the longitudinal direction of the sheet is usually the rolling direction, and the width direction of the sheet is the vertical direction of rolling.

本実施形態の銅合金板材は、NiとCoのいずれか1種又は2種とSiをそれぞれ特定量で含有し、必要によりSn、Zn、Ag、Mn、P、Mg、Cr、Zr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を特定量で含有し、残部が銅と不可避不純物からなる特定の合金組成とすることによって、導電率が20〜40%IACS以上であり、圧延方向(RD)から圧延垂直方向(TD)に向けて0°、45°、90°の方向の引張強度がいずれも1020〜1400MPaである。ここで、前記3つの方向は、いずれも圧延面に平行な面上(すなわち、圧延方向と圧延垂直方向で作る面上)での方向である。図2に、本実施形態の銅合金板材1から、圧延方向(RD)から圧延垂直方向(TD)に向けて0°の方向での試験片20、45°の方向での試験片21、90°の方向での試験片22を、それぞれ採取する様子を点線で示した。
本実施形態の銅合金板材は、溶体化処理を行わずに特定の強加工工程を経て製造されることで、加工組織が適正に制御されて高強度化されるとともに、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれの方向でも従来よりも著しく高い強度を奏する。
The copper alloy sheet of this embodiment contains one or two of Ni and Co and Si in specific amounts, and if necessary, Sn, Zn, Ag, Mn, P, Mg, Cr, Zr, Fe, and By containing a specific amount of at least one element selected from the group consisting of Ti and a specific alloy composition consisting of copper and inevitable impurities as the balance, the conductivity is 20 to 40% IACS or more, and the rolling direction The tensile strengths in the directions of 0 °, 45 °, and 90 ° from (RD) to the rolling vertical direction (TD) are all 1020 to 1400 MPa. Here, each of the three directions is a direction on a plane parallel to the rolling surface (that is, a surface formed in the rolling direction and the vertical direction of rolling). In FIG. 2, from the copper alloy sheet 1 of the present embodiment, the test piece 20 in the direction of 0 ° from the rolling direction (RD) to the vertical direction of rolling (TD), the test pieces 21 and 90 in the direction of 45 °. The manner in which the test pieces 22 in the direction of ° are sampled is indicated by dotted lines.
The copper alloy sheet material of the present embodiment is manufactured through a specific strong working process without performing a solution treatment, so that the processed structure is appropriately controlled to increase the strength, and from the rolling direction to the rolling vertical direction. In the direction of 0 °, 45 °, or 90 °, the strength is significantly higher than the conventional one.

本実施形態の銅合金板材に用いるCu−(Ni,Co)−Si系は析出硬化型合金であり、Ni−Si系、Co−Si系、Ni−Co−Si系などの金属間化合物が第二相として銅母相中に数nm前後の微細なサイズで分散することで、析出硬化によって高強度が得られる。  The Cu— (Ni, Co) —Si system used for the copper alloy sheet of the present embodiment is a precipitation hardening type alloy, and intermetallic compounds such as Ni—Si system, Co—Si system, and Ni—Co—Si system are the first. High strength can be obtained by precipitation hardening by dispersing as a two-phase in a copper matrix with a fine size of around several nanometers.

(引張強度:TS)
本実施形態の銅合金板材では、圧延方向から圧延垂直方向に向けて0°、45°、90°のいずれの方向の引張強度も1020MPa以上であり、好ましくは1060MPa以上である。圧延方向から圧延垂直方向に向けて0°、45°、90°のいずれの方向の引張強度も上限は1400MPa以下であり、好ましくは1350MPa以下である。引張強度が前記の範囲内であれば、耐疲労特性にも優れる。引張強度が低すぎると耐疲労特性に劣る。一方、引張強度が高すぎると局部伸びが出にくい。なお、引張強度とは、JIS
Z2241に基づき、引張試験中に加わった最大の力に対する応力(単位はMPa)である。図3中のσTSの定義によっては、応力−歪み曲線の傾きが零(ゼロ)の点の応力を引張強度とする場合がある。これに対して、本発明では、この傾きが零(ゼロ)になる手前の応力でも引張強度とする、という意味である。
(Tensile strength: TS)
In the copper alloy sheet of this embodiment, the tensile strength in any direction of 0 °, 45 °, and 90 ° from the rolling direction to the vertical direction of rolling is 1020 MPa or more, preferably 1060 MPa or more. The upper limit of the tensile strength in any direction of 0 °, 45 °, and 90 ° from the rolling direction to the vertical direction of rolling is 1400 MPa or less, preferably 1350 MPa or less. If the tensile strength is within the above range, the fatigue resistance is also excellent. If the tensile strength is too low, the fatigue resistance is poor. On the other hand, if the tensile strength is too high, local elongation is difficult to occur. The tensile strength is JIS
Based on Z2241, stress (unit: MPa) with respect to the maximum force applied during the tensile test. Depending on the definition of σ TS in FIG. 3, the stress at the point where the slope of the stress-strain curve is zero may be used as the tensile strength. On the other hand, in the present invention, it means that the tensile strength is set to a stress just before the inclination becomes zero.

(導電率:EC)
本実施形態の銅合金板材では、導電率は20%IACS以上であり、好ましくは23%IACS以上、さらに好ましくは26%IACS以上である。導電率が高すぎると強度が低下してしまう場合があるので、上限値は40%IACS以下である。
(Conductivity: EC)
In the copper alloy sheet of the present embodiment, the conductivity is 20% IACS or more, preferably 23% IACS or more, and more preferably 26% IACS or more. If the conductivity is too high, the strength may decrease, so the upper limit is 40% IACS or less.

なお、本実施形態において、上記の「%IACS」とは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。In the present embodiment, the above-mentioned “% IACS” represents the conductivity when the resistivity 1.7241 × 10 −8 Ωm of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS. It is.

(結晶方位制御)
本実施形態で特に顕著な45°及び90°方向の引張強度及び耐疲労特性の向上は、結晶方位分布の制御が作用している。図4に代表的に示したX線による{100}極点図のとおり、本実施形態の銅合金板材(発明例205、図4(A))では、従来の製造方法(比較例256、図4(B)や、比較例257、図4(C))では見られなかった結晶方位分布、すなわち従来得られなかった結晶組織が得られていることが分かる。
(Crystal orientation control)
The crystal orientation distribution is controlled to improve the tensile strength and fatigue resistance in the 45 ° and 90 ° directions that are particularly noticeable in this embodiment. As shown in the {100} pole figure by X-rays representatively shown in FIG. 4, the copper alloy sheet material of the present embodiment (Invention Example 205, FIG. 4 (A)) uses the conventional manufacturing method (Comparative Example 256, FIG. 4). It can be seen that a crystal orientation distribution that was not seen in (B), Comparative Example 257, and FIG.

(合金組成)
・Ni、Co、Siは上記の第二相を構成する元素である。これらは前記金属間化合物を形成する。これらは本実施形態の必須添加元素である。NiとCoのいずれか1種又は2種の含有量の総和は、1.80〜8.00質量%であり、好ましくは2.40〜5.00質量%、より好ましくは3.20〜5.00質量%である。また、Siの含有量は0.40〜2.00質量%、好ましくは0.50〜1.20質量%、より好ましくは0.60〜1.20質量%である。これらの必須添加元素の添加量が少なすぎると、得られる効果が不十分となり、強度不足で、さらに耐疲労特性にも劣る。一方、これらの必須添加元素の添加量が多すぎると、導電率が低下する場合がある。または、圧延工程中に材料割れが発生する場合がある。Coを添加した方が、導電性がやや良好であるが、Coを含んだ状態で必須添加元素の濃度が高い場合に、熱間圧延及び冷間圧延の条件によっては、圧延割れが生じやすくなる場合がある。よって、本発明におけるより好ましい実施形態は、第二相にCoを含まないものである。
(Alloy composition)
Ni, Co, and Si are elements constituting the second phase. These form the intermetallic compound. These are essential additive elements of this embodiment. The total content of any one or two of Ni and Co is 1.80 to 8.00% by mass, preferably 2.40 to 5.00% by mass, more preferably 3.20 to 5%. 0.000% by mass. Moreover, content of Si is 0.40-2.00 mass%, Preferably it is 0.50-1.20 mass%, More preferably, it is 0.60-1.20 mass%. If the amount of these essential additive elements is too small, the effect obtained is insufficient, the strength is insufficient, and the fatigue resistance is also poor. On the other hand, if the amount of these essential additive elements is too large, the electrical conductivity may decrease. Alternatively, material cracks may occur during the rolling process. The conductivity is slightly better when Co is added, but rolling cracks are likely to occur depending on the conditions of hot rolling and cold rolling when the concentration of the essential additive element is high in the state containing Co. There is a case. Therefore, a more preferred embodiment of the present invention is one that does not contain Co in the second phase.

・その他の元素
本実施形態の銅合金板材は、前記必須添加元素の他に、Sn、Zn、Ag、Mn、P、Mg、Cr、Zr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を任意添加元素として含有してもよい。該任意添加元素を含有する場合、Sn、Zn、Ag、Mn、P、Mg、Cr、Zr、Fe及びTiからなる群から選ばれる少なくとも1種の元素の含有量は、合計で0.005〜2.000質量%とする。該任意添加元素は、後述の中間冷間圧延[工程5]、最終冷間圧延[工程7]において、結晶粒の微細化を促進し、強度特性及び疲労特性を向上させる効果がある。また、耐応力緩和特性を向上させる効果があり、使用環境が100℃以上などの高温となる場合などに適する。但し、これらの任意添加元素の含有量が多すぎると導電率を低下させる弊害を生じる場合や圧延工程中に材料割れが発生する場合があるので、2.000質量%以下とすることが好ましい。
-Other elements The copper alloy sheet material of the present embodiment is at least one selected from the group consisting of Sn, Zn, Ag, Mn, P, Mg, Cr, Zr, Fe and Ti in addition to the essential additive elements. An element may be contained as an optional additive element. When the optional additive element is contained, the content of at least one element selected from the group consisting of Sn, Zn, Ag, Mn, P, Mg, Cr, Zr, Fe, and Ti is 0.005 in total. 2.000 mass%. The optional additive element has an effect of promoting the refinement of crystal grains and improving the strength characteristics and fatigue characteristics in intermediate cold rolling [Step 5] and final cold rolling [Step 7] described later. In addition, it has an effect of improving the stress relaxation resistance, and is suitable when the use environment is a high temperature such as 100 ° C. or higher. However, if the content of these optional additive elements is too large, there is a case in which the adverse effect of lowering the electrical conductivity is caused or material cracking may occur during the rolling process.

・不可避不純物
銅合金中の不可避不純物は、銅合金に含まれる通常の元素である。不可避不純物としては、例えば、O、H、S、Pb、As、Cd、Sbなどが挙げられる。これらは、その合計の量として0.1質量%程度までの含有が許容される。
-Inevitable impurities Inevitable impurities in copper alloys are ordinary elements contained in copper alloys. Examples of inevitable impurities include O, H, S, Pb, As, Cd, and Sb. These are allowed to contain up to about 0.1% by mass as the total amount.

(製造方法)
従来法として、通常の析出硬化型銅合金材の製造方法では、溶体化熱処理によって過飽和固溶状態とした後に、時効処理によって析出させ、必要に応じて調質圧延(仕上げ圧延)及び調質焼鈍(低温焼鈍、歪み取り焼鈍)が行われる。後述する比較例の製造方法F、J、K、Lがこれに相当する。
(Production method)
As a conventional method, in a conventional method for producing a precipitation hardening copper alloy material, after making it into a supersaturated solid solution state by solution heat treatment, it is precipitated by aging treatment, and temper rolling (finish rolling) and temper annealing as necessary (Low temperature annealing, strain relief annealing) is performed. The manufacturing methods F, J, K, and L of comparative examples described later correspond to this.

これに対して、本発明においては、前記従来法とは異なるプロセスが有効となる。例えば、下記のようなプロセスが有効である。ただし本発明は下記の方法に限定されるものではない。  On the other hand, in the present invention, a process different from the conventional method is effective. For example, the following process is effective. However, the present invention is not limited to the following method.

本実施形態の銅合金板材の製造方法の一例は、溶解・鋳造[工程1]して鋳塊を得て、この鋳塊に、均質化熱処理[工程2]、熱間圧延等の熱間加工[工程3]、水冷[工程4]、中間冷間圧延[工程5]、時効析出のための熱処理[工程6]、最終冷間圧延[工程7]、歪取り焼鈍[工程8]をこの順に行う方法が挙げられる。歪取り焼鈍[工程8]は所定の物性が得られていれば省略してもよい。  An example of a method for producing a copper alloy sheet according to the present embodiment is to obtain an ingot by melting / casting [Step 1], and to this ingot, hot processing such as homogenization heat treatment [Step 2], hot rolling, etc. [Step 3], water cooling [Step 4], intermediate cold rolling [Step 5], heat treatment for aging precipitation [Step 6], final cold rolling [Step 7], strain relief annealing [Step 8] in this order. The method of performing is mentioned. The strain relief annealing [Step 8] may be omitted if predetermined physical properties are obtained.

本実施形態では、一連の上記プロセスの組み合わせと、前記中間冷間圧延[工程5]の条件を加工率0〜95%とし、前記時効処理[工程6]の条件を300〜430℃で5分〜10時間とし、かつ、前記最終冷間圧延[工程7]の加工率を60〜99%とする、という各工程における特定の条件の組み合わせの制限によって達成される。ここでの機構は次のように推定される。前記時効処理[工程6]において析出した(Ni,Co)−Si化合物の作用によって、その後の最終冷間圧延[工程7]における転位の分布状態や結晶回転が変化する。そして、最終冷間圧延[工程7]の圧延率を高くとることで、最終冷間圧延[工程7]中の結晶粒の分断が誘発される。  In this embodiment, the combination of a series of the above processes and the condition of the intermediate cold rolling [Step 5] is a processing rate of 0 to 95%, and the condition of the aging treatment [Step 6] is 300 to 430 ° C. for 5 minutes. 10 hours and the processing rate of the final cold rolling [Step 7] is 60 to 99%, which is achieved by limiting the combination of specific conditions in each step. The mechanism here is estimated as follows. The action of the (Ni, Co) -Si compound precipitated in the aging treatment [Step 6] changes the dislocation distribution state and crystal rotation in the subsequent final cold rolling [Step 7]. Then, by taking a high rolling ratio in the final cold rolling [Step 7], the crystal grains in the final cold rolling [Step 7] are divided.

各工程での好ましい熱処理、加工の条件としては、以下のとおりである。
均質化熱処理[工程2]は、900〜1040℃で1時間以上、好ましくは5〜10時間保持する。
熱間圧延等の熱間加工[工程3]は、熱間加工開始から終了までの温度範囲が500〜1040℃で、加工率は10〜90%とする。
水冷[工程4]は、通常、冷却速度が1〜200℃/秒である。
中間冷間圧延[工程5]は、加工率が0〜95%、好ましくは71〜95%とする。
時効処理[工程6]は時効析出処理ともいい、その条件は300〜430℃で5分〜10時間の保持であり、好ましい温度範囲は330〜360℃である。
最終冷間圧延[工程7]は、加工率が60〜99%、好ましくは60〜89%である。
歪取り焼鈍[工程8]は、200〜500℃で5秒〜2時間保持する。保持時間が長すぎると、強度が低下してしまうため、5秒以上5分以下の短時間焼鈍とすることが好ましい。
The preferable heat treatment and processing conditions in each step are as follows.
The homogenization heat treatment [Step 2] is held at 900 to 1040 ° C. for 1 hour or longer, preferably 5 to 10 hours.
In the hot working [Step 3] such as hot rolling, the temperature range from the start to the end of hot working is 500 to 1040 ° C., and the working rate is 10 to 90%.
In the water cooling [Step 4], the cooling rate is usually 1 to 200 ° C./second.
The intermediate cold rolling [Step 5] has a processing rate of 0 to 95%, preferably 71 to 95%.
The aging treatment [Step 6] is also referred to as aging precipitation treatment, and the condition is holding at 300 to 430 ° C. for 5 minutes to 10 hours, and a preferable temperature range is 330 to 360 ° C.
The final cold rolling [Step 7] has a processing rate of 60 to 99%, preferably 60 to 89%.
The strain relief annealing [Step 8] is held at 200 to 500 ° C. for 5 seconds to 2 hours. If the holding time is too long, the strength decreases, and therefore it is preferable to perform short-time annealing for 5 seconds or more and 5 minutes or less.

ここで、加工率(又は圧延での断面減少率)は次式によって定義される値である。
加工率(%)={(t−t)/t}×100
式中、tは圧延加工前の厚さを、tは圧延加工後の厚さをそれぞれ表わす。
Here, the processing rate (or cross-sectional reduction rate in rolling) is a value defined by the following equation.
Processing rate (%) = {(t 1 −t 2 ) / t 1 } × 100
In the formula, t 1 represents the thickness before rolling, and t 2 represents the thickness after rolling.

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて、必要により、面削や酸洗浄、又は表面研磨によって、表面の酸化層を除去してもよい。また、形状に応じて、必要により、テンションレベラーによる矯正を行ってもよい。また、圧延ロールの凹凸の転写やオイルピットによって材料表面の粗さが大きい場合は、圧延速度、圧延油、圧延ロールの径、圧延ロールの表面粗さ、圧延時の1パスの圧下量などの圧延条件を調整することができる。  In addition, after each heat treatment or rolling, the surface oxide layer may be removed by chamfering, acid cleaning, or surface polishing, if necessary, depending on the state of oxidation or roughness of the material surface. Further, depending on the shape, correction by a tension leveler may be performed as necessary. Also, when the surface roughness of the material is large due to transfer of unevenness of the rolling roll or oil pits, the rolling speed, rolling oil, diameter of the rolling roll, surface roughness of the rolling roll, reduction amount of one pass during rolling, etc. The rolling conditions can be adjusted.

(板厚)
本実施形態の銅合金板材は、仕上げ圧延後の最終板厚が30μm〜1mmである。好ましくは、40μm〜0.3mmである。
(Thickness)
The copper alloy sheet material of this embodiment has a final sheet thickness of 30 μm to 1 mm after finish rolling. Preferably, it is 40 micrometers-0.3 mm.

(物性)
本実施形態の銅合金板材は、好ましくは以下の物性を有する。
(Physical properties)
The copper alloy sheet material of this embodiment preferably has the following physical properties.

(耐疲労特性)
本実施形態の銅合金板材の一つの好ましい実施態様では、JIS Z 2273で規定される疲労試験において、圧延方向から圧延垂直方向に向けて0°、45°、90°のいずれの方向の耐疲労特性にも優れる。具体的には、試験片を負荷応力500MPaで繰り返し曲げを施した場合に破断するまでの回数は、好ましくは4×10回以上である。これは、毎日10回の挿抜を10年間行うことに対応した回数である。より好ましくは8×10回以上、さらに好ましくは11×10回以上である。端子の設計によっては90°方向の負荷応力が特に高いため、特に良好な疲労特性が求められる場合がある。本発明のより好ましい形態として、90°方向の寿命が2×10回以上である。
(Fatigue resistance)
In one preferred embodiment of the copper alloy sheet according to the present embodiment, in a fatigue test specified by JIS Z 2273, fatigue resistance in any direction of 0 °, 45 °, and 90 ° from the rolling direction to the vertical direction of rolling. Excellent characteristics. Specifically, when the test piece is repeatedly bent at a load stress of 500 MPa, the number of times until it breaks is preferably 4 × 10 4 times or more. This is the number of times corresponding to 10 insertions / removals every day for 10 years. More preferably, it is 8 × 10 4 times or more, and further preferably 11 × 10 4 times or more. Depending on the terminal design, the load stress in the 90 ° direction is particularly high, so that particularly good fatigue characteristics may be required. As a more preferred embodiment of the present invention, the 90 ° life is 2 × 10 5 times or more.

(局部伸び)
本発明の銅合金板材の一つの好ましい実施態様では、局部伸びが、好ましくは0.03〜10%、より好ましくは0.08〜10%、さらに好ましくは0.15〜10%である。
引張試験の際、最大荷重(引張強度σTS)を超えると試験片の一部にくびれ(ネッキング)が生じる。このくびれ発生後の伸びを局部伸びという。図3に、発明例205の0°方向での応力−歪曲線を代表的な例として示す。eが均一伸び、eが局部伸びに相当する。一般的に、材料の強度を高めるほど局部伸びを出すのは難しい。本発明の銅合金板材は、好ましくは、高強度を有しつつ、一定の局部伸びも有する。
(Local growth)
In one preferable embodiment of the copper alloy sheet according to the present invention, the local elongation is preferably 0.03 to 10%, more preferably 0.08 to 10%, and further preferably 0.15 to 10%.
In the tensile test, if the maximum load (tensile strength σ TS ) is exceeded, necking occurs in a part of the test piece. This elongation after the occurrence of constriction is called local elongation. In FIG. 3, the stress-strain curve in 0 degree direction of the invention example 205 is shown as a typical example. e U corresponds to uniform elongation, and e L corresponds to local elongation. In general, it is difficult to achieve local elongation as the strength of the material is increased. The copper alloy sheet material of the present invention preferably has a constant local elongation while having a high strength.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
表1に記載の合金成分元素を含有し、残部がCuと不可避不純物から成る合金の原料を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。そして、下記A、B、C、D、E及びFのいずれかの製法にて、本発明に従った発明例とこれとは別に比較例の銅合金板材の供試材を、それぞれ製造した。なお、表1にA、B、C、D、E及びFのいずれの製法を用いたのかを示した。最終的な銅合金板材の厚さは0.1mmとした。この最終板厚は、以下に述べる製法J、K、Lの場合も特に断らない限り同様である。
なお、表中に下線つきで表した数字等は、本発明で規定する合金成分の含有量もしくは製法を満たさなかったか、または物性が本発明で規定する範囲もしくは好ましい範囲を満たさなかったものを意味する。
(Example 1)
An alloy raw material containing the alloy constituent elements shown in Table 1 and the balance consisting of Cu and inevitable impurities was melted in a high-frequency melting furnace and cast to obtain an ingot. And the test material of the copper alloy board | plate material of the comparative example was manufactured separately by the manufacturing method in any one of following A, B, C, D, E, and F separately from the invention example according to this invention. Table 1 shows which of A, B, C, D, E, and F was used. The final thickness of the copper alloy sheet was 0.1 mm. This final plate thickness is the same in the production methods J, K, and L described below unless otherwise specified.
The numbers underlined in the table mean that the alloy component content or manufacturing method specified in the present invention was not satisfied, or that the physical properties did not satisfy the range specified in the present invention or the preferred range. To do.

(製法A)
前記鋳塊に対して、900〜1040℃で1時間以上10時間以下保持する均質化熱処理を行い、この高温状態のまま熱間圧延を行った。熱間圧延の終了温度は500℃以上とし、加工率は10〜90%とした。熱間圧延終了後には水冷した。その後、必要により面削した。その後、加工率が0〜95%の中間冷間圧延、300〜430℃に5分〜10時間保持する時効処理、加工率が60〜99%の最終冷間圧延、下記の歪取り焼鈍をこの順に行った。
(Manufacturing method A)
The ingot was subjected to a homogenization heat treatment that was held at 900 to 1040 ° C. for 1 hour or more and 10 hours or less, and hot rolling was performed in this high temperature state. The end temperature of hot rolling was 500 ° C. or higher, and the processing rate was 10 to 90%. After the hot rolling was finished, it was cooled with water. Thereafter, it was chamfered as necessary. Thereafter, intermediate cold rolling with a processing rate of 0 to 95%, aging treatment at 300 to 430 ° C. for 5 minutes to 10 hours, final cold rolling with a processing rate of 60 to 99%, and the following strain relief annealing are performed. I went in order.

(製法B)
前記最終冷間圧延の加工率を99.1〜99.9%とした以外は、前記製法Aと同様に行った。
(Manufacturing method B)
It carried out similarly to the said manufacturing method A except having made the processing rate of the said last cold rolling into 99.1 to 99.9%.

(製法C)
前記最終冷間圧延の加工率を30〜59%とした以外は、前記製法Aと同様に行った。
(Manufacturing method C)
It carried out similarly to the said manufacturing method A except having made the processing rate of the said last cold rolling into 30 to 59%.

(製法D)
前記時効処理の加熱温度を250〜290℃とし、前記最終冷間圧延の加工率を60〜89%とした以外は、前記製法Aと同様に行った。
(Manufacturing method D)
It was carried out in the same manner as in Production Method A except that the heating temperature for the aging treatment was 250 to 290 ° C. and the processing rate of the final cold rolling was 60 to 89%.

(製法E)
前記時効処理の加熱温度を440〜500℃とし、前記最終冷間圧延の加工率を60〜89%とした以外は、前記製法Aと同様に行った。
(Manufacturing method E)
It carried out similarly to the said manufacturing method A except having set the heating temperature of the said aging treatment to 440-500 degreeC, and having set the processing rate of the said last cold rolling to 60 to 89%.

(製法F)
前記中間冷間圧延の後で前記時効処理の前に、700〜1000℃に5秒〜10分間保持した後に水焼き入れを施す溶体化処理を行い、前記最終冷間圧延の加工率を60〜89%とした以外は、前記製法Aと同様に行った。
(Production method F)
After the intermediate cold rolling and before the aging treatment, a solution treatment is performed in which water quenching is performed at 700 to 1000 ° C. for 5 seconds to 10 minutes, and the processing rate of the final cold rolling is set to 60 to The procedure was the same as in Production Method A except that the content was 89%.

前記製法A、B、C、D、E及びFにおける歪取り焼鈍の条件は、200〜500℃で5秒〜5分間保持した。
なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて、必要により、面削や酸洗浄、又は表面研磨によって、表面の酸化層を除去した。また、形状に応じて、必要により、テンションレベラーによる矯正を行った。また、圧延ロールの凹凸の転写やオイルピットによって、材料表面の粗さが大きい場合は、圧延速度、圧延油、圧延ロールの径、圧延ロールの表面粗さ、圧延時の1パスの圧下量などの圧延条件を調整した。
The conditions for strain relief annealing in the production methods A, B, C, D, E, and F were held at 200 to 500 ° C. for 5 seconds to 5 minutes.
After each heat treatment and rolling, the surface oxide layer was removed by chamfering, acid cleaning, or surface polishing, if necessary, depending on the state of oxidation and roughness of the material surface. Further, according to the shape, correction with a tension leveler was performed as necessary. In addition, when the roughness of the material surface is large due to transfer of unevenness of the rolling roll or oil pits, the rolling speed, rolling oil, diameter of the rolling roll, surface roughness of the rolling roll, reduction amount of one pass during rolling, etc. The rolling conditions were adjusted.

また、他の比較例として下記の製法J、K、Lのいずれかにて試作して、銅合金板材の供試材を得た。製法J、K、Lの条件は、各特許文献に記載されている製造方法のものを踏襲した。  In addition, as another comparative example, a prototype of a copper alloy sheet material was obtained by trial manufacture by any of the following production methods J, K, and L. The conditions of the manufacturing methods J, K, and L followed those of the manufacturing methods described in each patent document.

(製法J)特許文献6:特開2008−095186号公報の実施例2の製法
下記表1に示した銅合金組成を与える原料を高周波溶解炉にて溶解し、これをDC(ダイレクト・キャスティング)法により厚さ30mm、幅100mm、長さ150mmの鋳塊に鋳造し、得られた鋳塊を1000℃の温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。次に、熱間圧延板の両面を各1.5mm切削して酸化皮膜を除去し、次いで厚さ0.15〜0.1mmに冷間圧延し、次いで825〜925℃の温度範囲で15秒間溶体化処理し、その後直ちに10℃/秒以上の冷却速度で冷却した。次に420〜480℃で1〜3時間の時効熱処理を施し、その後直ちに約1〜10℃/秒の冷却速度で冷却した。
次いで、30%以下の圧延率で冷間圧延して板厚0.1mmの板材に仕上げた。なお、溶体化処理と時効熱処理の条件は合金組成に応じて適宜選定した。冷間圧延後に、歪取り焼鈍を650℃で3秒間施した。
(Production method J) Patent document 6: Production method of Example 2 of JP-A-2008-095186 A raw material providing the copper alloy composition shown in Table 1 below was melted in a high-frequency melting furnace, and this was DC (direct casting). The ingot was cast into an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm by the method, and the obtained ingot was kept at a temperature of 1000 ° C. for 1 hour, and then hot-rolled to a thickness of 12 mm and quickly cooled. Next, both sides of the hot-rolled plate are cut 1.5 mm each to remove the oxide film, then cold-rolled to a thickness of 0.15 to 0.1 mm, and then at a temperature range of 825 to 925 ° C. for 15 seconds. Solution treatment was performed, and immediately thereafter, cooling was performed at a cooling rate of 10 ° C./second or more. Next, aging heat treatment was performed at 420 to 480 ° C. for 1 to 3 hours, and then immediately cooled at a cooling rate of about 1 to 10 ° C./second.
Subsequently, it cold-rolled with the rolling rate of 30% or less, and finished it into the board | plate material with a board thickness of 0.1 mm. The conditions for solution treatment and aging heat treatment were appropriately selected according to the alloy composition. After cold rolling, strain relief annealing was performed at 650 ° C. for 3 seconds.

(製法K)特許文献7:特開2012−246549号公報に記載の実施例1、工程Aの製法
下記表1に示した銅合金組成を与える原料を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。この状態を提供材とし、下記の工程にて、銅合金板材の供試材を製造した。最終的な合金板材の厚さは0.12mmとした。
950〜1050℃の温度で3分〜10時間の均質化熱処理を行い、500〜950℃の熱間圧延を行った後に400〜800℃で5秒〜20時間の熱処理を行い、酸化スケール除去のために面削を行った。その後に90〜99%の加工率の冷間圧延1を行い、400〜700℃の温度で5秒〜20時間の中間焼鈍を行い、3〜80%の加工率の冷間圧延2を行った。その後に、800〜950℃の温度に5秒〜50秒間保持する溶体化熱処理を行い、350〜600℃の温度で5分間〜20時間の時効析出熱処理を行い、5〜50%の仕上げ圧延を行い、300〜700℃の温度で10秒〜20時間保持する調質焼鈍を行った。
(Manufacturing method K) Patent document 7: Example 1 described in Japanese Patent Application Laid-Open No. 2012-246549, manufacturing method of step A A raw material giving the copper alloy composition shown in Table 1 below was melted in a high-frequency melting furnace, and this was cast. The ingot was obtained. Using this state as a providing material, a test material for a copper alloy sheet was manufactured in the following steps. The final alloy sheet thickness was 0.12 mm.
Perform homogenization heat treatment at a temperature of 950 to 1050 ° C. for 3 minutes to 10 hours, perform hot rolling at 500 to 950 ° C., and then perform heat treatment at 400 to 800 ° C. for 5 seconds to 20 hours to remove oxide scale. For this reason, the surface was cut. Thereafter, cold rolling 1 with a processing rate of 90 to 99% was performed, intermediate annealing was performed at a temperature of 400 to 700 ° C. for 5 seconds to 20 hours, and cold rolling 2 with a processing rate of 3 to 80% was performed. . Thereafter, a solution heat treatment is performed at a temperature of 800 to 950 ° C. for 5 seconds to 50 seconds, an aging precipitation heat treatment is performed at a temperature of 350 to 600 ° C. for 5 minutes to 20 hours, and a finish rolling of 5 to 50% is performed. And temper annealing was performed at a temperature of 300 to 700 ° C. for 10 seconds to 20 hours.

(製法L)特許文献3:特開2006−152392号公報に記載の発明例1の製法
下記表1に示した銅合金組成(Cu−6.0Ni−1.2Si−0.02P)を与える銅合金を鋳造して銅合金板を製造した。なお、前記記載以外の他の元素(不可避的不純物元素)として、Al、Fe、Ti、Be、V、Nb、Mo、Wは、これらの総量で0.5質量%以下であった。また、B、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等の元素は、これらの総量で0.1質量%以下であった。
具体的な銅合金板の製造方法としては、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが15mmになるまで熱間圧延し、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、厚さが0.75mmの板を得た。
続いて、塩浴炉を使用し、温度900℃で20秒間加熱する溶体化処理を行なった後に、水中に急冷した後、加工率20%で後半の仕上げ冷間圧延により、厚み0.6mmの冷延板にした。この冷延板を、温度450℃で4時間の時効処理に付した。
(Manufacturing Method L) Patent Document 3: Manufacturing Method of Invention Example 1 described in Japanese Patent Application Laid-Open No. 2006-152392 Copper that gives a copper alloy composition (Cu-6.0Ni-1.2Si-0.02P) shown in Table 1 below The alloy was cast to produce a copper alloy plate. As other elements (inevitable impurity elements) other than those described above, Al, Fe, Ti, Be, V, Nb, Mo, and W were 0.5% by mass or less in total. Further, the total amount of elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, and MM (Misch metal) was 0.1% by mass or less.
As a specific method for producing a copper alloy plate, a kryptor furnace is melted under a charcoal coating in the atmosphere, cast into a cast iron book mold, and an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm is obtained. Obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. until the thickness became 15 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a thickness of 0.75 mm.
Subsequently, after performing a solution treatment by heating for 20 seconds at a temperature of 900 ° C. using a salt bath furnace, after quenching in water, the finish cold rolling of the latter half with a processing rate of 20%, a thickness of 0.6 mm Cold rolled. This cold-rolled sheet was subjected to an aging treatment at a temperature of 450 ° C. for 4 hours.

これらの本発明に従った発明例及び比較例の供試材について、以下のようにして各特性を測定、評価した。結果を表1に併せて示す。  About the test material of the invention example according to this invention and a comparative example, each characteristic was measured and evaluated as follows. The results are also shown in Table 1.

a.引張強度:TS
図2に示したように圧延方向から圧延垂直方向に向けて0°(圧延方向)、45°または90°(圧延垂直方向)に切り出したJIS Z2201−13B号の試験片を、JIS Z2241に準じて各方向に3本ずつ測定しそれぞれ平均値を示した。引張強度は、引張試験中に加わった最大の力に対する応力(単位はMPa)とした。
a. Tensile strength: TS
A test piece of JIS Z2201-13B cut out at 0 ° (rolling direction), 45 ° or 90 ° (rolling vertical direction) from the rolling direction to the rolling vertical direction as shown in FIG. 2 in accordance with JIS Z2241. Then, three samples were measured in each direction, and the average value was shown. The tensile strength was a stress (unit: MPa) with respect to the maximum force applied during the tensile test.

b.導電率:EC
各供試材について、20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
b. Conductivity: EC
About each test material, the specific resistance was measured by the four probe method in the thermostat kept at 20 degreeC (+/- 0.5 degreeC), and the electrical conductivity was computed. In addition, the distance between terminals was 100 mm.

c.耐疲労特性
図2に示したように、圧延方向から圧延垂直方向に向けて0°(圧延方向)、45°または90°(圧延垂直方向)に切り出したJIS Z2201−13B号の試験片を、JIS Z 2273に準じて各方向に3本ずつ、負荷応力500MPaで繰り返し曲げた場合に破断するまでの繰り返し回数を測定しそれぞれ平均値を示した。
c. As shown in FIG. 2, a test piece of JIS Z2201-13B cut out at 0 ° (rolling direction), 45 ° or 90 ° (rolling vertical direction) from the rolling direction to the rolling vertical direction, According to JIS Z 2273, three times in each direction, the number of repetitions until breakage was measured when repeated bending was performed at a load stress of 500 MPa, and the average value was shown.

d.局部伸び:e
図3に示したように、前記と同様の引張試験において局部伸び(e)を求めた。
d. Local growth: e L
As shown in FIG. 3, the local elongation (e L ) was determined in the same tensile test as described above.

Figure 0005840310
Figure 0005840310

表1に示すように、本発明の規定を満足する発明例101〜110は、いずれも全ての特性に優れた。すなわち発明例101〜110は、Ni/Co、Siの濃度が所定範囲内で高い程、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれにおいてもより高い引張強度[TS]と耐疲労特性(繰り返し回数)を示した。また、発明例104、106の圧延方向から圧延垂直方向に向けて0°または90°方向を除いて、各発明例は局部伸びを有していた。  As shown in Table 1, Invention Examples 101 to 110 that satisfy the definition of the present invention were all excellent in all characteristics. That is, in the inventive examples 101 to 110, the higher the Ni / Co and Si concentrations are within a predetermined range, the higher the tensile strength in any of the 0 °, 45 °, and 90 ° directions from the rolling direction to the vertical direction of rolling [ TS] and fatigue resistance (number of repetitions) are shown. Moreover, each invention example had local elongation except for the 0 ° or 90 ° direction from the rolling direction of Invention Examples 104 and 106 toward the vertical direction of rolling.

一方、各比較例では、合金組成、製造条件の内のいずれかが本発明で規定する条件を満たさなかったため、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれかにおいて引張強度[TS]が本発明で規定する条件を満たさずに低かった。
より具体的には、比較例151では、Ni/Co、Siが少なすぎたので、圧延方向から圧延垂直方向に向けて0°または45°方向において引張強度[TS]が本発明で規定する条件を満たさずに低かった。また、比較例151は、圧延方向から圧延垂直方向に向けて0°または45°方向において耐疲労特性(繰り返し回数)に劣った。NiとSiの含有量が多すぎた比較例152では、圧延割れが発生し、製造性が劣った。製法C、D、EまたはFによる比較例153〜156では、製造条件が本発明で規定する条件を外れ、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれかにおいて引張強度[TS]が本発明で規定する条件を満たさずに低かった。また、比較例153〜156は、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれかにおいて耐疲労特性(繰り返し回数)に劣った。
On the other hand, in each comparative example, either one of the alloy composition and the production condition did not satisfy the condition defined in the present invention, and therefore, either 0 °, 45 ° or 90 ° direction from the rolling direction to the vertical direction of rolling. , The tensile strength [TS] was low without satisfying the conditions defined in the present invention.
More specifically, in Comparative Example 151, since Ni / Co and Si were too little, the condition that the tensile strength [TS] is defined in the present invention in the 0 ° or 45 ° direction from the rolling direction to the rolling vertical direction. It was low without meeting. Further, Comparative Example 151 was inferior in fatigue resistance characteristics (number of repetitions) in the 0 ° or 45 ° direction from the rolling direction to the rolling vertical direction. In Comparative Example 152 in which the contents of Ni and Si were too large, rolling cracks occurred and productivity was inferior. In Comparative Examples 153 to 156 according to the production methods C, D, E, or F, the manufacturing conditions deviate from the conditions defined in the present invention, and in either the 0 °, 45 °, or 90 ° direction from the rolling direction to the vertical direction of rolling. The tensile strength [TS] was low without satisfying the conditions defined in the present invention. Moreover, Comparative Examples 153 to 156 were inferior in fatigue resistance characteristics (repetition count) in any of 0 °, 45 °, and 90 ° directions from the rolling direction to the vertical direction of rolling.

他の比較例として、製法Jによる比較例157、製法Kによる比較例158は、いずれも製造条件が本発明で規定する条件を外れ、圧延方向から圧延垂直方向に向けて0°、45°及び90°方向のいずれにおいても引張強度[TS]が本発明で規定する条件を満たさずに低かった。また、圧延方向から圧延垂直方向に向けて0°、45°及び90°方向のいずれにおいても耐疲労特性に劣った。  As other comparative examples, the comparative example 157 by the manufacturing method J and the comparative example 158 by the manufacturing method K are both 0 °, 45 ° from the rolling direction to the vertical direction of the rolling, and the manufacturing conditions deviate from the conditions defined in the present invention. In any of the 90 ° directions, the tensile strength [TS] was low without satisfying the conditions defined in the present invention. Further, the fatigue resistance was inferior in any of 0 °, 45 ° and 90 ° directions from the rolling direction to the vertical direction of rolling.

(実施例2)
実施例1と同様の製造方法及び試験・測定方法によって、表2に示す各種銅合金を用いて銅合金板材を製造し、その特性を評価した。結果を表2に示す。
(Example 2)
By the same manufacturing method and test / measurement method as in Example 1, copper alloy sheet materials were manufactured using various copper alloys shown in Table 2, and their characteristics were evaluated. The results are shown in Table 2.

Figure 0005840310
Figure 0005840310

表2に示すように、本発明の規定を満足する発明例201〜210は、いずれも全ての特性に優れた。任意添加元素の添加効果によって、全ての試験例においてではないものの、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれにおいてもより高い引張強度[TS]と耐疲労特性(繰り返し回数)が向上する傾向が認められた。また、発明例203、206の圧延方向から圧延垂直方向に向けて0°または90°方向を除いて、各発明例は局部伸びを有していた。  As shown in Table 2, Invention Examples 201 to 210 that satisfy the provisions of the present invention were all excellent in all characteristics. Higher tensile strength [TS] and fatigue resistance in any of 0 °, 45 °, or 90 ° direction from the rolling direction to the vertical direction of rolling, although not in all the test examples, due to the additive effect of the optional additive element A tendency to improve (the number of repetitions) was observed. Moreover, each invention example had local elongation except for the 0 ° or 90 ° direction from the rolling direction of Invention Examples 203 and 206 toward the vertical direction of rolling.

一方、各比較例では、合金組成、製造条件の内のいずれかが本発明で規定する条件を満たさなかったため、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれかにおいて引張強度[TS]が本発明で規定する条件を満たさずに低かった。
より具体的には、副添加元素(この例ではSn)が多すぎた比較例251では、圧延割れが発生し、製造性が劣った。製法C、D、EまたはFによる比較例252〜255では、製造条件が本発明で規定する条件を外れ、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれかにおいて引張強度[TS]が本発明で規定する条件を満たさずに低かった。また、比較例252〜255は、圧延方向から圧延垂直方向に向けて0°、45°または90°方向のいずれかにおいて耐疲労特性に劣った。
On the other hand, in each comparative example, either one of the alloy composition and the production condition did not satisfy the condition defined in the present invention, and therefore, either 0 °, 45 ° or 90 ° direction from the rolling direction to the vertical direction of rolling. , The tensile strength [TS] was low without satisfying the conditions defined in the present invention.
More specifically, in Comparative Example 251 in which the auxiliary additive element (Sn in this example) was too much, a rolling crack occurred and the productivity was inferior. In Comparative Examples 252 to 255 according to the production methods C, D, E, or F, the manufacturing conditions deviate from the conditions defined in the present invention, and in either the 0 °, 45 °, or 90 ° direction from the rolling direction to the vertical direction of rolling. The tensile strength [TS] was low without satisfying the conditions defined in the present invention. Further, Comparative Examples 252 to 255 were inferior in fatigue resistance in any of 0 °, 45 °, and 90 ° directions from the rolling direction to the rolling vertical direction.

他の比較例として、製法Jによる比較例256、製法Kによる比較例257、製法Lによる比較例258は、いずれも製造条件が本発明で規定する条件を外れ、圧延方向から圧延垂直方向に向けて0°、45°及び90°方向のいずれにおいても引張強度[TS]が本発明で規定する条件を満たさずに低かった。また、圧延方向から圧延垂直方向に向けて0°、45°及び90°方向のいずれにおいても耐疲労特性に劣った。  As other comparative examples, the comparative example 256 by the manufacturing method J, the comparative example 257 by the manufacturing method K, and the comparative example 258 by the manufacturing method L are all out of the conditions defined in the present invention by the manufacturing conditions, and are directed from the rolling direction to the rolling vertical direction. The tensile strength [TS] was low without satisfying the conditions defined in the present invention in any of the 0 °, 45 °, and 90 ° directions. Further, the fatigue resistance was inferior in any of 0 °, 45 ° and 90 ° directions from the rolling direction to the vertical direction of rolling.

本発明の銅合金板材は、コネクタであればどのようなタイプでも好適に用いることができる。特に、ドックコネクタやUSBコネクタに代表される外部接続コネクタの他、カメラモジュール用の薄板バネ材、リレーの可動片として好適に用いることができる。  As long as the copper alloy plate material of the present invention is a connector, any type can be suitably used. In particular, it can be suitably used as an external connection connector represented by a dock connector or a USB connector, a thin spring material for a camera module, or a movable piece of a relay.

本発明をその実施態様とともに説明したが、私は特に指定しない限り私の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。  While the invention has been described in conjunction with the embodiments thereof, it is not intended that the invention be limited in any detail to the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

1 銅合金板材
20 圧延方向(RD)から圧延垂直方向(TD)に向けて0°方向の引張強度・耐疲労特性を測定するための試験片
21 圧延方向(RD)から圧延垂直方向(TD)に向けて45°方向の引張強度・耐疲労特性を測定するための試験片
22 圧延方向(RD)から圧延垂直方向(TD)に向けて90°方向の引張強度・耐疲労特性を測定するための試験片
DESCRIPTION OF SYMBOLS 1 Copper alloy board | plate material 20 The test piece for measuring the tensile strength and fatigue resistance of a 0 degree direction from a rolling direction (RD) to a rolling vertical direction (TD) 21 Rolling direction (RD) to rolling vertical direction (TD) Specimen for Measuring Tensile Strength and Fatigue Resistance in 45 ° direction toward 22 To measure Tensile Strength and Fatigue Resistance in 90 ° direction from rolling direction (RD) to vertical direction of rolling (TD) Specimen

Claims (6)

NiとCoのいずれか1種又は2種を合計で1.80〜8.00質量%、Siを0.40〜2.00質量%含有し、さらに、Sn0.31質量%以下、Zn1.85質量%以下、Ag0.08質量%以下、Mn0.1質量%以下、P0.05質量%以下、Mg0.11質量%以下、Cr0.12質量%以下、Fe0.11質量%以下及びTi0.14質量%以下の範囲であって、かつ該Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.000〜2.000質量%含有し、残部が銅と不可避不純物からなる組成を有し、
導電率が20〜40%IACS以上であり、
圧延方向(RD)から圧延垂直方向(TD)に向けて0°、45°、90°の方向の引張強度がいずれも1020〜1400MPaである、銅合金板材。
It contains 1.80 to 8.00 mass% in total of any one or two of Ni and Co, 0.40 to 2.00 mass% of Si , and further Sn 0.31 mass% or less, Zn 1.85 Mass% or less, Ag 0.08 mass% or less, Mn 0.1 mass% or less, P 0.05 mass% or less, Mg 0.11 mass% or less, Cr 0.12 mass% or less, Fe 0.11 mass% or less, and Ti 0.14 mass% % , And a total of at least one element selected from the group consisting of Sn, Zn, Ag, Mn, P, Mg, Cr 2 , Fe and Ti is 0.000 to 2.000 mass Containing, and the balance has a composition consisting of copper and inevitable impurities,
Conductivity is 20-40% IACS or more,
A copper alloy sheet having a tensile strength of 1020 to 1400 MPa in the direction of 0 °, 45 °, and 90 ° from the rolling direction (RD) to the rolling vertical direction (TD).
前記Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素合計の含有量が、0.005〜2.000質量%である請求項1に記載の銅合金板材。 The Sn, Zn, Ag, Mn, P, Mg, Cr, the content of total of at least one element selected from the group consisting of F e, and Ti, claims a 0.005 to 2.000 wt% The copper alloy sheet material according to 1. 請求項1または2に記載の銅合金板材からなるコネクタ。   The connector which consists of a copper alloy board | plate material of Claim 1 or 2. 導電率が20〜40%IACS以上であり、圧延方向(RD)から圧延垂直方向(TD)に向けて0°、45°、90°の方向の引張強度がいずれも1020〜1400MPaである銅合金板材の製造方法であって、NiとCoのいずれか1種又は2種を合計で1.80〜8.00質量%、Siを0.40〜2.00質量%含有し、さらに、Sn0.31質量%以下、Zn1.85質量%以下、Ag0.08質量%以下、Mn0.1質量%以下、P0.05質量%以下、Mg0.11質量%以下、Cr0.12質量%以下、Fe0.11質量%以下及びTi0.14質量%以下の範囲であって、かつ該Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.000〜2.000質量%含有し、残部が銅と不可避不純物からなる銅合金の原料を溶解し鋳造する溶解・鋳造工程と、
900〜1040℃で1時間以上の熱処理を行う均質化熱処理工程と、
熱間加工開始から終了までの温度範囲が500〜1040℃であり、加工率が10〜90%である熱間加工工程と、
加工率が0〜95%の中間冷間圧延工程と、
300〜430℃で5分間から10時間の熱処理を行う熱処理工程と、
加工率が60〜99%の最終冷間圧延工程と、
をこの順で行う銅合金板材の製造方法。
Copper alloy having an electrical conductivity of 20 to 40% IACS or more and tensile strengths in the directions of 0 °, 45 °, and 90 ° from the rolling direction (RD) to the vertical direction of rolling (TD) are 1020 to 1400 MPa. It is a manufacturing method of a board | plate material , Comprising: One or two types of Ni and Co are contained in a total of 1.80-8.00 mass%, Si is 0.40-2.00 mass% , Furthermore, Sn0. 31 mass% or less, Zn 1.85 mass% or less, Ag 0.08 mass% or less, Mn 0.1 mass% or less, P0.05 mass% or less, Mg0.11 mass% or less, Cr0.12 mass% or less, Fe0.11 A total of at least one element selected from the group consisting of Sn, Zn, Ag, Mn, P, Mg, Cr , Fe and Ti, in a range of not more than mass% and not more than 0.14 mass% of Ti. 0.000 to 2.000 quality % And containing a melting and casting process the balance to dissolve the raw material of the copper alloy consisting of copper and unavoidable impurities casting,
A homogenization heat treatment step of performing heat treatment at 900 to 1040 ° C. for 1 hour or more;
A hot working step in which the temperature range from the start to the end of hot working is 500 to 1040 ° C., and the working rate is 10 to 90%;
An intermediate cold rolling step with a processing rate of 0 to 95%;
A heat treatment step of performing heat treatment at 300 to 430 ° C. for 5 minutes to 10 hours;
A final cold rolling step with a processing rate of 60-99%;
A method for producing a copper alloy sheet material in this order.
前記溶解・鋳造工程に供される銅合金に、Sn0.31質量%以下、Zn1.85質量%以下、Ag0.08質量%以下、Mn0.1質量%以下、P0.05質量%以下、Mg0.11質量%以下、Cr0.12質量%以下、Fe0.11質量%以下及びTi0.14質量%以下の範囲であって、かつ該Sn、Zn、Ag、Mn、P、Mg、Cr、Fe及びTiからなる群から選ばれる少なくとも1種の元素を合計で0.005〜2.000質量%含有する請求項4に記載の銅合金板材の製造方法。 The copper alloy to be used for the melting / casting step is Sn 0.31 mass% or less, Zn 1.85 mass% or less, Ag 0.08 mass% or less, Mn 0.1 mass% or less, P 0.05 mass% or less, Mg 0. 11 mass% or less, Cr 0.12 mass% or less, Fe 0.11 mass% or less and Ti 0.14 mass% or less, and the Sn, Zn, Ag, Mn, P, Mg, Cr 2 , Fe and The manufacturing method of the copper alloy board | plate material of Claim 4 which contains 0.005-1.000 mass% of at least 1 sort (s) of elements chosen from the group which consists of Ti in total. 前記最終冷間圧延工程の後に、200〜500℃で5秒〜2時間保持する歪取り焼鈍を行う請求項4または5に記載の銅合金板材の製造方法。
The method for producing a copper alloy sheet according to claim 4 or 5, wherein after the final cold rolling step, strain relief annealing is performed at 200 to 500 ° C for 5 seconds to 2 hours.
JP2014559967A 2014-07-09 2014-07-09 Copper alloy sheet, connector, and method for producing copper alloy sheet Active JP5840310B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068296 WO2016006053A1 (en) 2014-07-09 2014-07-09 Copper alloy sheet material, connector, and method for producing copper alloy sheet material

Publications (2)

Publication Number Publication Date
JP5840310B1 true JP5840310B1 (en) 2016-01-06
JPWO2016006053A1 JPWO2016006053A1 (en) 2017-04-27

Family

ID=55063728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014559967A Active JP5840310B1 (en) 2014-07-09 2014-07-09 Copper alloy sheet, connector, and method for producing copper alloy sheet

Country Status (3)

Country Link
JP (1) JP5840310B1 (en)
CN (1) CN106661673A (en)
WO (1) WO2016006053A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332285B1 (en) * 2021-05-17 2021-12-01 주식회사 근우 Manufacturing method of copper busbar with improved heat generation
CN116694953A (en) * 2023-08-04 2023-09-05 中铝科学技术研究院有限公司 Copper alloy plate strip for electromagnetic shielding and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355671B2 (en) * 2016-03-31 2018-07-11 Jx金属株式会社 Cu-Ni-Si-based copper alloy strip and method for producing the same
JP6472477B2 (en) * 2017-03-30 2019-02-20 Jx金属株式会社 Cu-Ni-Si copper alloy strip
KR102363597B1 (en) * 2018-03-13 2022-02-15 후루카와 덴키 고교 가부시키가이샤 Copper alloy plate and its manufacturing method, heat dissipation parts and shield case for electric and electronic devices
JP6762333B2 (en) * 2018-03-26 2020-09-30 Jx金属株式会社 Cu-Ni-Si based copper alloy strip
JP6816056B2 (en) * 2018-03-30 2021-01-20 Jx金属株式会社 Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6928597B2 (en) * 2018-12-13 2021-09-01 古河電気工業株式会社 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts
JP7284612B2 (en) * 2019-03-28 2023-05-31 Jx金属株式会社 METHOD FOR MANUFACTURING METAL ROLLED SHEET AND METAL PRODUCT
JP2020163409A (en) * 2019-03-28 2020-10-08 Jx金属株式会社 Metal plate spring and manufacturing method for the same
JP7113039B2 (en) * 2020-02-06 2022-08-04 古河電気工業株式会社 Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components
CN112458334A (en) * 2020-11-27 2021-03-09 台州正兴阀门有限公司 Low-lead free-cutting copper alloy for casting faucet body and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386838A (en) * 1986-09-30 1988-04-18 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead
WO2003076672A1 (en) * 2002-03-12 2003-09-18 The Furukawa Electric Co., Ltd. High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2009007625A (en) * 2007-06-28 2009-01-15 Hitachi Cable Ltd Method for producing high strength copper alloy for electric/electronic component
JP2009074125A (en) * 2007-09-20 2009-04-09 Hitachi Cable Ltd Copper alloy for electrical-electronic parts having excellent plating property, and method for producing the same
JP2009242926A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper-nickel-silicon based alloy for electronic material
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117604B1 (en) * 2011-08-29 2013-01-16 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386838A (en) * 1986-09-30 1988-04-18 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead
WO2003076672A1 (en) * 2002-03-12 2003-09-18 The Furukawa Electric Co., Ltd. High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
JP2007169765A (en) * 2005-12-26 2007-07-05 Furukawa Electric Co Ltd:The Copper alloy and its production method
JP2009007625A (en) * 2007-06-28 2009-01-15 Hitachi Cable Ltd Method for producing high strength copper alloy for electric/electronic component
JP2009074125A (en) * 2007-09-20 2009-04-09 Hitachi Cable Ltd Copper alloy for electrical-electronic parts having excellent plating property, and method for producing the same
JP2009242926A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper-nickel-silicon based alloy for electronic material
JP2011017070A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material for electric and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332285B1 (en) * 2021-05-17 2021-12-01 주식회사 근우 Manufacturing method of copper busbar with improved heat generation
CN116694953A (en) * 2023-08-04 2023-09-05 中铝科学技术研究院有限公司 Copper alloy plate strip for electromagnetic shielding and preparation method thereof
CN116694953B (en) * 2023-08-04 2023-10-31 中铝科学技术研究院有限公司 Copper alloy plate strip for electromagnetic shielding and preparation method thereof

Also Published As

Publication number Publication date
CN106661673A (en) 2017-05-10
WO2016006053A1 (en) 2016-01-14
JPWO2016006053A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4857395B1 (en) Cu-Ni-Si alloy and method for producing the same
JP6696769B2 (en) Copper alloy plate and connector
JP2011508081A (en) Copper-nickel-silicon alloy
JP2010059543A (en) Copper alloy material
JP6696770B2 (en) Copper alloy plate and connector
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6265651B2 (en) Copper alloy sheet, connector using the same, and method for producing the copper alloy sheet
JP6205105B2 (en) Cu-Ni-Si based alloy for electronic material, Cu-Co-Si based alloy and method for producing the same
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
TWI621721B (en) Copper alloy sheet, connector, and method for manufacturing copper alloy sheet
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP7430502B2 (en) Copper alloy wire and electronic equipment parts
JP6246173B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4987155B1 (en) Cu-Ni-Si alloy and method for producing the same
JP7355569B2 (en) Copper alloys, copper alloy products and electronic equipment parts
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2017020116A (en) Cu-Ni-Si-BASED ALLOY FOR ELECTRONIC MATERIAL, Cu-Co-Si-BASED ALLOY AND METHOD OF PRODUCING THE SAME
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TWI391952B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R151 Written notification of patent or utility model registration

Ref document number: 5840310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350