JP6542817B2 - Copper alloy for electronic materials - Google Patents

Copper alloy for electronic materials Download PDF

Info

Publication number
JP6542817B2
JP6542817B2 JP2017016081A JP2017016081A JP6542817B2 JP 6542817 B2 JP6542817 B2 JP 6542817B2 JP 2017016081 A JP2017016081 A JP 2017016081A JP 2017016081 A JP2017016081 A JP 2017016081A JP 6542817 B2 JP6542817 B2 JP 6542817B2
Authority
JP
Japan
Prior art keywords
mass
rolling
copper alloy
electronic materials
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017016081A
Other languages
Japanese (ja)
Other versions
JP2018062705A (en
Inventor
祐太 中村
祐太 中村
明宏 柿谷
明宏 柿谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2018062705A publication Critical patent/JP2018062705A/en
Application granted granted Critical
Publication of JP6542817B2 publication Critical patent/JP6542817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

この発明は、各種電子部品に用いることに好適な析出硬化型銅合金であるCu−Co−Ni−Si系合金に関するものであり、特には、プレス加工時の寸法安定性を向上させることのできる技術を提案するものである。   The present invention relates to a Cu-Co-Ni-Si-based alloy which is a precipitation-hardening copper alloy suitable for use in various electronic parts, and in particular, can improve dimensional stability at the time of pressing. It proposes a technology.

コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性(又は熱伝導性)を両立させることが要求される。そして、近年は、電子部品の高集積化及び小型化・薄肉化が急速に進み、これに伴って電子機器部品に使用される銅合金に対する要求はさらに高度化している。   Copper alloys for electronic materials used in various electronic components such as connectors, switches, relays, pins, terminals, lead frames etc. are required to have both high strength and high conductivity (or thermal conductivity) as basic characteristics Be done. And, in recent years, high integration, miniaturization, and thinning of electronic parts have rapidly progressed, and the requirements for copper alloys used for electronic parts have been further advanced along with this.

高強度及び高導電性の観点から、電子材料用銅合金として従来のりん青銅、黄銅等に代表される固溶強化型銅合金に代えて、析出硬化型銅合金の使用量が増加している。析出硬化型銅合金では、溶体化処理された過飽和固溶体を時効処理することにより、微細な析出物が均一に分散して、合金の強度が高くなると同時に、銅中の固溶元素量が減少し電気伝導性が向上する。このため、ばね性などの機械的性質に優れ、しかも電気伝導性、熱伝導性が良好な材料が得られる。   From the viewpoint of high strength and high conductivity, the amount of use of the precipitation hardening copper alloy is increasing instead of the conventional solid solution strengthened copper alloy represented by phosphor bronze, brass and the like as a copper alloy for electronic materials . In the precipitation hardening type copper alloy, when the solution-processed supersaturated solid solution is subjected to an aging treatment, the fine precipitates are dispersed uniformly, and the strength of the alloy becomes high, and at the same time, the amount of solid solution elements in copper decreases. Electrical conductivity is improved. For this reason, it is possible to obtain a material which is excellent in mechanical properties such as spring property and is also excellent in electrical conductivity and thermal conductivity.

析出硬化型銅合金のうち、コルソン系合金と一般に称されるCu−Ni−Si系合金は比較的高い導電性、強度、及び曲げ加工性を有する代表的な銅合金であり、当業界では現在活発に開発が行われている合金の一つである。この銅合金では、銅マトリックス中に微細なNi−Si系金属間化合物粒子を析出させることにより、強度と導電率の向上を図ることができる。
このようなコルソン系合金では、更なる特性の改善を目的として、Coを添加し、またはNiをCoに置き換えたCu−Co−Si系合金が提案されている。
Among precipitation-hardened copper alloys, Cu-Ni-Si alloys generally referred to as corson alloys are representative copper alloys having relatively high conductivity, strength, and bending workability, and are currently used in the art. It is one of the alloys under active development. In this copper alloy, strength and conductivity can be improved by precipitating fine Ni-Si based intermetallic compound particles in a copper matrix.
In such Corson alloys, a Cu-Co-Si alloy in which Co is added or Ni is replaced by Co has been proposed for the purpose of further improving the properties.

Cu−Co−Si系合金は一般に、Cu−Ni−Si系合金に比して溶体化温度が高く、溶体化処理後の結晶粒を微細化することが困難である。このことに対し、特許文献1〜3等では、Cu−Co−Si系合金で結晶粒を制御する技術が記載されている。   The Cu-Co-Si-based alloy generally has a high solution temperature as compared to the Cu-Ni-Si-based alloy, and it is difficult to refine crystal grains after solution treatment. On the other hand, in the patent documents 1-3 etc., the technique which controls a crystal grain by a Cu-Co-Si type alloy is described.

具体的には、特許文献1では、曲げ性の向上、機械的特性のばらつきの改善に着目し、溶体化処理に先立って時効処理を行うことにより、結晶粒が微細化することが記載されている。また、特許文献2には、熱間圧延の終了温度や中間圧延の最終パスの加工度を調整することで平均結晶粒を制御し、めっき性が改善することが開示されている。そしてまた、特許文献3には、Cube方位の結晶方位を制御することで曲げ性を改善したことが記載されている。
このようなCu−Co−Si系合金は一般に、インゴットを溶解鋳造した後、熱間圧延、第一冷間圧延、溶体化処理、時効処理及び最終冷間圧延を順次に行って製造される。
Specifically, in Patent Document 1, it is described that crystal grains are refined by performing an aging treatment prior to solution treatment, focusing on the improvement of bendability and the improvement of variations in mechanical characteristics. There is. Further, Patent Document 2 discloses that the average grain size is controlled by adjusting the finish temperature of the hot rolling and the processing degree of the final pass of the intermediate rolling to improve the plating property. Furthermore, Patent Document 3 describes that the bendability is improved by controlling the crystal orientation of the Cube orientation.
Such a Cu-Co-Si alloy is generally manufactured by melt-casting an ingot and sequentially performing hot rolling, first cold rolling, solution treatment, aging treatment and final cold rolling.

特開2012−72470号公報JP 2012-72470 A 特開2011−252216号公報JP 2011-252216 A 特開2013−32564号公報JP, 2013-32564, A

ところで、近年の電子部品の小型化・薄肉化に伴い、たとえば、それに内蔵されるコネクタは、配列されるピンの隣り合う間隔(いわゆるピッチ)や端子の幅が極めて狭くなり、また厚みも薄くなる傾向にある。   By the way, with the recent miniaturization and thinning of electronic parts, for example, in the connector incorporated therein, the distance between adjacent pins to be arranged (so-called pitch) and the width of terminals become extremely narrow, and the thickness also becomes thin. There is a tendency.

このような小型のコネクタを製造するため、上述したような従来技術のCu−Co−Si系合金に対してプレス加工を施すと、そのプレス時にピッチが大きく変動し、例えば目標寸法からピンが上下左右に動いて変形するという問題があった。つまり、従来技術のような結晶粒径の制御によっては、プレス加工の寸法安定性を有意に向上させることができなかった。かかる製品寸法の悪化は、組立工程での歩留まりを大きく低下させる。   When the Cu-Co-Si alloy of the prior art as described above is pressed to produce such a small connector, the pitch fluctuates greatly at the time of pressing, and for example, the pins are vertically moved from the target dimensions. There was a problem that it moved to the left and right and deformed. That is, by controlling the crystal grain size as in the prior art, the dimensional stability of pressing could not be significantly improved. Such deterioration in product dimensions greatly reduces the yield in the assembly process.

また特に、フローティングコネクタに代表されるような狭いピッチでバネ長が長いコネクタの材料としても、優れた強度および導電率等の特性を有するコルソン系合金が採用されることが多くなっている現状においては、上述したようにプレス時にピンの寸法が安定しないことの問題に対する有効な対策が希求されている。   In particular, as a connector material having a narrow pitch and a long spring length represented by a floating connector, a Corson alloy having excellent properties such as strength and conductivity is often employed. As described above, there is a need for an effective measure against the problem that the dimension of the pin is not stable at the time of pressing.

この発明は、このような問題を解決することを課題とするものであり、その目的は、電子材料に用いて好適な0.2%耐力および導電率を有し、コネクタ形状等にプレス加工した際の寸法安定性を向上させることのできる電子材料用銅合金を提供することにある。   An object of the present invention is to solve such a problem, and its object is to have a 0.2% proof stress and conductivity suitable for use in an electronic material, and to press it into a connector shape or the like. It is an object of the present invention to provide a copper alloy for electronic materials which can improve the dimensional stability at the time of production.

発明者は鋭意検討の結果、Cu−Co−Si系合金のCoの一部をNiに置換したCu−Co−Ni−Si系合金において、結晶粒径および結晶方位を制御して、X線回折法により測定した{200}結晶面、{220}結晶面及び{311}結晶面からの各X線回折積分強度が所定の関係を満たすものとすることにより、プレス加工時のコネクタ端子のピンの寸法を安定化させることができることを見出した。そして、このような結晶粒径および結晶方位の制御は、従来の製造工程における第一冷間圧延と時効処理の間に、所定の条件による溶体化処理を二回行うとともに、さらにそれらの溶体化処理の間に所定の条件の中間圧延を行うことにより実現できるとの新たな知見を得た。   As a result of intensive investigations, the inventor controlled X-ray diffraction by controlling grain size and orientation in a Cu-Co-Ni-Si alloy in which a part of Co of a Cu-Co-Si alloy is substituted with Ni. The X-ray diffraction integral intensities from the {200} crystal plane, the {220} crystal plane, and the {311} crystal plane measured by the method satisfy the predetermined relationship, whereby It has been found that the dimensions can be stabilized. And such control of the crystal grain size and the crystal orientation is performed by performing solution treatment twice under predetermined conditions between the first cold rolling and the aging treatment in the conventional manufacturing process, and further, those solutionizing New findings have been obtained that can be realized by performing intermediate rolling under predetermined conditions during processing.

上記の知見の下、この発明の電子材料用銅合金は、0.5〜3.0質量%のCo、0.1〜2.0質量%のNi、0.1〜1.5質量%のSiを含有し、質量割合で(Ni+Co)/Siが3.05.0であり、残部がCu及び不可避不純物からなる電子材料用銅合金であって、圧延平行方向の0.2%耐力が630MPa以上、導電率が50%IACS以上、圧延平行断面における平均結晶粒径が10〜20μm(ただし、10μmを除く。)であり、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たすものである。 Under the above findings, the copper alloy for electronic materials according to the present invention comprises 0.5 to 3.0% by mass of Co, 0.1 to 2.0% by mass of Ni, 0.1 to 1.5% by mass of A copper alloy for electronic materials that contains Si, has a mass ratio of (Ni + Co) / Si of 3.0 to 5.0 , and the balance is Cu and unavoidable impurities, and has a 0.2% proof stress in the rolling parallel direction Is 630 MPa or more, conductivity is 50% IACS or more, and the average crystal grain size in the rolling parallel section is 10 to 20 μm (however, except 10 μm) , X-ray diffraction integral intensity I from {200} crystal plane on the surface The {200}, the X-ray diffraction integral intensity I {220} from the {220} crystal plane, and the X-ray diffraction integral intensity I {311} from the {311} crystal plane are (I {220} + I {311) }) / I {200} 5.0 5.0 is satisfied.

この発明の電子材料用銅合金は、Coに対するNiの質量比(Ni/Co)が0.1〜2.0であることが好ましい。   The copper alloy for electronic materials of the present invention preferably has a mass ratio of Ni to Co (Ni / Co) of 0.1 to 2.0.

この発明の電子材料用銅合金は、ランクフォード値rが1.0以上であることが好ましい。ここでrは圧延方向のランクフォード値をr0、圧延方向から45°のランクフォード値をr45、板幅方向のランクフォード値をr90としたときr=(r0+2×r45+r90)/4で表される。   It is preferable that the copper alloy for electronic materials of this invention has a Langford value r of 1.0 or more. Here, r is represented by r = (r0 + 2 × r45 + r90) / 4, where r0 is the Lankford value in the rolling direction, r45 is the Lankford value 45 ° from the rolling direction, and r90 is the Lankford value in the sheet width direction. .

この発明の電子材料用銅合金は、圧延平行方向の0.2%耐力から圧延面に平行であって、圧延平行方向に直角方向の0.2%耐力を差し引いた0.2%耐力の差が、50MPa以下であることが好ましい。 The copper alloy for electronic materials of the present invention is parallel to the rolling plane from the 0.2% proof stress of the direction parallel to the rolling direction, the 0.2% proof stress obtained by subtracting the 0.2% proof stress of the direction perpendicular to the direction parallel to the rolling direction The difference is preferably 50 MPa or less.

この発明の電子材料用銅合金は、表面における{200}結晶面からのX線回折積分強度I{200}と、純銅標準粉末のX線回析積分強度I0{200}とが、I{200}/I0{200}≦1.0の関係を満たすことが好ましい。 The copper alloy for electronic materials of the present invention, a {200} X-ray diffraction integrated intensity I {200} from the crystal plane at the surface, a standard pure copper powder X-ray diffraction析積partial intensity I 0 {200} but, I { It is preferable to satisfy the relationship of 200} / I 0 {200} ≦ 1.0.

この発明の電子材料用銅合金は、さらにCrを0.5質量%以下で含有することができる。
また、さらにZn、Snをそれぞれ1.0質量%以下、Mg、P、Ca、Mnをそれぞれ最大0.2質量%以下で含有し、それらのZn、Sn、Mg、P、Ca及びMnから選択される少なくとも一種類以上を合計2.0質量%以下とすることができる。
The copper alloy for electronic materials of the present invention can further contain Cr at 0.5% by mass or less.
Further, it further contains Zn and Sn at 1.0 mass% or less respectively, Mg, P, Ca and Mn at maximum 0.2 mass% or less respectively, and these are selected from Zn, Sn, Mg, P, Ca and Mn The total of at least one or more of them may be 2.0 mass% or less.

この発明の電子材料用銅合金によれば、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たすことにより、プレス後の寸法精度を有効に高めることができる。これにより、電子材料を製造する際の歩留を向上させることが可能になる。   According to the copper alloy for electronic materials of the present invention, the X-ray diffraction integral intensity I {200} from the {200} crystal plane at the surface, and the X-ray diffraction integral intensity I {220} from the {220} crystal plane The dimensional accuracy after pressing by satisfying the relationship of (I {220} + I {311}) / I {200} ≧ 5.0 with the X-ray diffraction integral intensity I {311} from the {311} crystal plane Can be effectively enhanced. This makes it possible to improve the yield when manufacturing the electronic material.

実施例におけるプレス性の評価でプレス破面に形成された破断面及びせん断面を概略的に示す模式図である。It is a schematic diagram which shows roughly the torn surface and shear surface which were formed in the press fracture surface by evaluation of the pressability in an Example.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態の電子材料用銅合金は、0.5〜3.0質量%のCo、0.1〜2.0質量%のNi、0.1〜1.5質量%のSiを含有し、質量割合で(Ni+Co)/Siが3〜5であり、残部が銅および不可避的不純物からなり、圧延平行方向の0.2%耐力が630MPa以上、導電率が50%IACS以上、圧延平行断面で求めた平均結晶粒径が10〜20μmであり、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}が、(I{220}+I{311})/I{200}≧5.0の関係を満たす。
Hereinafter, embodiments of the present invention will be described in detail.
The copper alloy for an electronic material according to one embodiment of the present invention comprises 0.5 to 3.0% by mass of Co, 0.1 to 2.0% by mass of Ni, and 0.1 to 1.5% by mass of Si. Containing by mass ratio (Ni + Co) / Si of 3 to 5, the balance being copper and unavoidable impurities, 0.2% proof stress in the rolling parallel direction is 630 MPa or more, conductivity is 50% IACS or more, The X-ray diffraction integral intensity I {200} from the {200} crystal plane on the surface, and the X-ray diffraction integral intensity I from the {220} crystal plane, having an average crystal grain size of 10 to 20 μm determined in the rolling parallel section The {220} and the X-ray diffraction integral intensity I {311} from the {311} crystal plane satisfy the relationship of (I {220} + I {311}) / I {200} ≧ 5.0.

(Co、Ni、Siの添加量)
Co、NiおよびSiは適当な時効処理を行うことによりNi2SiやCo2Siとして析出し、合金の強度が上昇する。同時に析出により母相に固溶したCo、NiおよびSiが減少するため導電率が増加する。また溶体化時に未固溶のCoは粒界のピン止め効果としてはたらき、結晶粒の微細化に寄与しプレス性を向上させる。ただし一方で、Ni量が少なくCo量が多すぎると結晶粒が所定の範囲より小さくなり、深絞り性の悪化を招く。またCo−Si系析出物は析出能が高いがゆえに粗大化しやすいため、Co量が多すぎると粗大析出物がプレス性にかえって悪影響を及ぼすことがある。プレス性と深絞り性を両立させるために、CoとNiおよびSiの添加量を所定の範囲に制御する。
Co及びSiの添加量がそれぞれCo:0.5質量%未満、Si:0.1質量%未満では所望の強度が得られず、この一方で、Co:3.0質量%超、Si:1.5質量%超では高強度化は図れるが導電率が著しく低下し、更には熱間加工性が劣化する。よってCo及びSiの添加量はCo:0.5〜3.0質量%、及び、Si:0.1〜1.5質量%とする。好ましくは、1.0〜2.5質量%のCo、0.3〜1.0質量%のSiとする。
Niの添加量が0.1質量%未満では結晶粒径が所定の範囲より小さくなり、深絞り性が悪化する。一方で2.0質量%超では導電率の低下を招く。よってNiの添加量は0.1〜2.0質量%、好ましくは0.3〜1.8質量%とする。
(Addition amount of Co, Ni, Si)
Co, Ni and Si are precipitated as Ni 2 Si or Co 2 Si by appropriate aging treatment, and the strength of the alloy is increased. At the same time, the conductivity is increased because Co, Ni and Si dissolved in the matrix are reduced by precipitation. In addition, undissolved Co during solution treatment serves as a pinning effect of grain boundaries, contributes to the refinement of crystal grains, and improves the pressability. However, on the other hand, when the amount of Ni is small and the amount of Co is too large, the crystal grains become smaller than a predetermined range, which causes deterioration of deep drawability. In addition, since Co-Si based precipitates are easily coarsened due to their high precipitation ability, the coarse precipitates may adversely affect the pressability if the amount of Co is too large. In order to make pressability and deep drawability compatible, the addition amounts of Co, Ni and Si are controlled within a predetermined range.
When the addition amount of Co and Si is less than 0.5% by mass and less than 0.1% by mass, respectively, desired strength can not be obtained, while Co: more than 3.0% by mass, Si: 1 If the content is more than 5% by mass, high strength can be achieved, but the conductivity is significantly reduced and the hot workability is further deteriorated. Therefore, the addition amount of Co and Si is set to 0.5 to 3.0% by mass of Co and 0.1 to 1.5% by mass of Si. Preferably, 1.0 to 2.5% by mass of Co and 0.3 to 1.0% by mass of Si are used.
When the addition amount of Ni is less than 0.1% by mass, the crystal grain size becomes smaller than the predetermined range, and the deep drawability is deteriorated. On the other hand, if it exceeds 2.0% by mass, the conductivity will be lowered. Therefore, the addition amount of Ni is 0.1 to 2.0% by mass, preferably 0.3 to 1.8% by mass.

Co、Ni及びSiは質量割合で(Ni+Co)/Siが3〜5である。上記割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。上記割合が3未満であると、時効処理でのNi2SiやCo2Siの析出が不十分になり、強度が低下する。上記割合が5を超えると、Ni2SiやCo2Siとして析出しないNi、Coが母相中に固溶し、導電率が低下する。 Co, Ni and Si have (Ni + Co) / Si of 3 to 5 by mass ratio. With the ratio, it is possible to improve both the strength and the conductivity after precipitation hardening. If the ratio is less than 3, precipitation of Ni 2 Si or Co 2 Si in the aging treatment becomes insufficient, and the strength decreases. When the ratio exceeds 5, Ni and Co which do not precipitate as Ni 2 Si or Co 2 Si form a solid solution in the matrix phase, and the conductivity decreases.

(Coに対するNiの濃度比(Ni/Co))
質量比でNi/Coを0.1〜2.0とする。この範囲に設定することで、結晶粒径を所定の範囲内に制御しプレス性と深絞り性を両立させることができる。Coの比率を高くする(Niの比率を低くする)と、平均結晶粒径が所定の範囲より小さくなり深絞り性が悪化する。一方、Niの比率を高くする(Coの比率を低くする)と平均結晶粒径が所定の範囲より大きくなりプレス性が悪化する。Ni/Coを0.1〜2.0、好ましくは0.2〜1.0とする。
(Ni to Co concentration ratio (Ni / Co))
The mass ratio Ni / Co is 0.1 to 2.0. By setting it in this range, it is possible to control the crystal grain size within a predetermined range and achieve both pressability and deep drawability. When the ratio of Co is increased (the ratio of Ni is reduced), the average crystal grain size becomes smaller than the predetermined range, and the deep drawability is deteriorated. On the other hand, when the ratio of Ni is increased (the ratio of Co is decreased), the average crystal grain size is larger than the predetermined range, and the pressability is deteriorated. Ni / Co is set to 0.1 to 2.0, preferably 0.2 to 1.0.

(Crの添加量)
Crは溶解鋳造時の冷却過程において結晶粒界に優先析出するため粒界を強化でき、熱間加工時の割れが発生しにくくなり、歩留低下を抑制できる。すなわち、溶解鋳造時に粒界析出したCrは溶体化処理などで再固溶するが、続く時効析出時にCrを主成分としたbcc構造の析出粒子またはSiとの化合物を生成する。通常のCu−Co−Ni−Si系合金では添加したSi量のうち、時効析出に寄与しなかったSiは母相に固溶したまま導電率の上昇を抑制するが、珪化物形成元素であるCrを添加して、珪化物をさらに析出させることにより、固溶Si量を低減でき、強度を損なわずに導電率を上昇できる。しかしながら、Cr濃度が0.5質量%を超えると粗大な第二相粒子を形成しやすくなるため、製品特性を損なう。従って、この発明では、Crを最大で0.5質量%添加することができる。但し、0.03質量%未満ではその効果が小さいので、好ましくは0.03〜0.5質量%、より好ましくは0.09〜0.3質量%添加するのがよい。
(Cr addition amount)
Cr preferentially precipitates on grain boundaries in the cooling process during melt casting, so that the grain boundaries can be strengthened, cracking during hot working is less likely to occur, and yield loss can be suppressed. That is, although Cr precipitated at grain boundaries during melt casting re-dissolves by solution treatment or the like, during subsequent aging precipitation, it forms a compound with precipitated particles of bcc structure mainly composed of Cr or Si. Of the amount of added Si in a conventional Cu-Co-Ni-Si alloy, Si that does not contribute to aging precipitation suppresses the increase in conductivity while remaining solid-solved in the matrix, but is a silicide-forming element By further depositing Cr by adding Cr, the amount of solid solution Si can be reduced, and the conductivity can be increased without losing the strength. However, if the Cr concentration exceeds 0.5% by mass, coarse second phase particles are likely to be formed, which impairs product properties. Therefore, in the present invention, Cr can be added at a maximum of 0.5% by mass. However, if the amount is less than 0.03% by mass, the effect is small, so it is preferable to add 0.03 to 0.5% by mass, more preferably 0.09 to 0.3% by mass.

(Sn及びZnの添加量)
Sn及びZnにおいても、微量の添加で、導電率を損なわずに強度、応力緩和特性、めっき性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮される。しかしながら、Sn及びZnの各濃度が1.0質量%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、この発明では、Sn及びZnはそれぞれ最大1.0質量%添加することができる。但し、Sn及びZnの合計が0.05質量%未満ではその効果が小さいので、Sn及びZnの合計は、好ましくは0.05〜2.0質量%、より好ましくは0.5〜1.0質量%とすることができる。
(Addition amount of Sn and Zn)
Also in Sn and Zn, the addition of a small amount improves the product characteristics such as strength, stress relaxation characteristics and plating property without losing the conductivity. The effect of the addition is mainly exhibited by solid solution in the matrix phase. However, when each concentration of Sn and Zn exceeds 1.0% by mass, the property improvement effect is saturated and the productivity is impaired. Therefore, in the present invention, Sn and Zn can be added up to 1.0% by mass each. However, since the effect is small if the total of Sn and Zn is less than 0.05% by mass, the total of Sn and Zn is preferably 0.05 to 2.0% by mass, more preferably 0.5 to 1.0. It can be mass%.

(Mg、P、Ca及びMnの添加量)
Mg、P、Ca及びMnは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。しかしながら、Mg、P、Ca及びMnの各濃度が0.5%を超えると特性改善効果が飽和するうえ、製造性を損なう。従って、この発明では、Mg、P、Ca及びMnをそれぞれ最大0.2質量%添加することができる。但し、Mg、P、Ca及びMnの合計が0.01質量%未満ではその効果が小さいので、Mg、P、Ca及びMnの合計は、好ましくは0.01〜0.5質量%、より好ましくは0.04〜0.2質量%とすることができる。
(Addition amount of Mg, P, Ca and Mn)
Mg, P, Ca and Mn, when added in a small amount, improve product characteristics such as strength and stress relaxation characteristics without losing conductivity. The effect of the addition is exhibited mainly by solid solution in the matrix phase, but it is possible to exhibit further effects by being contained in the second phase particles. However, when each concentration of Mg, P, Ca and Mn exceeds 0.5%, the property improvement effect is saturated and the productivity is impaired. Therefore, in the present invention, Mg, P, Ca and Mn can be added up to 0.2 mass% at the maximum. However, since the effect is small when the total of Mg, P, Ca and Mn is less than 0.01% by mass, the total of Mg, P, Ca and Mn is preferably 0.01 to 0.5% by mass, more preferably May be 0.04 to 0.2% by mass.

上述したZn、Sn、Mg、P、Ca、Mnを含有する場合、それらのZn、Sn、Mg、P、Ca及びMnから選択される少なくとも一種類以上の合計は2.0質量%以下とする。この合計が2.0質量%を超えると、特性改善効果が飽和するとともに、製造性の悪化を招くからである。   When containing Zn, Sn, Mg, P, Ca, and Mn described above, the total of at least one or more selected from Zn, Sn, Mg, P, Ca, and Mn is 2.0 mass% or less . When the total exceeds 2.0% by mass, the property improvement effect is saturated, and the productivity is deteriorated.

(0.2%耐力)
コネクタ等の所定の電子材料で要求される特性を満たすため、圧延平行方向の0.2%耐力は630MPa以上とする。圧延平行方向の0.2%耐力は、好ましくは630MPa〜950MPa、より好ましくは680〜950MPaの範囲内とする。
(0.2% proof stress)
In order to satisfy the characteristics required for a predetermined electronic material such as a connector, the 0.2% proof stress in the rolling parallel direction is set to 630 MPa or more. The 0.2% proof stress in the rolling parallel direction is preferably in the range of 630 MPa to 950 MPa, more preferably 680 to 950 MPa.

また、圧延平行方向の0.2%耐力から圧延直角方向の0.2%耐力を差し引いた0.2%耐力の差は、50MPa以下であることが好ましい。これにより、プレス時の寸法安定性をさらに大きく改善することができる。つまり、0.2%耐力の差が大きすぎると、プレス時にコネクタのピンが上下左右に変形しやすくなり、寸法精度が低下する可能性がある。この観点からは、0.2%耐力の差は小さいほど望ましく、具体的には、より好ましくは30MPa、さらに好ましくは20MPaとする。
0.2%耐力は、引張試験機を用いてJIS Z2241に準拠して測定する。
Further, it is preferable that a difference of 0.2% proof stress obtained by subtracting 0.2% proof stress in the rolling perpendicular direction from 0.2% proof stress in the rolling parallel direction is 50 MPa or less. This can further improve the dimensional stability at the time of pressing. That is, if the difference in 0.2% proof stress is too large, the pins of the connector may be easily deformed in the vertical and horizontal directions at the time of pressing, and the dimensional accuracy may be reduced. From this point of view, it is desirable that the difference in 0.2% proof stress be as small as possible. Specifically, the difference is more preferably 30 MPa, and even more preferably 20 MPa.
0.2% proof stress is measured according to JIS Z2241 using a tensile tester.

(導電率)
導電率は50%IACS以上とする。これにより、電子材料として有効に用いることができる。導電率はJIS H0505に準拠して測定することができる。導電率は、55%IACS以上であることが好ましい。
(conductivity)
Conductivity shall be 50% IACS or more. Thereby, it can be effectively used as an electronic material. The conductivity can be measured in accordance with JIS H0505. The conductivity is preferably 55% IACS or more.

(平均結晶粒径)
結晶粒径を小さくすることにより、高強度が得られる他、特に圧延平行断面における結晶粒径を小さくすることで、プレス時の寸法安定性の向上に寄与することができる。そのため、圧延平行断面の平均結晶粒径は10〜20μmとする。平均結晶粒径が20μmを超える場合、プレス性が悪化する。一方で平均結晶粒径が10μmを下回る場合、ランクフォード値rが低下し、深絞り性が悪化する。この観点から、平均結晶粒径は10〜20μmとすることが好ましい。
平均結晶粒径は、JIS H0501(切断法)に基づいて測定する。
(Average grain size)
By reducing the crystal grain size, high strength can be obtained, and in particular, by reducing the crystal grain size in the rolled parallel section, it is possible to contribute to the improvement of dimensional stability at the time of pressing. Therefore, the average grain size of the rolling parallel cross section is set to 10 to 20 μm. When the average crystal grain size exceeds 20 μm, the pressability deteriorates. On the other hand, when the average crystal grain size is less than 10 μm, the Rankford value r decreases and the deep drawability deteriorates. From this viewpoint, the average crystal grain size is preferably 10 to 20 μm.
The average grain size is measured based on JIS H0501 (cutting method).

(X線回折の積分強度)
この発明の電子材料用銅合金は、X線回折法(XRD)により求めた表面(圧延面)における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たす。これにより、プレス後の寸法安定性を向上することができる。これは、結晶方位によって材料のすべり系が異なり、プレス加工時の破面形成に影響を及ぼすことによるものと考えられるが、このような理論に限定されるものではない。
この理由より、(I{220}+I{311})/I{200}は、5.0以上とすることが好ましく、特に6.0以上とすることがより好ましい。特に上限は設けないが10.0未満が好ましい。
(Integrated intensity of X-ray diffraction)
The copper alloy for electronic materials of the present invention has X-ray diffraction integral intensity I {200} from {200} crystal plane on the surface (rolled surface) determined by X-ray diffraction method (XRD) and {220} crystal plane X-ray diffraction integral intensity I {220} and X-ray diffraction integral intensity I {311} from the {311} crystal plane, (I {220} + I {311}) / I {200} 5.0 5.0 Meet the relationship. Thereby, the dimensional stability after pressing can be improved. This is thought to be due to the fact that the slip system of the material differs depending on the crystal orientation, and it is believed to affect the formation of a fractured surface during pressing, but is not limited to such a theory.
For this reason, (I {220} + I {311}) / I {200} is preferably 5.0 or more, and more preferably 6.0 or more. Although the upper limit is not particularly provided, less than 10.0 is preferable.

またこの発明では、表面における{200}結晶面からのX線回折積分強度I{200}と、純銅標準粉末のX線回析積分強度I0{200}とが、I{200}/I0{200}≦1.0の関係を満たすことが好ましい。これは、I{200}/I0{200}の強度が高いと、プレス性が悪化するためである。{200}結晶面が他の方位よりも変形が容易なため、プレス時に{200}結晶面を含む結晶粒が優先的に変形し、多結晶体である銅合金のプレス性が悪化すると考えられる。
一方、I{200}/I0(200)の比が小さすぎると、金属組織の一部に未再結晶が残り、プレス性が悪化する可能性がある。
従って、I{200}/I0(200)の比は、0.1以上かつ1.0以下とすることが好ましく、特に、0.2以上かつ0.7以下とすることがより好ましい。
なおX線回折積分強度は、所定のX線回折装置を用いることにより測定可能である。
In this invention, a {200} X-ray diffraction integrated intensity I {200} from the crystal plane at the surface, a standard pure copper powder X-ray diffraction析積partial intensity I 0 {200} but, I {200} / I 0 It is preferable to satisfy the relationship of {200} ≦ 1.0. This is because when the strength of I {200} / I 0 {200} is high, the pressability is deteriorated. Since the {200} crystal face is easier to deform than other orientations, it is thought that the crystal grains including the {200} crystal face are preferentially deformed during pressing, and the pressability of the polycrystalline copper alloy is degraded .
On the other hand, if the ratio of I {200} / I 0 (200) is too small, unrecrystallization may remain in part of the metal structure, which may deteriorate the pressability.
Therefore, the ratio of I {200} / I 0 (200) is preferably 0.1 or more and 1.0 or less, and more preferably 0.2 or more and 0.7 or less.
The X-ray diffraction integral intensity can be measured by using a predetermined X-ray diffractometer.

(製造方法)
上述したようなCu−Co−Ni−Si系合金は、インゴットを溶解鋳造する工程、熱間圧延工程と、第一冷間圧延工程と、第一溶体化処理工程と、第二冷間圧延工程と、第二溶体化処理工程と、材料温度を450℃〜550℃として加熱する時効処理工程と、最終冷間圧延工程とを順次に行うことにより製造することができる。なお熱間圧延後、必要に応じて面削を行うことが可能である。
(Production method)
The Cu-Co-Ni-Si alloy as described above is a process of melt casting an ingot, a hot rolling process, a first cold rolling process, a first solution treatment process, and a second cold rolling process. The second solution treatment step, the aging treatment step of heating the material temperature to 450 ° C. to 550 ° C., and the final cold rolling step can be sequentially performed. In addition, after hot rolling, it is possible to carry out facing as needed.

具体的には、まず大気溶解炉等を用いて電気銅、Co、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そしてこの溶湯をインゴットに鋳造する。その後、熱間圧延を行い、第一冷間圧延、第一溶体化処理、第二冷間圧延、第二溶体化処理、時効処理(450〜550℃で2〜20時間)、最終冷間圧延(加工度5〜50%)を行う。最終冷間圧延後に歪取り焼鈍を行ってもよい。歪取り焼鈍は、通常Ar等の不活性雰囲気中で250〜600℃で5〜300秒間にわたって行うことができる。第二溶体化処理後に最終冷間圧延、時効処理の順に行い、これら工程の順序を入れ替えてもよい。   Specifically, first, raw materials such as electric copper, Co, Ni, Si and the like are melted using an air melting furnace or the like to obtain a molten metal having a desired composition. Then, the molten metal is cast into an ingot. Thereafter, hot rolling is performed, first cold rolling, first solution treatment, second cold rolling, second solution treatment, aging treatment (2 to 20 hours at 450 to 550 ° C.), final cold rolling (Processing degree 5 to 50%) is performed. After final cold rolling, strain relief annealing may be performed. The strain relief annealing can be performed usually at 250 to 600 ° C. for 5 to 300 seconds in an inert atmosphere such as Ar. After the second solution treatment, final cold rolling and aging treatment may be performed in this order, and the order of these steps may be switched.

ここで、この製造方法では、第一冷間圧延の後に、所定の条件の第一溶体化処理、第二冷間圧延及び第二溶体化処理を行うことが肝要である。従来技術では、これらの工程を行わず、熱間圧延の後に一回の溶体化処理を行っていたことにより、この発明のような結晶粒を得ることができず、プレス後の寸法安定性を有意に向上し得なかった。
以下に、これらの第一溶体化処理、第二冷間圧延及び第二溶体化処理の各工程を中心に詳細に述べる。なおその他の工程は、Cu−Co−Ni−Si系合金の製造工程において通常採用される条件とすることが可能である。
Here, in this manufacturing method, it is important to perform first solution treatment, second cold rolling and second solution treatment under predetermined conditions after the first cold rolling. In the prior art, since these processes were not performed, and a single solution treatment was performed after hot rolling, it was not possible to obtain the crystal grains as in the present invention, and the dimensional stability after pressing was increased. It did not improve significantly.
In the following, each step of the first solution treatment, the second cold rolling and the second solution treatment will be mainly described in detail. In addition, it is possible to set it as the conditions normally employ | adopted in the manufacturing process of a Cu-Co-Ni-Si type-alloy other process.

第一溶体化処理は、材料温度を900〜1000℃として行う。これにより、Co、Ni、Siの固溶が進み、第二溶体化処理後の結晶粒が所定の大きさに微細化されるとともに、先述したような結晶方位に制御することができる。この温度が900℃未満である場合は、上記の固溶が進まないため、結晶粒が粗大化し、この一方で、1000℃を超える場合は、固溶が進みすぎることで結晶方位の制御が困難となる。
通常、銅合金の集合組織は最終の溶体化前の固溶量および析出状態が影響するため、1回目の溶体化が重要となってくる。なお、第一溶体化処理は、15秒〜300秒にわたって行うことができる。この時間が長すぎると固溶と析出のバランスが悪くなり集合組織の制御が困難となり、また短すぎると固溶が進まず、結晶粒が粗大化する。
The first solution treatment is performed at a material temperature of 900 to 1000 ° C. As a result, solid solution of Co, Ni, and Si progresses, and the crystal grains after the second solution treatment are refined to a predetermined size, and the crystal orientation as described above can be controlled. If this temperature is less than 900 ° C., the above-mentioned solid solution does not proceed, so the crystal grains become coarse. On the other hand, if it exceeds 1000 ° C., it is difficult to control the crystal orientation because the solid solution proceeds too much. It becomes.
In general, the texture of the copper alloy is influenced by the amount of solid solution and the state of precipitation before final solution treatment, so the first solution treatment becomes important. The first solution treatment can be performed for 15 seconds to 300 seconds. If this time is too long, the balance between solid solution and precipitation will be poor, and control of the texture will be difficult. If it is too short, solid solution will not proceed and the crystal grains will be coarsened.

第一溶体化処理後の第二冷間圧延もまた、結晶粒径及び結晶方位の制御を目的として行う。この目的のため、第二冷間圧延の加工度は15〜30%とする。この加工度を15%未満とすれば結晶粒の粗大化を招き、一方、30%超えとすれば結晶粒径が所定の範囲より小さくなり、また結晶方位が上記の規定を満たさないものになる可能性がある。   The second cold rolling after the first solution treatment is also performed for the purpose of controlling the crystal grain size and the crystal orientation. For this purpose, the working degree of the second cold rolling is 15 to 30%. If this degree of processing is less than 15%, coarsening of crystal grains is caused, while if it is more than 30%, the crystal grain size becomes smaller than a predetermined range, and the crystal orientation does not satisfy the above definition. there is a possibility.

さらに、この第二冷間圧延後の材料表面の算術平均粗さRaを、0.2μm以上とすることが、圧延直角方向の強度向上および、プレス後の寸法精度向上の観点から好ましい。これはすなわち、第二冷間圧延後の材料表面の算術平均粗さRaをこのように制御することにより、仕上圧延において圧延直角方向の0.2%耐力が向上し、プレス性が良好となるからである。これは、表面の粗さが粗くなることで材料の輻射率が変化し、(I{220}+I{311})/I{200}には現れないが第二の溶体化後の集合組織のバランスが最適化されること、また、仕上圧延時に材料表面の摩擦が大きくなることで材料に与えられる歪が増加することにより圧延直角方向の0.2%耐力が向上し、プレス性が改善されると考えられるが、このような理論に限定されるものではない。
この算術平均粗さRaは、JIS B0601(2001)に基づいて求めた第二冷間圧延後の材料表面の粗さである。このような表面粗さRaを実現するため、第二冷間圧延のロール表面を改良することができる。
Furthermore, it is preferable that arithmetic mean roughness Ra of the material surface after this 2nd cold rolling shall be 0.2 micrometer or more from a viewpoint of strength improvement of a rolling perpendicular direction, and a dimensional accuracy improvement after a press. That is, by thus controlling the arithmetic mean roughness Ra of the material surface after the second cold rolling, the 0.2% proof stress in the rolling perpendicular direction in finish rolling is improved, and the pressability is improved. It is from. This is because the emissivity of the material changes due to the surface roughness becoming rough, but it does not appear in (I {220} + I {311}) / I {200}, but after the second solution treatment The 0.2% proof stress in the direction perpendicular to the rolling is improved by improving the balance by optimizing the balance and increasing the strain applied to the material by increasing the friction of the material surface during finish rolling, and the pressability is improved. Although it is considered that it is not limited to such a theory.
This arithmetic mean roughness Ra is the roughness of the material surface after the second cold rolling determined based on JIS B0601 (2001). In order to realize such surface roughness Ra, the roll surface of the second cold rolling can be improved.

第二冷間圧延の後、第二溶体化処理を行う。第二溶体化処理は、材料温度を850℃〜1000℃として実施することができる。この温度が850℃より低いと溶体化不足により強度の低下を招き、また、1000℃より高いと、再結晶粒の成長を招き結晶粒が大きくなる。
第二溶体化処理の時間は、15秒〜60秒とすることができる。第二溶体化処理の時間が長すぎると再結晶粒の成長を招き結晶粒が大きくなりプレス性が悪化し、また短すぎると結晶粒径が所定の範囲より小さくなり、深絞り性が悪化する可能性がある。
After the second cold rolling, a second solution treatment is performed. The second solution treatment can be performed at a material temperature of 850 ° C. to 1000 ° C. If the temperature is lower than 850 ° C., the solution is insufficient to cause a decrease in strength, and if the temperature is higher than 1000 ° C., the growth of recrystallized grains is caused to increase the size of the crystal grains.
The time of the second solution treatment can be 15 seconds to 60 seconds. If the time of the second solution treatment is too long, recrystallized grains will be caused to cause growth of crystal grains, the crystal grains become large and the pressability deteriorates, and when too short, the crystal grain size becomes smaller than a predetermined range, and the deep drawability deteriorates. there is a possibility.

なお、時効処理の温度は、450℃より低いと導電率が低くなり、550℃より高いと強度が低下するので、450〜550℃とすることが好ましい。また、最終冷間圧延の加工度は、低すぎると所要の強度が得られないことから5%以上とし、一方、好ましい上限は特にないが、曲げ性の悪化を防止するため、一般に50%以下とすることができる。   In addition, since the temperature of the aging treatment is lower than 450 ° C., the conductivity is lowered, and the temperature is higher than 550 ° C., so that the strength is lowered. In addition, the working ratio of final cold rolling is 5% or more because the required strength can not be obtained if it is too low. On the other hand, there is no particular upper limit, but generally 50% or less to prevent deterioration of bendability. It can be done.

この発明のCu−Co−Ni−Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、このCu−Co−Ni−Si系銅合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。特に、コネクタを製造する際のプレス時による高い寸法精度を得ることができる。   The Cu-Co-Ni-Si alloy of the present invention can be processed into various copper products such as plates, strips, tubes, rods and wires, and further, the Cu-Co-Ni-Si copper alloy is And electronic components such as lead frames, connectors, pins, terminals, relays, switches, and foils for secondary batteries. In particular, high dimensional accuracy can be obtained at the time of pressing when manufacturing the connector.

次に、この発明の電子材料用銅合金を試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。   Next, since the copper alloy for electronic materials of this invention was made as an experiment and the performance was confirmed, it demonstrates below. However, the description herein is for the purpose of illustration only and is not intended to be limiting.

表1に示す成分組成の銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットを1000℃で2時間加熱後、板厚10mmまで熱間圧延し、熱間圧延終了温度を900℃とした。熱間圧延終了後は材料温度が850℃〜400℃となるまで低下するときの平均冷却速度を18℃/sとして水冷却し、その後は空気中に放置して冷却した。そして、表面のスケール除去のため厚さ9mmまで面削を施した後、冷間圧延により厚さ0.15mmの板とした。その後、表1に示す条件の下、第一溶体化処理、第二冷間圧延、第二溶体化処理及び時効処理を順次に実施し、試験片を作製した。第二冷間圧延ではロールの表面粗さを変えることにより材料の表面粗さRaを制御した。
このようにして得られた各試験片に対し、以下の特性評価を行った。その結果を表2に示す。
The copper alloy having the component composition shown in Table 1 was melted at 1300 ° C. using a high frequency melting furnace, and cast into a 30 mm thick ingot. Subsequently, after heating this ingot at 1000 degreeC for 2 hours, it hot-rolled to plate | board thickness 10 mm, and the hot rolling completion temperature was 900 degreeC. After completion of the hot rolling, the material was cooled in water at an average cooling rate of 18 ° C./s when the material temperature decreased to 850 ° C. to 400 ° C., and then left in air for cooling. And in order to remove the scale of the surface, it was chamfered to thickness 9 mm, and it was set as the board of thickness 0.15 mm by cold rolling. Thereafter, the first solution treatment, the second cold rolling, the second solution treatment and the aging treatment were sequentially carried out under the conditions shown in Table 1 to produce test pieces. In the second cold rolling, the surface roughness Ra of the material was controlled by changing the surface roughness of the roll.
The following characteristic evaluation was performed to each test piece obtained in this way. The results are shown in Table 2.

<強度>
各試験片に対し、JIS Z2241に基いて圧延平行方向及び圧延直角方向の各方向の引張り試験を行って、0.2%耐力(YS:MPa)を測定し、また、それらの0.2%耐力の差を算出した。
<r値>
各試験片に対し、圧延方向のランクフォード値(r0)、圧延方向から45°のランクフォード値(r45)、板幅方向のランクフォード値(r90)を算出するために各方向の引張試験を行った。引張変形前の板幅と板厚をそれぞれW0およびT0、また5%の引張変形を加えた時の板幅と板厚をそれぞれWおよびTとし、r=ln(W0/W)/(T0/T)により各引張方向のランクフォード値を算出した。
r=(r0+2×r45+r90)/4により各方向の平均のr値を算出した。
<導電率>
導電率(EC;%IACS)については、JIS H0505に準拠し、ダブルブリッジによる体積抵抗率測定により求めた。
<Strength>
Each test piece is subjected to a tensile test in each direction parallel to rolling and perpendicular to rolling based on JIS Z2241 to measure 0.2% proof stress (YS: MPa), and 0.2% of them. The difference in proof stress was calculated.
<R value>
For each test piece, the tensile test in each direction is carried out in order to calculate the Langford value in the rolling direction (r0), the Langford value at 45 ° from the rolling direction (r45), and the Langford value in the sheet width direction (r90) went. Let the plate width and plate thickness before tensile deformation be W 0 and T 0 , and the plate width and plate thickness when 5% tensile deformation be applied be W and T, respectively, r = ln (W 0 / W) / The Rankford value in each tensile direction was calculated by (T 0 / T).
The average r value of each direction was calculated by r = (r0 + 2 × r45 + r90) / 4.
<Conductivity>
The conductivity (EC;% IACS) was determined by volume resistivity measurement using a double bridge in accordance with JIS H0505.

<平均結晶粒径>
平均結晶粒径は、圧延方向に平行な断面を鏡面研磨後に化学腐食し、切断法(JIS H0501)により求めた。
<Average grain size>
The average crystal grain size was determined by a cutting method (JIS H0501) by subjecting a cross section parallel to the rolling direction to mirror polishing and then chemically corroding.

<結晶方位>
各試験片について、株式会社リガク製、RINT2500のX線回折装置を用いて、以下の測定条件で表面の回折強度曲線を取得し、{200}結晶面、{220}結晶面、{311}結晶面のそれぞれの積分強度Iを測定して、(I{220}+I{311})/I{200}を算出した。また純銅粉標準試料についても、同様の測定条件で{200}結晶面の積分強度Iを測定し、I{200}/I0{200}を算出した。
・ターゲット:Co管球
・管電圧:30kV
・管電流:100mA
・走査速度:5°/min
・サンプリング幅:0.02°
・測定範囲(2θ):5°〜150°
<Crystal orientation>
For each test piece, using a RINT 2500 X-ray diffractometer manufactured by Rigaku Corporation, the diffraction intensity curve of the surface is obtained under the following measurement conditions, {200} crystal face, {220} crystal face, {311} crystal The integrated intensity I of each of the faces was measured to calculate (I {220} + I {311}) / I {200}. In addition, with respect to a pure copper powder standard sample, the integrated intensity I of {200} crystal plane was measured under the same measurement conditions to calculate I {200} / I 0 {200}.
・ Target: Co tube ・ Tube voltage: 30kV
・ Tube current: 100mA
・ Scanning speed: 5 ° / min
・ Sampling width: 0.02 °
・ Measurement range (2θ): 5 ° to 150 °

<プレス性>
一辺10mmの正方形型のポンチ(パンチ)と、クリアランスを0.01mm設けたダイスとの間に配置した状態で、速度0.1mm/sでパンチをダイスに向けて変位させプレスを行った。プレス後のプレス破面を光学顕微鏡により観察し、図1の通り、観察面の幅をL0とし、せん断面と破断面の境界部の総長さをLとした場合、L/L0でプレス性を評価した。総長さLは、観察面の写真から画像解析ソフトを使用して長さを算出した。観察面の幅L0は通常5mm以上とし、観察面はプレス破面の幅方向中央部分とした。L/L0>1.3の場合をプレス性に劣ると評価した。
<Pressability>
The punch was displaced toward the die at a speed of 0.1 mm / s and pressed while being disposed between a square punch (punch) of 10 mm side and a die provided with a clearance of 0.01 mm. When observing the press fracture surface after pressing by an optical microscope, as Figure 1, that the width of the observation plane and L 0, the total length of the boundary portion of the shear surface and the fracture surface is L, pressed at L / L 0 The sex was evaluated. The total length L was calculated from the photograph of the observation surface using image analysis software. The width L 0 of the observation surface is usually 5 mm or more, and the observation surface is at the center in the width direction of the press fracture surface. It was evaluated that the case of L / L 0 > 1.3 was inferior to pressability.

<絞り加工性>
エリクセン社製試験器を用い、ブランク径:φ64mm、ポンチ(パンチ)径:φ33mm、シート圧力:3.0kN、潤滑剤:グリスの条件でカップを作製した。
このカップを開放端側を下にしてガラス板上に置き、耳同士の間の凹部とガラス板との間隙を、読み取り顕微鏡で測定し、カップに発生した4個の耳の間の凹部の間隙の平均値を求め、耳の高さとした。
又、カップの外観を目視観察し、肌荒れの有無を判定した。
以下の基準で絞り加工性を評価した。
○:耳の高さが0.5mm以下で、肌荒れがないもの
×:耳の高さが0.5mmを超え、肌荒れが生じたもの
<Drawability>
Using a tester manufactured by Eriksen, a cup was produced under the conditions of blank diameter: φ64 mm, punch (punch) diameter: φ33 mm, sheet pressure: 3.0 kN, lubricant: grease.
The cup is placed on the glass plate with the open end down, and the gap between the recess between the ears and the glass plate is measured with a reading microscope, and the gap between the four ears generated in the cup The average value of was calculated, and it was set as the height of the ear.
Further, the appearance of the cup was visually observed to determine the presence or absence of rough skin.
The drawability was evaluated according to the following criteria.
○: The height of the ear is 0.5 mm or less, without rough skin ×: The height of the ear exceeds 0.5 mm, and the skin roughened

表1、2に示すように、発明例1〜20はいずれも、所定の条件の第一溶体化処理、第二冷間圧延、第二溶体化処理及び時効処理を行ったことにより、圧延平行方向の0.2%耐力が630MPa以上、導電率が50%IACS以上、圧延平行断面における平均結晶粒径が10〜20μmであり、さらに、(I{220}+I{311})/I{200}≧5.0となった。その結果、良好なプレス性・絞り加工性を得ることができた。   As shown in Tables 1 and 2, all of Inventive Examples 1 to 20 were subjected to the first solution treatment, the second cold rolling, the second solution treatment, and the aging treatment under predetermined conditions. 0.2% proof stress in the direction is 630 MPa or more, conductivity is 50% IACS or more, and the average grain size in the rolling parallel section is 10 to 20 μm, and further, (I {220} + I {311}) / I {200 } It became ≧ 5.0. As a result, good pressability and drawability could be obtained.

比較例1〜3は、第一溶体化処理を行わなかったこと、第一溶体化処理の温度が高すぎたこと若しくは低すぎたことに起因して、結晶粒が粗大化し、又は結晶方位が所定の条件を満たさず、プレス性が悪化した。
比較例4は、第二冷間圧延の加工度が高すぎたことにより、結晶粒径が所定の範囲より小さくなり、絞り加工性が悪化した。
比較例5は、第二冷間圧延の加工度が低すぎたことにより、結晶粒が粗大化しプレス性が悪化した。
比較例6は、第二冷間圧延後の表面粗さRaが小さかったことにより、結晶方位が所定の条件を満たさず、プレス性が悪化した。
比較例7は、第二溶体化処理の温度が低すぎたことにより、0.2%耐力が低下した。また結晶粒径が所定の範囲より小さくなり、絞り加工性が悪化した。
比較例8は、第二溶体化処理の温度が高すぎたことにより、結晶粒が粗大化し、プレス性が悪化した。
比較例9は、時効処理の温度が低すぎたことにより、導電率が低いものとなった。
比較例10は、時効処理の温度が高すぎたことにより、0.2%耐力が低くなった。
In Comparative Examples 1 to 3, the crystal grains are coarsened or the crystal orientation is changed due to the fact that the first solution treatment was not performed, or the temperature of the first solution treatment was too high or too low. The pressability was deteriorated without satisfying the predetermined conditions.
In Comparative Example 4, when the degree of working of the second cold rolling was too high, the crystal grain size became smaller than the predetermined range, and the drawability deteriorated.
In Comparative Example 5, when the degree of working of the second cold rolling was too low, the crystal grains were coarsened and the pressability was deteriorated.
In Comparative Example 6, since the surface roughness Ra after the second cold rolling was small, the crystal orientation did not satisfy the predetermined condition, and the pressability deteriorated.
In Comparative Example 7, the 0.2% proof stress decreased due to the temperature of the second solution treatment being too low. In addition, the crystal grain size became smaller than the predetermined range, and the drawability deteriorated.
In Comparative Example 8, when the temperature of the second solution treatment was too high, the crystal grains became coarse and the pressability deteriorated.
In Comparative Example 9, the conductivity was low due to the temperature of the aging treatment being too low.
In Comparative Example 10, the 0.2% proof stress was lowered due to the temperature of the aging treatment being too high.

比較例11は、Ni量が所定の範囲より少なく、Ni/Coが所定の範囲を下回ったことにより、絞り加工性が悪化した。
比較例12は、Ni量が所定の範囲より多く、Ni/Coが所定の範囲を上回ったことにより導電率が低下した。
比較例13は、質量割合で(Ni+Co)/Siが所定の範囲から外れたことにより導電率が低くなった。
比較例14は、Co量が所定の範囲より多かったことにより、熱間加工時に割れが発生した。
In Comparative Example 11, the amount of Ni was smaller than the predetermined range, and the Ni / Co fell below the predetermined range, thereby deteriorating the drawability.
In Comparative Example 12, the conductivity decreased because the amount of Ni was larger than the predetermined range and Ni / Co exceeded the predetermined range.
In Comparative Example 13, the conductivity decreased due to the fact that (Ni + Co) / Si deviated from the predetermined range by mass ratio.
In Comparative Example 14, cracking occurred during hot working because the amount of Co was larger than the predetermined range.

以上より、この発明によれば、電子材料に用いて好適な0.2%耐力および導電率を有しつつ、コネクタ形状等にプレス加工した際の寸法安定性を向上できることが解った。   From the above, it has been found that according to the present invention, the dimensional stability when pressed into a connector shape or the like can be improved while having a 0.2% proof stress and conductivity suitable for an electronic material.

Claims (7)

0.5〜3.0質量%のCo、0.1〜2.0質量%のNi、0.1〜1.5質量%のSiを含有し、質量割合で(Ni+Co)/Siが3.05.0であり、残部が銅および不可避的不純物からなり、圧延平行方向の0.2%耐力が630MPa以上、導電率が50%IACS以上、圧延平行断面における平均結晶粒径が10〜20μm(ただし、10μmを除く。)であり、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たす電子材料用銅合金。 It contains 0.5 to 3.0% by mass of Co, 0.1 to 2.0% by mass of Ni, and 0.1 to 1.5% by mass of Si, and the mass ratio of (Ni + Co) / Si is 3. % . 0 to 5.0 , the balance being copper and unavoidable impurities, the 0.2% proof stress in the rolling parallel direction is 630 MPa or more, the conductivity is 50% IACS or more, and the average grain size in the rolling parallel cross section is 10 to 10 20 μm (but excluding 10 μm) , X-ray diffraction integral intensity I {200} from {200} crystal plane at the surface, and X-ray diffraction integral intensity I {220} from {220} crystal plane The copper alloy for electronic materials which the X-ray diffraction integral intensity I {311} from a {311} crystal plane fulfills the relation of (I {220} + I {311}) / I {200} 5.0 5.0. Coに対するNiの質量比(Ni/Co)が0.1〜2.0である請求項1に記載の電子材料用銅合金。   The copper alloy for electronic materials according to claim 1, wherein a mass ratio of Ni to Co (Ni / Co) is 0.1 to 2.0. 圧延平行方向の0.2%耐力から圧延面に平行であって、圧延平行方向に直角方向の0.2%耐力を差し引いた0.2%耐力の差が、50MPa以下である請求項1または2に記載の電子材料用銅合金。 A parallel to the rolling plane from the 0.2% proof stress in the rolling parallel direction, the difference between the 0.2% proof stress obtained by subtracting the 0.2% proof stress of a direction perpendicular to the rolling direction parallel claim 1 or less 50MPa Or the copper alloy for electronic materials as described in 2. 表面における{200}結晶面からのX線回折積分強度I{200}と、純銅標準粉末のX線回析積分強度I0{200}とが、I{200}/I0{200}≦1.0の関係を満たす請求項1〜3のいずれか一項に記載の電子材料用銅合金。 And {200} X-ray diffraction integrated intensity I {200} from the crystal plane at the surface, a standard pure copper powder X-ray diffraction析積partial intensity I 0 {200} but, I {200} / I 0 {200} ≦ 1 The copper alloy for electronic materials according to any one of claims 1 to 3, which satisfies the relationship of .0. ランクフォード値rが1.0以上(但し、圧延方向のランクフォード値をr0、圧延方向から45°のランクフォード値をr45、板幅方向のランクフォード値をr90としたときr=(r0+2×r45+r90)/4)である請求項1〜4のいずれか一項に記載の電子材料用銅合金。   The rankford value r is 1.0 or more (where r0 is the rankford value in the rolling direction, r45 is the rankford value 45 ° from the rolling direction, and r90 is the rankford value in the sheet width direction r = r0 + 2 × The copper alloy for electronic materials according to any one of claims 1 to 4, which is r45 + r90) / 4). さらにCrを0.5質量%以下で含有する請求項1〜5のいずれか一項に記載の電子材料用銅合金。   Furthermore, the copper alloy for electronic materials as described in any one of Claims 1-5 which contains Cr by 0.5 mass% or less. さらにZn及びSnをそれぞれ1.0質量%以下、Mg、P、Ca及びMnをそれぞれ最大0.2質量%以下で含有し、それらのZn、Sn、Mg、P、Ca及びMnから選択される少なくとも一種類以上の合計が2.0質量%以下である請求項1〜6のいずれか一項に記載の電子材料用銅合金。   Furthermore, each contains at most 1.0 mass% of Zn and Sn and at most 0.2 mass% or less of Mg, P, Ca and Mn, respectively, and is selected from those Zn, Sn, Mg, P, Ca and Mn The copper alloy for electronic materials according to any one of claims 1 to 6, wherein a total of at least one or more kinds is 2.0 mass% or less.
JP2017016081A 2016-10-12 2017-01-31 Copper alloy for electronic materials Active JP6542817B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201241 2016-10-12
JP2016201241 2016-10-12

Publications (2)

Publication Number Publication Date
JP2018062705A JP2018062705A (en) 2018-04-19
JP6542817B2 true JP6542817B2 (en) 2019-07-10

Family

ID=61966540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016081A Active JP6542817B2 (en) 2016-10-12 2017-01-31 Copper alloy for electronic materials

Country Status (1)

Country Link
JP (1) JP6542817B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928597B2 (en) 2018-12-13 2021-09-01 古河電気工業株式会社 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts
JP7113039B2 (en) * 2020-02-06 2022-08-04 古河電気工業株式会社 Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306632B2 (en) * 2016-03-31 2018-04-04 Jx金属株式会社 Copper alloy for electronic materials

Also Published As

Publication number Publication date
JP2018062705A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
TWI387657B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP6306632B2 (en) Copper alloy for electronic materials
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
WO2012121109A1 (en) Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
US20170130309A1 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
KR101242931B1 (en) Rolled sheet of cu-co-si copper alloy and electrical component comprising same
KR20130089656A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
KR20160102989A (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
KR20130059412A (en) Copper-cobalt-silicon alloy for electrode material
JP6222885B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP4642119B2 (en) Copper alloy and method for producing the same
JP6542817B2 (en) Copper alloy for electronic materials
JP4556841B2 (en) High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP6845885B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
KR102345805B1 (en) Cu-Ni-Si-BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDING WORKABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING ORTHOGONAL DIRECTION
JP7311651B1 (en) Copper alloys for electronic materials and electronic parts
JP6845884B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance
JP6811199B2 (en) Cu-Ni-Si copper alloy strip with excellent mold wear resistance and press punching resistance
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016183418A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250