JP2011017072A - Copper alloy material - Google Patents

Copper alloy material Download PDF

Info

Publication number
JP2011017072A
JP2011017072A JP2009164163A JP2009164163A JP2011017072A JP 2011017072 A JP2011017072 A JP 2011017072A JP 2009164163 A JP2009164163 A JP 2009164163A JP 2009164163 A JP2009164163 A JP 2009164163A JP 2011017072 A JP2011017072 A JP 2011017072A
Authority
JP
Japan
Prior art keywords
orientation
copper
copper alloy
alloy material
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164163A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneko
洋 金子
Koji Sato
浩二 佐藤
Tatsuhiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009164163A priority Critical patent/JP2011017072A/en
Publication of JP2011017072A publication Critical patent/JP2011017072A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy material which is superior in bend formability, has superior strength, and is suitable for a lead frame for electrical and electronic equipment, a connector, a terminal material and the like, a connector and a terminal material for in-car products, a relay, a switch and the like.SOLUTION: The copper alloy material is characterized in that the area rate in a Brass orientation {110}<112> is 20% or less, the area rate in a Copper orientation {121}<111> is 20% or less, and the area rate in a Cube orientation {001}<100> is 5 to 60%, in a crystal orientation analysis by EBSD (Electron Back-Scatter Diffraction) measurement; a 0.2% yield strength is 500 MPa or more; and the electroconductivity is 30% IACS or more.

Description

本発明は銅合金材料に関し、詳しくは車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金材料に関する。   The present invention relates to a copper alloy material, and more particularly to a copper alloy material applied to lead frames, connectors, terminal materials, relays, switches, sockets and the like for in-vehicle components and electrical / electronic devices.

車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金材料に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの要求特性のレベルが高まっている。
近年の銅合金材料が使用される状況には、以下の様な変化が挙げられる。
一つ目に、自動車や電機・電子機器の高機能化とともに、コネクタの多極化が進行しているため、端子や接点部品の一つ一つの小型化が進行している。例えば、タブ幅が約1.0mmの端子を0.64mmへダウンサイズする動きが進んでいる。
二つ目に、鉱物資源の低減や、部品の軽量化を背景に、基体材料の薄肉化が進行しており、なおかつバネ接圧を保つために、従来よりも高強度な基体材料が使用されている。
三つ目に使用環境の高温化が進行している。例えば自動車部品では、二酸化炭素発生量の低減のために、車体軽量化を進めるため、従来、ドアに設置していた様なエンジン制御用のECUなどの電子機器をエンジンルーム内やエンジン付近に設置し、電子機器とエンジンの間のワイヤーハーネスを短くする動きが進んでいる。
Characteristic items required for copper alloy materials used in applications such as lead frames, connectors, terminal materials, relays, switches, and sockets for automotive parts and electrical / electronic equipment are conductivity, yield strength (yield stress), Has tensile strength, bending workability, and stress relaxation resistance. In recent years, the level of these required characteristics has increased as electric and electronic devices have become smaller, lighter, more functional, denser, and used in higher temperatures.
The following changes are mentioned in the situation where copper alloy materials in recent years are used.
First, as the functionality of automobiles, electrical equipment, and electronic devices has increased, the number of connectors has been increasing, and so miniaturization of terminals and contact parts has been progressing. For example, a movement to downsize a terminal having a tab width of about 1.0 mm to 0.64 mm is progressing.
Secondly, the base material is becoming thinner due to the reduction of mineral resources and weight reduction of parts, and in order to maintain the spring contact pressure, a base material with higher strength than before is used. ing.
Third, the use environment is becoming hot. For example, to reduce the amount of carbon dioxide generated in automobile parts, electronic devices such as ECUs for engine control, which were conventionally installed on doors, are installed in the engine room and in the vicinity of the engine to reduce the weight of the vehicle body. However, the movement to shorten the wire harness between the electronic device and the engine is progressing.

そして、上記の変化に伴い、銅合金材料には下記の様な問題が生じている。
端子の小型化に伴い、接点部分やバネ部分に施される曲げ加工の曲げ半径は小さくなり、材料には従来よりも厳しい曲げ加工が施される。そのため、材料にクラックが発生する問題が生じている。
材料の高強度化に伴い、材料の曲げ加工性は、一般的に強度とトレードオフにあるため、材料にクラックが発生する問題が生じている。
接点部分やバネ部分に施される曲げ加工部にクラックが発生すると、接点部分の接圧が低下することにより、接点部分の接触抵抗が上昇し、電気的接続が絶縁され、コネクタとしての機能が失われるため、重大な問題となる。
With the above changes, the following problems have arisen in the copper alloy material.
With the miniaturization of the terminals, the bending radius of the bending process applied to the contact part and the spring part becomes smaller, and the material is subjected to a more severe bending process than before. Therefore, there is a problem that the material is cracked.
Along with the increase in strength of materials, the bending workability of materials is generally in a trade-off with strength, so that there is a problem that cracks occur in the materials.
If a crack occurs in the bent part applied to the contact part or the spring part, the contact pressure of the contact part decreases, the contact resistance of the contact part increases, the electrical connection is insulated, and the function as a connector is achieved. It becomes a serious problem because it is lost.

この曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。特許文献1では、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度がある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献2では、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献3では、Cu−Ni−Si系銅合金において、Cube方位{100}<001>の割合の制御によって曲げ加工性が優れることが見出されている。   Several proposals have been made to solve this demand for improvement in bending workability by controlling the crystal orientation. In Patent Document 1, in a Cu—Ni—Si based copper alloy, the crystal grain size and the X-ray diffraction intensity from the {311}, {220}, {200} planes satisfy a certain condition. It has been found that bending workability is excellent. Further, in Patent Document 2, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. Has been found. Further, in Patent Document 3, it has been found that in a Cu—Ni—Si based copper alloy, bending workability is excellent by controlling the ratio of the Cube orientation {100} <001>.

特開2006−009137号公報JP 2006-009137 A 特開2008−013836号公報JP 2008-013836 A 特開2006−283059号公報JP 2006-283059 A

ところで、特許文献1または特許文献2に記載された発明においては、特定面からのX線回折による結晶方位の測定は、ある広がりを持った結晶方位の分布の中のごく一部の特定の面にのみ関するものである。しかも、板面方向の結晶面のみを測定しているに過ぎず、圧延方向や板幅方向にどの結晶面が向いているかについては制御出来ない。よって、曲げ加工性を完全に制御するには、不十分な方法であった。また、特許文献3に記載された発明においては、Cube方位の有効性が指摘されているが、その他の結晶方位成分については制御されておらず、曲げ加工性の改善が不十分な場合があった。   By the way, in the invention described in Patent Document 1 or Patent Document 2, the measurement of crystal orientation by X-ray diffraction from a specific surface is performed by measuring only a specific surface in a distribution of crystal orientation having a certain spread. It is only related to Moreover, only the crystal plane in the plate surface direction is measured, and it cannot be controlled which crystal plane is oriented in the rolling direction or the plate width direction. Therefore, it was an insufficient method for completely controlling the bending workability. In the invention described in Patent Document 3, the effectiveness of the Cube orientation is pointed out, but other crystal orientation components are not controlled, and there are cases where the improvement of bending workability is insufficient. It was.

上記のような課題に鑑み、本発明の目的は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金材料を提供することにある。   In view of the problems as described above, the object of the present invention is to provide excellent bending workability, excellent strength, and lead frames, connectors, terminal materials, etc. for electrical and electronic equipment, such as connectors for automobiles and terminals. It is to provide a copper alloy material suitable for materials, relays, switches and the like.

本発明者らは、種々検討を重ね、電気・電子部品用途に適した銅合金について研究を行い、Brass方位及びCopper方位を低減し、なおかつ、Cube方位の集積割合を制御することで、曲げ加工時のクラックが抑制されることを見い出し、これに基づき本発明に至った。また、最も曲げ加工性に優れる場合について、各結晶方位ごとの結晶粒の大きさに特徴があることを見出した。また、それに加えて、本合金系において特定の添加元素を用いることにより、導電率や曲げ加工性を損なうことなく、強度や応力緩和特性を向上させうることを見出した。本発明は、これらの知見に基づきなすに至ったものである。   The inventors have made various studies and studied copper alloys suitable for electric / electronic component applications, reduced the Brass orientation and Copper orientation, and controlled the accumulation ratio of the Cube orientation to bend the workpiece. It has been found that cracks at the time are suppressed, and based on this, the present invention has been achieved. In addition, it has been found that there is a feature in the size of crystal grains for each crystal orientation in the case of the best bending workability. In addition, it has been found that by using a specific additive element in the present alloy system, the strength and stress relaxation characteristics can be improved without impairing electrical conductivity and bending workability. The present invention has been made based on these findings.

すなわち、本発明は、
(1)EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 2 1}<1 1 1>の面積率が20%以下、Cube方位{0 0 1}<1 0 0>の面積率が5〜60%であり、0.2%耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金材料、
(2)NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.1〜1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有し、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 2 1}<1 1 1>の面積率が20%以下であり、Cube方位{0 0 1}<1 0 0>の面積率が5〜60%、であることを特徴とする銅合金材料、
(3)Brass方位およびCopper方位の結晶粒の平均結晶粒面積が、Cube方位の平均結晶粒面積よりも小さいことを特徴とする、(1)または(2)項記載の銅合金材料、
(4)前記銅合金が、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有することを特徴とする(2)または(3)項記載の銅合金材料、
(5)板材であることを特徴とする(1)〜(4)のいずれか1項に記載の銅合金材料、および
(6)コネクタ用材料であることを特徴とする(1)〜(5)のいずれか1項に記載の銅合金材料
を提供するものである。
That is, the present invention
(1) In crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement, the area ratio of the Brass orientation {1 1 0} <1 1 2> is 20% or less, and the Copper orientation {1 2 1} < The area ratio of 1 1 1> is 20% or less, the area ratio of the Cube orientation {0 0 1} <1 0 0> is 5 to 60%, the 0.2% proof stress is 500 MPa or more, and the conductivity is 30% IACS. A copper alloy material characterized by the above,
(2) The composition contains 0.5 to 5.0 mass% of any one or two of Ni and Co, 0.1 to 1.5 mass% of Si, and the balance is composed of copper and inevitable impurities. In the crystal orientation analysis in the EBSD (Electron Back Scatter Diffraction) measurement, the area ratio of the Brass orientation {1 1 0} <1 1 2> is 20% or less, and the Copper orientation {1 2 1} <1 A copper alloy material, wherein the area ratio of 1 1> is 20% or less, and the area ratio of Cube orientation {0 0 1} <1 0 0> is 5 to 60%;
(3) The copper alloy material according to (1) or (2), wherein the average crystal grain area of the crystal grains in the Brass orientation and the Copper orientation is smaller than the average crystal grain area in the Cube orientation,
(4) The copper alloy is a total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr, and Hf. The copper alloy material according to item (2) or (3),
(5) A copper alloy material according to any one of (1) to (4), and (6) a connector material (1) to (5), which is a plate material The copper alloy material according to any one of items 1) is provided.

本発明の銅合金材料は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適である。   The copper alloy material of the present invention is excellent in bending workability and has excellent strength, such as lead frames, connectors and terminal materials for electrical and electronic equipment, connectors and terminal materials for automobiles, relays, switches, etc. It is suitable for.

応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態をそれぞれ示す。It is explanatory drawing of the test method of a stress relaxation characteristic, (a) is before heat processing, (b) shows the state after heat processing, respectively.

本発明の銅合金材料の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。なお、実施形態として板材、条材について以下に説明する。   A preferred embodiment of the copper alloy material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). In addition, a board | plate material and a strip are demonstrated below as embodiment.

材料の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後の材料の金属組織を詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中する、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数ミクロンの深さのシワや、微細なクラックが発生することが解った。
そして、基体材料のBrass方位とCopper方位が少なく、Cube方位面積率が多い場合に、不均一な変形が抑制され、基体材料の表面に発生するシワが低減され、クラックが抑制されることが解った。
In order to clarify the cause of the occurrence of cracks during bending of the material, the present inventors investigated in detail the metal structure of the material after bending deformation. As a result, it was observed that the base material was not uniformly deformed, but non-uniform deformation progressed, in which the deformation was concentrated only in a region having a specific crystal orientation. And, it was found that due to the non-uniform deformation, wrinkles with a depth of several microns and fine cracks occur on the surface of the base material after bending.
Then, it is understood that when the base material has less Brass orientation and Copper orientation, and the Cube orientation area ratio is high, uneven deformation is suppressed, wrinkles generated on the surface of the base material are reduced, and cracks are suppressed. It was.

Brass方位とCopper方位の面積率は、それぞれ20%以下でかつ、Cube方位の面積率が5〜60%の場合に、上記の効果が得られる。好ましくはBrass方位とCopper方位の面積率はそれぞれ15%以下で、Cube面積率が10〜55%、更に好ましくはBrass方位とCopper方位の面積率はそれぞれ0.5〜10%で、Cube面積率が15〜50%である。   The above effects can be obtained when the area ratio of the Brass orientation and the Copper orientation is 20% or less and the area ratio of the Cube orientation is 5 to 60%. Preferably, the area ratio of the Brass orientation and the Copper orientation is 15% or less, the Cube area ratio is 10 to 55%, more preferably, the area ratio of the Brass orientation and the Copper orientation is 0.5 to 10%, respectively. Is 15 to 50%.

本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、材料中の各領域がZ軸に垂直な(圧延面に平行な)結晶面の指数(h k l)と、X軸に平行な結晶方向の指数[u v w]とを用いて、(h k l)[u v w]の形で示す。また、(1 3 2)[6 −4 3]と(2 3 1)[3 −4 6]などのように、銅合金の立方晶の対称性のもとで等価な方位については、ファミリーを表すカッコ記号を使用し、{h k l}<u v w>と示す。
Cube方位とは、圧延面法線方向(ND)に(100)面を、圧延方向(RD)に(100)面を向いている状態であり、{0 0 1}<1 0 0>の指数で示される。
Brass方位とは、圧延面法線方向(ND)に(110)面を、圧延方向(RD)に(112)面を向いている状態であり、{1 1 0}<1 1 2>の指数で示される。
Copper方位とは、圧延面法線方向(ND)に(112)面を、圧延方向(RD)に(111)面を向いている状態であり、{1 2 1}<1 1 1>の指数でそれぞれ示される。
The crystal orientation display method in the present specification takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. Using the index (h k l) of the crystal plane each region in which is perpendicular to the Z axis (parallel to the rolling surface) and the index [u v w] of the crystal direction parallel to the X axis, (h k l) Shown in the form [u v w]. For the equivalent orientations under the cubic symmetry of the copper alloy, such as (1 3 2) [6 -4 3] and (2 3 1) [3 -4 6], It uses {h k l} <u v w> using the parenthesis symbol.
The Cube orientation is a state in which the (100) plane faces the rolling surface normal direction (ND) and the (100) plane faces the rolling direction (RD), and an index of {0 0 1} <1 0 0> Indicated by
The Brass orientation is a state in which the (110) plane faces the rolling surface normal direction (ND) and the (112) plane faces the rolling direction (RD), and an index of {1 1 0} <1 1 2> Indicated by
The Copper orientation is a state in which the (112) plane faces the rolling surface normal direction (ND) and the (111) plane faces the rolling direction (RD), and an index of {1 2 1} <1 1 1> Respectively.

本発明における上記結晶方位の解析には、EBSD法を用いた。EBSDとは、Electron Back Scatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。
上記指数で示される理想方位からのずれ角度については、共通の回転軸を中心に回転角を計算し、ずれ角度とした。例えば、S方位(2 3 1)[6 −4 3]に対して、(1 2 1)[1 −1 1]は(20 10 17)方向を回転軸にして、19.4°回転した関係になっており、この角度をずれ角度とした。共通の回転軸は最も小さいずれ角度で表現できるものを採用した。全ての測定点に対してこのずれ角度を計算して小数第一位までを有効数字とし、Brass方位、Copper方位、Cube方位のそれぞれから10°以内の方位を持つ結晶粒の面積を全測定面積で除し、面積率とした。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。また、方位分布は板表面から測定した。
The EBSD method was used for the analysis of the crystal orientation in the present invention. EBSD is an abbreviation for Electron Back Scatter Diffraction (Electron Backscatter Diffraction). Reflected Electron Kikuchi Line Diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a Scanning Electron Microscope (SEM). This is the crystal orientation analysis technology used. In the present invention, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps, and the orientation was analyzed.
Regarding the deviation angle from the ideal orientation indicated by the above index, the rotation angle was calculated around a common rotation axis, and was taken as the deviation angle. For example, with respect to the S orientation (2 3 1) [6 -4 3], (1 2 1) [1 -1 1] is rotated by 19.4 ° with the (20 10 17) direction as the rotation axis. This angle was taken as the deviation angle. A common rotation axis that can be expressed at the smallest angle is adopted. This deviation angle is calculated for all measurement points, and the first decimal place is an effective number, and the area of crystal grains having an orientation within 10 ° from each of the Brass orientation, Copper orientation, and Cube orientation is the total measurement area. To obtain the area ratio.
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio. The orientation distribution was measured from the plate surface.

なお、EBSD測定にあたっては、鮮明な菊地線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。   In the EBSD measurement, in order to obtain a clear Kikuchi diffraction image, it is preferable to perform the measurement after mirror polishing the surface of the substrate using colloidal silica abrasive grains after mechanical polishing.

各結晶方位ごとの平均結晶粒面積について示す。まず、上述の方法でBrass、Copper、Cubeの理想方位からのずれ角度が10°以内の領域情報をそれぞれ抽出した。そして、1つ1つの結晶粒が、いくつの測定ピクセルから構成されているかを解析し、一つ一つの結晶粒面積を求めた。そして、20個以上の結晶粒から平均値を算出した。結晶粒の定義は、2点以上の測定点からなり、ずれ角度が10°以上の測定点に囲まれていることとした。   It shows about the average grain area for each crystal orientation. First, region information whose deviation angle from the ideal orientation of Brass, Copper, and Cube was within 10 ° was extracted by the above-described method. Then, how many measurement pixels each crystal grain is composed of was analyzed, and each crystal grain area was obtained. And the average value was computed from 20 or more crystal grains. The definition of the crystal grain is made up of two or more measurement points, and is surrounded by measurement points having a deviation angle of 10 ° or more.

Brass方位およびCopper方位の結晶粒の平均結晶粒面積が、Cube方位の平均結晶粒面積よりも小さい場合に、クラックの発生を抑制する効果がある。これは、曲げ加工性には悪影響するBrass方位とCopper方位の結晶粒が分散することによる効果と考えられる。
好ましくは、Brass方位およびCopper方位の平均結晶粒面積が、Cube方位の平均結晶粒面積の90%以下、更に好ましくは同値が20〜80%である。
When the average crystal grain area of the crystal grains of the Brass orientation and the Copper orientation is smaller than the average crystal grain area of the Cube orientation, there is an effect of suppressing the occurrence of cracks. This is considered to be an effect due to the dispersion of the crystal grains of the Brass orientation and the Copper orientation that adversely affect the bending workability.
Preferably, the average crystal grain area of the Brass orientation and the Copper orientation is 90% or less of the average crystal grain area of the Cube orientation, and more preferably the same value is 20 to 80%.

本発明のコネクタ用材料としては、銅または銅合金が用いられる。コネクタに要求される導電性、機械的強度および耐熱性を有する銅、リン青銅、黄銅、洋白、ベリリウム銅、コルソン系合金(Cu−Ni−Si系)などの銅合金が好ましい。特に、Brass方位とCopper方位を低減し、Cube方位の面積率を高めたい場合は、純銅系の材料やベリリウム銅、コルソン系合金を含む析出型合金が好ましい。更に、最先端の小型端子材料に求められるような、高強度と高導電性を両立させるためには、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系が好ましい。   Copper or copper alloy is used as the connector material of the present invention. Copper alloys such as copper, phosphor bronze, brass, western white, beryllium copper, and Corson alloy (Cu—Ni—Si) having electrical conductivity, mechanical strength and heat resistance required for the connector are preferable. In particular, when it is desired to reduce the Brass orientation and Copper orientation and increase the area ratio of the Cube orientation, a pure copper-based material, a beryllium copper, and a precipitation alloy including a Corson alloy are preferable. Furthermore, in order to achieve both high strength and high conductivity as required for the most advanced small terminal materials, Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si are used. preferable.

本発明において、銅(Cu)に添加する第1の添加元素群であるニッケル(Ni)とコバルト(Co)とケイ素(Si)について、それぞれの添加量を制御することにより、Ni−Si、Co−Si、Ni−Co−Siの化合物を析出させて銅合金の強度を向上させることができる。その添加量は、NiとCoのいずれか1種または2種を合計で、好ましくは0.5〜5.0mass%、さらに好ましくは0.6〜4.5mass%、より好ましくは0.8〜4.0mass%、Siの含有量は好ましくは0.1〜1.5mass%、さらに好ましくは0.2〜1.2mass%である。これらの元素の添加量は合計で5.1mass%よりも多いと導電率を低下させやすく、また、合計で0.6mass%よりも少ないと強度が不足しやすい。   In the present invention, nickel (Ni), cobalt (Co), and silicon (Si), which are the first additive element group to be added to copper (Cu), are controlled by controlling the addition amount of Ni—Si, Co. It is possible to improve the strength of the copper alloy by precipitating a compound of -Si and Ni-Co-Si. The amount of addition is one or two of Ni and Co in total, preferably 0.5 to 5.0 mass%, more preferably 0.6 to 4.5 mass%, more preferably 0.8 to The content of 4.0 mass% and Si is preferably 0.1 to 1.5 mass%, and more preferably 0.2 to 1.2 mass%. If the total amount of these elements is more than 5.1 mass%, the electrical conductivity tends to decrease, and if the total amount is less than 0.6 mass%, the strength tends to be insufficient.

次に、耐応力緩和特性などの特性(二次特性)を向上させる添加元素の効果について示す。好ましい添加元素としては、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfが挙げられる。添加効果を充分に活用し、かつ導電率を低下させないためには、総量で0.005〜2.0mass%であることが好ましく、さらに好ましくは0.01〜1.5mass%、より好ましくは、0.03〜0.8mass%である。これらの添加元素が総量で多すぎると導電率を低下させる弊害を生じるため好ましくない。なお、これらの添加元素が総量で少なすぎると、これらの元素を添加した効果がほとんど発揮されない。   Next, the effect of an additive element that improves characteristics (secondary characteristics) such as stress relaxation resistance will be described. Preferred additive elements include Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf. In order to fully utilize the additive effect and not lower the electrical conductivity, the total amount is preferably 0.005 to 2.0 mass%, more preferably 0.01 to 1.5 mass%, more preferably It is 0.03-0.8 mass%. If the total amount of these additive elements is too large, it is not preferable because it causes a detrimental effect on the conductivity. If these additive elements are too small in total, the effect of adding these elements is hardly exhibited.

以下に、各元素の添加効果を示す。Mg、Sn、Znは、Cu−Ni−Si系、Cu−Ni−Co−Si系、Cu−Co−Si系銅合金に添加することで耐応力緩和特性が向上する。それぞれを添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。   The effect of adding each element is shown below. When Mg, Sn, and Zn are added to Cu—Ni—Si, Cu—Ni—Co—Si, and Cu—Co—Si copper alloys, the stress relaxation resistance is improved. The stress relaxation resistance is further improved by a synergistic effect when added together than when they are added. In addition, there is an effect of remarkably improving solder embrittlement.

Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。   When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved.

Cr、Fe、Ti、Zr、Hfは、主な添加元素であるNiやCoやSiとの化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。   Cr, Fe, Ti, Zr, and Hf are finely precipitated as a single additive or a compound with Ni, Co, or Si as main additive elements, and contribute to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable.

次に、基体材料のBrass方位、Copper方位、Cube方位の面積率を制御する方法について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明するが、固溶型合金、希薄系合金、純銅系合金に展開することが可能である。
一般に、析出型銅合金は、均質化熱処理した鋳塊を熱間と冷間の各ステップで薄板化し、700〜1020℃の温度範囲で最終溶体化熱処理を行って溶質原子を再固溶させた後に、時効析出熱処理と仕上げ冷間圧延によって必要な強度を満足させるように製造される。時効析出熱処理と仕上げ冷間圧延の条件は、所望の強度及び導電性などの特性に応じて、調整される。銅合金の集合組織については、この一連のステップにおける、最終溶体化熱処理中に起きる再結晶によってそのおおよそが決定し、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
Next, a method for controlling the area ratio of the Brass orientation, Copper orientation, and Cube orientation of the base material will be described. Here, a plate material (strip material) of a precipitation-type copper alloy will be described as an example, but the present invention can be applied to a solid solution alloy, a dilute alloy, and a pure copper alloy.
In general, a precipitation-type copper alloy is obtained by thinning a homogenized heat-treated ingot at each step of hot and cold, and performing a final solution heat treatment in a temperature range of 700 to 1020 ° C. to re-solidify solute atoms. Later, it is manufactured to satisfy the required strength by aging precipitation heat treatment and finish cold rolling. The conditions for the aging precipitation heat treatment and the finish cold rolling are adjusted according to characteristics such as desired strength and conductivity. The texture of the copper alloy is roughly determined by recrystallization that occurs during the final solution heat treatment in this series of steps, and finally determined by the rotation of the orientation that occurs during finish rolling.

最終溶体化熱処理においてBrass方位及びCopper方位の面積率を減少させ、Cube方位の面積率を上昇させるためには、この時の再結晶及び結晶粒成長において、Cube方位の結晶粒がBrass方位、Copper方位の結晶粒に先立って、優先的に再結晶するとともに、結晶粒成長させることが重要である。そして、Brass、Copper方位の結晶粒には、Cube方位の結晶粒よりも、転位などの格子欠陥を多く含むことが、そのための駆動力となる。
この様な機構でCube方位粒の優先成長を促進する製造方法は、下記の様にいくつかのポイントが挙げられる。
一つ目に、最終溶体化熱処理の400℃から750℃の範囲の昇温速度を2℃/秒〜50℃/秒の範囲で最適化することが挙げられる。この範囲の場合に、Cube方位の優先再結晶が引き起こされる。これよりも速い場合は、Cube方位とその他の方位の成長が同時に起きてしまい、遅い場合は溶質原子の析出とその析出物の粗大化が顕著になってしまい、溶体化熱処理中に溶質原子を固溶出来なくなってしまうため、好ましくない。
二つ目に、この最終溶体化熱処理の前に、焼鈍工程とその焼鈍の後に圧延工程を導入する方法が挙げられる。焼鈍工程は300〜700℃にて5分間〜20時間の条件で、圧延工程は3〜35%の比較的低い加工率で行うことが好ましい。
三つ目に、上記の最終溶体化熱処理の前の焼鈍工程の前には、80〜99%の比較的高い加工率の冷間圧延を行うことが好ましい。
In order to decrease the area ratio of the Brass orientation and the Copper orientation in the final solution heat treatment and increase the area ratio of the Cube orientation, in the recrystallization and crystal grain growth at this time, the crystal grains of the Cube orientation are changed to the Brass orientation, Copper. Prior to the orientational crystal grains, it is important to recrystallize preferentially and to grow the crystal grains. The crystal grains of Brass and Copper orientation contain more lattice defects such as dislocations than the crystal grains of Cube orientation.
The production method for promoting the preferential growth of Cube-oriented grains by such a mechanism has several points as follows.
First, the temperature increase rate in the range of 400 ° C. to 750 ° C. in the final solution heat treatment may be optimized in the range of 2 ° C./second to 50 ° C./second. In this range, preferential recrystallization in the Cube orientation is caused. If it is faster than this, the growth of the Cube orientation and other orientations occurs at the same time, and if it is slower, precipitation of the solute atoms and coarsening of the precipitates become remarkable, and the solute atoms are introduced during the solution heat treatment. This is not preferable because it cannot be dissolved.
Secondly, there is an annealing process and a method of introducing a rolling process after the annealing before the final solution heat treatment. The annealing step is preferably performed at 300 to 700 ° C. for 5 minutes to 20 hours, and the rolling step is preferably performed at a relatively low processing rate of 3 to 35%.
Third, it is preferable to perform cold rolling at a relatively high processing rate of 80 to 99% before the annealing step before the final solution heat treatment.

上記内容を満たすことで、たとえばコネクタ用銅合金板材に要求される特性を満足することができる。本発明の銅合金材料の一つの好ましい実施態様では、0.2%耐力が500MPa以上、かつ導電率が30%IACS以上である。特に好ましくは、0.2%耐力については600MPa以上、曲げ加工性については90°W曲げ試験においてクラックなく曲げ加工が可能な最小曲げ半径を板厚で割った値が1以下、導電率については35%IACS以上、耐応力緩和特性については後述する150℃に1000時間保持する測定方法によって30%以下の良好な特性有する銅合金材料であり、このような特性を実現可能なことが、本発明の一つの利点である。なお、本発明において、0.2%耐力はJIS Z2241に基づく値である。   By satisfy | filling the said content, the characteristic requested | required of the copper alloy board | plate material for connectors, for example can be satisfied. In one preferred embodiment of the copper alloy material of the present invention, the 0.2% proof stress is 500 MPa or more, and the conductivity is 30% IACS or more. Particularly preferably, the 0.2% proof stress is 600 MPa or more, the bending workability is a value obtained by dividing the minimum bending radius that can be bent without cracks in the 90 ° W bending test by the plate thickness, and the conductivity is about 1 or less. It is a copper alloy material having a good characteristic of 30% or less and a stress relaxation resistance characteristic of 30% or less by a measurement method held at 150 ° C. for 1000 hours, which will be described later, and that such a characteristic can be realized. Is one of the advantages. In the present invention, the 0.2% proof stress is a value based on JIS Z2241.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例1
表1−1〜1−2の合金成分の欄の組成に示すように、少なくともNiとCoの中から1種または2種を合計で0.5〜5.0mass%、Siを0.3〜1.5mass%含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。これを900〜1020℃で3分から10時間の均質化熱処理後、熱間加工を行った後に水焼き入れ(水冷に相当)を行い、酸化スケール除去のために面削を行った。この状態を提供材とし、下記A〜Eのいずれかの工程にて、本発明例1−1〜1−19および比較例1−1〜1−9の銅合金材料の供試材を製造した。なお、表1−1〜1−2にA〜Eのいずれの工程を用いたのかを示した。
Example 1
As shown in the composition in the column of alloy components in Tables 1-1 to 1-2, at least one or two of Ni and Co are added in a total amount of 0.5 to 5.0 mass%, and Si is set to 0.3 to An alloy containing 1.5 mass% and the balance being Cu and inevitable impurities was melted in a high frequency melting furnace, and this was cast to obtain an ingot. This was subjected to a homogenization heat treatment at 900 to 1020 ° C. for 3 minutes to 10 hours, followed by hot working, followed by water quenching (corresponding to water cooling) and chamfering to remove oxide scale. With this state as the providing material, the test materials of the copper alloy materials of Invention Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-9 were manufactured in any of the following steps A to E. . Tables 1-1 to 1-2 show which process of A to E was used.

(工程A)
75〜85%の加工率の冷間圧延を行い、昇温速度が50〜200℃/秒の昇温速度で750〜1000℃において5秒〜1時間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜30%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process A)
Cold rolling at a processing rate of 75 to 85% is performed, and a final solution heat treatment is performed at a temperature increase rate of 50 to 200 ° C./second and held at 750 to 1000 ° C. for 5 seconds to 1 hour. Thereafter, an aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 30%, and temper annealing for 10 seconds to 2 hours at 300 to 700 ° C. are performed.

(工程B)
85〜99%の加工率の冷間圧延を行い、300〜700℃で5分〜20時間保持する熱処理、35〜55%の加工率の冷間加工、昇温速度が2〜50℃/秒の昇温速度で750〜1000℃において5秒〜1時間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜30%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process B)
Cold rolling at a working rate of 85-99% and holding at 300-700 ° C. for 5 minutes to 20 hours, cold working at a working rate of 35-55%, temperature increase rate of 2-50 ° C./second Final solution heat treatment is performed at 750 to 1000 ° C. for 5 seconds to 1 hour. Thereafter, an aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 30%, and temper annealing for 10 seconds to 2 hours at 300 to 700 ° C. are performed.

(工程C)
85〜99%の加工率の冷間圧延を行い、300〜700℃で5分〜20時間保持する熱処理、5〜35%の加工率の冷間加工、昇温速度が2〜50℃/秒の昇温速度で750〜1000℃において5秒〜1時間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜30%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process C)
Cold rolling at a working rate of 85 to 99%, heat treatment held at 300 to 700 ° C. for 5 minutes to 20 hours, cold working at a working rate of 5 to 35%, heating rate of 2 to 50 ° C./second Final solution heat treatment is performed at 750 to 1000 ° C. for 5 seconds to 1 hour. Thereafter, an aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 30%, and temper annealing for 10 seconds to 2 hours at 300 to 700 ° C. are performed.

(工程D)
85〜99%の加工率の冷間圧延を行い、600〜900℃で10秒〜5分間保持する熱処理、35〜55%の加工率の冷間加工、昇温速度が2〜50℃/秒の昇温速度で750〜1000℃において5秒〜1時間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜30%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process D)
Cold rolling at a working rate of 85 to 99%, heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes, cold working at a working rate of 35 to 55%, heating rate of 2 to 50 ° C./second Final solution heat treatment is performed at 750 to 1000 ° C. for 5 seconds to 1 hour. Thereafter, an aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 30%, and temper annealing for 10 seconds to 2 hours at 300 to 700 ° C. are performed.

(工程E)
85〜99%の加工率の冷間圧延を行い、昇温速度が50〜200℃/秒の昇温速度で750〜1000℃において5秒〜1時間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜30%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process E)
Cold rolling is performed at a processing rate of 85 to 99%, and a final solution heat treatment is performed at a temperature increase rate of 50 to 200 ° C./second and held at 750 to 1000 ° C. for 5 seconds to 1 hour. Thereafter, an aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 30%, and temper annealing for 10 seconds to 2 hours at 300 to 700 ° C. are performed.

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。   After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape.

この供試材について下記の特性調査を行った。ここで、供試材の厚さは0.15mmとした。結果を表1−1〜1−2に示す。   The following property investigation was conducted on this specimen. Here, the thickness of the test material was 0.15 mm. The results are shown in Tables 1-1 to 1-2.

a.Brass方位、Copper方位、Cube方位の面積率:
EBSD法により、約500μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。上述した様に、各理想方位から10°以内について、面積率を算出した。
a. Area ratio of Brass orientation, Copper orientation, and Cube orientation:
By the EBSD method, measurement was performed in a measurement region of about 500 μm square under the condition that the scan step was 0.5 μm. The measurement area was adjusted based on the inclusion of 200 or more crystal grains. As described above, the area ratio was calculated within 10 ° from each ideal orientation.

b.曲げ加工性:
圧延方向に垂直に幅10mm、長さ25mmに切出し、これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、曲げ部を50倍の光学顕微鏡で観察し、クラックの有無を調査した。
曲げ加工部にクラックがなく、シワも軽微なものを◎、クラックがないがシワが大きいものを○、クラックのあるものを×と判定した。各曲げ部の曲げ角度は90°、曲げ部の 内側半径は0.15mmとした。
b. Bendability:
Cut into a width of 10 mm and a length of 25 mm perpendicular to the rolling direction, and W-bended so that the axis of bending is perpendicular to the rolling direction is GW (Good Way) and W-bent so as to be parallel to the rolling direction. The thing was made into BW (Bad Way), the bending part was observed with the optical microscope of 50 time, and the presence or absence of the crack was investigated.
Bending parts were evaluated as “A” when there were no cracks and slight wrinkles, “B” when there were no cracks but large wrinkles, and “C” when there were cracks. The bending angle of each bent portion was 90 °, and the inner radius of the bent portion was 0.15 mm.

c.0.2%耐力 [YS]:
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
c. 0.2% yield strength [YS]:
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown.

d:導電率 [EC]:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
d: Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.

e.応力緩和率 [SR]:
日本伸銅協会の仮規格である、JCBA T309:2001(旧日本電子材料工業会標準規格 EMAS−3003に相当)に準じ、以下に示すように、150℃で1000時間保持後の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
e. Stress relaxation rate [SR]:
In accordance with JCBA T309: 2001 (corresponding to the former Japan Electronic Materials Industry Association Standard EMAS-3003), which is a provisional standard of the Japan Copper and Brass Association, as shown below, measurement was performed under conditions after holding at 150 ° C. for 1000 hours. . An initial stress of 80% of the proof stress was applied by the cantilever method.

図1は応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図1(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持(前記試験片1の状態での熱処理)し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。この関係から、応力緩和率(%)は(Ht−H1)/δ×100と算出した。式中、δは、基準から試験片1までの距離であり、Hは、基準から試験片3までの距離であり、Hは、基準から試験片2までの距離である。 FIG. 1 is an explanatory diagram of a stress relaxation characteristic test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. As shown in FIG. 1A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This is held in a thermostatic bath at 150 ° C. for 1000 hours (heat treatment in the state of the test piece 1), and the position of the test piece 2 after removing the load is determined from the reference H t as shown in FIG. Is the distance. 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference. From this relationship, the stress relaxation rate (%) was calculated as (Ht−H1) / δ 0 × 100. In the equation, δ 0 is the distance from the reference to the test piece 1, H 1 is the distance from the reference to the test piece 3, and H t is the distance from the reference to the test piece 2.

f.各方位の結晶粒の平均結晶粒面積 [GS]:
EBSDによる方位解析においてBrass、Copper、Cubeの各理想方位から±10°以内の領域のデータを抽出し、1つ1つの結晶粒が、いくつのピクセルから構成されているかを解析し、一つ一つの結晶粒面積を求めた。そして、20個以上の結晶粒から平均値を算出した。結晶粒の定義は、2点以上の測定点からなり、ずれ角度が10°以上の測定点に囲まれていることとした。
f. Average grain area [GS] of crystal grains in each orientation:
In the orientation analysis by EBSD, data of regions within ± 10 ° from each ideal orientation of Brass, Copper, and Cube is extracted, and how many pixels each individual crystal grain is composed of is analyzed. Two grain areas were determined. And the average value was computed from 20 or more crystal grains. The definition of the crystal grain is made up of two or more measurement points, and is surrounded by measurement points having a deviation angle of 10 ° or more.

Figure 2011017072
Figure 2011017072

Figure 2011017072
Figure 2011017072

表1―1に示すように、本発明例1−1〜1−19は、曲げ加工性、耐力、導電率、応力緩和特性に優れた。特に、Brass方位およびCopper方位の結晶粒の平均結晶粒面積が、Cube方位の平均結晶粒面積よりも小さい本発明例1−3、1−4、1−5、1−9、1−11、1−12、1−17、1−18では、GW、BWの少なくとも一方においてクラックがなく、シワも軽微なものという極めて優れた曲げ加工性を示した。
一方、表1−2に示すように、本発明の規定を満たさない場合は、特性が劣る結果となった。
すなわち、比較例1−1は、NiとCoの総量が少ないために、析出硬化に寄与する析出物の密度が低下し強度が優れなかった。また、NiまたはCoと化合物を形成しないSiが金属組織中に過剰に固溶し導電率が優れなかった。比較例1−2は、NiとCoの総量が多いために、導電率が劣った。比較例1−3は、Siが少ないために強度が劣った。比較例1−4は、Siが多いために導電率が劣った。
比較例1−5はBrass方位の面積率が高く、曲げ加工性が劣った。比較例1−6はCopper方位の面積率が高く、曲げ加工性が劣った。比較例1−7は、Brass方位とCopper方位の両方の面積率が高く、曲げ加工性が劣った。比較例1−8はCube方位の面積率が低く、曲げ加工性が劣った。比較例1−9はCube方位の面積率が高く、曲げ加工性が劣った。
As shown in Table 1-1, Invention Examples 1-1 to 1-19 were excellent in bending workability, yield strength, electrical conductivity, and stress relaxation characteristics. In particular, Invention Examples 1-3, 1-4, 1-5, 1-9, 1-11, in which the average crystal grain area of the crystal grains of the Brass orientation and the Copper orientation is smaller than the average crystal grain area of the Cube orientation, Nos. 1-12, 1-17, and 1-18 exhibited extremely excellent bending workability such that at least one of GW and BW had no cracks and wrinkles were slight.
On the other hand, as shown in Table 1-2, when the provisions of the present invention were not satisfied, the characteristics were inferior.
That is, in Comparative Example 1-1, since the total amount of Ni and Co was small, the density of precipitates contributing to precipitation hardening was reduced and the strength was not excellent. Further, Si that does not form a compound with Ni or Co was excessively dissolved in the metal structure, and the conductivity was not excellent. Since Comparative Example 1-2 had a large total amount of Ni and Co, the conductivity was inferior. Comparative Example 1-3 was inferior in strength due to a small amount of Si. Comparative Example 1-4 was inferior in electrical conductivity because of a large amount of Si.
In Comparative Example 1-5, the area ratio of the Brass orientation was high, and the bending workability was inferior. Comparative Example 1-6 had a high Copper area ratio and was inferior in bending workability. In Comparative Example 1-7, the area ratios of both the Brass orientation and the Copper orientation were high, and the bending workability was inferior. In Comparative Example 1-8, the area ratio of the Cube orientation was low, and the bending workability was inferior. In Comparative Example 1-9, the area ratio of the Cube orientation was high, and the bending workability was inferior.

実施例2
表2の合金成分の欄に示す組成で、残部がCuと不可避不純物からなる銅合金について、実施例1と同様にして、本発明例2−1〜2−17、比較例2−1〜2−3の銅合金材料の供試材を製造し、実施例1と同様に特性を調査した。結果を表2に示す。
Example 2
With respect to the copper alloy having the composition shown in the column of alloy components in Table 2 and the balance consisting of Cu and inevitable impurities, Example 2-1 to 2-17 and Invention Examples 2-1 to 2 and Comparative Examples 2-1 to 2 -3 copper alloy material specimens were manufactured and the characteristics were examined in the same manner as in Example 1. The results are shown in Table 2.

Figure 2011017072
Figure 2011017072

表2に示すように、本発明例2−1〜本発明例2−17は、曲げ加工性、耐力、導電率、応力緩和特性に優れた。
一方、本発明の規定を満たさない場合は、特性が優れなかった。すなわち、比較例2−1、2−2、2−3(いずれも、請求項4に係る発明の比較例)は、その他の元素の添加量が多いために、導電率が劣った。
この様に、本発明により、コネクタ材として最適な特性が実現可能である。
As shown in Table 2, Invention Example 2-1 to Invention Example 2-17 were excellent in bending workability, yield strength, electrical conductivity, and stress relaxation characteristics.
On the other hand, when the requirements of the present invention were not satisfied, the characteristics were not excellent. That is, Comparative Examples 2-1, 2-2, and 2-3 (both of the comparative examples of the invention according to claim 4) were inferior in conductivity because the amount of other elements added was large.
As described above, according to the present invention, optimum characteristics as a connector material can be realized.

1 初期応力を付与した時の試験片
2 負荷を除いた後の試験片
3 応力を負荷しなかった場合の試験片
4 試験台
DESCRIPTION OF SYMBOLS 1 Test piece when initial stress was applied 2 Test piece after removing load 3 Test piece when stress was not applied 4 Test stand

Claims (6)

EBSD(Electron Back−Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 2 1}<1 1 1>の面積率が20%以下、Cube方位{0 0 1}<1 0 0>の面積率が5〜60%であり、0.2%耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金材料。   In crystal orientation analysis in EBSD (Electron Back-Scatter Diffraction) measurement, the area ratio of the Brass orientation {1 1 0} <1 1 2> is 20% or less, and the Copper orientation {1 2 1} <1 1 The area ratio of 1> is 20% or less, the area ratio of Cube orientation {0 0 1} <1 0 0> is 5 to 60%, the 0.2% proof stress is 500 MPa or more, and the conductivity is 30% IACS or more. A copper alloy material characterized by being. NiとCoのいずれか1種または2種を合計で0.5〜5.0mass%、Siを0.1〜1.5mass%含有し、残部が銅及び不可避不純物からなる組成を有し、EBSD(Electron Back−Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、Brass方位{1 1 0}<1 1 2>の面積率が20%以下、Copper方位{1 2 1}<1 1 1>の面積率が20%以下、Cube方位{0 0 1}<1 0 0>の面積率が5〜60%であることを特徴とする銅合金材料。   It contains 0.5 to 5.0 mass% of any one or two of Ni and Co in total, 0.1 to 1.5 mass% of Si, and the balance is composed of copper and inevitable impurities, and EBSD In crystal orientation analysis in (Electron Back-Scatter Diffraction) measurement, the area ratio of the Brass orientation {1 1 0} <1 1 2> is 20% or less, and the Copper orientation {1 2 1} <1 1 1 The area ratio of> is 20% or less, and the area ratio of Cube orientation {0 0 1} <1 0 0> is 5 to 60%. Brass方位およびCopper方位の結晶粒の平均結晶粒面積が、Cube方位の平均結晶粒面積よりも小さいことを特徴とする、請求項1または2記載の銅合金材料。   The copper alloy material according to claim 1 or 2, wherein the average crystal grain area of the crystal grains of the Brass orientation and the Copper orientation is smaller than the average crystal grain area of the Cube orientation. 前記銅合金が、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有することを特徴とする請求項2または3記載の銅合金材料。   The copper alloy contains 0.005 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf. The copper alloy material according to claim 2 or 3. 板材であることを特徴とする請求項1〜4のいずれか1項に記載の銅合金材料。   It is a board | plate material, The copper alloy material of any one of Claims 1-4 characterized by the above-mentioned. コネクタ用材料であることを特徴とする請求項1〜5のいずれか1項に記載の銅合金材料。   The copper alloy material according to claim 1, wherein the copper alloy material is a connector material.
JP2009164163A 2009-07-10 2009-07-10 Copper alloy material Pending JP2011017072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164163A JP2011017072A (en) 2009-07-10 2009-07-10 Copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164163A JP2011017072A (en) 2009-07-10 2009-07-10 Copper alloy material

Publications (1)

Publication Number Publication Date
JP2011017072A true JP2011017072A (en) 2011-01-27

Family

ID=43595054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164163A Pending JP2011017072A (en) 2009-07-10 2009-07-10 Copper alloy material

Country Status (1)

Country Link
JP (1) JP2011017072A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052316A (en) * 2009-08-04 2011-03-17 Kobe Steel Ltd Copper alloy having high strength and excellent bending workability
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
JP2012201905A (en) * 2011-03-24 2012-10-22 Jx Nippon Mining & Metals Corp Co-Si BASED COPPER ALLOY SHEET
JP2012243454A (en) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp Rolled copper foil, and negative electrode collector using the same, negative electrode plate and secondary battery
WO2013018228A1 (en) * 2011-08-04 2013-02-07 株式会社神戸製鋼所 Copper alloy
JP2013047360A (en) * 2011-08-29 2013-03-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
WO2013069376A1 (en) * 2011-11-11 2013-05-16 Jx日鉱日石金属株式会社 Cu-co-si-based alloy and method for producing same
JP2013095976A (en) * 2011-11-02 2013-05-20 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013100591A (en) * 2011-10-21 2013-05-23 Jx Nippon Mining & Metals Corp Corson alloy and method for producing the same
KR20140002001A (en) 2011-03-16 2014-01-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy wire having excellent bendability
JP2014025089A (en) * 2012-07-24 2014-02-06 Mitsubishi Shindoh Co Ltd Cu-Mg-P BASED COPPER ALLOY SHEET HAVING EXCELLENT SPRING CRITICAL VALUE CHARACTERISTIC AND FATIGUE RESISTANCE AFTER BENDING, AND METHOD FOR PRODUCING THE SAME
JP2014065976A (en) * 2011-08-05 2014-04-17 Furukawa Electric Co Ltd:The Rolled copper foil for secondary battery negative electrode collector and method for manufacturing the same
KR20140148437A (en) 2012-03-26 2014-12-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Corson alloy and method for producing same
KR20160090871A (en) 2013-11-25 2016-08-01 제이엑스금속주식회사 Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
WO2016158589A1 (en) * 2015-04-01 2016-10-06 古河電気工業株式会社 Rectangular rolled copper foil, flexible flat cable, rotating connector, and method for manufacturing rectangular rolled copper foil
JP2016199808A (en) * 2016-07-12 2016-12-01 Jx金属株式会社 Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
JP2017071811A (en) * 2015-10-05 2017-04-13 Jx金属株式会社 Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
JP2017179392A (en) * 2016-03-28 2017-10-05 Jx金属株式会社 Cu-Ni-Co-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP6378819B1 (en) * 2017-04-04 2018-08-22 Dowaメタルテック株式会社 Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet
WO2018174079A1 (en) 2017-03-21 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
WO2018174081A1 (en) 2017-03-22 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
JP2019077890A (en) * 2017-10-19 2019-05-23 Jx金属株式会社 Copper alloy for electronic material
WO2019237215A1 (en) 2018-06-12 2019-12-19 宁波博威合金材料股份有限公司 Copper alloy and use thereof
CN111500893A (en) * 2020-06-10 2020-08-07 铜陵高铜科技有限公司 Ultrahigh-strength copper alloy plate strip and manufacturing method thereof
CN111647768A (en) * 2020-06-10 2020-09-11 铜陵高铜科技有限公司 High-strength copper alloy sheet and method for producing same
CN112789359A (en) * 2018-12-13 2021-05-11 古河电气工业株式会社 Copper alloy sheet material, method for producing same, drawn product, member for electric/electronic component, electromagnetic wave shielding material, and heat dissipating member
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same
JP2021535953A (en) * 2019-07-26 2021-12-23 プンサン コーポレーション Manufacturing method of copper alloy plate material with excellent strength and conductivity and copper alloy plate material manufactured from this

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052316A (en) * 2009-08-04 2011-03-17 Kobe Steel Ltd Copper alloy having high strength and excellent bending workability
CN103403202A (en) * 2011-03-09 2013-11-20 Jx日矿日石金属株式会社 Cu-Ni-Si based alloy and process for manufacturing same
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
WO2012121109A1 (en) * 2011-03-09 2012-09-13 Jx日鉱日石金属株式会社 Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
TWI447241B (en) * 2011-03-09 2014-08-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy and its manufacturing method
KR101808372B1 (en) * 2011-03-09 2017-12-12 제이엑스금속주식회사 Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
KR20140002001A (en) 2011-03-16 2014-01-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy wire having excellent bendability
JP2012201905A (en) * 2011-03-24 2012-10-22 Jx Nippon Mining & Metals Corp Co-Si BASED COPPER ALLOY SHEET
JP2012243454A (en) * 2011-05-17 2012-12-10 Jx Nippon Mining & Metals Corp Rolled copper foil, and negative electrode collector using the same, negative electrode plate and secondary battery
US9514856B2 (en) 2011-08-04 2016-12-06 Kobe Steel, Ltd. Copper alloy
WO2013018228A1 (en) * 2011-08-04 2013-02-07 株式会社神戸製鋼所 Copper alloy
JP2014065976A (en) * 2011-08-05 2014-04-17 Furukawa Electric Co Ltd:The Rolled copper foil for secondary battery negative electrode collector and method for manufacturing the same
KR20140053376A (en) 2011-08-29 2014-05-07 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si alloy and method for manufacturing same
JP2013047360A (en) * 2011-08-29 2013-03-07 Jx Nippon Mining & Metals Corp Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
WO2013031279A1 (en) * 2011-08-29 2013-03-07 Jx日鉱日石金属株式会社 Cu-ni-si alloy and method for manufacturing same
CN103781925A (en) * 2011-08-29 2014-05-07 Jx日矿日石金属株式会社 Cu-Ni-Si alloy and method for manufacturing same
CN107354342A (en) * 2011-08-29 2017-11-17 Jx日矿日石金属株式会社 Cu Ni Si system's alloys and its manufacture method
TWI465591B (en) * 2011-08-29 2014-12-21 Jx Nippon Mining & Metals Corp Cu-Ni-Si alloy and its manufacturing method
KR101628583B1 (en) * 2011-08-29 2016-06-08 제이엑스금속주식회사 Cu-ni-si alloy and method for manufacturing same
JP2013100591A (en) * 2011-10-21 2013-05-23 Jx Nippon Mining & Metals Corp Corson alloy and method for producing the same
KR20140075788A (en) 2011-10-21 2014-06-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Corson alloy and method for producing same
KR101967017B1 (en) * 2011-10-21 2019-04-08 제이엑스금속주식회사 Corson alloy and method for producing same
TWI494450B (en) * 2011-10-21 2015-08-01 Jx Nippon Mining & Metals Corp Carbene alloy and its manufacturing method
KR20160148716A (en) 2011-10-21 2016-12-26 제이엑스금속주식회사 Corson alloy and method for producing same
JP2013095976A (en) * 2011-11-02 2013-05-20 Jx Nippon Mining & Metals Corp Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
WO2013069376A1 (en) * 2011-11-11 2013-05-16 Jx日鉱日石金属株式会社 Cu-co-si-based alloy and method for producing same
TWI450986B (en) * 2011-11-11 2014-09-01 Jx Nippon Mining & Metals Corp Cu-Co-Si alloy and a method for producing the same
KR20140148437A (en) 2012-03-26 2014-12-31 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Corson alloy and method for producing same
JP2014025089A (en) * 2012-07-24 2014-02-06 Mitsubishi Shindoh Co Ltd Cu-Mg-P BASED COPPER ALLOY SHEET HAVING EXCELLENT SPRING CRITICAL VALUE CHARACTERISTIC AND FATIGUE RESISTANCE AFTER BENDING, AND METHOD FOR PRODUCING THE SAME
US11021774B2 (en) 2013-08-13 2021-06-01 Jx Nippon Mining & Metals Corporation Copper alloy plate having excellent electrical conductivity and bending deflection coefficient
KR20160090871A (en) 2013-11-25 2016-08-01 제이엑스금속주식회사 Copper alloy plate having excellent electroconductivity, moldability, and stress relaxation properties
WO2016158589A1 (en) * 2015-04-01 2016-10-06 古河電気工業株式会社 Rectangular rolled copper foil, flexible flat cable, rotating connector, and method for manufacturing rectangular rolled copper foil
US10439347B2 (en) 2015-04-01 2019-10-08 Furukawa Electric Co., Ltd. Rectangular rolled copper foil, flexible flat cable, rotary connector, and method of manufacturing rectangular rolled copper foil
EP3279346A4 (en) * 2015-04-01 2019-01-16 Furukawa Electric Co. Ltd. Rectangular rolled copper foil, flexible flat cable, rotating connector, and method for manufacturing rectangular rolled copper foil
JP2017071811A (en) * 2015-10-05 2017-04-13 Jx金属株式会社 Cu-Co-Ni-Si ALLOY FOR ELECTRONIC COMPONENT
US10358697B2 (en) * 2015-10-05 2019-07-23 Jx Nippon Mining & Metals Corporation Cu—Co—Ni—Si alloy for electronic components
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same
JP2017179392A (en) * 2016-03-28 2017-10-05 Jx金属株式会社 Cu-Ni-Co-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
JP2016199808A (en) * 2016-07-12 2016-12-01 Jx金属株式会社 Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
US11203799B2 (en) 2017-03-21 2021-12-21 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working
CN110462075B (en) * 2017-03-21 2021-08-31 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after stamping
WO2018174079A1 (en) 2017-03-21 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
KR20190119619A (en) 2017-03-21 2019-10-22 제이엑스금속주식회사 Copper alloy bath with improved dimensional accuracy after press working
US11499207B2 (en) 2017-03-22 2022-11-15 Jx Nippon Mining & Metals Corporation Copper alloy strip exhibiting improved dimensional accuracy after press-working
KR20190119621A (en) 2017-03-22 2019-10-22 제이엑스금속주식회사 Copper alloy bath with improved dimensional accuracy after press working
WO2018174081A1 (en) 2017-03-22 2018-09-27 Jx金属株式会社 Copper alloy strip exhibiting improved dimensional accuracy after press-working
JP2018178243A (en) * 2017-04-04 2018-11-15 Dowaメタルテック株式会社 Cu-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD, AND COMPONENT USING THE SHEET MATERIAL
KR20190137129A (en) * 2017-04-04 2019-12-10 도와 메탈테크 가부시키가이샤 Cu-Co-Si-based copper alloy sheet and manufacturing method and parts using the sheet
KR102487679B1 (en) 2017-04-04 2023-01-13 도와 메탈테크 가부시키가이샤 Cu-Co-Si-based copper alloy plate and manufacturing method, and parts using the plate
JP6378819B1 (en) * 2017-04-04 2018-08-22 Dowaメタルテック株式会社 Cu-Co-Si-based copper alloy sheet, manufacturing method, and parts using the sheet
US11332815B2 (en) 2017-04-04 2022-05-17 Dowa Metaltech Co., Ltd. Cu—Co—Si-based copper alloy sheet material and method for producing the same, and component using the sheet material
WO2018186230A1 (en) * 2017-04-04 2018-10-11 Dowaメタルテック株式会社 Cu-co-si system copper alloy sheet material and method for producing same, and part using the sheet material
JP2019077890A (en) * 2017-10-19 2019-05-23 Jx金属株式会社 Copper alloy for electronic material
WO2019237215A1 (en) 2018-06-12 2019-12-19 宁波博威合金材料股份有限公司 Copper alloy and use thereof
US11255000B2 (en) 2018-06-12 2022-02-22 Ningbo Powerway Alloy Material Co., Ltd. Copper alloy and application thereof
CN112789359B (en) * 2018-12-13 2022-05-03 古河电气工业株式会社 Copper alloy sheet material, method for producing same, and drawn product
CN112789359A (en) * 2018-12-13 2021-05-11 古河电气工业株式会社 Copper alloy sheet material, method for producing same, drawn product, member for electric/electronic component, electromagnetic wave shielding material, and heat dissipating member
JP2021535953A (en) * 2019-07-26 2021-12-23 プンサン コーポレーション Manufacturing method of copper alloy plate material with excellent strength and conductivity and copper alloy plate material manufactured from this
US11535920B2 (en) 2019-07-26 2022-12-27 Poongsan Corporation Method of producing copper alloy sheet material with excellent strength and conductivity and copper alloy sheet material produced therefrom
JP7227245B2 (en) 2019-07-26 2023-02-21 プンサン コーポレーション Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
CN111500893A (en) * 2020-06-10 2020-08-07 铜陵高铜科技有限公司 Ultrahigh-strength copper alloy plate strip and manufacturing method thereof
CN111647768A (en) * 2020-06-10 2020-09-11 铜陵高铜科技有限公司 High-strength copper alloy sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP2011017072A (en) Copper alloy material
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP4885332B2 (en) Copper alloy sheet and manufacturing method thereof
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
KR101570556B1 (en) Method for Producing Copper Alloy Material for Electrical/Electronic Component
JP5448763B2 (en) Copper alloy material
JP4615616B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP4615628B2 (en) Copper alloy material, electrical and electronic component, and method for producing copper alloy material
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP5224415B2 (en) Copper alloy material for electric and electronic parts and manufacturing method thereof
JP6076724B2 (en) Copper alloy material and method for producing the same
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
WO2013031841A1 (en) Copper alloy material and manufacturing method thereof
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JP5876995B2 (en) Copper alloy sheet with excellent strength, bending workability, stress relaxation characteristics, and fatigue characteristics
JP5468798B2 (en) Copper alloy sheet
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
TWI486464B (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, conductive component for electronic/electric device, and terminal