WO2020121775A1 - Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component - Google Patents

Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component Download PDF

Info

Publication number
WO2020121775A1
WO2020121775A1 PCT/JP2019/045712 JP2019045712W WO2020121775A1 WO 2020121775 A1 WO2020121775 A1 WO 2020121775A1 JP 2019045712 W JP2019045712 W JP 2019045712W WO 2020121775 A1 WO2020121775 A1 WO 2020121775A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
alloy sheet
rolling
mass
value
Prior art date
Application number
PCT/JP2019/045712
Other languages
French (fr)
Japanese (ja)
Inventor
俊太 秋谷
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020217007855A priority Critical patent/KR20210100078A/en
Priority to CN201980064171.1A priority patent/CN112789359B/en
Publication of WO2020121775A1 publication Critical patent/WO2020121775A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy plate material, a method for manufacturing the same, a drawn product, a member for electric/electronic parts, an electromagnetic wave shield material, and a heat dissipation part.
  • Copper alloy plate materials such as connectors for electric/electronic parts, lead frames, relays, switches, sockets, shield cases, shield cans, liquid crystal reinforcing plates, liquid crystal chassis, organic EL display reinforcing plates, and in-vehicle connectors. Copper alloy plate materials used for shield cases, shield cans and the like are usually subjected to press working such as punching, bending, drawing, and overhanging.
  • the "difficult-to-machine shape” here means, for example, the shape formed when processed with a jig such as a punch whose radius of curvature of corners and edges is smaller than usual when manufacturing drawn products. To do.
  • a drawn product having such a difficult-to-machine shape it cannot be said that the original mechanical and electrical characteristics of the copper alloy sheet are fully utilized.
  • the mechanical and electrical characteristics of the copper alloy sheet material are emphasized, it is necessary to give up processing to a target difficult-to-machine shape, and it is not possible to satisfy the demand for miniaturization of electronic devices.
  • Patent Document 1 one or two kinds of Ni and Co are contained in 0.8 to 4.0 mass %, Si is contained in 0.2 to 1.0 mass %, and one or two kinds of Ni and Co are contained.
  • the mass ratio of Si is 3.0 to 7.0, the balance is Cu and unavoidable impurities, the tensile strength in the rolling parallel direction is 570 MPa or more, the proof stress is 500 MPa or more, the elongation is 5% or more, and the rolling orthogonal direction is Tensile strength is 550MPa or more, proof stress is 480MPa or more, elongation is 5% or more, conductivity is more than 35%IACS, and ratio R/t of bending radius R and plate thickness t is 0.5, and bending line is rolled.
  • the bending limit width when performing 90 degree bending in the vertical direction is 70 mm or more
  • the bending processing limit width when performing contact bending in which the bending line is in the vertical direction is 20 mm or more
  • the Rank Ford value is 0.9.
  • the above is the strength as a structural member, especially the strength to withstand deformation and drop impact resistance, the bending workability to withstand the processing of complex shapes, the workability such as overhanging and drawing, and the high heat radiation performance against heat from semiconductor elements, etc.
  • a copper alloy plate for a heat dissipation component is described.
  • Patent Document 2 contains 0.5 to 3.0% by mass of Co, 0.1 to 2.0% by mass of Ni, and 0.1 to 1.5% by mass of Si in a mass ratio. (Ni+Co)/Si is 3 to 5, the balance is copper and inevitable impurities, 0.2% proof stress in the rolling parallel direction is 630 MPa or more, the conductivity is 50% IACS or more, and the average crystal grain in the rolling parallel cross section.
  • X-ray diffraction integrated intensity I ⁇ 200 ⁇ from the ⁇ 200 ⁇ crystal plane on the surface X-ray diffraction integrated intensity I ⁇ 220 ⁇ from the ⁇ 220 ⁇ crystal plane, and ⁇ 311 ⁇ crystal having a diameter of 10 to 20 ⁇ m X-ray diffraction integrated intensity I ⁇ 311 ⁇ from the plane satisfies the relationship of (I ⁇ 220 ⁇ +I ⁇ 311 ⁇ )/I ⁇ 200 ⁇ 5.0, which is 0.2% suitable for use in electronic materials.
  • a copper alloy for electronic materials which has proof stress and conductivity, and can improve dimensional stability when pressed into a connector shape or the like.
  • Patent Document 3 1.0 to 3.0% by mass of Ni is contained, Si is contained at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, and the balance is Cu and unavoidable.
  • the average deviation Ra of the surface is 0.02 to 0.2 ⁇ m, and the standard deviation of the absolute values of the peaks and troughs based on the surface roughness average line is 0.1 ⁇ m or less, the average value of the aspect ratio of crystal grains in the alloy structure (minor axis of crystal grains/major axis of crystal grains) is 0.4 to 0.6, and the backscattered electron diffraction image system is provided.
  • Patent Documents 1 to 3 are inventions relating to a copper alloy sheet material containing at least one of Ni and Co and Si and have good drawability, but copper alloys Among the steps constituting the method for manufacturing a plate material, particularly in the series of steps from the finish cold rolling step to the temper annealing step, control is not performed to suppress the generation of crystal grains that deteriorate the drawability.
  • control is not performed to suppress the generation of crystal grains that deteriorate the drawability.
  • the processing conditions are particularly severe when performing a deep drawing test, particularly when the punching is performed with a punch having a small radius of curvature R at the corner (for example, the radius of curvature R is 0.9 mm or less)
  • a satisfactory level of drawing is obtained.
  • workability cannot be stably obtained.
  • JP, 2017-89003 A Japanese Patent Laid-Open No. 2018-62705 International Publication No. 2012/160684
  • An object of the present invention is to provide a copper alloy sheet material capable of stably obtaining excellent drawability even under severe drawing conditions without impairing the basic properties (especially heat dissipation) of conventional copper alloy sheet materials.
  • Another object of the present invention is to provide a manufacturing method thereof, a drawn product, a member for electric/electronic parts, an electromagnetic wave shielding material and a heat dissipation part.
  • the gist configuration of the present invention is as follows. (1) It has a composition containing 1.0 to 5.0 mass% of Ni and Co in a total amount of 1.0 to 5.0 mass% and 0.1 to 1.5 mass% of Si, and the balance of Cu and unavoidable impurities. , The conductivity was 38% IACS or more, and obtained by performing a tensile test on three types of test pieces cut out in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling.
  • the ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) in the Erichsen test and the breaking elongation EL (%) when pulled in the rolling parallel direction are expressed by the following formula (4).
  • the copper alloy sheet material according to (1) or (2) which satisfies the inequality relationship.
  • the composition further contains at least one component selected from the group consisting of Sn, Mg, Mn, Cr, Zr, Ti, Fe and Zn in a total amount of 0.2 to 1.2% by mass or less.
  • the elongation rate ⁇ of the material is set to 0.1 to 1.0%, and the material temperature TA (° C.) of the temper annealing [step 10] is expressed by the following equation (5) in relation to the elongation rate ⁇ .
  • the copper alloy sheet of the present invention contains 1.0 to 5.0 mass% of Ni and Co in total and 0.1 to 1.5 mass% of Si, and the balance of Cu and unavoidable impurities.
  • Tensile tests were carried out on three types of test pieces having a certain composition, an electric conductivity of 38% IACS or more, and cut in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling.
  • the value obtained from the nominal stress-nominal strain curve obtained by performing the above and the value of the Cube orientation area ratio obtained by the electron backscatter diffraction (EBSD) method are substituted into the above equation (1) to obtain the parameter Ax.
  • the method for producing a copper alloy sheet according to the present invention is performed on a copper alloy material by casting [step 1], homogenizing treatment [step 2], hot rolling [step 3], chamfering [step 4], cold rolling [step. 5], solution heat treatment [Step 6], intermediate heat treatment [Step 7], finish cold rolling [Step 8], straightening [Step 9], and temper annealing [Step 10], and the finish cold rolling.
  • the maximum temperature TR of the material during rolling in [Step 8] is controlled to 75° C. or higher and 100° C.
  • the elongation rate ⁇ of the material in the straightening [Step 9] is set to 0.1 to 1.0%, and
  • the material temperature TA (° C.) in the heat treatment annealing [step 10] so as to satisfy the inequality shown in the equation (5) in relation to the elongation ⁇ , the above-mentioned copper alloy sheet material Can be manufactured.
  • FIG. 1 is a diagram showing, as an example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out from a copper alloy sheet according to an embodiment of the present invention in a rolling parallel direction.
  • Fig. 2 shows the fracture ratio when the ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) obtained by conducting Erichsen test for various copper alloy sheet materials was pulled in the rolling parallel direction. It is a figure when it plots in relation with elongation EL (%).
  • FIG. 1 is a diagram showing, as an example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out from a copper alloy sheet according to an embodiment of the present invention in a rolling parallel direction.
  • Fig. 2 shows the fracture ratio when the ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) obtained by conducting Erichsen test for various copper alloy sheet materials was pulled in
  • FIG. 3 conceptually shows a state in which the center portion of the test plate W is pushed by a punch having a cylindrical tip and a small radius of curvature R at the corners in order to evaluate the drawability with a deep drawing tester.
  • FIG. 4 is a view conceptually showing a state in which the central portion of the test plate W is pushed in by a punch having a hemispherical tip so as to obtain the Erichsen value by the Erichsen tester.
  • the copper alloy sheet according to the present invention contains 1.0 to 5.0 mass% of Ni and Co in total, and 0.1 to 1.5 mass% of Si, and the balance of Cu and unavoidable impurities.
  • Tensile tests were carried out on three types of test pieces having a certain composition, an electric conductivity of 38% IACS or more, and cut in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling.
  • the value obtained from the nominal stress-nominal strain curve obtained by performing and the value of the Cube azimuth area ratio obtained by the electron backscatter diffraction (EBSD) method are substituted into the following formula (1) to obtain the parameter Ax.
  • the copper alloy sheet material of the present invention contains 1.0 to 5.0 mass% of Ni and Co in total and 0.1 to 1.5 mass% of Si.
  • Ni (nickel) and Co (cobalt) are elements necessary for increasing the strength of the copper alloy sheet material, and it is necessary to contain 1.0 to 5.0 mass% of Ni and Co in total. Is. If the total content of one or more of Ni and Co is less than 1.0% by mass, the material strength decreases, and the strength required for an electronic component such as a shield case that is a drawn product manufactured by drawing is obtained. I can't. Further, when the total content of one or more of Ni and Co is more than 5.0% by mass, Ni and Co cannot be completely dissolved in the solution heat treatment [step 6] described later and a metallic structure is formed as a second phase.
  • the total content of at least one of Ni and Co is set to the range of 1.0 to 5.0 mass %.
  • the total content is preferably in the range of 1.0 to 4.0% by mass.
  • Si is an element necessary for forming a compound with Ni or Co and increasing the strength of the copper alloy sheet, and it is necessary to contain Si in an amount of 0.1 to 1.5 mass %. This is because if the Si content is less than 0.1% by mass, the amount of the compound formed with Ni or Co will decrease and the material strength will decrease. Further, if the Si content is more than 1.5% by mass, the thermal conductivity of the copper alloy plate material is lowered and the heat dissipation is deteriorated. Therefore, the Si content is set to the range of 0.1 to 1.5 mass %. The Si content is preferably in the range of 0.2 to 1.0% by mass.
  • the copper alloy sheet of the present invention contains one or more components of Ni and Co and Si as essential basic components, and further contains Sn, Mg, Mn, Cr, Zr, as an optional additional component. At least one component selected from the group consisting of Ti, Fe and Zn may be contained in a total amount of 0.2 to 1.2% by mass or less. All of these components are components having an effect of improving the material strength, and in order to exert such an effect, the total content of these components is preferably 0.2% by mass or more. Further, if the total content of these components exceeds 1.2% by mass, the conductivity tends to decrease, so the total content of the above components is in the range of 0.2 to 1.2% by mass. It is preferable that 0.5 to 1.0% by mass is particularly preferable.
  • Sn (tin) is an element having a high effect of solid-solution strengthening a copper alloy, and it is preferable to add 0.1 mass% or more, but if the addition amount exceeds 0.45 mass %, the conductivity decreases. Tend to let. Therefore, the amount of Si added is preferably in the range of 0.1 to 0.45 mass %.
  • Mg manganesium
  • Mg is an element having a high effect of solid-solution strengthening a copper alloy, and it is preferable to add 0.1 mass% or more, but if the addition amount exceeds 0.25 mass%, the conductivity decreases. Tend to let. Therefore, the amount of Mg added is preferably in the range of 0.1 to 0.25% by mass.
  • Mn manganese
  • Mn is an element having an effect of solid solution strengthening a copper alloy and an effect of improving hot workability, and is preferably added in an amount of 0.1% by mass or more, but more than 0.2% by mass. A larger amount tends to lower the conductivity. Therefore, the amount of Mn added is preferably in the range of 0.1 to 0.2 mass %.
  • Cr chromium
  • Cr has the effect of strengthening the material by forming a second phase compound containing chromium and silicon and suppressing coarsening of the crystal grain size in the solution heat treatment step by the compound. It is desirable to add 1% by mass or more, but if the amount added is more than 0.25% by mass, coarse crystallized substances are formed during casting and the starting point of fracture during press working is likely to occur. Therefore, the Cr addition amount is preferably in the range of 0.1 to 0.25 mass %.
  • Zr zirconium
  • Zr zirconium
  • the Zr addition amount is preferably in the range of 0.05 to 0.15 mass %.
  • Ti titanium
  • Ti is an element having a solid solution in the material and having an effect of suppressing the growth of recrystallized grains in the solution heat treatment by increasing the recrystallization temperature of the material, and addition of 0.02 mass% or more
  • the Ti addition amount is preferably in the range of 0.02 to 0.1% by mass.
  • Fe is an element having a high effect of solid-solution strengthening a copper alloy, and it is desirable to add 0.05 mass% or more, but if the addition amount is larger than 0.1 mass%, the conductivity decreases. Tend. Therefore, the amount of Fe added is preferably in the range of 0.05 to 0.1 mass %.
  • Zn (zinc) is an element that has the effects of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating.
  • the Zn content is preferably 0.2% by mass or more.
  • the amount of Zn added is preferably in the range of 0.2 to 0.6 mass %.
  • the balance other than the above-mentioned components is Cu (copper) and inevitable impurities.
  • the unavoidable impurities referred to here mean impurities at a content level that can be unavoidably included in the manufacturing process. Since the unavoidable impurities may be a factor that decreases the conductivity depending on the content, it is preferable to suppress the content of the unavoidable impurities to some extent in consideration of the decrease in the conductivity.
  • Examples of the components that can be cited as the inevitable impurities include Bi, Se, As, Ag, and the like.
  • the upper limit of the content of these components may be 0.03 mass% for each of the above components, and 0.10 mass% for the total amount of the above components.
  • the copper alloy sheet material of the present invention needs to have an electric conductivity of 38% IACS or more.
  • the thermal conductivity can be calculated from the conductivity according to the Wiedemann-Franz law, and if the temperature is constant, it is proportional to the conductivity regardless of the type of metal. Are known. Therefore, the copper alloy sheet material of the present invention can have high thermal conductivity by setting the electrical conductivity to 38% IACS or more, and as a result, can have excellent thermal conductivity.
  • the conductivity can be calculated by measuring the specific resistance by the four-terminal method in a constant temperature bath kept at 20° C. ( ⁇ 0.5° C.) with the distance between terminals being 100 mm, for example.
  • the arithmetic average value Aave. is in the range of 4.0 to 13.0 GPa ⁇ %.
  • the copper alloy sheet of the present invention has the arithmetic average value Aave. in the range of 4.0 to 13.0 GPa ⁇ %. It is necessary to be.
  • the arithmetic mean value Aave. is the rolling parallel direction, the direction of 45° with respect to the rolling direction (may be simply referred to as “45° direction”), and the vertical direction of rolling (may be simply referred to as “90° direction”).
  • the present inventors have obtained the knowledge that the parameter Aave. correlates well with the drawing workability of the material, through experiments until the present invention. It has been conventionally known that, among the crystallographic orientations of copper and copper alloys, in particular, the Cube orientation is integrated, which reduces the drawability of the material. However, a quantitative correlation between the degree of integration of the Cube orientation and the drawability and the quantitative evaluation of the drawability using the degree of integration of the Cube orientation have not been performed.
  • precipitation strengthened copper alloys such as Cu-Ni-Si and Cu-Co-Si alloys such as the component system of the present invention are copper and copper alloys conventionally used for drawing, such as pure copper and brass.
  • control process such as size, existing density, existing ratio of second phase compound and rolling process on mechanical properties of material Is very large, and moreover, because multiple material properties affect each other, they change at the same time, for example, the abundance ratio of the second phase compound and the material strength change at the same time.
  • the fact that the influence on the workability cannot be extracted made it difficult to improve the drawability of the precipitation strengthened alloy and to evaluate the drawability.
  • the present inventors have found that the drawability can be well evaluated by the precipitation-strengthened alloy by the formula (2), and further that there is a correlation between the formula (2) and the drawability. Has led to the invention of a precipitation-strengthened alloy with improved properties.
  • FIG. 1 is a diagram showing, as an example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out from a copper alloy sheet according to an embodiment of the present invention in a rolling parallel direction. ..
  • the arithmetic mean value Aave. calculated by substituting the three-direction parameters A 0° , A 45°, and A 90° obtained from the formula (1) into the formula (2) is a parameter that correlates well with the drawing workability. I found that. By obtaining this correlation, it becomes possible to evaluate the drawability by the formula (2).
  • the arithmetic mean value Aave. is set in the range of 4.0 to 13.0 GPa ⁇ %.
  • the arithmetic mean value Aave. is preferably in the range of 6.0 to 11.0 GPa ⁇ %.
  • the nominal stress may be measured, for example, every time the nominal strain is 0.001% or more and 0.300% or less.
  • the Cube azimuth area ratio (%) used to calculate the parameter Ax is continuously measured using an EBSD detector attached to a high resolution scanning analysis electron microscope (JEOL Ltd., trade name: JSM-7001FA). It can be calculated from the crystal orientation data measured by using analysis software (manufactured by TSL, trade name: OIM-Analysis).
  • EBSD is an abbreviation for Electron BackScatter Diffraction, which is a crystal orientation analysis technology that utilizes the reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). Yes, and "OIM-Analysis” is an analysis software of data measured by EBSD.
  • the values A 0° , A 45°, and A 90° in each direction of the parameter Ax are obtained by substituting the integral value calculated by the above-described method and the Cube azimuth area ratio (%) into the above formula (1).
  • the values A 0° , A 45° and A 90° of the parameter Ax in each direction can be calculated, and the arithmetic average value Aave. is calculated by using the calculated A 0° , A 45° and A 90° in equation (2). It can be calculated by substituting into
  • the drawability is measured by a deep drawing tester (for example, a thin plate forming tester manufactured by Erichsen Co., Ltd.) 10 after tightening the edge of the test plate W between the die 12 and the wrinkle holding member 16 as shown in FIG. Then, the center portion of the test plate W was pushed by the punch 14 to form a cylindrical cup.
  • the minimum punch corner radius R at which the cylindrical cup can be molded without cracking and the difference between the maximum valley depth and the maximum peak height of the undulation of the edge of the cylindrical cup were evaluated.
  • the value of the moving distance (the depth of the depression) of the punch until the penetration crack occurs in the overhang test that is, the Erichsen value Er is measured, and in addition to this Erichsen value Er, the thickness of the test plate W (Mm), elongation at break (%) when pulled in the rolling direction, and the results were taken into consideration for comprehensive evaluation.
  • the values B 0° , B 45° and B 90° of the parameter Bx defined in the above formula (3) in each direction By controlling the values B 0° , B 45° and B 90° of the parameter Bx defined in the above formula (3) in each direction to be 10% or less, the undulation of the edge after drawing is performed. Can be stably reduced, the shape can be made uniform, and the drawability can be further improved by twisting. If the values B 0° , B 45° , and B 90° in any direction of the parameter Bx are larger than 10%, the yield in the production of drawn products tends to decrease. Therefore, the value of the parameter Bx in each direction Each of B 0° , B 45° and B 90° is preferably 10% or less, and more preferably 5.5% or less.
  • the parameter Bx can be calculated by substituting the calculated parameter Ax and the arithmetic mean value Aave. into the equation (3) as described above.
  • the ratio of the Erichsen value (Er) to the plate thickness (t) (Er/t ratio) and the elongation at break EL (%) when stretched in the rolling parallel direction are expressed by the following inequality (4).
  • the copper alloy sheet of the present invention has a ratio (Er/t ratio) of the Erichsen value (Er) to the sheet thickness (t) in the Erichsen test, and an elongation at break EL (%) when pulled in the rolling parallel direction.
  • a ratio (Er/t ratio) of the Erichsen value (Er) to the sheet thickness (t) in the Erichsen test, and an elongation at break EL (%) when pulled in the rolling parallel direction Preferably satisfies the relation of the inequality of the following equation (4).
  • the Erichsen value (Er value) is obtained by tightening the edge of the test plate W between the die 12 and the wrinkle holding member 16 by the Erichsen tester, and then measuring the central part of the test plate W as follows.
  • the punch 14A having a hemispherical tip was pushed in, and the value of the moving distance of the punch (the depth of the depression) until the occurrence of through cracks was measured, and the measured value was used.
  • Such a copper alloy sheet according to one embodiment of the present invention is formed by casting [step 1], homogenizing [step 2], and hot rolling on a copper alloy material having the same composition as the above-mentioned copper alloy sheet.
  • the elongation rate ⁇ of the material in the straightening [step 9] is set to 0.1 to 1.0%, Then, by controlling the material temperature TA (° C.) of the temper annealing [step 10] so as to satisfy the relation of the inequality shown in the following equation (5) in relation to the elongation rate ⁇ , the heat radiation property is particularly impaired. Even if the drawing conditions are severe, a copper alloy sheet material having excellent drawability can be manufactured.
  • Solution heat treatment step [Step 6] In the solution heat treatment step, the temperature is raised at a predetermined heating rate (for example, 900° C. to 990° C. over 5 seconds to 10 seconds), held for 1 second to 1 hour, and then set to 250° C./s to 500° C./s. Cooled at rate.
  • a predetermined heating rate for example, 900° C. to 990° C. over 5 seconds to 10 seconds
  • Step 7 Intermediate heat treatment step
  • heat treatment was performed at a predetermined temperature (for example, 300° C. to 600° C.) for 10 seconds to 10 hours.
  • the finish cold rolling process is a process mainly performed for processing to a desired plate thickness, improvement of material strength, and control of crystal orientation, and the maximum temperature TR of the material during rolling is 75°C or higher and 100°C or lower. Need to be controlled.
  • the maximum temperature TR of the material during rolling is 75°C or higher and 100°C or lower. Need to be controlled.
  • the maximum temperature TR of the material during rolling is set to 75°C or higher and 100°C or lower.
  • the straightening process is a process performed for the purpose of removing/uniformizing the residual stress of the material, and the elongation rate ⁇ of the material during the straightening by the tension leveler is in the range of 0.1 to 1.0%. is necessary. If the elongation ⁇ is less than 0.1%, the effect of removing and uniformizing residual stress is small, and the shape uniformity after drawing is deteriorated. On the other hand, if the elongation ⁇ is larger than 1.0%, the processing strain due to the repeated bending of the tension leveler becomes large, and the corner radius of the punch tip where cracks do not occur during drawing processing cannot be made small, resulting in severe drawing. The drawability is reduced under the processing conditions. Therefore, the elongation rate ⁇ of the material in the straightening step is set in the range of 0.1 to 1.0%.
  • the temper annealing step is a step for recovering the elongation of the material and further for reducing the anisotropy of mechanical properties including elongation, and the material temperature TA (° C.) of the temper annealing [step 10].
  • TA ° C.
  • Drawability is improved by controlling the material temperature TA in the temper annealing process according to the equation (5).
  • the arithmetic mean value Aave. and the Erichsen value Er which are the parameters of the material, become large.
  • the material temperature TA in the temper annealing step is lower than the lower limit value in the equation (5), recovery of dislocations by rolling (that is, removal of work strain) becomes insufficient.
  • the material temperature TA in the temper annealing step exceeds the upper limit value in the equation (5), the precipitate of the compound of Ni or Co and Si becomes coarse, and accordingly, the material strength decreases. Therefore, the material temperature TA (° C.) in the temper annealing [step 10] is set so as to satisfy the relationship of the inequality shown in the expression (5) in relation to the elongation rate ⁇ (%) of the material in the straightening step.
  • the copper alloy material of the present invention is particularly suitable for use in producing a drawn product by subjecting it to drawing, for example, a member for electric/electronic parts, an electromagnetic wave shielding material and It can be used as a heat dissipation component.
  • a member for electric/electronic parts for example, a member for electric/electronic parts, an electromagnetic wave shielding material and It can be used as a heat dissipation component.
  • connectors for electric/electronic parts, lead frames, relays, switches, sockets, shield cases, shield cans, liquid crystal reinforcement plates, liquid crystal chassis, reinforcement plates for organic EL displays, connectors for automobiles, shield cases, A shield can or the like can be manufactured.
  • Examples 1 to 15 and Comparative Examples 1 to 11 A copper alloy material having the composition shown in Table 1 was melted in a high-frequency melting furnace in the air and cast to obtain an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm. Next, immediately after the homogenizing heat treatment of heating and holding at 1000° C. for 1 hour in an inert gas atmosphere, hot rolling was performed to obtain a hot-rolled sheet having a thickness of 10 mm, and then immediately cooled. Then, chamfering and cold rolling were sequentially performed to make the plate thickness 0.25 to 1.0 mm. Then, the solution heat treatment is performed at 800 to 990° C.
  • Parameter Bx is a parameter Ax obtained by substituting the integral value calculated in [3] above and the Cube orientation area ratio calculated in [4] above into equation (1).
  • the copper alloy sheet materials of Examples 1 to 15 all have an alloy composition within the proper range of the present invention, a conductivity of 38% IACS or more, and an arithmetic average value Aave. Since it is in the range of 0 to 13.0 GPa ⁇ %, it can be seen that both heat dissipation and drawing workability are at or above the passing level. Particularly, in Examples 3, 6, 8 and 12, the alloy composition and the manufacturing conditions were appropriate, and therefore the conductivity was particularly excellent. In Examples 1, 8 and 13, the conditions from casting to temper annealing were appropriate, and the parameters A and B showed good values. Therefore, the minimum radius of curvature of the corner portion of the punch tip where cracks do not occur. And the maximum value of the difference between the ridges and valleys of the undulation of the cup edge became small, so that the drawability was particularly excellent.
  • Comparative Examples 1, 2, 4, 5, and 8 since the Ni+Co content or Si was small, the arithmetic average value Aave. fell outside the appropriate range of the present invention, and the drawability was poor.
  • Comparative Example 6 the straightening was not performed by the tension leveler and the elongation was 0%, so that the anisotropy was high, and thus Bx was out of the range.
  • Comparative Examples 8 and 10 the rolling temperature in finish cold rolling was low, and many Cube orientations remained, so that the arithmetic average value Aave.
  • the parameter B 90° was out of the range, and the maximum height difference after drawing was large.
  • Comparative Examples 3, 7, and 9 the component content was larger than the appropriate range of the present invention, and thus the conductivity was particularly low. Particularly, in Comparative Example 7, the elongation in straightening was larger than the specified value, and the Erichsen value/plate thickness value was also outside the specified value, so the drawability was also poor. In Comparative Example 11, the material temperature during finish rolling became high, seizure of the material and the rolling roll occurred, and defects such as large unevenness occurred on the surface of the material. Therefore, the characteristic evaluation was not performed, but the drawability was remarkably reduced. Was obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A copper alloy sheet according to the present invention has a composition containing 1.0-5.0 mass% in total of at least one among Ni and Co, and 0.1-1.5 mass% of Si, with the remainder comprising Cu and inevitable impurities, and has a conductivity of at least 38% IACS, wherein, for three types of test specimens respectively cut in a direction parallel to the rolling direction, a direction at 45° to the rolling direction, and a direction perpendicular to the rolling direction, the arithmetic mean value Aave. is in the range of 4.0-13.0 GPa·% as calculated by substituting values obtained from nominal stress-nominal strain curves obtained from tensile tests, and values of Cube azimuth area ratios obtained by the electron backscatter diffraction (EBSD) method into specific equation 1 to determine the values of A0°, A45°, and A90° for respective directions of parameter Ax (x: 0°, 45°, 90°), and substituting the determined values of A0°, A45°, and A90° for respective directions into specific equation 2. According to the present invention, excellent drawability can be reliably obtained without compromising the basic properties (in particular, heat dissipation) of conventional copper alloy sheets.

Description

銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品Copper alloy sheet material, manufacturing method thereof, drawn product, electric/electronic component member, electromagnetic wave shield material and heat dissipation component
 本発明は、銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品に関する。 The present invention relates to a copper alloy plate material, a method for manufacturing the same, a drawn product, a member for electric/electronic parts, an electromagnetic wave shield material, and a heat dissipation part.
 銅合金板材、例えば、電気・電子部品用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、液晶補強板、液晶のシャーシ、有機ELディスプレイの補強板や、自動車車載用のコネクタ、シールドケース、シールドキャンなどに使用される銅合金板材は、通常、打ち抜き、曲げ、絞り、張り出し等のプレス加工が施される。 Copper alloy plate materials such as connectors for electric/electronic parts, lead frames, relays, switches, sockets, shield cases, shield cans, liquid crystal reinforcing plates, liquid crystal chassis, organic EL display reinforcing plates, and in-vehicle connectors. Copper alloy plate materials used for shield cases, shield cans and the like are usually subjected to press working such as punching, bending, drawing, and overhanging.
 従来の銅合金板材を用いた場合、本来は実現困難なはずの難加工形状を実現するには、機械的・電気的特性を犠牲にせざるをえなかった。ここでいう「難加工形状」とは、例えば、絞り加工品を製造する際に、コーナーやエッジ部の曲率半径が通常よりも小さいポンチ等の治具で加工した場合に成形される形状を意味する。このような難加工形状を有する絞り加工品を製造する場合、銅合金板材の本来の機械的・電気的特性が十分に生かされているとはいえない。また、銅合金板材の機械的・電気的特性を重視した場合には、目的とする難加工形状への加工は、断念するしかなく、電子機器の小型化に対する要求を満足することができない。これは、治具(ポンチ)の曲率半径をある程度大きくせざるをえない結果、電子部品を構成する絞り加工品の実装空間が自ずと大きくなってしまうことがひとつの原因である。さらには、絞り加工品の形状を最適化することにより、絞り加工性を重視した分だけ犠牲にした放熱性を向上させる余地はあるものの、その最適形状への絞り加工は現状困難であるという問題がある。 When using a conventional copper alloy sheet, mechanical and electrical characteristics had to be sacrificed in order to achieve a difficult-to-machine shape that would otherwise be difficult to achieve. The "difficult-to-machine shape" here means, for example, the shape formed when processed with a jig such as a punch whose radius of curvature of corners and edges is smaller than usual when manufacturing drawn products. To do. When manufacturing a drawn product having such a difficult-to-machine shape, it cannot be said that the original mechanical and electrical characteristics of the copper alloy sheet are fully utilized. Further, when the mechanical and electrical characteristics of the copper alloy sheet material are emphasized, it is necessary to give up processing to a target difficult-to-machine shape, and it is not possible to satisfy the demand for miniaturization of electronic devices. This is because, as a result, the radius of curvature of the jig (punch) must be increased to some extent, and as a result, the mounting space of the drawn product that constitutes the electronic component naturally increases. Furthermore, by optimizing the shape of the drawn product, there is room to improve the heat dissipation by sacrificing the focus on the drawability, but it is currently difficult to draw the optimum shape. There is.
 特に、近年の電気・電子部品や自動車車載用部品の高性能化に伴い、それらを構成する部品の一つであるプレス加工製品には、機械的・電気的特性や放熱性だけではなく、目的形状への変形を可能にするため、厳しい加工条件であっても優れた加工性を具備することが強く求められるようになってきた。しかしながら、特に目的とする難加工形状への加工の過程において、顧客が要求するレベルの絞り加工性が達成できていないのが現状である。 In particular, with the high performance of electric/electronic parts and automotive in-vehicle parts in recent years, pressed products, which are one of the parts that compose them, have not only the mechanical and electrical characteristics and heat dissipation In order to enable deformation into a shape, it has been strongly required to have excellent workability even under severe processing conditions. However, in the present process, the level of drawability required by the customer has not been achieved in the process of processing into a target difficult-to-machine shape.
 例えば、特許文献1には、NiとCoの1種又は2種を0.8~4.0mass%含み、Siを0.2~1.0mass%含み、NiとCoの1種又は2種とSiの質量比が3.0~7.0であり、残部がCu及び不可避不純物からなり、圧延平行方向の引張強さが570MPa以上、耐力が500MPa以上、伸びが5%以上、圧延直角方向の引張強さが550MPa以上、耐力が480MPa以上、伸びが5%以上であり、導電率が35%IACSを超え、曲げ半径Rと板厚tの比R/tを0.5とし曲げ線を圧延垂直方向とした90度曲げを行ったときの曲げ加工限界幅が70mm以上、曲げ線を圧延垂直方向とした密着曲げを行ったときの曲げ加工限界幅が20mm以上、ランクフォード値が0.9以上であり、構造部材としての強度、特に変形及び落下衝撃性に耐える強度、複雑形状への加工に耐えうる曲げ、張出し及び絞りなどの成形加工性、及び半導体素子等からの熱に対する高放熱性を有する放熱部品用銅合金板が記載されている。 For example, in Patent Document 1, one or two kinds of Ni and Co are contained in 0.8 to 4.0 mass %, Si is contained in 0.2 to 1.0 mass %, and one or two kinds of Ni and Co are contained. The mass ratio of Si is 3.0 to 7.0, the balance is Cu and unavoidable impurities, the tensile strength in the rolling parallel direction is 570 MPa or more, the proof stress is 500 MPa or more, the elongation is 5% or more, and the rolling orthogonal direction is Tensile strength is 550MPa or more, proof stress is 480MPa or more, elongation is 5% or more, conductivity is more than 35%IACS, and ratio R/t of bending radius R and plate thickness t is 0.5, and bending line is rolled. The bending limit width when performing 90 degree bending in the vertical direction is 70 mm or more, the bending processing limit width when performing contact bending in which the bending line is in the vertical direction is 20 mm or more, and the Rank Ford value is 0.9. The above is the strength as a structural member, especially the strength to withstand deformation and drop impact resistance, the bending workability to withstand the processing of complex shapes, the workability such as overhanging and drawing, and the high heat radiation performance against heat from semiconductor elements, etc. There is described a copper alloy plate for a heat dissipation component.
 また、特許文献2には、0.5~3.0質量%のCo、0.1~2.0質量%のNi、0.1~1.5質量%のSiを含有し、質量割合で(Ni+Co)/Siが3~5であり、残部が銅および不可避的不純物からなり、圧延平行方向の0.2%耐力が630MPa以上、導電率が50%IACS以上、圧延平行断面における平均結晶粒径が10~20μmであり、表面における{200}結晶面からのX線回折積分強度I{200}と、{220}結晶面からのX線回折積分強度I{220}と、{311}結晶面からのX線回折積分強度I{311}とが、(I{220}+I{311})/I{200}≧5.0の関係を満たし、電子材料に用いて好適な0.2%耐力および導電率を有し、コネクタ形状等にプレス加工した際の寸法安定性を向上させることのできる電子材料用銅合金が記載されている。 Further, Patent Document 2 contains 0.5 to 3.0% by mass of Co, 0.1 to 2.0% by mass of Ni, and 0.1 to 1.5% by mass of Si in a mass ratio. (Ni+Co)/Si is 3 to 5, the balance is copper and inevitable impurities, 0.2% proof stress in the rolling parallel direction is 630 MPa or more, the conductivity is 50% IACS or more, and the average crystal grain in the rolling parallel cross section. X-ray diffraction integrated intensity I{200} from the {200} crystal plane on the surface, X-ray diffraction integrated intensity I{220} from the {220} crystal plane, and {311} crystal having a diameter of 10 to 20 μm X-ray diffraction integrated intensity I{311} from the plane satisfies the relationship of (I{220}+I{311})/I{200}≧5.0, which is 0.2% suitable for use in electronic materials. There is described a copper alloy for electronic materials, which has proof stress and conductivity, and can improve dimensional stability when pressed into a connector shape or the like.
 さらに、特許文献3には、1.0~3.0質量%のNiを含有し、Niの質量%濃度に対し1/6~1/4の濃度のSiを含有し、残部がCu及び不可避的不純物からなり、表面の算術平均粗さRaが0.02~0.2μmで、表面粗さ平均線を基準とした時の各々の山部と谷部の値の絶対値についての標準偏差が0.1μm以下であり、合金組織中の結晶粒のアスペクト比(結晶粒の短径/結晶粒の長径)の平均値が0.4~0.6であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、GOSの全結晶粒における平均値が1.2~1.5°であり、結晶粒界の全粒界長さLに対する特殊粒界の全特殊粒界長さLσの比率(Lσ/L)が60~70%であり、ばね限界値が450~600N/mm2であり、150℃で1000時間でのはんだ耐熱剥離性が良好で、耐疲労特性の変動が少なく、優れた深絞り加工性を有するCu-Ni-Si系銅合金(コルソン合金)板が記載されている。 Further, in Patent Document 3, 1.0 to 3.0% by mass of Ni is contained, Si is contained at a concentration of 1/6 to 1/4 with respect to the mass% concentration of Ni, and the balance is Cu and unavoidable. The average deviation Ra of the surface is 0.02 to 0.2 μm, and the standard deviation of the absolute values of the peaks and troughs based on the surface roughness average line is 0.1 μm or less, the average value of the aspect ratio of crystal grains in the alloy structure (minor axis of crystal grains/major axis of crystal grains) is 0.4 to 0.6, and the backscattered electron diffraction image system is provided. All crystals of GOS when the orientations of all pixels within the measurement area range are measured by the EBSD method with a scanning electron microscope and the boundaries where the orientation difference between adjacent pixels is 5° or more are regarded as crystal grain boundaries. The average value of the grains is 1.2 to 1.5°, and the ratio (Lσ/L) of the total length Lσ of the special grain boundaries to the total length L of the grain boundaries is 60 to 70%. Cu-Ni-, which has a spring limit value of 450 to 600 N/mm2, good solder heat resistance peeling resistance at 150°C for 1000 hours, little variation in fatigue resistance, and excellent deep drawability. A Si-based copper alloy (Corson alloy) plate is described.
 上記特許文献1~3は、いずれもNiおよびCoの少なくとも1種と、Siとを含有した銅合金板材に関する発明であって、良好な絞り加工性を有することを記載しているものの、銅合金板材の製造方法を構成する工程のうち、特に仕上げ冷間圧延工程から調質焼鈍工程までの一連の工程において、絞り加工性を悪化させる結晶粒の生成を抑制するための制御を行なっていないため、特に深絞り試験を行なう際の加工条件が厳しい場合、特にコーナー部の曲率半径Rが小さい(例えば曲率半径Rが0.9mm以下)ポンチで絞り加工を施した場合には、満足レベルの絞り加工性が安定して得られないという問題がある。 The above-mentioned Patent Documents 1 to 3 are inventions relating to a copper alloy sheet material containing at least one of Ni and Co and Si and have good drawability, but copper alloys Among the steps constituting the method for manufacturing a plate material, particularly in the series of steps from the finish cold rolling step to the temper annealing step, control is not performed to suppress the generation of crystal grains that deteriorate the drawability. In particular, when the processing conditions are particularly severe when performing a deep drawing test, particularly when the punching is performed with a punch having a small radius of curvature R at the corner (for example, the radius of curvature R is 0.9 mm or less), a satisfactory level of drawing is obtained. There is a problem that workability cannot be stably obtained.
特開2017-89003号公報JP, 2017-89003, A 特開2018-62705号公報Japanese Patent Laid-Open No. 2018-62705 国際公開第2012/160684号International Publication No. 2012/160684
 本発明の目的は、従来の銅合金板材の基本特性(特に放熱性)を損なうことなく、厳しい絞り加工条件であったとしても、優れた絞り加工性を安定して得ることができる銅合金板材およびその製造方法ならびに絞り加工品、電気・電子部品用部材、電磁波シールド材および放熱部品を提供することにある。 An object of the present invention is to provide a copper alloy sheet material capable of stably obtaining excellent drawability even under severe drawing conditions without impairing the basic properties (especially heat dissipation) of conventional copper alloy sheet materials. Another object of the present invention is to provide a manufacturing method thereof, a drawn product, a member for electric/electronic parts, an electromagnetic wave shielding material and a heat dissipation part.
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)NiおよびCoの1種以上を合計で1.0~5.0質量%、ならびにSiを0.1~1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、導電率が38%IACS以上であり、圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線から求められる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0~13.0GPa・%の範囲であることを特徴とする銅合金板材。
Figure JPOXMLDOC01-appb-M000005
 但し、Sc:Cube方位面積率(%)、σnは公称応力(GPa)、εnは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure JPOXMLDOC01-appb-M000006
(2)前記算術平均値Aave.および前記パラメータAxの値を下記(3)式に代入して算出されるパラメータBx(x:0°、45°、90°)の前記各方向の値B0°、B45°およびB90°が、いずれも10%以下となる、上記(1)に記載の銅合金板材。
Figure JPOXMLDOC01-appb-M000007
(3)エリクセン試験におけるエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たす、上記(1)または(2)に記載の銅合金板材。
Figure JPOXMLDOC01-appb-M000008
(4)前記組成は、さらに、Sn、Mg、Mn、Cr、Zr、Ti、FeおよびZnからなる群から選ばれる少なくとも1種の成分を、合計で0.2~1.2質量%以下含有する上記(1)~(3)のいずれか1項に記載の銅合金板材。
(5)上記(1)~(4)のいずれか1項に記載の銅合金板材を絞り加工して得られた絞り加工品。
(6)上記(1)~(4)のいずれか1項に記載の銅合金板材または上記(5)に記載の絞り加工品を用いて作製された電気・電子部品用部材。
(7)上記(1)~(4)のいずれか1項に記載の銅合金板材または上記(5)に記載の絞り加工品を用いて作製された電磁波シールド材。
(8)上記(1)~(4)のいずれか1項に記載の銅合金板材または請求項5に記載の絞り加工品を用いて作製された放熱部品。
(9)上記(1)~(4)のいずれか1項に記載の銅合金板材の製造方法であって、銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度TRを、75℃以上100℃以下に制御し、前記矯正[工程9]における材料の伸び率δを、0.1~1.0%とし、そして、前記調質焼鈍[工程10]の材料温度TA(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することを特徴とする銅合金板材の製造方法。
 55×δ+450≧TA≧55×δ+350      ・・・(5)
In order to achieve the above object, the gist configuration of the present invention is as follows.
(1) It has a composition containing 1.0 to 5.0 mass% of Ni and Co in a total amount of 1.0 to 5.0 mass% and 0.1 to 1.5 mass% of Si, and the balance of Cu and unavoidable impurities. , The conductivity was 38% IACS or more, and obtained by performing a tensile test on three types of test pieces cut out in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling. The value obtained from the nominal stress-nominal strain curve and the value of the Cube azimuth area ratio obtained by the electron backscatter diffraction (EBSD) method are substituted into the following formula (1) to obtain the parameter Ax(x:0° , 45°, 90°) in each direction, A , A 45° and A 90° are obtained, and the obtained values in each direction A , A 45° and A 90° are given in (2) below. A copper alloy sheet material, wherein an arithmetic mean value Aave. calculated by substituting in a formula is in a range of 4.0 to 13.0 GPa·%.
Figure JPOXMLDOC01-appb-M000005
However, Sc:Cube orientation area ratio (%), σn is a nominal stress (GPa), εn is a nominal strain (%), and EL is a breaking elongation (%).
Figure JPOXMLDOC01-appb-M000006
(2) The value B 0 of each direction of the parameter Bx (x: 0°, 45°, 90°) calculated by substituting the values of the arithmetic average value Aave. and the parameter Ax into the following equation (3). The copper alloy sheet material according to (1) above, wherein each of ° , B 45° and B 90° is 10% or less.
Figure JPOXMLDOC01-appb-M000007
(3) The ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) in the Erichsen test and the breaking elongation EL (%) when pulled in the rolling parallel direction are expressed by the following formula (4). The copper alloy sheet material according to (1) or (2), which satisfies the inequality relationship.
Figure JPOXMLDOC01-appb-M000008
(4) The composition further contains at least one component selected from the group consisting of Sn, Mg, Mn, Cr, Zr, Ti, Fe and Zn in a total amount of 0.2 to 1.2% by mass or less. The copper alloy sheet material according to any one of (1) to (3) above.
(5) A drawn product obtained by drawing the copper alloy sheet material according to any one of (1) to (4).
(6) A member for electric/electronic parts produced using the copper alloy sheet material according to any one of (1) to (4) or the drawn product according to (5).
(7) An electromagnetic wave shielding material produced by using the copper alloy plate material according to any one of (1) to (4) or the drawn product according to (5).
(8) A heat dissipation component manufactured using the copper alloy sheet material according to any one of (1) to (4) or the drawn product according to claim 5.
(9) The method for manufacturing a copper alloy sheet according to any one of (1) to (4) above, wherein the copper alloy material is cast [step 1], homogenized [step 2], hot Rolling [step 3], chamfering [step 4], cold rolling [step 5], solution heat treatment [step 6], intermediate heat treatment [step 7], finish cold rolling [step 8], straightening [step 9] , And temper annealing [step 10] are sequentially performed, and the maximum temperature TR of the material at the time of rolling in the finish cold rolling [step 8] is controlled to be 75° C. or higher and 100° C. or lower, and in the straightening [step 9]. The elongation rate δ of the material is set to 0.1 to 1.0%, and the material temperature TA (° C.) of the temper annealing [step 10] is expressed by the following equation (5) in relation to the elongation rate δ. A method for manufacturing a copper alloy sheet material, which is controlled so as to satisfy the relationship of the inequalities shown.
55×δ+450≧TA≧55×δ+350 (5)
 本発明の銅合金板材は、NiおよびCoの1種以上を合計で1.0~5.0質量%、ならびにSiを0.1~1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、導電率が38%IACS以上であり、圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線から得られる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、上記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、上記(2)式に代入して算出される算術平均値Aave.が、4.0~13.0GPa・%の範囲であることによって、従来の銅合金板材の基本特性(特に放熱性)を損なうことなく、厳しい絞り加工条件であったとしても、優れた絞り加工性を安定して得ることができる。 The copper alloy sheet of the present invention contains 1.0 to 5.0 mass% of Ni and Co in total and 0.1 to 1.5 mass% of Si, and the balance of Cu and unavoidable impurities. Tensile tests were carried out on three types of test pieces having a certain composition, an electric conductivity of 38% IACS or more, and cut in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling. The value obtained from the nominal stress-nominal strain curve obtained by performing the above and the value of the Cube orientation area ratio obtained by the electron backscatter diffraction (EBSD) method are substituted into the above equation (1) to obtain the parameter Ax. (X: 0°, 45°, 90°) values A , A 45° and A 90° in each direction are obtained, and the obtained values A , A 45° and A 90° in each direction are obtained. Since the arithmetic mean value Aave. calculated by substituting in the above formula (2) is in the range of 4.0 to 13.0 GPa·%, the basic characteristics (especially heat dissipation) of the conventional copper alloy sheet can be It is possible to stably obtain excellent drawing workability even under severe drawing work conditions without loss.
 本発明の銅合金板材の製造方法は、銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度TRを、75℃以上100℃以下に制御し、前記矯正[工程9]における材料の伸び率δを、0.1~1.0%とし、そして、前記調質焼鈍[工程10]の材料温度TA(℃)を、前記伸び率δとの関係で上記(5)式に示す不等式の関係を満たすように制御することによって、上述した銅合金板材を製造することができる。 The method for producing a copper alloy sheet according to the present invention is performed on a copper alloy material by casting [step 1], homogenizing treatment [step 2], hot rolling [step 3], chamfering [step 4], cold rolling [step. 5], solution heat treatment [Step 6], intermediate heat treatment [Step 7], finish cold rolling [Step 8], straightening [Step 9], and temper annealing [Step 10], and the finish cold rolling. The maximum temperature TR of the material during rolling in [Step 8] is controlled to 75° C. or higher and 100° C. or lower, and the elongation rate δ of the material in the straightening [Step 9] is set to 0.1 to 1.0%, and By controlling the material temperature TA (° C.) in the heat treatment annealing [step 10] so as to satisfy the inequality shown in the equation (5) in relation to the elongation δ, the above-mentioned copper alloy sheet material Can be manufactured.
図1は、本発明の一の実施形態に従う銅合金板材から、圧延平行方向に切り出した試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線を例として示した図である。FIG. 1 is a diagram showing, as an example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out from a copper alloy sheet according to an embodiment of the present invention in a rolling parallel direction. .. 図2は、種々の銅合金板材について、エリクセン試験を行なうことによって得られたエリクセン値(Er)の板厚(t)に対する比(Er/t比)を、圧延平行方向に引っ張ったときの破断伸びEL(%)との関係でプロットしたときの図である。Fig. 2 shows the fracture ratio when the ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) obtained by conducting Erichsen test for various copper alloy sheet materials was pulled in the rolling parallel direction. It is a figure when it plots in relation with elongation EL (%). 図3は、深絞り試験機で絞り加工性を評価するため、試験板材Wの中央部を、先端部が円柱状でかつコーナー部の曲率半径Rが小さいパンチで押し込んだときの状態を概念的に示した図である。FIG. 3 conceptually shows a state in which the center portion of the test plate W is pushed by a punch having a cylindrical tip and a small radius of curvature R at the corners in order to evaluate the drawability with a deep drawing tester. FIG. 図4は、エリクセン試験機でエリクセン値を求めるため、試験板材Wの中央部を、先端部が半球状のパンチで押し込んだときの状態を概念的に示した図である。FIG. 4 is a view conceptually showing a state in which the central portion of the test plate W is pushed in by a punch having a hemispherical tip so as to obtain the Erichsen value by the Erichsen tester.
 以下、本発明の銅合金板材の好ましい実施形態について、詳細に説明する。
 本発明に従う銅合金板材は、NiおよびCoの1種以上を合計で1.0~5.0質量%、ならびにSiを0.1~1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、導電率が38%IACS以上であり、圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線から得られる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0~13.0GPa・%の範囲である。
Hereinafter, preferred embodiments of the copper alloy sheet of the present invention will be described in detail.
The copper alloy sheet according to the present invention contains 1.0 to 5.0 mass% of Ni and Co in total, and 0.1 to 1.5 mass% of Si, and the balance of Cu and unavoidable impurities. Tensile tests were carried out on three types of test pieces having a certain composition, an electric conductivity of 38% IACS or more, and cut in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling. The value obtained from the nominal stress-nominal strain curve obtained by performing and the value of the Cube azimuth area ratio obtained by the electron backscatter diffraction (EBSD) method are substituted into the following formula (1) to obtain the parameter Ax. (X: 0°, 45°, 90°) values A , A 45° and A 90° in each direction are obtained, and the obtained values A , A 45° and A 90° in each direction are obtained. The arithmetic mean value Aave. calculated by substituting in the following equation (2) is in the range of 4.0 to 13.0 GPa·%.
Figure JPOXMLDOC01-appb-M000009
 但し、Sc:Cube方位面積率(%)、σnは公称応力(GPa)、εnは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure JPOXMLDOC01-appb-M000009
However, Sc:Cube orientation area ratio (%), σn is a nominal stress (GPa), εn is a nominal strain (%), and EL is a breaking elongation (%).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
(I)銅合金板材の組成
 まず、本発明の銅合金板材の組成を限定した理由について説明する。
 本発明の銅合金板材は、NiおよびCoの1種以上を合計で1.0~5.0質量%、ならびにSiを0.1~1.5質量%含有させたものである。
(I) Composition of Copper Alloy Sheet Material First, the reason for limiting the composition of the copper alloy sheet material of the present invention will be explained.
The copper alloy sheet material of the present invention contains 1.0 to 5.0 mass% of Ni and Co in total and 0.1 to 1.5 mass% of Si.
<NiおよびCoの1種以上を合計で1.0~5.0質量%>
 Ni(ニッケル)およびCo(コバルト)は、銅合金板材の強度を高めるために必要な元素であり、NiおよびCoの1種以上を合計で1.0~5.0質量%含有することが必要である。NiおよびCoの1種以上の合計含有量が1.0質量%未満だと、材料強度が低下し、絞り加工によって製造される絞り加工品であるシールドケース等の電子部品に必要な強度が得られない。また、NiおよびCoの1種以上の合計含有量が5.0質量%よりも多いと、後述する溶体化熱処理[工程6]において、NiやCoが固溶しきれずに第二相として金属組織(マトリックス)中に残存するようになり、その後に行なう、後述する中間熱処理[工程7]において、発現するはずの強度向上には寄与しないばかりか、地金コストの上昇を招くことになるからである。このため、NiおよびCoの1種以上の合計含有量は1.0~5.0質量%の範囲とする。なお、前記合計含有量は1.0~4.0質量%の範囲であることが好ましい。
<1.0 to 5.0% by mass in total of at least one of Ni and Co>
Ni (nickel) and Co (cobalt) are elements necessary for increasing the strength of the copper alloy sheet material, and it is necessary to contain 1.0 to 5.0 mass% of Ni and Co in total. Is. If the total content of one or more of Ni and Co is less than 1.0% by mass, the material strength decreases, and the strength required for an electronic component such as a shield case that is a drawn product manufactured by drawing is obtained. I can't. Further, when the total content of one or more of Ni and Co is more than 5.0% by mass, Ni and Co cannot be completely dissolved in the solution heat treatment [step 6] described later and a metallic structure is formed as a second phase. It will remain in the (matrix), and in the subsequent intermediate heat treatment [Step 7] that will be described later, not only does it not contribute to the improvement in strength that should occur, but it also leads to an increase in the cost of metal. is there. Therefore, the total content of at least one of Ni and Co is set to the range of 1.0 to 5.0 mass %. The total content is preferably in the range of 1.0 to 4.0% by mass.
<Si:0.1~1.5質量%>
 Si(ケイ素)は、NiやCoと化合物を形成し、銅合金板材の強度を高めるために必要な元素であり、Siを0.1~1.5質量%含有させることが必要である。Si含有量が0.1質量%未満だと、NiやCoとともに形成する化合物量が低下し、材料強度が低下するからである。また、Si含有量が1.5質量%よりも多いと、銅合金板材の熱伝導率が低下して放熱性が悪くなるからである。このため、Si含有量は0.1~1.5質量%の範囲とする。なお、Si含有量は0.2~1.0質量%の範囲であることが好ましい。
<Si: 0.1 to 1.5 mass%>
Si (silicon) is an element necessary for forming a compound with Ni or Co and increasing the strength of the copper alloy sheet, and it is necessary to contain Si in an amount of 0.1 to 1.5 mass %. This is because if the Si content is less than 0.1% by mass, the amount of the compound formed with Ni or Co will decrease and the material strength will decrease. Further, if the Si content is more than 1.5% by mass, the thermal conductivity of the copper alloy plate material is lowered and the heat dissipation is deteriorated. Therefore, the Si content is set to the range of 0.1 to 1.5 mass %. The Si content is preferably in the range of 0.2 to 1.0% by mass.
 本発明の銅合金板材は、NiおよびCoの1種以上の成分とSiを必須の基本含有成分とするが、さらに、任意の副添加成分として、さらに、Sn、Mg、Mn、Cr、Zr、Ti、FeおよびZnからなる群から選ばれる少なくとも1種の成分を、合計で0.2~1.2質量%以下含有することができる。これらの成分はいずれも、材料強度を向上させる効果を有する成分であり、かかる効果を発揮するには、これらの成分の合計含有量を0.2質量%以上とすることが好ましい。また、これらの成分の合計含有量が1.2質量%を超えると、導電率が低下する傾向があることから、上記成分の合計含有量は0.2~1.2質量%の範囲とすることが好ましく、特に0.5~1.0質量%がより好ましい。 The copper alloy sheet of the present invention contains one or more components of Ni and Co and Si as essential basic components, and further contains Sn, Mg, Mn, Cr, Zr, as an optional additional component. At least one component selected from the group consisting of Ti, Fe and Zn may be contained in a total amount of 0.2 to 1.2% by mass or less. All of these components are components having an effect of improving the material strength, and in order to exert such an effect, the total content of these components is preferably 0.2% by mass or more. Further, if the total content of these components exceeds 1.2% by mass, the conductivity tends to decrease, so the total content of the above components is in the range of 0.2 to 1.2% by mass. It is preferable that 0.5 to 1.0% by mass is particularly preferable.
<Sn:0.1~0.45質量%>
 Sn(スズ)は、銅合金を固溶強化する効果が高い元素であり、0.1質量%以上添加することが好ましいが、0.45質量%よりも添加量が多くなると、導電率を低下させる傾向がある。このため、Si添加量は、0.1~0.45質量%の範囲とすることが好ましい。
<Sn: 0.1 to 0.45 mass%>
Sn (tin) is an element having a high effect of solid-solution strengthening a copper alloy, and it is preferable to add 0.1 mass% or more, but if the addition amount exceeds 0.45 mass %, the conductivity decreases. Tend to let. Therefore, the amount of Si added is preferably in the range of 0.1 to 0.45 mass %.
<Mg:0.1~0.25質量%>
 Mg(マグネシウム)は、銅合金を固溶強化する効果が高い元素であり、0.1質量%以上添加することが好ましいが、0.25質量%よりも添加量が多くなると、導電率を低下させる傾向がある。このため、Mg添加量は、0.1~0.25質量%の範囲とすることが好ましい。
<Mg: 0.1 to 0.25 mass%>
Mg (magnesium) is an element having a high effect of solid-solution strengthening a copper alloy, and it is preferable to add 0.1 mass% or more, but if the addition amount exceeds 0.25 mass%, the conductivity decreases. Tend to let. Therefore, the amount of Mg added is preferably in the range of 0.1 to 0.25% by mass.
<Mn:0.1~0.2質量%>
 Mn(マンガン)は、銅合金を固溶強化する効果と熱間加工性を向上させる効果を有する元素であり、0.1質量%以上添加することが好ましいが、0.2質量%よりも添加量が多くなると、導電率を低下させる傾向がある。このため、Mn添加量は、0.1~0.2質量%の範囲とすることが好ましい。
<Mn: 0.1 to 0.2 mass%>
Mn (manganese) is an element having an effect of solid solution strengthening a copper alloy and an effect of improving hot workability, and is preferably added in an amount of 0.1% by mass or more, but more than 0.2% by mass. A larger amount tends to lower the conductivity. Therefore, the amount of Mn added is preferably in the range of 0.1 to 0.2 mass %.
<Cr:0.1~0.25質量%>
 Cr(クロム)は、クロムとシリコンを含有する第二相化合物を形成し、その化合物により溶体化熱処理工程における結晶粒径の粗大化を抑制することで、材料を強化する効果があり、0.1質量%以上の添加が望ましいが、0.25質量%よりも添加量が多いと、鋳造時に粗大な晶出物を形成してプレス加工時の破断の起点に成りやすい。このため、Cr添加量は、0.1~0.25質量%の範囲とすることが好ましい。
<Cr: 0.1 to 0.25% by mass>
Cr (chromium) has the effect of strengthening the material by forming a second phase compound containing chromium and silicon and suppressing coarsening of the crystal grain size in the solution heat treatment step by the compound. It is desirable to add 1% by mass or more, but if the amount added is more than 0.25% by mass, coarse crystallized substances are formed during casting and the starting point of fracture during press working is likely to occur. Therefore, the Cr addition amount is preferably in the range of 0.1 to 0.25 mass %.
<Zr:0.05~ 0.15質量%>
 Zr(ジルコニウム)は、材料中に固溶し、材料の再結晶温度を上昇させることで溶体化熱処理における再結晶粒の成長を抑制する効果を有する元素であり、0.05質量%以上の添加が望ましいが、0.15質量%よりも添加量が多いと、鋳造時に粗大な晶出物を生じてプレス加工時の破断の起点になりやすい。このため、Zr添加量は、0.05~0.15質量%の範囲とすることが好ましい。
<Zr: 0.05 to 0.15 mass%>
Zr (zirconium) is an element that has a solid solution in the material and has an effect of suppressing the growth of recrystallized grains in the solution heat treatment by increasing the recrystallization temperature of the material, and is added in an amount of 0.05 mass% or more. However, if the addition amount is more than 0.15% by mass, coarse crystallized substances are generated during casting and are likely to be a starting point of fracture during press working. Therefore, the Zr addition amount is preferably in the range of 0.05 to 0.15 mass %.
<Ti:0.02~0.1質量%>
 Ti(チタン)は、材料中に固溶し、材料の再結晶温度を上昇させることで溶体化熱処理における再結晶粒の成長を抑制する効果を有する元素であり、0.02質量%以上の添加が望ましいが、0.1質量%よりも添加量が多いと、導電率を低下させる傾向がある。このため、Ti添加量は、0.02~0.1質量%の範囲とすることが好ましい。
<Ti: 0.02 to 0.1 mass%>
Ti (titanium) is an element having a solid solution in the material and having an effect of suppressing the growth of recrystallized grains in the solution heat treatment by increasing the recrystallization temperature of the material, and addition of 0.02 mass% or more However, if the addition amount is more than 0.1% by mass, the conductivity tends to decrease. Therefore, the Ti addition amount is preferably in the range of 0.02 to 0.1% by mass.
<Fe:0.05~0.1質量%>
 Fe(鉄)は、銅合金を固溶強化する効果が高い元素であり、0.05質量%以上の添加が望ましいが、0.1質量%よりも添加量が多いと、導電率を低下させる傾向がある。このため、Fe添加量は、0.05~0.1質量%の範囲とすることが好ましい。
<Fe: 0.05 to 0.1 mass%>
Fe (iron) is an element having a high effect of solid-solution strengthening a copper alloy, and it is desirable to add 0.05 mass% or more, but if the addition amount is larger than 0.1 mass%, the conductivity decreases. Tend. Therefore, the amount of Fe added is preferably in the range of 0.05 to 0.1 mass %.
<Zn:0.2~0.6質量%>
 Zn(亜鉛)は、、曲げ加工性を改善するとともに、Snめっきやはんだめっきの密着性やマイグレーション特性を改善する作用を有する元素である。かかる作用を発揮させる場合には、Zn含有量を0.2質量%以上とすることが好ましい。しかしながら、Zn含有量が0.6質量%を超えると、導電性の低下により、十分な放熱性が得られなくおそれがある。このため、Zn添加量は、0.2~0.6質量%の範囲とすることが好ましい。
<Zn: 0.2 to 0.6 mass%>
Zn (zinc) is an element that has the effects of improving bending workability and improving adhesion and migration characteristics of Sn plating and solder plating. In order to exert such an effect, the Zn content is preferably 0.2% by mass or more. However, if the Zn content exceeds 0.6 mass %, there is a possibility that sufficient heat dissipation cannot be obtained due to a decrease in conductivity. Therefore, the amount of Zn added is preferably in the range of 0.2 to 0.6 mass %.
<残部:Cuおよび不可避不純物>
 上述した成分以外の残部は、Cu(銅)および不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を考慮して不可避不純物の含有量をある程度抑制することが好ましい。不可避不純物として挙げられる成分としては、例えば、Bi、Se、As、Ag等が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.03質量%、上記成分の総量で0.10質量%とすればよい。
<Remainder: Cu and inevitable impurities>
The balance other than the above-mentioned components is Cu (copper) and inevitable impurities. The unavoidable impurities referred to here mean impurities at a content level that can be unavoidably included in the manufacturing process. Since the unavoidable impurities may be a factor that decreases the conductivity depending on the content, it is preferable to suppress the content of the unavoidable impurities to some extent in consideration of the decrease in the conductivity. Examples of the components that can be cited as the inevitable impurities include Bi, Se, As, Ag, and the like. The upper limit of the content of these components may be 0.03 mass% for each of the above components, and 0.10 mass% for the total amount of the above components.
(II)導電率
 本発明の銅合金板材は、導電率が38%IACS以上であることが必要である。熱伝導率は、ウィーデマン・フランツの法則(Wiedemann-Franz law)によって、導電率から算出することができ、温度が一定であれば、金属の種類に依らず、導電率と比例関係にあることが知られている。このため、本発明の銅合金板材は、導電率を38%IACS以上とすることによって、高い熱伝導率を有することができる結果、優れた熱伝導性を有することができる。導電率は、例えば端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出することができる。
(II) Electric Conductivity The copper alloy sheet material of the present invention needs to have an electric conductivity of 38% IACS or more. The thermal conductivity can be calculated from the conductivity according to the Wiedemann-Franz law, and if the temperature is constant, it is proportional to the conductivity regardless of the type of metal. Are known. Therefore, the copper alloy sheet material of the present invention can have high thermal conductivity by setting the electrical conductivity to 38% IACS or more, and as a result, can have excellent thermal conductivity. The conductivity can be calculated by measuring the specific resistance by the four-terminal method in a constant temperature bath kept at 20° C. (±0.5° C.) with the distance between terminals being 100 mm, for example.
(III)算術平均値Aave.が、4.0~13.0GPa・%の範囲であること
 本発明の銅合金板材は、算術平均値Aave.が、4.0~13.0GPa・%の範囲であることが必要である。算術平均値Aave.は、圧延平行方向、圧延方向に対し45°の方向(単に「45°方向」という場合がある。)、および圧延垂直方向(単に「90°方向」という場合がある。)の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線から求められる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される。
(III) The arithmetic average value Aave. is in the range of 4.0 to 13.0 GPa·%. The copper alloy sheet of the present invention has the arithmetic average value Aave. in the range of 4.0 to 13.0 GPa·%. It is necessary to be. The arithmetic mean value Aave. is the rolling parallel direction, the direction of 45° with respect to the rolling direction (may be simply referred to as “45° direction”), and the vertical direction of rolling (may be simply referred to as “90° direction”). The values obtained from the nominal stress-nominal strain curves obtained by conducting a tensile test for three types of test pieces cut out in each direction and the Cube orientation area obtained by the electron backscatter diffraction (EBSD) method By substituting the value of the ratio into the following formula (1), the values A , A 45° and A 90° of the parameter Ax (x: 0°, 45°, 90°) in each direction were obtained and obtained. It is calculated by substituting the values A , A 45° and A 90° in each direction into the following formula (2).
Figure JPOXMLDOC01-appb-M000011
 但し、Sc:Cube方位面積率(%)、σnは公称応力(GPa)、εnは公称歪(%)、そして、ELは破断伸び(%)を表す。
Figure JPOXMLDOC01-appb-M000011
However, Sc:Cube orientation area ratio (%), σn is a nominal stress (GPa), εn is a nominal strain (%), and EL is a breaking elongation (%).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本発明者らは、パラメータAave.が、材料との絞り加工性によく相関するという知見を、本発明に至るまでの実験により得た。従来より、銅および銅合金における結晶方位の中で、特にCube方位が集積すると、材料の絞り加工性を低下させることは知られていた。しかしながら、Cube方位の集積度と絞り加工性の定量的な相関およびCube方位の集積度を用いた絞り加工性の定量的な評価は行われていない。そもそも、析出強化型銅合金、例えば本発明の成分系のようなCu-Ni-Si系およびCu-Co-Si系合金は、従来より絞り加工に用いられる銅および銅合金、例えば純銅や黄銅、洋白といった純金属や固溶強化型と比べて、材料成分以外に製造プロセス、例えば第二相化合物のサイズや存在密度、存在割合等の制御工程や圧延工程が材料の機械的特性に及ぼす影響は非常に大きいこと、さらには複数の材料特性が相互に影響し合うため、同時に変動する、例えば第二相化合物の存在割合と材料強度が同時に変動するなどにより、単一の材料特性の絞り加工性への影響を抽出できない点が析出強化型合金の絞り加工性を向上させることと絞り加工性の評価を難しくさせていた。 The present inventors have obtained the knowledge that the parameter Aave. correlates well with the drawing workability of the material, through experiments until the present invention. It has been conventionally known that, among the crystallographic orientations of copper and copper alloys, in particular, the Cube orientation is integrated, which reduces the drawability of the material. However, a quantitative correlation between the degree of integration of the Cube orientation and the drawability and the quantitative evaluation of the drawability using the degree of integration of the Cube orientation have not been performed. In the first place, precipitation strengthened copper alloys such as Cu-Ni-Si and Cu-Co-Si alloys such as the component system of the present invention are copper and copper alloys conventionally used for drawing, such as pure copper and brass, Compared to pure metal such as nickel silver and solid solution reinforced type, influence of manufacturing process other than material components, for example, control process such as size, existing density, existing ratio of second phase compound and rolling process on mechanical properties of material Is very large, and moreover, because multiple material properties affect each other, they change at the same time, for example, the abundance ratio of the second phase compound and the material strength change at the same time. The fact that the influence on the workability cannot be extracted made it difficult to improve the drawability of the precipitation strengthened alloy and to evaluate the drawability.
 そこで本発明者らは、(2)式により、絞り加工性が析出強化型合金でよく評価できること、さらには(2)式と絞り加工性の相関があることを見出し、従来よりも絞り加工性が向上した析出強化型合金を発明するに至った。 Therefore, the present inventors have found that the drawability can be well evaluated by the precipitation-strengthened alloy by the formula (2), and further that there is a correlation between the formula (2) and the drawability. Has led to the invention of a precipitation-strengthened alloy with improved properties.
 (1)式では、絞り加工性に悪影響を及ぼすCube方位の集積度をパラメータAxに対して負の相関となるように表現し、公称応力-公称歪曲線の積分値は、大きいほど絞り加工性に良い影響を及ぼすため、正の相関となるように表現した。図1は、本発明の一の実施形態に従う銅合金板材から、圧延平行方向に切り出した試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線を例として示した図である。 In the formula (1), the degree of integration of the Cube orientation that adversely affects the drawability is expressed so as to have a negative correlation with the parameter Ax, and the larger the integrated value of the nominal stress-nominal strain curve, the greater the drawability. It is expressed so that it has a positive correlation. FIG. 1 is a diagram showing, as an example, a nominal stress-nominal strain curve obtained by performing a tensile test on a test piece cut out from a copper alloy sheet according to an embodiment of the present invention in a rolling parallel direction. ..
 さらに、(1)式から求めた3方向のパラメータA0°、A45°およびA90°を(2)式に代入して算出した算術平均値Aave.が、絞り加工性とよく相関するパラメータであることを見出した。この相関を得たことにより、絞り加工性を(2)式により評価することが可能になった。 Furthermore, the arithmetic mean value Aave. calculated by substituting the three-direction parameters A , A 45°, and A 90° obtained from the formula (1) into the formula (2) is a parameter that correlates well with the drawing workability. I found that. By obtaining this correlation, it becomes possible to evaluate the drawability by the formula (2).
 ここで、算術平均値Aave.は、4.0GPa・%未満の場合では、特に厳しい深絞り加工条件だと、満足レベルの絞り加工性が得られず、また、13.0GPa・%より大きい場合では、材料の伸びが大きくなって、相反する特性である強度が十分に得られなくなる。このため、本発明では、算術平均値Aave.は4.0~13.0GPa・%の範囲とする。なお、前記算術平均値Aave.は6.0~11.0GPa・%の範囲であることが好ましい。 Here, when the arithmetic mean value Aave. is less than 4.0 GPa·%, a satisfactory level of drawability cannot be obtained under particularly severe deep drawing conditions, and when it is larger than 13.0 GPa·%. Then, the elongation of the material becomes large, and it becomes impossible to obtain sufficient strength, which is a contradictory characteristic. Therefore, in the present invention, the arithmetic mean value Aave. is set in the range of 4.0 to 13.0 GPa·%. The arithmetic mean value Aave. is preferably in the range of 6.0 to 11.0 GPa·%.
 パラメータAxを算出するために用いる公称応力-公称歪曲線から求めた積分値は、圧延平行方向、45°方向および90°方向の各方向にそれぞれ切り出した3種類のJIS Z2241の13B号の試験片を、JIS Z2241に準じて各9本(n=9)ずつ用意して測定し、最も破断伸びが大きかった場合を1番目とするとき、破断伸びが5番目に大きかった試験片を用いて測定されたときの公称応力-公称歪曲線を用いて求めることとし、式(1)に示される積分値は、前述で得られた公称応力-公称歪曲線のプロットから台形近似により得られる面積から算出することができる。なお、公称応力は、例えば、公称歪が0.001%以上0.300%以下毎に測定すればよい。 The integrated value obtained from the nominal stress-nominal strain curve used to calculate the parameter Ax is three types of JIS Z2241 No. 13B test pieces cut out in the rolling parallel direction, 45° direction and 90° direction, respectively. According to JIS Z2241, each 9 pieces (n=9) are prepared and measured, and when the case with the largest breaking elongation is the first, the test piece with the fifth largest breaking elongation is used. And the nominal stress-nominal strain curve is calculated, and the integral value shown in equation (1) is calculated from the area obtained by the trapezoidal approximation from the plot of the nominal stress-nominal strain curve obtained above. can do. The nominal stress may be measured, for example, every time the nominal strain is 0.001% or more and 0.300% or less.
 また、パラメータAxを算出するために用いるCube方位面積率(%)は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、商品名:JSM-7001FA)に付属するEBSD検出器を用いて連続して測定された結晶方位データから解析ソフト(TSL社製、商品名:OIM-Analysis)を用いて算出することができる。ここで、「EBSD」とは、Electron BackScatter Diffractionの略で、走査型電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことであり、また、「OIM-Analysis」とは、EBSDにより測定されたデータの解析ソフトである。 The Cube azimuth area ratio (%) used to calculate the parameter Ax is continuously measured using an EBSD detector attached to a high resolution scanning analysis electron microscope (JEOL Ltd., trade name: JSM-7001FA). It can be calculated from the crystal orientation data measured by using analysis software (manufactured by TSL, trade name: OIM-Analysis). Here, “EBSD” is an abbreviation for Electron BackScatter Diffraction, which is a crystal orientation analysis technology that utilizes the reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). Yes, and "OIM-Analysis" is an analysis software of data measured by EBSD.
 よって、パラメータAxの各方向の値A0°、A45°およびA90°は、上述した方法によって算出した積分値とCube方位面積率(%)を上記(1)式に代入することによって、パラメータAxの各方向の値A0°、A45°およびA90°を算出することができ、算術平均値Aave.は、算出したA0°、A45°およびA90°を(2)式に代入することによって算出することができる。 Therefore, the values A , A 45°, and A 90° in each direction of the parameter Ax are obtained by substituting the integral value calculated by the above-described method and the Cube azimuth area ratio (%) into the above formula (1). The values A , A 45° and A 90° of the parameter Ax in each direction can be calculated, and the arithmetic average value Aave. is calculated by using the calculated A , A 45° and A 90° in equation (2). It can be calculated by substituting into
 絞り加工性は、深絞り試験機(例えばエリクセン社製薄板成形試験機)10により、図3に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部をパンチ14で押し込んでいき、円筒型カップを成形した。割れが生じることなく円筒型カップを成形できる最小のポンチコーナー半径Rとそのときに円筒型カップの縁のうねりの最大谷深さと最大山高さの差を考慮して評価した。また、張り出し試験(エリクセン試験)により貫通割れが発生するまでのパンチの移動距離(くぼみの深さ)の値、すなわち、エリクセン値Erを測定し、このエリクセン値Erの他、試験板材Wの厚さ(mm)、圧延方向に引っ張ったときの破断伸び(%)、結果を考慮して、総合的に評価した。 The drawability is measured by a deep drawing tester (for example, a thin plate forming tester manufactured by Erichsen Co., Ltd.) 10 after tightening the edge of the test plate W between the die 12 and the wrinkle holding member 16 as shown in FIG. Then, the center portion of the test plate W was pushed by the punch 14 to form a cylindrical cup. The minimum punch corner radius R at which the cylindrical cup can be molded without cracking and the difference between the maximum valley depth and the maximum peak height of the undulation of the edge of the cylindrical cup were evaluated. In addition, the value of the moving distance (the depth of the depression) of the punch until the penetration crack occurs in the overhang test (Erichsen test), that is, the Erichsen value Er is measured, and in addition to this Erichsen value Er, the thickness of the test plate W (Mm), elongation at break (%) when pulled in the rolling direction, and the results were taken into consideration for comprehensive evaluation.
(IV)パラメータBx(x:0°、45°、90°)の各方向の値B0°、B45°およびB90°が、いずれも10%以下となること
 本発明の銅合金板材は、前記算術平均値Aave.および前記パラメータAxの値を下記(3)式に代入して算出されるパラメータBx(x:0°、45°、90°)の前記各方向の値が、いずれも10%以下となることが好ましい。
(IV) The values B , B 45° and B 90° in each direction of the parameter Bx (x: 0°, 45°, 90°) are all 10% or less. , The arithmetic mean value Aave. and the value of the parameter Ax are substituted into the following equation (3), the values of the parameter Bx (x: 0°, 45°, 90°) in each direction are both It is preferably 10% or less.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
上記(3)式で定義されるパラメータBxの各方向の値B0°、B45°およびB90°が、それぞれ10%以下と小さくなるように制御することで、絞り加工後の縁のうねりを安定して小さくすることができ、形状が均一になって、絞り加工性を撚り一層向上させることができる。パラメータBxのいずれかの方向の値B0°、B45°、B90°が10%より大きくなると、絞り加工品の製造における歩留まりが低下する傾向があることから、パラメータBxの各方向の値B0°、B45°およびB90°は、いずれも10%以下であることが好ましく、さらには5.5%以下であることがより好ましい。 By controlling the values B , B 45° and B 90° of the parameter Bx defined in the above formula (3) in each direction to be 10% or less, the undulation of the edge after drawing is performed. Can be stably reduced, the shape can be made uniform, and the drawability can be further improved by twisting. If the values B , B 45° , and B 90° in any direction of the parameter Bx are larger than 10%, the yield in the production of drawn products tends to decrease. Therefore, the value of the parameter Bx in each direction Each of B , B 45° and B 90° is preferably 10% or less, and more preferably 5.5% or less.
 パラメータBxは、上述のように、算出したパラメータAxと算術平均値Aave.を式(3)に代入することによって算出することができる。 The parameter Bx can be calculated by substituting the calculated parameter Ax and the arithmetic mean value Aave. into the equation (3) as described above.
(V)エリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たすこと
 本発明の銅合金板材は、エリクセン試験におけるエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たすことが好ましい。
(V) The ratio of the Erichsen value (Er) to the plate thickness (t) (Er/t ratio) and the elongation at break EL (%) when stretched in the rolling parallel direction are expressed by the following inequality (4). The copper alloy sheet of the present invention has a ratio (Er/t ratio) of the Erichsen value (Er) to the sheet thickness (t) in the Erichsen test, and an elongation at break EL (%) when pulled in the rolling parallel direction. Preferably satisfies the relation of the inequality of the following equation (4).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 本発明者らは、さらにエリクセン試験によって得られたエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)が、絞り加工性に及ぼす影響について検討を行なった。図2は、エリクセン値(Er)の板厚(t)に対する比(Er/t比)を縦軸にとり、圧延平行方向に引っ張ったときの破断伸びEL(%)を横軸にとり、表1に示す実施例と比較例についてプロットしたものである。図2に示す結果から、一次関数:Er/t=1.5ELを境にして、全ての実施例が上側領域にあるとともに、全ての比較例は下側領域にあることがわかる。このため、本発明では、上記(4)式を満たすことによって、優れた絞り加工性を有する銅合金板材であるかを判別することができる。 The inventors further calculated that the ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) obtained by the Erichsen test and the breaking elongation EL (%) when pulled in the rolling parallel direction were The influence on the drawability was examined. Fig. 2 shows the ratio of the Erichsen value (Er) to the plate thickness (t) (Er/t ratio) on the vertical axis, and the elongation at break EL (%) when pulled in the rolling parallel direction on the horizontal axis. It is plotted about the Example and the comparative example shown. From the results shown in FIG. 2, it can be seen that all the examples are in the upper region and all the comparative examples are in the lower region with the linear function: Er/t=1.5EL as the boundary. Therefore, in the present invention, it is possible to determine whether the copper alloy plate material has excellent drawability by satisfying the above expression (4).
 エリクセン値(Er値)は、エリクセン試験機により、図4に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部を、先端が半球状のパンチ14Aで押し込んでいき、貫通割れが発生するまでのパンチの移動距離(くぼみの深さ)の値を測定し、その測定した値とした。 As shown in FIG. 4, the Erichsen value (Er value) is obtained by tightening the edge of the test plate W between the die 12 and the wrinkle holding member 16 by the Erichsen tester, and then measuring the central part of the test plate W as follows. The punch 14A having a hemispherical tip was pushed in, and the value of the moving distance of the punch (the depth of the depression) until the occurrence of through cracks was measured, and the measured value was used.
(VI)本発明の一実施例による銅合金板材の製造方法
 上述した銅合金板材は、合金組成や製造プロセスを組み合わせて制御することにより、実現できる。以下、本発明の銅合金板材の好適な製造方法について説明する。
(VI) Method of Manufacturing Copper Alloy Sheet Material According to One Embodiment of the Present Invention The copper alloy sheet material described above can be realized by controlling the alloy composition and the manufacturing process in combination. Hereinafter, a suitable method for producing the copper alloy sheet of the present invention will be described.
 このような本発明の一実施例による銅合金板材は、上述した銅合金板材の組成と同様の組成を有する銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施すことによって製造されるが、特に仕上げ冷間圧延工程から調質焼鈍工程までの一連の工程の適正化を図ることによって、より具体的には、仕上げ冷間圧延[工程8]における圧延時の材料の最大温度TRを、75℃以上100℃以下に制御し、矯正[工程9]における材料の伸び率δを、0.1~1.0%とし、そして、調質焼鈍[工程10]の材料温度TA(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することによって、特に放熱性を損なうことなく、厳しい絞り加工条件であったとしても、優れた絞り加工性を有する銅合金板材を製造することができる。 Such a copper alloy sheet according to one embodiment of the present invention is formed by casting [step 1], homogenizing [step 2], and hot rolling on a copper alloy material having the same composition as the above-mentioned copper alloy sheet. [Step 3], chamfering [Step 4], cold rolling [Step 5], solution heat treatment [Step 6], intermediate heat treatment [Step 7], finish cold rolling [Step 8], straightening [Step 9], It is manufactured by sequentially performing and temper annealing [step 10]. More specifically, by optimizing a series of steps from the finish cold rolling step to the temper annealing step, more specifically, The maximum temperature TR of the material during rolling in the hot rolling [step 8] is controlled to 75° C. or more and 100° C. or less, and the elongation rate δ of the material in the straightening [step 9] is set to 0.1 to 1.0%, Then, by controlling the material temperature TA (° C.) of the temper annealing [step 10] so as to satisfy the relation of the inequality shown in the following equation (5) in relation to the elongation rate δ, the heat radiation property is particularly impaired. Even if the drawing conditions are severe, a copper alloy sheet material having excellent drawability can be manufactured.
    55×δ+450≧TA≧55×δ+350      ・・・(5) 55×δ+450≧TA≧55×δ+350 ・・・(5)
(i)鋳造工程[工程1]
 鋳造工程は、大気下で高周波溶解炉により表1に示す合金成分を溶解し、これを鋳造することによって所定形状(例えば厚さ30mm、幅100mm、長さ150mm)の鋳塊を製造する。
(I) Casting process [Process 1]
In the casting step, the alloy components shown in Table 1 are melted in a high frequency melting furnace in the atmosphere, and the alloy components are cast to produce an ingot of a predetermined shape (for example, thickness 30 mm, width 100 mm, length 150 mm).
(ii)均質化処理工程[工程2]
 均質化処理工程は、不活性ガス雰囲気中で所定温度(例えば1000℃)に1時間加熱し均質化熱処理[工程2]を施した。
(Ii) Homogenization treatment process [Process 2]
In the homogenization treatment step, heating was performed at a predetermined temperature (for example, 1000° C.) in an inert gas atmosphere for 1 hour to perform a homogenization heat treatment [step 2].
(iii)熱間圧延工程[工程3]
 熱間圧延工程は、均質化熱処理の直後に施し、所定の板厚(例えば10mm)とした直後に冷却した。
(Iii) Hot rolling process [Process 3]
The hot rolling step was performed immediately after the homogenizing heat treatment, and immediately after cooling to a predetermined plate thickness (for example, 10 mm), cooling was performed.
(iv)面削工程[工程4]
 面削工程は、熱延板の表面から所定の厚さ(例えば1mmから2mm程度)の面削を行い、酸化層を除去した。
(Iv) Chamfering process [Process 4]
In the chamfering step, the surface of the hot-rolled sheet was chamfered to a predetermined thickness (for example, about 1 mm to 2 mm) to remove the oxide layer.
(v)冷間圧延工程[工程5]
 冷間圧延工程で1~0.25mmまで冷間圧延を施した。
(V) Cold rolling process [Process 5]
In the cold rolling process, cold rolling was performed to 1 to 0.25 mm.
(vi)溶体化熱処理工程[工程6]
 溶体化熱処理工程は、所定の昇温速度(例えば、5秒から10秒かけて900℃から990℃)で昇温し、1秒から1時間保持後、250℃/sから500℃/sの速度で冷却した。
(Vi) Solution heat treatment step [Step 6]
In the solution heat treatment step, the temperature is raised at a predetermined heating rate (for example, 900° C. to 990° C. over 5 seconds to 10 seconds), held for 1 second to 1 hour, and then set to 250° C./s to 500° C./s. Cooled at rate.
(vii)中間熱処理工程[工程7]
 中間熱処理工程は、所定の温度(例えば300℃から600℃)で10秒から10時間熱処理を行った。
(Vii) Intermediate heat treatment step [Step 7]
In the intermediate heat treatment step, heat treatment was performed at a predetermined temperature (for example, 300° C. to 600° C.) for 10 seconds to 10 hours.
(viii)仕上げ冷間圧延工程[工程8]
 仕上げ冷間圧延工程は、目的の板厚への加工、材料強度の向上、結晶方位の制御を主な目的に行う工程であって、圧延時の材料の最大温度TRを75℃以上100℃以下に制御することが必要である。圧延時の材料の最大温度TRが75℃以上にすることによって、圧延による結晶回転が促進され、絞り加工性に悪影響を及ぼすCube方位粒の面積率が減少しやすくなる。しかし、圧延時の材料の最大温度TRが100℃よりも温度が高くなると、圧延加工に用いる潤滑油の粘性が低下することで、焼き付きなどの圧延不良により板材の表面粗さが局所的に高くなることで破断の起点となるなど、絞り加工性の劣化を起こす可能性が高くなる。このため、圧延時の材料の最大温度TRは、75℃以上100℃以下とする。
(Viii) Finishing cold rolling process [Process 8]
The finish cold rolling process is a process mainly performed for processing to a desired plate thickness, improvement of material strength, and control of crystal orientation, and the maximum temperature TR of the material during rolling is 75°C or higher and 100°C or lower. Need to be controlled. By setting the maximum temperature TR of the material during rolling to 75° C. or higher, crystal rotation due to rolling is promoted, and the area ratio of Cube-oriented grains, which adversely affects the drawability, is likely to decrease. However, when the maximum temperature TR of the material during rolling becomes higher than 100° C., the viscosity of the lubricating oil used for rolling decreases, so that the surface roughness of the plate material becomes locally high due to rolling defects such as seizure. As a result, there is a high possibility that the drawability will deteriorate, such as the starting point of fracture. Therefore, the maximum temperature TR of the material during rolling is set to 75°C or higher and 100°C or lower.
(ix)矯正工程[工程9]
 矯正工程は、材料の残留応力を除去・均一化することを目的として行なう工程であって、テンションレベラーによる矯正の際の材料の伸び率δを0.1~1.0%の範囲とすることが必要である。前記伸び率δが0.1%未満だと、残留応力の除去・均一化効果が小さく、絞り加工後の形状均一性が低下する。また、前記伸び率δが1.0%より大きいと、テンションレベラーの繰り返し曲げによる加工歪が大きくなって、絞り加工時に割れの生じないパンチ先端のコーナー半径を小さくすることができず、厳しい絞り加工条件での絞り加工性が低下する。このため、矯正工程における材料の伸び率δは、0.1~1.0%の範囲とする。
(Ix) Straightening process [Process 9]
The straightening process is a process performed for the purpose of removing/uniformizing the residual stress of the material, and the elongation rate δ of the material during the straightening by the tension leveler is in the range of 0.1 to 1.0%. is necessary. If the elongation δ is less than 0.1%, the effect of removing and uniformizing residual stress is small, and the shape uniformity after drawing is deteriorated. On the other hand, if the elongation δ is larger than 1.0%, the processing strain due to the repeated bending of the tension leveler becomes large, and the corner radius of the punch tip where cracks do not occur during drawing processing cannot be made small, resulting in severe drawing. The drawability is reduced under the processing conditions. Therefore, the elongation rate δ of the material in the straightening step is set in the range of 0.1 to 1.0%.
(x)調質焼鈍工程[工程10]
 調質焼鈍工程は、材料の伸びを回復させること、さらに伸びを含めて機械的特性の異方性を低減するための工程であって、調質焼鈍[工程10]の材料温度TA(℃)を、矯正工程における材料の伸び率δ(%)との関係で、(5)式に示す不等式の関係を満たすように制御することが必要である。
(X) Tempering annealing process [Process 10]
The temper annealing step is a step for recovering the elongation of the material and further for reducing the anisotropy of mechanical properties including elongation, and the material temperature TA (° C.) of the temper annealing [step 10]. Must be controlled so as to satisfy the relation of the inequality shown in the equation (5) in relation to the elongation rate δ(%) of the material in the straightening step.
      55×δ+450≧TA≧55×δ+350      ・・・(5) 55×δ+450≧TA≧55×δ+350 ・・・(5)
 調質焼鈍工程における材料温度TAを(5)式に従って制御することにより、絞り加工性が向上する。調質焼鈍工程により、矯正工程までの一連の工程で導入された転位を回復させることで、材料のパラメータである算術平均値Aave.と、エリクセン値Erとが大きくなる。調質焼鈍工程における材料温度TAが、(5)式での下限値を下回ると、圧延による転位の回復(すなわち加工歪の除去)が十分ではなくなる。また、調質焼鈍工程における材料温度TAが、(5)式での上限値を上回ると、NiもしくはCoとSiの化合物の析出物が粗大化し、これに伴って、材料強度が低下する。このため、調質焼鈍[工程10]の材料温度TA(℃)は、矯正工程における材料の伸び率δ(%)との関係で、(5)式に示す不等式の関係を満たすようにする。 Drawability is improved by controlling the material temperature TA in the temper annealing process according to the equation (5). By recovering the dislocations introduced in the series of steps up to the straightening step by the temper annealing step, the arithmetic mean value Aave. and the Erichsen value Er, which are the parameters of the material, become large. If the material temperature TA in the temper annealing step is lower than the lower limit value in the equation (5), recovery of dislocations by rolling (that is, removal of work strain) becomes insufficient. Further, when the material temperature TA in the temper annealing step exceeds the upper limit value in the equation (5), the precipitate of the compound of Ni or Co and Si becomes coarse, and accordingly, the material strength decreases. Therefore, the material temperature TA (° C.) in the temper annealing [step 10] is set so as to satisfy the relationship of the inequality shown in the expression (5) in relation to the elongation rate δ(%) of the material in the straightening step.
(VII)銅合金板材の用途
 本発明の銅合金材は、特に絞り加工を施して絞り加工品を作製するのに用いるのに好適であり、例えば、電気・電子部品用部材、電磁波シールド材および放熱部品に用いることができる。例えば、電気・電子部品用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、液晶補強板、液晶のシャーシ、有機ELディスプレイの補強板や、自動車車載用のコネクタ、シールドケース、シールドキャンなどを作製することができる。
(VII) Use of Copper Alloy Plate Material The copper alloy material of the present invention is particularly suitable for use in producing a drawn product by subjecting it to drawing, for example, a member for electric/electronic parts, an electromagnetic wave shielding material and It can be used as a heat dissipation component. For example, connectors for electric/electronic parts, lead frames, relays, switches, sockets, shield cases, shield cans, liquid crystal reinforcement plates, liquid crystal chassis, reinforcement plates for organic EL displays, connectors for automobiles, shield cases, A shield can or the like can be manufactured.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes various aspects included in the concept of the present invention and the scope of the claims, and various modifications within the scope of the present invention. Can be modified to.
 次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples of the present invention and comparative examples will be described in order to further clarify the effects of the present invention, but the present invention is not limited to these examples.
 (実施例1~15および比較例1~11)
 大気下で高周波溶解炉により、表1に示す組成を有する銅合金素材を溶解し、これを鋳造して厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。次に、不活性ガス雰囲気中にて1000℃で1時間加熱・保持する均質化熱処理を施した直後に、熱間圧延を施して、板厚10mmの熱延板とした直後に冷却した。次いで、面削、冷間圧延を順次施し、板厚を0.25~1.0mmとした。その後、800~990℃で溶体化熱処理を1分間施した直後に冷却し、300℃~600℃で1時間の中間熱処理、。次いで、表3に示す材料の最大温度TRで仕上げ冷間圧延を0.1%から60%施した後、表3に示す材料の伸び率δで矯正し、その後、表3に示す材料温度TAで調質焼鈍を施し、板厚が0.25~0.3mmの銅合金板材を得た。なお、比較例11については、仕上げ冷間圧延時の材料の最大温度TRが高かったため、焼き付きにより板材表面の不良が生じたため、種々のパラメータの算出ができず、性能評価もできなかった。
(Examples 1 to 15 and Comparative Examples 1 to 11)
A copper alloy material having the composition shown in Table 1 was melted in a high-frequency melting furnace in the air and cast to obtain an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm. Next, immediately after the homogenizing heat treatment of heating and holding at 1000° C. for 1 hour in an inert gas atmosphere, hot rolling was performed to obtain a hot-rolled sheet having a thickness of 10 mm, and then immediately cooled. Then, chamfering and cold rolling were sequentially performed to make the plate thickness 0.25 to 1.0 mm. Then, the solution heat treatment is performed at 800 to 990° C. for 1 minute, immediately after cooling, the intermediate heat treatment is performed at 300° C. to 600° C. for 1 hour. Then, after finishing cold rolling 0.1% to 60% at the maximum temperature TR of the material shown in Table 3, it is corrected by the elongation δ of the material shown in Table 3, and then the material temperature TA shown in Table 3 is obtained. Was heat-annealed to obtain a copper alloy plate material having a plate thickness of 0.25 to 0.3 mm. In Comparative Example 11, since the maximum temperature TR of the material during the finish cold rolling was high, the surface of the plate material was defective due to seizure, so that various parameters could not be calculated and the performance could not be evaluated.
[各種測定および評価方法]
 上記実施例および比較例に係る銅合金板材を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。
[Various measurement and evaluation methods]
Using the copper alloy sheet materials according to the above Examples and Comparative Examples, the following characteristic evaluation was performed. The evaluation conditions for each characteristic are as follows.
[1]銅合金板材の組成の測定方法
 合金組成は、蛍光X線分析により測定した。
[1] Method for measuring composition of copper alloy sheet material The alloy composition was measured by fluorescent X-ray analysis.
[2]導電率の測定方法
 導電率は、例えば端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測することによって算出した。
[2] Conductivity measurement method The conductivity was calculated by measuring the specific resistance by the four-terminal method in a thermostat kept at 20° C. (±0.5° C.) with the distance between the terminals being 100 mm, for example. ..
[3](1)式中の積分値の算出方法
 (1)式中の積分値は、圧延平行方向、45°方向および90°方向の各方向にそれぞれ切り出した3種類のJIS Z2241の13B号の試験片を、JIS Z2241に準じて各9本(n=9)ずつ用意して測定し、最も破断伸びが大きかった場合を1番目とするとき、破断伸びが5番目に大きかった試験片を用いて測定されたときの公称応力-公称歪曲線を用いて求めることとし、式(1)に示される積分値は、前述で得られた公称応力-公称歪曲線のプロットから台形近似により得られる面積から算出した。なお、公称応力は、公称歪が0.01%ごとに測定した。
[3] Method of calculating integral value in equation (1) The integral value in equation (1) is three kinds of JIS Z2241 No. 13B, which are cut out in the rolling parallel direction, 45° direction and 90° direction. According to JIS Z2241, 9 pieces (n=9) each were prepared and measured, and when the case where the breaking elongation was the largest was the first, the test piece having the fifth largest breaking elongation was The nominal stress-nominal strain curve when measured using the above is determined, and the integral value shown in the equation (1) is obtained by the trapezoidal approximation from the plot of the nominal stress-nominal strain curve obtained above. Calculated from the area. The nominal stress was measured every 0.01% of the nominal strain.
[4]Cube方位面積率の算出方法
 Cube方位面積率は、高分解能走査型分析電子顕微鏡(日本電子株式会社製、商品名:JSM-7001FA)に付属するEBSD検出器を用いて連続して測定された結晶方位データから解析ソフト(TSL社製、商品名:OIM-Analysis)を用いて算出した。
[4] Calculation method of Cube azimuth area ratio The Cube azimuth area ratio is continuously measured using an EBSD detector attached to a high resolution scanning analysis electron microscope (JEOL Ltd., trade name: JSM-7001FA). It was calculated from the obtained crystal orientation data using analysis software (manufactured by TSL, trade name: OIM-Analysis).
[5]パラメータBxの算出方法
 パラメータBxは、上記[3]で算出した積分値と、上記[4]で算出したCube方位面積率を式(1)に代入することによって求められるパラメータAxの各方向の値A0°、A45°およびA90°と、これらの値A0°、A45°およびA90°を(2)式に代入して求められる算術平均値Aave.とを、式(3)に代入することによって算出することができる。
[5] Calculation Method of Parameter Bx Parameter Bx is a parameter Ax obtained by substituting the integral value calculated in [3] above and the Cube orientation area ratio calculated in [4] above into equation (1). The values A , A 45° and A 90° in the direction and the arithmetic mean value Aave. obtained by substituting these values A , A 45° and A 90° into the equation (2) It can be calculated by substituting in (3).
[6]エリクセン値Erの測定方法
 エリクセン値Erは、エリクセン試験機により、図4に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部をパンチ14Aで押し込んでいき、、貫通割れが発生するまでのパンチの移動距離(くぼみの深さ)の値を測定し、その測定した値とした。
[6] Method for measuring Erichsen value Er The Erichsen value Er is measured by an Erichsen tester after the edge of the test plate W is clamped between the die 12 and the wrinkle holding member 16 as shown in FIG. The central portion of W was pushed in by the punch 14A, the value of the moving distance of the punch (the depth of the recess) until the occurrence of through cracks was measured, and it was taken as the measured value.
[7]放熱性の評価
 放熱性は、上記[2]で測定した導電率によって評価した。放熱性の評価基準を以下に示す。なお、本実施例では、下記に示す放熱性の評価基準における、「1」および「2」を合格レベルにあるとした。表2に、放熱性の評価結果を示す。
[7] Evaluation of heat dissipation The heat dissipation was evaluated by the conductivity measured in the above [2]. The evaluation criteria for heat dissipation are shown below. In this example, "1" and "2" in the heat dissipation evaluation criteria shown below are considered to be acceptable levels. Table 2 shows the evaluation results of heat dissipation.
<放熱性の評価基準>
 1(優):導電率が50%IACS以上の場合
 2(良):導電率が30%IACS以上50%IACS未満の場合
 3(不可):導電率が30%IACS未満である場合
<Heat dissipation evaluation criteria>
1 (excellent): When the conductivity is 50% IACS or more 2 (Good): When the conductivity is 30% IACS or more and less than 50% IACS 3 (Improper): When the conductivity is less than 30% IACS
[8]絞り加工性の評価
 絞り加工性は、深絞り試験機(例えばエリクセン社製薄板成形試験機)10により、図3に示すように、試験板材Wの縁部を、ダイ12としわ押さえ部材16の間で締め付けた後に、試験板材Wの中央部を、先端部が円柱状でかつコーナー部の曲率半径Rが小さいパンチ14で押し込んでいき、円筒型カップを成形し、割れの生じないパンチの先端のコーナー部の曲率半径Rの最小値と、成形後のカップ縁のうねりの最大山高さと最大谷深さの差の最大値から総合的に評価した。絞り加工性の評価基準を以下に示す。表2に、絞り加工性の評価結果を示す。なお、上記試験は、パンチとダイのクリアランスは2.3mmとし、試験板材Wの表面に塗布される潤滑油としては、R-303Pを用い、パンチ直径のブランク直径に対する比(パンチ直径/ブランク直径)は0.64の試験条件で行なった。
[8] Evaluation of drawing workability As for drawing workability, as shown in FIG. After tightening between the members 16, the center portion of the test plate W is pushed by the punch 14 having a columnar tip and a small radius of curvature R at the corners to form a cylindrical cup without cracking. It was comprehensively evaluated from the minimum value of the radius of curvature R of the corner portion at the tip of the punch and the maximum value of the difference between the maximum peak height and the maximum valley depth of the undulation of the cup edge after molding. The evaluation criteria of drawability are shown below. Table 2 shows the evaluation results of the drawability. In the above test, the clearance between the punch and the die was 2.3 mm, R-303P was used as the lubricating oil applied to the surface of the test plate W, and the ratio of the punch diameter to the blank diameter (punch diameter/blank diameter) was used. ) Was performed under the test conditions of 0.64.
(a)パンチの先端のコーナー部の曲率半径Rの最小値の評価基準
 ◎(優):曲率半径Rの最小値が0.5mm以下の場合
 ○(良):曲率半径Rの最小値が0.5mm超え1.0mm未満の場合
 ×(不可):曲率半径Rの最小値が1.0mm以上の場合
(A) Evaluation criteria for the minimum value of the radius of curvature R at the corner of the punch tip ◎ (excellent): When the minimum value of the radius of curvature R is 0.5 mm or less ○ (Good): The minimum value of the radius of curvature R is 0 In the case of more than 0.5 mm and less than 1.0 mm × (Not possible): When the minimum value of the radius of curvature R is 1.0 mm or more
(b)カップ縁のうねりの最大山高さと最大谷深さの差の最大値の評価基準
 ◎(優):前記差の最大値が0.5mm以下の場合
 ○(良):前記差の最大値が0.5mm超え1.0mm未満の場合
 ×(不可):前記差の最大値が1.0mm以上の場合
(B) Evaluation criteria for the maximum difference between the maximum peak height and the maximum valley depth of the undulation of the cup edge ◎ (excellent): When the maximum value of the difference is 0.5 mm or less ○ (Good): The maximum value of the difference Is more than 0.5 mm and less than 1.0 mm x (Not possible): When the maximum value of the difference is 1.0 mm or more
<絞り加工性の評価>
 1(優):前記(a)および(b)の評価のいずれもが「◎」である場合
 2(良):前記(a)および(b)の評価のいずれもが「○」以上である場合
 3(不可):前記(a)および(b)の評価の少なくとも一方が「×」である場合
<Evaluation of drawability>
1 (excellent): When both of the evaluations (a) and (b) are “⊚” 2 (Good): Both of the evaluations (a) and (b) are “◯” or more Case 3 (No): When at least one of the evaluations (a) and (b) is “x”.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1~4の結果から、実施例1~15の銅合金板材はいずれも、合金組成が本発明の適正範囲内であり、導電率が38%IACS以上であり、算術平均値Aave.が4.0~13.0GPa・%の範囲であるため、放熱性および絞り加工性のいずれもが合格レベル以上であることが分かる。特に、実施例3、6、8、12は、合金組成および製造条件が適切であったため、導電率が特に優れている。実施例1、8、13は、鋳造から調質焼鈍までの条件が適切であり、パラメータAとBが良い値を示したことから、割れの生じないパンチ先端のコーナー部の曲率半径の最小値と、カップ縁のうねりの山谷間の差の最大値がいずれも小さくなったため、絞り加工性が特に優れていた。 From the results of Tables 1 to 4, the copper alloy sheet materials of Examples 1 to 15 all have an alloy composition within the proper range of the present invention, a conductivity of 38% IACS or more, and an arithmetic average value Aave. Since it is in the range of 0 to 13.0 GPa·%, it can be seen that both heat dissipation and drawing workability are at or above the passing level. Particularly, in Examples 3, 6, 8 and 12, the alloy composition and the manufacturing conditions were appropriate, and therefore the conductivity was particularly excellent. In Examples 1, 8 and 13, the conditions from casting to temper annealing were appropriate, and the parameters A and B showed good values. Therefore, the minimum radius of curvature of the corner portion of the punch tip where cracks do not occur. And the maximum value of the difference between the ridges and valleys of the undulation of the cup edge became small, so that the drawability was particularly excellent.
 一方、比較例1,2、4、5、8、はいずれも、Ni+Co量あるいはSiが少なかったため、算術平均値Aave.が本発明の適正範囲外となったため、絞り加工性が劣っていた。比較例6はテンションレベラーでの矯正が行われず伸び率は0%であったために異方性が高いため、Bxが規定外となった。比較例8、10は仕上げ冷間圧延での圧延温度が低くCube方位が多く残留したために算術平均値Aave.が規定外となった。比較例5は、パラメータB90°が規定外となり、絞り加工後の最大高低差が大きくなった。比較例3、7、9はいずれも、成分含有量が本発明の適正範囲よりも多いため、特に導電率が低くなった。特に、比較例7は、矯正での伸びが規定値より大きく、エリクセン値/板厚の値が規定外ともなったため、絞り加工性も劣っていた。比較例11は仕上げ圧延時の材料温度が高くなり、材料と圧延ロールの焼き付きが生じ、材料表面に大きな凹凸などの欠陥が生じたため、特性評価は行わなかったが、絞り加工性は著しく低下するのは明らかであった。 On the other hand, in Comparative Examples 1, 2, 4, 5, and 8, since the Ni+Co content or Si was small, the arithmetic average value Aave. fell outside the appropriate range of the present invention, and the drawability was poor. In Comparative Example 6, the straightening was not performed by the tension leveler and the elongation was 0%, so that the anisotropy was high, and thus Bx was out of the range. In Comparative Examples 8 and 10, the rolling temperature in finish cold rolling was low, and many Cube orientations remained, so that the arithmetic average value Aave. In Comparative Example 5, the parameter B 90° was out of the range, and the maximum height difference after drawing was large. In each of Comparative Examples 3, 7, and 9, the component content was larger than the appropriate range of the present invention, and thus the conductivity was particularly low. Particularly, in Comparative Example 7, the elongation in straightening was larger than the specified value, and the Erichsen value/plate thickness value was also outside the specified value, so the drawability was also poor. In Comparative Example 11, the material temperature during finish rolling became high, seizure of the material and the rolling roll occurred, and defects such as large unevenness occurred on the surface of the material. Therefore, the characteristic evaluation was not performed, but the drawability was remarkably reduced. Was obvious.
 10 エリクセン試験機
 12 ダイ
 14、14A パンチ(ポンチ)
 16 しわ押さえ部材
 W  試験板材
 R  パンチのコーナー部の曲率半径
10 Erichsen Testing Machine 12 Die 14, 14A Punch (Punch)
16 Wrinkle holding member W Test plate material R Punch corner radius of curvature

Claims (9)

  1.  NiおよびCoの1種以上を合計で1.0~5.0質量%、ならびにSiを0.1~1.5質量%含有し、残部がCuおよび不可避不純物である組成を有し、
     導電率が38%IACS以上であり、
     圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力-公称歪曲線から求められる値と、
    電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0~13.0GPa・%の範囲であることを特徴とする銅合金板材。
    Figure JPOXMLDOC01-appb-M000001
     但し、Sc:Cube方位面積率(%)、σnは公称応力(GPa)、εnは公称歪(%)、そして、ELは破断伸び(%)を表す。
    Figure JPOXMLDOC01-appb-M000002
    It has a composition containing 1.0 to 5.0 mass% of one or more of Ni and Co in total, and 0.1 to 1.5 mass% of Si, and the balance of Cu and inevitable impurities.
    Conductivity is 38% IACS or more,
    A value obtained from the nominal stress-nominal strain curve obtained by performing a tensile test on three types of test pieces cut out in the rolling parallel direction, the direction of 45° to the rolling direction, and the vertical direction of the rolling. When,
    The value of the Cube azimuth area ratio obtained by the electron backscattering diffraction (EBSD) method was substituted into the following formula (1), and the value A of each direction of the parameter Ax (x: 0°, 45°, 90°) was calculated. , A 45° and A 90° are obtained, and the obtained values A , A 45° and A 90° in each direction are substituted into the following formula (2) to calculate the arithmetic mean value Aave. Is in the range of 4.0 to 13.0 GPa·%, a copper alloy sheet material.
    Figure JPOXMLDOC01-appb-M000001
    However, Sc:Cube orientation area ratio (%), σn is a nominal stress (GPa), εn is a nominal strain (%), and EL is a breaking elongation (%).
    Figure JPOXMLDOC01-appb-M000002
  2.  前記算術平均値Aave.および前記パラメータAxの値を下記(3)式に代入して算出されるパラメータBx(x:0°、45°、90°)の前記各方向の値B0°、B45°およびB90°が、いずれも10%以下となる、請求項1に記載の銅合金板材。
    Figure JPOXMLDOC01-appb-M000003
    The values B and B 0 of the respective directions of the parameter Bx (x: 0°, 45°, 90°) calculated by substituting the values of the arithmetic average value Aave. and the parameter Ax into the following equation (3). The copper alloy sheet material according to claim 1, wherein both 45° and B 90° are 10% or less.
    Figure JPOXMLDOC01-appb-M000003
  3.  エリクセン試験におけるエリクセン値(Er)の板厚(t)に対する比(Er/t比)と、圧延平行方向に引っ張ったときの破断伸びEL(%)とは、下記(4)式の不等式の関係を満たす、請求項1または2に記載の銅合金板材。
    Figure JPOXMLDOC01-appb-M000004
    The ratio (Er/t ratio) of the Erichsen value (Er) to the plate thickness (t) in the Erichsen test and the breaking elongation EL (%) when stretched in the rolling parallel direction are expressed by the following inequality (4). The copper alloy sheet material according to claim 1, which satisfies the above condition.
    Figure JPOXMLDOC01-appb-M000004
  4.  前記組成は、さらに、Sn、Mg、Mn、Cr、Zr、Ti、FeおよびZnからなる群から選ばれる少なくとも1種の成分を、合計で0.2~1.2質量%以下含有する請求項1~3のいずれか1項に記載の銅合金板材。 The composition further contains at least one component selected from the group consisting of Sn, Mg, Mn, Cr, Zr, Ti, Fe and Zn in a total amount of 0.2 to 1.2% by mass or less. The copper alloy sheet material according to any one of 1 to 3.
  5.  請求項1~4のいずれか1項に記載の銅合金板材を絞り加工して得られた絞り加工品。 A drawn product obtained by drawing the copper alloy sheet according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の銅合金板材または請求項5に記載の絞り加工品を用いて作製された電気・電子部品用部材。 A member for electric/electronic parts produced by using the copper alloy sheet according to any one of claims 1 to 4 or the drawn product according to claim 5.
  7.  請求項1~4のいずれか1項に記載の銅合金板材または請求項5に記載の絞り加工品を用いて作製された電磁波シールド材。 An electromagnetic wave shield material produced by using the copper alloy plate material according to any one of claims 1 to 4 or the drawn product according to claim 5.
  8.  請求項1~4のいずれか1項に記載の銅合金板材または請求項5に記載の絞り加工品を用いて作製された放熱部品。 A heat dissipation component manufactured using the copper alloy sheet according to any one of claims 1 to 4 or the drawn product according to claim 5.
  9.  請求項1~4のいずれか1項に記載の銅合金板材の製造方法であって、
     銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、
     前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度TRを、75℃以上100℃以下に制御し、
     前記矯正[工程9]における材料の伸び率δを、0.1~1.0%とし、そして、
     前記調質焼鈍[工程10]の材料温度TA(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することを特徴とする銅合金板材の製造方法。
          55×δ+450≧TA≧55×δ+350      ・・・(5)
    A method for manufacturing a copper alloy sheet according to any one of claims 1 to 4,
    Casting [step 1], homogenizing treatment [step 2], hot rolling [step 3], chamfering [step 4], cold rolling [step 5], solution heat treatment [step 6] on copper alloy material, Intermediate heat treatment [step 7], finish cold rolling [step 8], straightening [step 9], and temper annealing [step 10] are sequentially performed,
    The maximum temperature TR of the material at the time of rolling in the finish cold rolling [step 8] is controlled to 75° C. or higher and 100° C. or lower,
    The elongation rate δ of the material in the straightening [step 9] is set to 0.1 to 1.0%, and
    A material temperature TA (° C.) of the temper annealing [step 10] is controlled so as to satisfy the relationship of the inequality shown in the following expression (5) in relation to the elongation δ. Production method.
    55×δ+450≧TA≧55×δ+350 (5)
PCT/JP2019/045712 2018-12-13 2019-11-21 Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component WO2020121775A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217007855A KR20210100078A (en) 2018-12-13 2019-11-21 Copper alloy plate and its manufacturing method, and drawing processing products, members for electric/electronic parts, electromagnetic wave shielding materials and heat dissipation parts
CN201980064171.1A CN112789359B (en) 2018-12-13 2019-11-21 Copper alloy sheet material, method for producing same, and drawn product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233487A JP6928597B2 (en) 2018-12-13 2018-12-13 Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts
JP2018-233487 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020121775A1 true WO2020121775A1 (en) 2020-06-18

Family

ID=71075955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045712 WO2020121775A1 (en) 2018-12-13 2019-11-21 Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component

Country Status (4)

Country Link
JP (1) JP6928597B2 (en)
KR (1) KR20210100078A (en)
CN (1) CN112789359B (en)
WO (1) WO2020121775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149121A1 (en) * 2022-02-04 2023-08-10 古河電気工業株式会社 Copper alloy sheet material, and drawn component produced using copper alloy sheet material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111670A (en) * 2020-09-21 2020-12-22 江西理工大学 Cu-Fe-Cr-Mg electromagnetic shielding material and preparation method thereof
CN116287851B (en) * 2022-09-09 2024-05-14 中铝科学技术研究院有限公司 Tin phosphor bronze strip, preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314850A (en) * 2006-05-26 2007-12-06 Nikko Kinzoku Kk Cu-ni-si-based alloy strip excellent in plating adhesion
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
WO2009148101A1 (en) * 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
JP2011231393A (en) * 2010-04-05 2011-11-17 Dowa Metaltech Kk Copper alloy sheet, method for production of copper alloy sheet, and electric/electronic component
WO2016006053A1 (en) * 2014-07-09 2016-01-14 古河電気工業株式会社 Copper alloy sheet material, connector, and method for producing copper alloy sheet material
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
JP2018062705A (en) * 2016-10-12 2018-04-19 Jx金属株式会社 Copper alloy for electronic material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017072A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material
TWI539013B (en) * 2010-08-27 2016-06-21 Furukawa Electric Co Ltd Copper alloy sheet and method of manufacturing the same
WO2012160684A1 (en) 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP6228725B2 (en) * 2011-11-02 2017-11-08 Jx金属株式会社 Cu-Co-Si alloy and method for producing the same
JP5437519B1 (en) * 2013-07-31 2014-03-12 Jx日鉱日石金属株式会社 Cu-Co-Si-based copper alloy strip and method for producing the same
CN105593390B (en) * 2013-09-26 2017-03-22 三菱伸铜株式会社 A copper alloy
CN108026611B (en) * 2015-09-09 2021-11-05 三菱综合材料株式会社 Copper alloy for electronic/electric device, module for electronic/electric device, terminal, and bus bar
JP6883456B2 (en) * 2017-03-31 2021-06-09 Jx金属株式会社 Manufacturing method of laminates and molded products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314850A (en) * 2006-05-26 2007-12-06 Nikko Kinzoku Kk Cu-ni-si-based alloy strip excellent in plating adhesion
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
WO2009148101A1 (en) * 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
JP2011231393A (en) * 2010-04-05 2011-11-17 Dowa Metaltech Kk Copper alloy sheet, method for production of copper alloy sheet, and electric/electronic component
WO2016006053A1 (en) * 2014-07-09 2016-01-14 古河電気工業株式会社 Copper alloy sheet material, connector, and method for producing copper alloy sheet material
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
JP2018062705A (en) * 2016-10-12 2018-04-19 Jx金属株式会社 Copper alloy for electronic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149121A1 (en) * 2022-02-04 2023-08-10 古河電気工業株式会社 Copper alloy sheet material, and drawn component produced using copper alloy sheet material
JP7328472B1 (en) * 2022-02-04 2023-08-16 古河電気工業株式会社 Copper alloy sheet materials and drawn parts made from copper alloy sheet materials

Also Published As

Publication number Publication date
KR20210100078A (en) 2021-08-13
CN112789359B (en) 2022-05-03
JP6928597B2 (en) 2021-09-01
JP2020094242A (en) 2020-06-18
CN112789359A (en) 2021-05-11

Similar Documents

Publication Publication Date Title
US7485200B2 (en) Copper alloy and method of manufacturing the same
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
KR101419149B1 (en) Copper alloy sheet
US20110223056A1 (en) Copper alloy sheet
WO2020121775A1 (en) Copper alloy sheet, method for manufacturing same, drawing product, electric/electronic component member, electromagnetic shield material, and heat dissipation component
JP2012188689A (en) Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
US20100316879A1 (en) Copper alloy material for electric/electronic components
CN111971406B (en) Copper alloy sheet material, method for producing copper alloy sheet material, and connector using copper alloy sheet material
JP2018159103A (en) Copper alloy strip having improved dimensional accuracy after press working
JP6900137B1 (en) Copper alloy plate material and its manufacturing method, and members for electrical and electronic parts
JP7113039B2 (en) Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components
JP7328471B1 (en) Copper alloy sheet material, manufacturing method thereof, electronic component and drawn product
JP7328472B1 (en) Copper alloy sheet materials and drawn parts made from copper alloy sheet materials
TW202403787A (en) Copper alloy sheet and drawn component
CN116397130A (en) Cu- [ Ni, co ] -Si-based copper alloy sheet, method for producing same, energizing member, and heat dissipating member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895925

Country of ref document: EP

Kind code of ref document: A1