JPH06248375A - High strength and conductive copper alloy - Google Patents

High strength and conductive copper alloy

Info

Publication number
JPH06248375A
JPH06248375A JP30974892A JP30974892A JPH06248375A JP H06248375 A JPH06248375 A JP H06248375A JP 30974892 A JP30974892 A JP 30974892A JP 30974892 A JP30974892 A JP 30974892A JP H06248375 A JPH06248375 A JP H06248375A
Authority
JP
Japan
Prior art keywords
alloy
strength
conductivity
copper alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30974892A
Other languages
Japanese (ja)
Inventor
Toubun Nagai
燈文 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP30974892A priority Critical patent/JPH06248375A/en
Publication of JPH06248375A publication Critical patent/JPH06248375A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a copper allay for a spring having high strength and high electrical conductivity by specifying the compsn. constituted of Ti, Cr, Zr, Fe, Ni and Cu. CONSTITUTION:This is a copper alloy for a spring contg., by weight, 2.0 to 5.O% Ti, 0.01 to 0.6% Cr, 0.01 to 0.2%. Zr, 0.01 to 0.3% Fe and 0.01 to 0.3% Ni, and the balance Cu with inevitable impurities. By adding Cr and Zr to Cu-Ti alloy series, its strength is improved, and by adding Fe and Ni, mainly, its electrical conductivity is improved. This copper alloy is subjected to hot rolling, cold rolling and solution treatment, is again subjected to cold rolling and is subjected to aging treatment at 350 to 500 deg.C, by which its characteristics of excellent strength and electrical conductivity can be obtd. without deteriorating its elongation and workability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度高導電銅合金に
関する。本発明の用途として、例えば、コネクター、リ
レー、スイッチ等の導電性バネ材料の用途に適したもの
である。
FIELD OF THE INVENTION The present invention relates to a high strength and high conductivity copper alloy. As a use of the present invention, for example, it is suitable for use of a conductive spring material such as a connector, a relay and a switch.

【0002】[0002]

【従来技術および問題点】従来、コネクター、リレー、
スイッチ等の導電性バネ材料には、リン青銅、洋白、チ
タン銅、ベリリウム銅等の銅合金が使用されている。ベ
リリウム銅は、強度と導電性に対して優れた特性を有し
ているが、ベリリウムに強い有毒性があり、特殊な製造
設備を必要とすることから、価格が高価であるという欠
点を有している。また、バネ材料の重要な特性である応
力緩和特性に優れた材料として、チタン銅と称するCu
−Ti合金があり、特に導電性バネ材料には、Tiを
2.0〜5.0%含有するCu−Ti合金が使用されて
いる。Cu−Ti合金は、著しい時効硬化性があり、ベ
リリウム銅に匹敵する強度を有しているが、導電性がや
や低い欠点を有している。また、強度を高めるためにT
iの含有量を高めると、導電性が低下する問題が生じ
る。近年は電子機器の小型化、軽量化に伴い、電子部品
の小型化、薄肉化の要求がいっそう強くなっている。こ
のため、導電性バネ材料についても、強度や導電性等の
特性を改善する必要が迫られている。ところが、Cu−
Ti合金のような時効硬化性を有する合金では、導電性
を高めるために高温長時間の時効処理を行うと、過時効
となって強度が低下する問題が生じる。
[Prior Art and Problems] Conventionally, connectors, relays,
A copper alloy such as phosphor bronze, nickel silver, titanium copper, and beryllium copper is used as a conductive spring material such as a switch. Beryllium copper has excellent properties in terms of strength and conductivity, but has the drawback of being expensive because it is highly toxic to beryllium and requires special manufacturing equipment. ing. Further, as a material excellent in stress relaxation characteristics, which is an important characteristic of spring materials, Cu called titanium copper is used.
There is a -Ti alloy, and particularly for a conductive spring material, a Cu-Ti alloy containing 2.0 to 5.0% of Ti is used. The Cu-Ti alloy has a remarkable age hardening property and has a strength comparable to that of beryllium copper, but has a drawback that its conductivity is slightly low. Also, to increase strength, T
Increasing the content of i causes a problem that conductivity decreases. In recent years, as electronic devices have become smaller and lighter, demands for smaller electronic components and thinner walls have become stronger. Therefore, it is also necessary to improve the properties such as strength and conductivity of the conductive spring material. However, Cu-
In an age-hardenable alloy such as a Ti alloy, when the aging treatment is performed at high temperature for a long time in order to increase the conductivity, there is a problem that the strength deteriorates due to overaging.

【0003】[0003]

【問題点を解決する手法】これらの問題を解決するため
に、Cu−Ti合金の特性を改善する検討を行ったとこ
ろ、Cu−Ti合金よりもさらに高強度かつ高導電性を
有する合金を開発することができた。Cu−Ti合金に
適量のCrとZrを添加することにより、導電性や加工
性等の特性を低下させることなく、強度の向上ができ
た。Cu−Ti合金に適量のFeとNiを添加すること
により、強度を低下させることなく、導電性を向上させ
ることができた。即ち、本発明は、Ti 2.0〜5.
0wt%、Cr 0.01〜0.6wt%、Zr 0.
01〜0.2wt%、Fe 0.01〜0.3wt%、
Ni 0.01〜0.3wt%を含有し、残部がCu及
び不可避的不純物からなることを特徴とする高強度高導
電銅合金である。
[Methods for solving the problems] In order to solve these problems, a study was conducted to improve the properties of the Cu-Ti alloy, and an alloy having higher strength and higher conductivity than the Cu-Ti alloy was developed. We were able to. By adding an appropriate amount of Cr and Zr to the Cu-Ti alloy, the strength could be improved without deteriorating the characteristics such as conductivity and workability. By adding appropriate amounts of Fe and Ni to the Cu-Ti alloy, it was possible to improve the conductivity without lowering the strength. That is, according to the present invention, Ti 2.0 to 5.
0 wt%, Cr 0.01 to 0.6 wt%, Zr 0.
01-0.2 wt%, Fe 0.01-0.3 wt%,
A high-strength and high-conductivity copper alloy containing 0.01 to 0.3 wt% of Ni and the balance being Cu and inevitable impurities.

【0004】[0004]

【発明の具体的説明】Tiを2.0〜5.0wt%含む
Cu−Ti合金は、溶体化処理後に急冷し、時効処理を
行うことで、母相と整合した微細な析出物が生成して、
著しい時効硬化性をもたらし、強度やバネ性に優れる時
効析出硬化型の銅合金である。本発明は、Cu−Ti合
金系の強度と導電性をさらに改善した、高強度かつ高導
電性を有する時効析出硬化型の銅合金である。一般に、
時効析出硬化型の合金では、溶体化処理を高温、あるい
は長時間の条件で行うと結晶粒が粗大化し、強度の低下
や、加工性の悪化が生じる。逆に、溶体化処理の温度が
低く過ぎたり、処理時間が短か過ぎると十分な溶体化処
理ができない。また、時効処理を高温で行う、あるいは
時効処理を長時間行うと導電率は向上するが、過時効に
なると、強度が低下する。このため、目的とする合金系
の特性に合わせて、溶体化処理と時効処理の条件を適正
にする必要があるが、この条件は合金の組成によってほ
ぼ決定され、自由にコントロールすることはできない。
DETAILED DESCRIPTION OF THE INVENTION A Cu—Ti alloy containing Ti in an amount of 2.0 to 5.0 wt% is rapidly cooled after solution treatment and is subjected to an aging treatment to form fine precipitates aligned with the mother phase. hand,
It is an age precipitation hardening type copper alloy that brings remarkable age hardening properties and is excellent in strength and spring properties. The present invention is an age precipitation hardening type copper alloy having high strength and high conductivity, in which the strength and conductivity of the Cu-Ti alloy system are further improved. In general,
In the age precipitation hardening type alloy, when the solution treatment is carried out at high temperature or for a long time, the crystal grains become coarse, and the strength is lowered and the workability is deteriorated. On the contrary, if the solution treatment temperature is too low or the treatment time is too short, the solution treatment cannot be performed sufficiently. Further, if the aging treatment is carried out at a high temperature or if the aging treatment is carried out for a long time, the conductivity is improved, but if it is overaged, the strength is lowered. For this reason, it is necessary to make the conditions of the solution treatment and the aging treatment appropriate according to the characteristics of the intended alloy system, but these conditions are almost determined by the composition of the alloy and cannot be freely controlled.

【0005】Cu−Cr合金およびCu−Zr合金は、
Cu−Ti合金と同様に、時効析出硬化型合金である。
Cu−Ti合金にCrとZrを添加すると、CrとZr
による時効析出硬化も生じて、Cu−Ti合金に比較し
て強度が向上する。また、Cu−Ti合金に適量のCr
を添加すると、溶体化処理時に結晶粒の粗大化を抑制す
る効果がある。さらに、Cu−Ti合金に適量のZrを
添加すると、時効処理時の粒界型析出を抑制し、過時効
による軟化を抑制する効果がある。Cu−Ti合金に適
量のFeとNiを添加すると、Cu−Ti合金よりも、
高温長時間の時効処理が可能になり、強度を低下させる
ことなく、導電性を向上させることができる。これは、
FeあるいはNiを含む化合物が時効析出するまでに要
する時効処理条件が、Cu−Ti合金の場合よりも高温
長時間であるため、Cu−Ti合金では過時効となって
軟化する条件で、再び時効析出による硬化が生じるため
である。また、FeとNiを同時に添加することによっ
て、その析出に要する時間の違いから、過時効による強
度低下を防止する効果が顕著になる。
Cu-Cr alloys and Cu-Zr alloys are
Like the Cu-Ti alloy, it is an age precipitation hardening alloy.
When Cr and Zr are added to the Cu-Ti alloy, Cr and Zr
Also causes age precipitation hardening, and the strength is improved as compared with the Cu-Ti alloy. In addition, an appropriate amount of Cr for the Cu-Ti alloy
Is effective in suppressing coarsening of crystal grains during the solution treatment. Furthermore, adding an appropriate amount of Zr to the Cu-Ti alloy has the effect of suppressing grain boundary precipitation during aging treatment and suppressing softening due to overaging. When an appropriate amount of Fe and Ni are added to the Cu-Ti alloy,
Aging treatment at high temperature for a long time becomes possible, and conductivity can be improved without lowering strength. this is,
Since the aging treatment condition required for aging precipitation of the compound containing Fe or Ni is higher temperature and longer time than in the case of Cu-Ti alloy, the aging treatment is performed again under the condition that the Cu-Ti alloy softens due to overaging. This is because the precipitation causes hardening. Further, by simultaneously adding Fe and Ni, the effect of preventing the strength reduction due to overaging becomes remarkable due to the difference in the time required for the precipitation.

【0006】次に、本発明の合金系の組成範囲について
説明する。本発明において、Tiの含有量を2.0〜
5.0wt%とした理由は、Tiの含有量が2.0wt
%未満では、十分な時効析出硬化が生じないため、バネ
材料に必要な強度が得られないためである。また、Ti
の含有量が5.0wt%を越えると、加工性と導電性が
著しく悪化するためである。Crの含有量を0.01〜
0.6wt%、またZrの含有量を0.01〜0.2w
t%とした理由は、CrあるいはZrの含有量が各々
0.01%未満では、粒界型析出の抑制効果や、結晶粒
を微細化する効果が得られず、強度を向上することがで
きないためである。Crの含有量が0.6wt%を越え
ると、あるいはZrの含有量が0.2wt%を越える
と、CrあるいはZrが銅中に固溶できる限界量を越え
るため、溶体化処理を行った後に、CrやZrあるいは
Cr、Zrを含む化合物が、既に析出しており、この析
出物は時効析出硬化に寄与しないだけでなく、伸びの低
下や、加工性を悪化させるためである。FeおよびNi
の含有量をそれぞれ0.01〜0.3wt%とした理由
は、FeあるいはNiの含有量が各々0.01%未満で
は、FeあるいはNiを含む化合物による時効析出効果
が得られず、強度を低下させることなく、導電性を向上
させることができないためである。FeあるいはNiの
含有量が0.3wt%を越えると、溶解鋳造時にTiと
化合し、TiとFeあるいはNiを含む化合物が析出
し、この析出物は均質化焼鈍や溶体化処理で溶体化がで
きないので、時効析出硬化に寄与しないだけでなく、溶
体化するTiの量を減少させ、強度の低下をもたらすた
めである。また、この析出物は、室温では母相に比べて
固いため、伸びを低下させたり、冷間加工性を悪化さ
せ、割れの原因となるので、FeあるいはNiの含有量
は0.3wt%を越えてはならない。使用する原材料
は、純金族あるいは母合金を用いるが、不純物元素が少
ないことが望ましい。本発明の合金中には、TiやZr
のような活性金属を含むので、酸素等のガス成分が少な
い原材料を用いることが望ましい。
Next, the composition range of the alloy system of the present invention will be described. In the present invention, the content of Ti is 2.0 to
The reason for setting 5.0 wt% is that the content of Ti is 2.0 wt.
If it is less than%, sufficient age precipitation hardening does not occur, so that the strength required for the spring material cannot be obtained. Also, Ti
This is because if the content of Al exceeds 5.0 wt%, workability and conductivity are significantly deteriorated. The content of Cr is 0.01 to
0.6 wt% and Zr content of 0.01 to 0.2 w
The reason for setting t% is that if the content of Cr or Zr is less than 0.01%, the effect of suppressing grain boundary type precipitation and the effect of refining crystal grains cannot be obtained, and the strength cannot be improved. This is because. If the Cr content exceeds 0.6 wt% or if the Zr content exceeds 0.2 wt%, the limit amount of Cr or Zr that can form a solid solution in copper is exceeded. This is because Cr, Zr, or a compound containing Cr, Zr has already precipitated, and this precipitate not only contributes to age precipitation hardening, but also decreases elongation and deteriorates workability. Fe and Ni
The content of each of 0.01 to 0.3 wt% is because the Fe or Ni content is less than 0.01%, the aging precipitation effect by the compound containing Fe or Ni cannot be obtained, and the strength is This is because the conductivity cannot be improved without lowering the conductivity. When the content of Fe or Ni exceeds 0.3 wt%, it is combined with Ti during melting and casting, and a compound containing Ti and Fe or Ni is precipitated, and this precipitate is not solutionized by homogenizing annealing or solution treatment. This is because not only it does not contribute to age precipitation hardening, but also the amount of Ti to be solution-treated is reduced and the strength is lowered. Further, since this precipitate is harder than the parent phase at room temperature, it lowers elongation, deteriorates cold workability, and causes cracking. Therefore, the content of Fe or Ni should be 0.3 wt% or less. Do not cross. The raw material used is a pure metal or a mother alloy, but it is desirable that the impurity element is small. In the alloy of the present invention, Ti and Zr
It is desirable to use a raw material containing a small amount of gas components such as oxygen because it contains such an active metal.

【0007】次に、熱処理の条件について説明する。本
発明の合金成分中に、特に酸素と化合しやすい、Tiや
Zrのような活性金属を含むので、合金の作成は、真空
中あるいは不活性ガス中で溶解する。合金を溶解し、金
型に鋳造して得られたインゴットは、凝固時の偏析が生
じるので、800〜950℃の温度に保持して、均質化
焼鈍を行ったのち、熱間圧延を行う。均質化焼鈍の温度
が800℃未満では、温度が低過ぎて、十分に均質化で
きない。溶体化処理は、800〜950℃の温度に保持
して単相化した後、水中に入れて冷却する等の方法で、
急冷して、過飽和固溶体とする。溶体化処理の温度が8
00℃未満では、温度が低過ぎて、合金元素を十分に固
溶させることができず、単相化できない場合がある。固
溶できなかった合金元素は析出物となり、伸びの低下や
加工性を悪化させる原因となる。また、溶体化処理の温
度が950℃を越えると、結晶粒が粗大化するため、強
度が低下し、加工性が悪くなる。時効処理は、溶体化処
理で得られた過飽和固溶体を、冷間圧延した後、350
〜500℃の温度に保持して行う。時効処理を行うと、
徐々に強度と導電率が高くなっていくが、必要以上に長
時間の時効処理を行うと過時効となって、強度が低下す
るので、適切な条件を選ばなければならない。組成によ
って、適切な時効処理の温度と時間は異なるので、組成
ごとに適切な条件を見出す試験を行う。時効処理の温度
が500℃を越えると、合金元素が銅中に固溶する溶解
度が大きくなり、強度や導電率が低下する。また、時効
処理の温度が350℃未満では、時効処理は可能ではあ
るが、極めて長時間の処理が必要になるので、生産性が
悪くなり、工業的に意味がない。
Next, the heat treatment conditions will be described. Since the alloy component of the present invention contains an active metal such as Ti or Zr that is particularly likely to combine with oxygen, the alloy is melted in vacuum or in an inert gas. Since the ingot obtained by melting the alloy and casting it in a mold causes segregation during solidification, it is held at a temperature of 800 to 950 ° C., homogenized annealing is performed, and then hot rolling is performed. If the homogenization annealing temperature is less than 800 ° C, the temperature is too low to be sufficiently homogenized. The solution treatment is carried out by holding the temperature at 800 to 950 ° C. to form a single phase, and then putting it in water to cool it.
Quench to form a supersaturated solid solution. Solution treatment temperature is 8
If the temperature is lower than 00 ° C, the temperature is too low to allow the alloying elements to be sufficiently solid-dissolved, and it may not be possible to form a single phase. The alloy elements that cannot be solid-dissolved become precipitates, which causes a decrease in elongation and deterioration of workability. Further, if the solution treatment temperature exceeds 950 ° C., the crystal grains become coarse, so that the strength decreases and the workability deteriorates. The aging treatment was performed by cold rolling the supersaturated solid solution obtained by the solution treatment and then 350
Hold at a temperature of ~ 500 ° C. When aging treatment is performed,
Although the strength and the electric conductivity gradually increase, if the aging treatment is performed for a longer time than necessary, overaging causes the strength to decrease, so that an appropriate condition must be selected. Since the appropriate aging temperature and time differ depending on the composition, a test to find appropriate conditions for each composition is performed. When the temperature of the aging treatment exceeds 500 ° C., the solubility of the alloying element in solid solution in copper becomes large, and the strength and the conductivity decrease. Further, if the aging temperature is lower than 350 ° C., the aging treatment is possible, but since the treatment for an extremely long time is required, the productivity is deteriorated and it is industrially meaningless.

【0008】以下、本発明の実施例について説明する。Hereinafter, examples of the present invention will be described.

【実施例】本発明の合金組成を配合し、高周波真空溶解
炉を用いて、黒鉛坩堝中で真空溶解後、金型に鋳造し、
30mm×80mm×150mmのインゴットにした。その化
学成分組成を第1表に示す。インゴットを面削後、90
0℃に加熱して均質化焼鈍後、熱間圧延を行って、幅8
0mm、厚さ7mmの板材とし、面削して表面のスケール等
の欠陥を除去した。これを厚さ1.5mmまで冷間圧延
し、850℃で溶体化処理後、水中で急冷した。続いて
厚さ0.6mmまで冷間圧延し、再び850℃で溶体化処
理後、水中で急冷した。これを最終加工度50%で冷間
圧延し、0.3mmの板に仕上げ、350〜500℃の範
囲内の温度で、時効硬化が最大となるような条件で、真
空中で時効処理を行った。その時効処理条件を、第2表
に示す。このようにして得られた板材について、引張強
度、伸び、ビッカース硬度、導電率を測定した。その時
効処理条件と特性を測定した結果を、第2表に示す。第
2表に示す加工性は、冷間圧延中にサイドに割れが発生
したものを×で示し、サイドに割れが発生しなかったも
のを○で示す。また同様の方法で行った比較の例の結果
を、表1と表2に合わせて示す。
[Examples] The alloy composition of the present invention was blended, vacuum melted in a graphite crucible using a high frequency vacuum melting furnace, and then cast in a mold,
We made an ingot of 30mm x 80mm x 150mm. The chemical composition is shown in Table 1. After chamfering the ingot, 90
After heating to 0 ° C and homogenizing annealing, hot rolling is performed to obtain a width of 8
A plate material having a thickness of 0 mm and a thickness of 7 mm was used and the surface was ground to remove defects such as scale on the surface. This was cold-rolled to a thickness of 1.5 mm, solution-treated at 850 ° C., and then rapidly cooled in water. Then, it was cold-rolled to a thickness of 0.6 mm, solution-treated again at 850 ° C., and then rapidly cooled in water. This is cold-rolled with a final working ratio of 50%, finished into a 0.3 mm plate, and subjected to an aging treatment in vacuum at a temperature in the range of 350 to 500 ° C. under conditions that maximize age hardening. It was The aging treatment conditions are shown in Table 2. The tensile strength, elongation, Vickers hardness, and conductivity of the plate material thus obtained were measured. Table 2 shows the results of measuring the aging treatment conditions and characteristics. The workability shown in Table 2 is indicated by x when cracks occurred on the side during cold rolling, and by o when cracks did not occur on the side. In addition, the results of comparative examples made in the same manner are shown in Tables 1 and 2.

【表1】 [Table 1]

【表2】 [Table 2]

【0009】表1および表2から明らかなように、本発
明の合金組成では、時効硬化が最大となるような条件で
は、引張強度が100kg/mm2以上であり、かつ導電率が
13%IACS以上であり、比較合金組成の場合に比べ
て、高強度と高導電性を有することが明らかである。ま
た、高強度であるにもかかわらず、伸びが11.7%以
上と大きい。合金番号7および8のように、Feおよび
Niを含まない合金では、導電率が10〜11%IAC
Sと低く、時効硬化が最大となるような条件では、導電
性が悪いことがわかる。また合金番号9および10のよ
うに、FeまたはNiのいずれかを含まない場合は、本
発明合金に比べて、過時効による強度低下を抑制する効
果が小さく、FeおよびNiの相乗効果によって高強度
を保つことが可能になる。
As is clear from Tables 1 and 2, the alloy composition of the present invention has a tensile strength of 100 kg / mm 2 or more and an electric conductivity of 13% IACS under the conditions that maximize the age hardening. From the above, it is clear that the alloy has high strength and high conductivity as compared with the case of the comparative alloy composition. In addition, the elongation is as large as 11.7% or more despite the high strength. Alloys containing no Fe and Ni, such as alloy numbers 7 and 8, have a conductivity of 10-11% IAC.
It can be seen that the conductivity is poor under the condition where S is low and the age hardening is maximum. Further, as in Alloy Nos. 9 and 10, when either Fe or Ni is not contained, the effect of suppressing the strength reduction due to overaging is smaller than that of the alloys of the present invention, and the high strength due to the synergistic effect of Fe and Ni. It becomes possible to keep.

【0010】合金番号3の本発明合金と、合金番号11
の比較合金を比較すると、合金番号11では、Crの含
有量が0.01wt%未満であるため、引張強度が6kg
/mm2ほど低い。また、合金番号14のように、Tiの含
有量が2.0wt%未満であると、引張強度が著しく低
下し、バネ材料の用途に適さなくなることが明らかであ
る。本発明の合金組成では、いずれも伸びが11.7%
以上であるが、合金番号9,10,12,13のよう
に、FeあるいはNiの組成が0.3wt%を越える
と、伸びが5.7%以下に低下する。これは、Feある
いはNiの含有量が0.3wt%を越えると、TiとF
eあるいはNiを含む化合物が析出するためである。本
発明の合金組成では、冷間圧延中に割れは発生しなかっ
た。合金番号10および13から明らかなように、Fe
あるいはNiの組成が0.3wt%を越えると、冷間圧
延中にサイドに割れが発生し、加工性が悪くなることが
わかる。
Alloy No. 3 of the present invention and Alloy No. 11
Comparing the comparative alloys of No. 11 and No. 11, since the Cr content is less than 0.01 wt%, the tensile strength is 6 kg.
As low as / mm 2 . Further, it is clear that when the Ti content is less than 2.0 wt% as in Alloy No. 14, the tensile strength is remarkably reduced and the spring material is not suitable for use. In the alloy composition of the present invention, the elongation is 11.7% in all cases.
As described above, when the composition of Fe or Ni exceeds 0.3 wt% as in Alloy Nos. 9, 10, 12, and 13, the elongation decreases to 5.7% or less. This is because if the Fe or Ni content exceeds 0.3 wt%, Ti and F
This is because a compound containing e or Ni is deposited. With the alloy composition of the present invention, cracking did not occur during cold rolling. As is clear from alloy numbers 10 and 13, Fe
Alternatively, it can be seen that if the Ni composition exceeds 0.3 wt%, cracks occur on the side during cold rolling and workability deteriorates.

【0011】[0011]

【発明の効果】本発明によって、伸びや加工性を損なう
ことなく、強度と導電性に優れた特性を持つ、導電性バ
ネ材料に適した高強度高導電銅合金を得ることができ
る。
According to the present invention, it is possible to obtain a high-strength and high-conductivity copper alloy suitable for a conductive spring material, which has excellent strength and conductivity without impairing elongation and workability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ti 2.0〜5.0wt%、Cr
0.01〜0.6wt%、Zr 0.01〜0.2wt
%、Fe 0.01〜0.3wt%、Ni 0.01〜
0.3wt%を含有し、残部がCu及び不可避的不純物
からなることを特徴とする高強度高導電銅合金。
1. Ti 2.0-5.0 wt%, Cr
0.01-0.6 wt%, Zr 0.01-0.2 wt
%, Fe 0.01 to 0.3 wt%, Ni 0.01 to
A high-strength and high-conductivity copper alloy containing 0.3 wt% and the balance being Cu and unavoidable impurities.
JP30974892A 1992-10-26 1992-10-26 High strength and conductive copper alloy Pending JPH06248375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30974892A JPH06248375A (en) 1992-10-26 1992-10-26 High strength and conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30974892A JPH06248375A (en) 1992-10-26 1992-10-26 High strength and conductive copper alloy

Publications (1)

Publication Number Publication Date
JPH06248375A true JPH06248375A (en) 1994-09-06

Family

ID=17996825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30974892A Pending JPH06248375A (en) 1992-10-26 1992-10-26 High strength and conductive copper alloy

Country Status (1)

Country Link
JP (1) JPH06248375A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406597C (en) * 2005-03-14 2008-07-30 日矿金属株式会社 Titanium copper alloy having excellent punchability
KR100879210B1 (en) * 2004-06-22 2009-01-16 현대중공업 주식회사 Manufacturing Method of Chromium Copper Contact Tips with Superior High-Temperature Anti-Wear Performance
JP2014074193A (en) * 2012-10-02 2014-04-24 Jx Nippon Mining & Metals Corp Titanium copper and its manufacturing method
JP2017020115A (en) * 2016-08-29 2017-01-26 Jx金属株式会社 Titanium copper and manufacturing method therefor
CN112877553A (en) * 2021-01-12 2021-06-01 宁波金田铜业(集团)股份有限公司 Preparation method of copper-titanium alloy bar wire
CN115194102A (en) * 2022-05-27 2022-10-18 北京科技大学 Non-vacuum short-process preparation and processing method of Cu-Ti alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879210B1 (en) * 2004-06-22 2009-01-16 현대중공업 주식회사 Manufacturing Method of Chromium Copper Contact Tips with Superior High-Temperature Anti-Wear Performance
CN100406597C (en) * 2005-03-14 2008-07-30 日矿金属株式会社 Titanium copper alloy having excellent punchability
JP2014074193A (en) * 2012-10-02 2014-04-24 Jx Nippon Mining & Metals Corp Titanium copper and its manufacturing method
JP2017020115A (en) * 2016-08-29 2017-01-26 Jx金属株式会社 Titanium copper and manufacturing method therefor
CN112877553A (en) * 2021-01-12 2021-06-01 宁波金田铜业(集团)股份有限公司 Preparation method of copper-titanium alloy bar wire
CN115194102A (en) * 2022-05-27 2022-10-18 北京科技大学 Non-vacuum short-process preparation and processing method of Cu-Ti alloy

Similar Documents

Publication Publication Date Title
KR100360131B1 (en) Method for improving the bendability of copper alloy and copper alloy manufactured therefrom
US8317948B2 (en) Copper alloy for electronic materials
EP0666931B1 (en) Copper alloy having high strength and conductivity and method of manufacturing thereof
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
US8444779B2 (en) Cu—Ni—Si—Co copper alloy for electronic materials and method for manufacturing same
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
US3923558A (en) Copper base alloy
CN110923499B (en) Ce and B-containing titanium bronze alloy strip and preparation method thereof
KR20010077917A (en) Copper alloy for electronic materials
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JPH06264202A (en) Production of high strength copper alloy
CN109338151B (en) Copper alloy for electronic and electrical equipment and application
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JPH06248375A (en) High strength and conductive copper alloy
JP4313136B2 (en) High strength copper alloy with excellent bending workability
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP4904455B2 (en) Copper alloy and manufacturing method thereof
JP7227245B2 (en) Method for producing copper alloy sheet material excellent in strength and electrical conductivity, and copper alloy sheet material produced therefrom
KR910003882B1 (en) Cu-alloy for electric parts and the process for making
KR19990048844A (en) Copper (Cu) -nickel (Ni) -manganese (Mn) -tin (Sn) -silicon (Si) alloys for high-strength wire and plate and its manufacturing method
KR20130109238A (en) High-strength copper alloy forging
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL