JP2005097638A - High-strength copper alloy superior in bending workability - Google Patents

High-strength copper alloy superior in bending workability Download PDF

Info

Publication number
JP2005097638A
JP2005097638A JP2003329423A JP2003329423A JP2005097638A JP 2005097638 A JP2005097638 A JP 2005097638A JP 2003329423 A JP2003329423 A JP 2003329423A JP 2003329423 A JP2003329423 A JP 2003329423A JP 2005097638 A JP2005097638 A JP 2005097638A
Authority
JP
Japan
Prior art keywords
bending workability
phase particles
mass
copper
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003329423A
Other languages
Japanese (ja)
Other versions
JP4313135B2 (en
Inventor
Yasutaka Sugawara
保孝 菅原
Kazuhiko Fukamachi
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2003329423A priority Critical patent/JP4313135B2/en
Publication of JP2005097638A publication Critical patent/JP2005097638A/en
Application granted granted Critical
Publication of JP4313135B2 publication Critical patent/JP4313135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To further improve a strength of a copper-titanium alloy, while respecting the essence of the strengthening mechanism and maintaining the superior characteristics of the alloy. <P>SOLUTION: The high-strength copper alloy superior in bending workability is a copper-base alloy which comprises 2.0-4.0 mass% Ti and 0.01-0.50 mass% one or more third elements among Fe, Co, Ni, Si, Cr, V, Zr, B, and P, and contains a secondary phase particle having the area of 0.01 μm<SP>2</SP>or more when the cross section of the alloy is observed with a microscope, in an amount of 10/μm<SP>2</SP>or less by average particle density. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コネクタ材等に使用する銅合金に関するものであり、特に、優れた曲げ加工性と高強度とを同時に実現した銅合金の製造技術を提供するものである。   The present invention relates to a copper alloy used for a connector material or the like, and in particular, provides a copper alloy manufacturing technique that simultaneously realizes excellent bending workability and high strength.

チタンを含有する銅合金(以下、「チタン銅」と称する。)は、コネクタ材等に使用されている。近年電子機器の軽薄短小化に伴い、コネクター材に対する高強度化及び優れた曲げ加工性のニーズが益々高まりつつあり、チタン銅においてもさらなる高強度化に関する研究開発が種々行われている。従来の銅合金には、チタン銅にNiおよびAlを添加するものがある(例えば、特許文献1参照。)。また、チタン銅にAlおよびMgを添加したものもある(例えば、特許文献2参照。)。さらに、チタン銅にSn、NiおよびCoを添加したものもある(例えば、特許文献3参照。)。近年においては、チタン銅にCr、Zr、NiおよびFeを添加する技術が提案されている(例えば、特許文献4参照。)。また、結晶粒の微細化に関する技術も開示されている(例えば、特許文献5参照。)。さらに、チタン銅にZn、Cr、Zr、Fe、Ni、Sn、In、PおよびSiを添加する技術も提案されている(例えば、特許文献6参照。)。
チタン銅は、溶体化処理によって過飽和固溶体を形成させ、その状態から低温時効を施すと、準安定相である変調構造が発達し、その発達段階の或る時期において著しく硬化する。これが発達し過ぎるといわゆる過時効の状態となり、最終的には安定相であるTiCuが析出し、この相が増えると逆に軟化してしまう。
A copper alloy containing titanium (hereinafter referred to as “titanium copper”) is used for connector materials and the like. In recent years, as electronic devices have become lighter, thinner and shorter, the need for higher strength and superior bending workability for connector materials is increasing, and various research and development has been carried out on titanium copper. Some conventional copper alloys include Ni and Al added to titanium copper (see, for example, Patent Document 1). Further, there is a titanium copper to which Al and Mg are added (for example, see Patent Document 2). Further, there is a titanium copper to which Sn, Ni, and Co are added (for example, see Patent Document 3). In recent years, a technique for adding Cr, Zr, Ni, and Fe to titanium copper has been proposed (see, for example, Patent Document 4). In addition, a technique related to crystal grain refinement is also disclosed (see, for example, Patent Document 5). Furthermore, a technique for adding Zn, Cr, Zr, Fe, Ni, Sn, In, P, and Si to titanium copper has been proposed (see, for example, Patent Document 6).
When titanium copper forms a supersaturated solid solution by solution treatment and is subjected to low-temperature aging from this state, a modulated structure that is a metastable phase develops and hardens significantly at a certain stage of the development stage. If this develops too much, it will be in a so-called overaging state, and eventually TiCu 3 which is a stable phase will precipitate, and if this phase increases, it will soften conversely.

この一連の時効過程において、高い強度を示す変調構造は、不安定な過飽和固溶体から起こり得る変化であり、安定相であるTiCu相から準安定相である変調構造へは変化し得ない。一方、溶体化処理が不十分だった場合、母相中に固溶仕切れなかったチタンは、TiCuとして析出したままの状態で残ることになる。よって時効での硬化を最大限に引き出すには、その前工程の溶体化処理でTiCu相を完全に無くす、言い換えればチタンを完全に母相中に固溶させる必要があり、そのためには、チタンの固溶限がチタン含有量を超える温度まで加熱する必要がある。例えば、銅にチタンを3%含有させた場合には、チタンを完全に固溶させるには、800℃以上の温度まで加熱して溶体化処理をする必要がある。 In this series of aging processes, a modulation structure exhibiting high strength is a change that can occur from an unstable supersaturated solid solution, and cannot change from a stable phase of TiCu 3 phase to a metastable phase of a modulation structure. On the other hand, when the solution treatment is insufficient, titanium that has not been solid-solved in the matrix phase remains as deposited as TiCu 3 . Therefore, in order to maximize the hardening by aging, it is necessary to completely eliminate the TiCu 3 phase in the solution treatment in the previous step, in other words, it is necessary to completely dissolve titanium in the matrix phase. It is necessary to heat to a temperature at which the solid solubility limit of titanium exceeds the titanium content. For example, when 3% of titanium is contained in copper, in order to completely dissolve titanium, it is necessary to perform a solution treatment by heating to a temperature of 800 ° C. or higher.

特許1045416号公報Japanese Patent No. 1045416 特許1047328号公報Japanese Patent No. 1047328 特許1456429号公報Japanese Patent No. 1456429 特開平6−248375号公報JP-A-6-248375 特開2001−303158号公報JP 2001-303158 A 特開2002−356726号公報JP 2002-356726 A

一方、チタンが完全に固溶する高温領域では、結晶粒が粗大化し易いので、従来の技術で結晶粒の微細化により耐力の向上を実現するには、チタンが完全に固溶する高温領域より低温側で溶体化処理をしなければならない。例えば、銅にチタンを3%含有させた合金においては、前記800℃では結晶粒が微細化しないので、750〜775℃で溶体化処理をすることにより、結晶粒を微細化させているのである。このため、従来技術でチタン銅の結晶粒を微細化させたものは、チタンの固溶が十分でなく、安定相であるTiCuが析出してしまう。前述したように、この時点で粒界に析出したTiCuは、後工程の時効で硬化に寄与しないばかりか、曲げ加工性を悪化させるという欠点があった。 On the other hand, in the high temperature region where titanium is completely dissolved, the crystal grains are likely to become coarser. Therefore, in order to improve the yield strength by refining the crystal grains with the conventional technology, compared with the high temperature region where titanium is completely dissolved. Solution treatment must be performed on the low temperature side. For example, in an alloy containing 3% titanium in copper, the crystal grains are not refined at 800 ° C., so that the crystal grains are refined by solution treatment at 750 to 775 ° C. . For this reason, when the crystal grain of titanium copper is refined by the prior art, the solid solution of titanium is not sufficient, and TiCu 3 which is a stable phase is precipitated. As described above, TiCu 3 precipitated at the grain boundary at this time has a drawback that it does not contribute to hardening due to aging in the post-process but also deteriorates bending workability.

また、チタン銅に第3元素群(Fe、Co、Ni、Cr、V、Zr、BまたはP)を添加し、それらの成分を含んだ第2相の析出による析出硬化を狙った従来技術では、析出硬化が十分得られるだけの添加量を確保すると、変調構造の形成が阻害されるという欠点があった。またそれらの元素の析出硬化を最大限に引き出す溶体化条件及び時効条件が、チタン銅本来の変調構造による強化を最大限引き出す溶体化条件及び時効条件との間にずれが生じているため、第3元素群の析出硬化とチタン銅の変調構造の発達とを十分に両立することができなかった。このように、従来技術ではチタン銅の優れた強度特性を十分に生かして高強度を得ることが難しかった。   In addition, in the prior art aimed at precipitation hardening by adding a third element group (Fe, Co, Ni, Cr, V, Zr, B or P) to titanium copper, and precipitating a second phase containing those components, If the amount of addition is sufficient to obtain sufficient precipitation hardening, there is a drawback that the formation of the modulation structure is hindered. In addition, since the solution conditions and aging conditions for maximizing the precipitation hardening of these elements are different from the solution conditions and aging conditions for maximizing the strengthening by the modulation structure inherent to titanium copper, The precipitation hardening of the three element group and the development of the modulation structure of titanium-copper could not be sufficiently achieved. Thus, in the prior art, it has been difficult to obtain high strength by fully utilizing the excellent strength characteristics of titanium copper.

本発明は、上記要請に鑑みてなされたものであり、TiCuの析出を抑制して優れた曲げ加工性を実現するとともに、チタン銅の強化機構の本質を尊重し、その優れた特性を十分に確保することでさらなる強度向上図ることを目的とするものである。 The present invention has been made in view of the above requirements, and realizes excellent bending workability by suppressing the precipitation of TiCu 3 , respects the essence of the strengthening mechanism of titanium copper, and sufficiently exhibits its excellent characteristics. The purpose of this is to further improve the strength.

発明者らは、銅合金の強度で曲げ加工性を向上を図るべく、鋭意研究をした結果、結晶粒内に存在する特定サイズ以上の第2相粒子の存在密度に着目し,本発明を成した。
即ち、本発明は
(1)Tiを2.0〜4.0質量%含有する銅基合金において、第3元素としてFe,Co,Ni,Si,Cr,V,Zr,B,Pの中から1種または2種以上を0.01〜0.50質量%含有し、平均結晶粒径が1.0〜10.0μmであり、断面検鏡によって観察される面積0.01μm以上の第2相粒子の平均粒子密度が10個/μm以下であることを特徴とする曲げ加工性に優れた高強度銅合金、
(2)Tiを2.0〜4.0質量%含有する銅基合金において、第3元素としてFe,Co,Ni,Si,Cr,V,Zr,B,Pの中から1種または2種以上を0.01〜0.50質量%含有し、平均結晶粒径が1.0〜10.0μmであり、断面検鏡によって結晶粒内に観察される面積0.01μm以上の第2相粒子の粒子密度が10個/μm以下である結晶粒の割合が結晶粒全体の70%以上であることを特徴とする曲げ加工性に優れた高強度銅合金、
である。
As a result of intensive studies aimed at improving the bending workability with the strength of the copper alloy, the inventors have focused on the existence density of second phase particles having a specific size or more present in the crystal grains, and have completed the present invention. did.
That is, the present invention provides (1) a copper-based alloy containing 2.0 to 4.0% by mass of Ti, from among Fe, Co, Ni, Si, Cr, V, Zr, B, and P as the third element. 1st type or 2 types or more containing 0.01-0.50 mass%, an average crystal grain diameter is 1.0-10.0 micrometers, and the 2nd more than area | region 0.01 micrometer 2 observed by cross-sectional microscopy High-strength copper alloy excellent in bending workability, characterized in that the average particle density of phase particles is 10 particles / μm 2 or less,
(2) In a copper-based alloy containing 2.0 to 4.0% by mass of Ti, one or two of Fe, Co, Ni, Si, Cr, V, Zr, B, and P as the third element A second phase containing 0.01 to 0.50 mass% of the above, having an average crystal grain size of 1.0 to 10.0 μm, and an area of 0.01 μm 2 or more observed in the crystal grains by cross-sectional microscopy A high-strength copper alloy excellent in bending workability, characterized in that the proportion of crystal grains having a particle density of 10 particles / μm 2 or less is 70% or more of the entire crystal grains,
It is.

本発明によれば、Tiの含有量の適正化、第3元素群の含有量の適正化、および結晶粒界に存在する第2相粒子発生の適正化をそれぞれ図ることで、優れた曲げ性の実現と強度向上の達成とを同時に高いレベルで実現することができる。よって本発明は、コネクタ材等に好適な銅合金を製造することができる点で有望である   According to the present invention, excellent bendability is achieved by optimizing the content of Ti, optimizing the content of the third element group, and optimizing the generation of second phase particles existing at the grain boundaries. And the achievement of strength improvement can be realized at a high level at the same time. Therefore, the present invention is promising in that a copper alloy suitable for a connector material or the like can be manufactured.

以下、本発明の限定理由を説明する。
本発明では、Tiを2.0〜4.0質量%としているが、Tiが2.0質量%未満では、十分な強度が得られず、逆に4.0質量%を超えると析出物が粗大化しやすいので曲げ加工性が劣化する。Tiの最も好ましい範囲は、2.5〜3.5質量%である。
Hereinafter, the reasons for limitation of the present invention will be described.
In the present invention, Ti is set to 2.0 to 4.0% by mass. However, when Ti is less than 2.0% by mass, sufficient strength cannot be obtained. Conversely, when Ti exceeds 4.0% by mass, precipitates are formed. Bending workability deteriorates because it tends to be coarse. The most preferable range of Ti is 2.5 to 3.5% by mass.

また、本発明では、第3元素の添加を規定しているが、これらの元素の効果は微量の添加によりTiが十分に固溶する温度で溶体化処理をしても結晶粒が容易に微細化することである。これらの元素は0.01質量%以上含有するとその効果が現れるが、あまり添加しすぎるとTiの固溶限を狭くし、粗大な第2相粒子を析出し易くなる。つまり、あまり添加しすぎると、強度は向上するが、曲げ加工性が劣化する。0.5質量%を超えるとこの弊害が顕著になる。   Further, in the present invention, the addition of the third element is specified, but the effect of these elements is that the crystal grains are easily fine even if solution treatment is performed at a temperature at which Ti is sufficiently dissolved by addition of a small amount. It is to become. When these elements are contained in an amount of 0.01% by mass or more, the effect appears. However, if too much is added, the solid solubility limit of Ti is narrowed and coarse second-phase particles are easily precipitated. That is, when too much is added, strength is improved, but bending workability is deteriorated. When the amount exceeds 0.5% by mass, this adverse effect becomes remarkable.

さらに本発明では、結晶粒の微細化を規定しているが、平均結晶粒径が1.0μm未満では、曲げ加工性が劣化し、10.0μmを超えると所定の強度が得られないためである。   Furthermore, in the present invention, the refinement of crystal grains is prescribed, but if the average crystal grain size is less than 1.0 μm, the bending workability deteriorates, and if it exceeds 10.0 μm, the predetermined strength cannot be obtained. is there.

本発明は、優れた曲げ加工性が得られるための必要条件として、結晶粒内に存在する特定サイズ以上の第2相粒子の存在密度を規定している。第2相粒子には、溶解時の炉材等の外来性の介在物、溶解中に生成する反応生成物、凝固中に生成する晶出物、焼鈍中に形成される析出物があるが、本発明が対象とする合金系では、図1に示すような第2相粒子のほとんどが析出物となっている。   In the present invention, as a necessary condition for obtaining excellent bending workability, the existence density of second phase particles having a specific size or more existing in crystal grains is defined. The second phase particles include foreign inclusions such as furnace materials during melting, reaction products generated during melting, crystallized products generated during solidification, and precipitates formed during annealing. In the alloy system targeted by the present invention, most of the second phase particles as shown in FIG. 1 are precipitates.

図1のように面積が0.01μm以上の第2相粒子が多数存在すると、塑性加工中の変形の連続性が失われ、逆に亀裂が伝播しやすくなり、特に曲げ加工性が低下する。即ち、塑性加工中第2相粒子の周囲に局所歪が発生し、これが切り取り線のように作用し、亀裂の伝播を容易にするのである。板厚方向に急激な内部応力変化が生じる曲げ加工においては、外側表面の粗大な非金属介在物の周囲において応力集中が起こりやすく、そこを起点にクラックが発生し、近隣の第2相粒子を通じて亀裂が板材の内部へと伝播する。初期クラックが発生しても、板の内部まで伝播しなければ、新生面が発生するだけで、割れにいたることはない。曲げ加工においては、初期クラックの発生のし易さよりもむしろ、亀裂の伝播のし易さが、割れの発生のし易さを左右しているのである。 When a large number of second phase particles having an area of 0.01 μm 2 or more are present as shown in FIG. 1, the continuity of deformation during plastic working is lost, and conversely, cracks are likely to propagate, and in particular bending workability decreases. . That is, a local strain is generated around the second phase particles during the plastic working, which acts like a tear line and facilitates the propagation of cracks. In bending work in which a sudden internal stress change occurs in the thickness direction, stress concentration tends to occur around the coarse non-metallic inclusions on the outer surface, and cracks are generated starting from this, through neighboring second phase particles. Cracks propagate into the plate. Even if an initial crack is generated, if it does not propagate to the inside of the plate, a new surface is generated and the crack is not caused. In bending, the ease of crack propagation affects the ease of cracking rather than the ease of initial cracking.

そして、種々の要因の中でも特に第2相粒子の分布が最も曲げ加工性に影響を及ぼし、大きな第2相粒子の存在密度が高いほど亀裂は伝播し易くなる。具体的には、第2相粒子の面積が0.01μm未満であれば、いくら存在していてもその影響は少ないが、それ以上の面積であれば、その分布によって無視できなくなくなる。即ち、断面検鏡によって観察される視野において面積が0.01μm以上の第2相粒子の平均個数が10個/μmを超える場合であり、さらに、観察される結晶粒内において面積が0.01μm以上の第2相粒子の平均個数が10個/μmを超える結晶粒が全結晶粒の30%を超える場合には亀裂の伝播が顕著となる。 Among the various factors, the distribution of the second phase particles has the most influence on the bending workability, and the higher the density of the large second phase particles, the easier the crack propagates. Specifically, if the area of the second phase particles is less than 0.01 μm 2 , the effect is small no matter how much it is present, but if the area is more than that, it cannot be ignored due to its distribution. That is, the average number of second phase particles having an area of 0.01 μm 2 or more in the field of view observed by cross-sectional microscopy exceeds 10 particles / μm 2 , and the area is 0 in the observed crystal grains. the average number of .01Myuemu 2 or more second phase particles of crack propagation becomes significant in the case of 10 / [mu] m 2 more than the crystal grains exceeds 30% of the total grains.

結晶粒内の第2相粒子の粗大化を防ぐには、溶体化処理において、昇温速度が高くし、第2相粒子が完全に固溶する温度領域まで確実に加熱する必要がある。この温度での加熱時間は長い程、粗大な第2相粒子の発生を抑制できる。しかし、溶体化処理前の組織が十分に均質であれば、溶体化処理の加熱時間は、比較的短時間でもかまわない。むしろ溶体化処理の加熱時間が長すぎると結晶粒が粗大化し易いので、好ましくない。
更に、溶体化処理後の冷却速度は速いほど、その後の冷延加工度は小さいほど、最終の時効温度は低い程、粗大な第2相粒子の発生を抑制できる。これまで、溶体化処理前に時効処理を行い、微細な第2相粒子を析出させて、溶体化処理中の結晶粒の成長を抑制する効果を期待していたが、強加工した状態で時効すると析出物が粗大化しやすくなり、溶体化処理を十分に行なわないと、多量の析出物が残ってしまう。多量の析出物が残った状態で冷延し、最終の時効処理を施すと、析出物が更に成長するので溶体化処理後の組織にはなるべく第2相粒子が無いほうが良い。そのため、溶体化処理前の時効処理は行なわないほうが良い。
In order to prevent the coarsening of the second phase particles in the crystal grains, it is necessary to increase the temperature rising rate in the solution treatment and to surely heat to a temperature region where the second phase particles are completely dissolved. The longer the heating time at this temperature, the more the generation of coarse second phase particles can be suppressed. However, if the structure before the solution treatment is sufficiently homogeneous, the heating time for the solution treatment may be relatively short. Rather, if the heating time of the solution treatment is too long, the crystal grains are likely to become coarse, which is not preferable.
Furthermore, generation | occurrence | production of coarse 2nd phase particle | grains can be suppressed, so that the cooling rate after solution treatment is quick, the subsequent cold rolling work degree is small, and final aging temperature is low. Until now, the aging treatment was performed before the solution treatment, and fine second phase particles were precipitated, and the effect of suppressing the growth of crystal grains during the solution treatment was expected. As a result, the precipitate is likely to be coarsened, and a large amount of precipitate remains if the solution treatment is not sufficiently performed. When the steel is cold-rolled with a large amount of precipitate remaining and subjected to the final aging treatment, the precipitate further grows. Therefore, it is preferable that the structure after the solution treatment should have no second phase particles as much as possible. Therefore, it is better not to perform the aging treatment before the solution treatment.

以下に本発明の実施の形態として、その工程を順次説明する。
1)インゴット製造工程
適当量のCuに第3元素群としてFe、Co、Ni、Si、Cr、V、Zr、B、Pの中から1種以上を0.01〜0.50質量%添加し、十分保持した後にTiを2〜4質量%添加し、Tiが溶解した後鋳造する。
第3元素群を有効に作用させるに溶け残りをなくすため、十分に保持する必要があり、また、Tiは第3元素群よりCu中に溶け易いので第3元素群の溶解後に添加すればよい。
The steps will be sequentially described as embodiments of the present invention.
1) Ingot manufacturing process 0.01 to 0.50 mass% of one or more elements selected from Fe, Co, Ni, Si, Cr, V, Zr, B, and P as a third element group is added to an appropriate amount of Cu. After sufficiently holding, 2 to 4% by mass of Ti is added, and casting is performed after Ti is dissolved.
In order to eliminate the undissolved residue in order for the third element group to act effectively, it is necessary to keep it sufficiently, and since Ti is more easily dissolved in Cu than the third element group, it may be added after the third element group is dissolved. .

2)インゴット製造工程以降の工程
このインゴット製造工程後には、950℃以上で1時間以上の均質化焼鈍を行うことが望ましい。偏析をなくし、後述する溶体化処理において、第2相粒子の析出を、微細かつ均一に分散させるためであり、混粒の防止にも効果がある。その後、熱間圧延を行い、冷延と焼鈍を繰り返して、チタン銅の基軸工程のひとつである溶体化処理を行なう。
途中で焼鈍工程を入れる場合、後述する溶体化処理条件に準じて行なうのが望ましい。即ち、昇温速度及び冷却速度はTiCuが析出する間も無く十分に速いものとし、その温度は第3元素群を添加していない通常のチタン銅であれば800℃でよいが、第3元素群を添加したチタン銅はその温度を900℃以上とすることが望ましい。即ち、従来技術では、最終の溶体化処理のみ温度、昇温速度、冷却速度を厳密に管理していたが、途中工程の焼鈍においても第2相粒子が析出しないように管理することが重要なのである。さらに、溶体化処理直前の冷間圧延においては、その加工度が高いほど、溶体化処理における第2相粒子の析出が均一かつ微細なものになる。なお、溶体化処理前に微細な第2相粒子を析出させるために、前述の冷延後、溶体化処理前時効はやるべきでない。これをすると最終の溶体化処理で、加熱時間を十分に取らないと第2相粒子は安定相として残ってしまう。最終の溶体化処理は、完全に固溶した状態から、再結晶と第2相粒子の析出とを同時に進行させたほうが、微細で均質な組織が得られる。
2) Process after the ingot manufacturing process After this ingot manufacturing process, it is desirable to perform homogenization annealing for 1 hour or more at 950 degreeC or more. This is because the segregation is eliminated and the precipitation of the second phase particles is finely and uniformly dispersed in the solution treatment described later, which is also effective in preventing mixed grains. Thereafter, hot rolling is performed, and cold rolling and annealing are repeated to perform a solution treatment that is one of the basic processes of titanium copper.
When an annealing process is performed in the middle, it is desirable to carry out according to the solution treatment conditions described later. That is, the rate of temperature rise and the rate of cooling should be sufficiently high without TiCu 3 being precipitated, and the temperature may be 800 ° C. if it is ordinary titanium copper to which the third element group is not added. The titanium copper to which the element group is added preferably has a temperature of 900 ° C. or higher. That is, in the prior art, the temperature, the heating rate, and the cooling rate were strictly managed only in the final solution treatment, but it is important to manage so that the second phase particles do not precipitate even during the annealing process. is there. Furthermore, in cold rolling immediately before the solution treatment, the higher the degree of processing, the more uniform and fine the precipitation of the second phase particles in the solution treatment. In addition, in order to precipitate fine 2nd phase particle | grains before solution treatment, after the above-mentioned cold rolling, aging before solution treatment should not be performed. If this is done, in the final solution treatment, the second phase particles will remain as a stable phase unless sufficient heating time is taken. In the final solution treatment, a fine and homogeneous structure can be obtained by proceeding simultaneously with recrystallization and precipitation of second phase particles from a completely solid solution state.

3)最終冷間圧延加工前の溶体化処理
Tiが完全に固溶する温度まで急速に加熱し、冷却速度も速くすれば第2相粒子の発生及び粗大化が抑制される。上工程の焼鈍で十分な溶体化がなされているので加熱時間は短くてよい。この時点で発生した第2相粒子が最終の時効で成長するので、この時点での第2相粒子はなるべく少なく、小さいほうがよい。
3) Solution treatment before the final cold rolling process The generation and coarsening of the second phase particles can be suppressed by rapidly heating to a temperature at which Ti is completely dissolved and increasing the cooling rate. Since sufficient solution is achieved by annealing in the upper process, the heating time may be short. Since the second phase particles generated at this point grow with the final aging, the second phase particles at this point are as small as possible and preferably smaller.

4)最終の冷延加工度・最終の時効処理
上記溶体化処理工程後、冷間圧延及び時効処理を行う。冷間圧延については、加工度50%以下が望ましい。加工度が高いほど次の時効処理で粒界析出が起こり易いからである。時効処理については、添加する第3元素にもよるが300〜450℃で行う。時効により強度は向上するが、時効し過ぎると第2相粒子が粗大化して、曲げ加工性が低下する。好ましくは、400℃×1h〜400℃×3hである。
4) Final cold rolling work degree / final aging treatment After the solution treatment step, cold rolling and aging treatment are performed. For cold rolling, a working degree of 50% or less is desirable. This is because the higher the degree of processing, the easier the grain boundary precipitation occurs in the next aging treatment. The aging treatment is performed at 300 to 450 ° C. depending on the third element to be added. Although the strength is improved by aging, when the aging is excessive, the second phase particles are coarsened and bending workability is lowered. Preferably, it is 400 degreeC x 1h-400 degreeC x 3h.

次に実施例を説明する。
本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。
Next, examples will be described.
When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

まず、実施例1〜10および比較例11〜20について、Cuに、Fe、Co、Ni、Si、Cr、V、Zr、BおよびPを表1に示す組成でそれぞれ添加した後、同表に示す組成のTiをそれぞれ添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, for Examples 1 to 10 and Comparative Examples 11 to 20, Fe, Co, Ni, Si, Cr, V, Zr, B and P were added to Cu in the compositions shown in Table 1, respectively. Ti having the composition shown was added. After sufficient consideration was given to the retention time after the addition so that there was no undissolved residue of the added elements, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingots.

上記インゴットを酸化防止剤を塗布して24時間の常温乾燥後、980℃×12時間の加熱をして熱間圧延をして、板厚10mmの板を得た。次に偏析を抑制するために再び酸化防止剤を塗布後980℃×2時間の加熱をして水冷した。ここで水冷したのは、可能な限り溶体化させるためであり、酸化防止剤を塗布したのは、粒界酸化及び表面から進入してきた酸素が添加元素成分と反応して介在物化する内部酸化を可能な限り防止するためである。各熱延板は、それぞれ酸洗及び機械研摩による脱スケール後、板厚0.2mmまで冷間圧延した。その後、この冷間圧延を施した圧延材を急速加熱が可能な焼鈍炉に挿入して、本発明については昇温速度50℃/秒以上でTiの固溶限が添加量より大きくなる温度(例えば、Tiの添加量が3質量%では800℃)まで加熱し、2分間保持後水冷した。この際、平均結晶粒径(GS)を切断法により測定した。
その後、酸洗して脱スケール後冷間圧延し、不活性ガス雰囲気中で表1に示す条件で時効して本発明例の試験片とした。
The ingot was coated with an antioxidant, dried at room temperature for 24 hours, heated at 980 ° C. for 12 hours, and hot-rolled to obtain a plate having a thickness of 10 mm. Next, in order to suppress segregation, after applying an antioxidant again, it was heated at 980 ° C. for 2 hours and cooled with water. The reason for water cooling here is to make the solution as much as possible, and the reason why the antioxidant is applied is that the grain boundary oxidation and the internal oxidation in which the oxygen entering from the surface reacts with the additive element component to become inclusions are performed. This is to prevent as much as possible. Each hot-rolled sheet was cold-rolled to a sheet thickness of 0.2 mm after descaling by pickling and mechanical polishing, respectively. Thereafter, the cold-rolled rolled material is inserted into an annealing furnace capable of rapid heating, and for the present invention, the temperature at which the solid solubility limit of Ti becomes larger than the addition amount at a heating rate of 50 ° C./second or more ( For example, it was heated to 800 ° C. when the addition amount of Ti was 3% by mass, held for 2 minutes, and then cooled with water. At this time, the average crystal grain size (GS) was measured by a cutting method.
Thereafter, pickling, descaling, cold rolling, and aging under the conditions shown in Table 1 in an inert gas atmosphere gave a test piece of the present invention.

表1に本発明例として製造した試験片および比較例として作成した試験片をW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定するとともに、0.2%耐力を測定して発明例の有効性を検証した。
第2相粒子の分布状態については、電界放出型走査電子顕微鏡(FE−SEM)とそれに付随する画像処理装置によって、視野100μm×100μmを観察し、単位面積当たりに存在する面積0.01μm以上の第2相粒子の数(A値)を求めた。同様に、結晶粒をランダムに100個選択し、それぞれの結晶粒に存在する面積0.01μm以上の第2相粒子の数をカウントしてその数密度を求め、それが10個/μm以下である結晶粒の数(B値)を求めた。表2に本発明例および比較例のA値、B値、結晶粒径(GS)、0.2%耐力、MBR/tを示す。
Table 1 shows the MBR / t value, which is the ratio of the minimum radius (MBR) to the thickness (t) at which cracks do not occur by performing a W-bending test on the test piece manufactured as an example of the present invention and the test piece prepared as a comparative example. While measuring, 0.2% yield strength was measured and the effectiveness of the invention example was verified.
As for the distribution state of the second phase particles, a field of view of 100 μm × 100 μm is observed with a field emission scanning electron microscope (FE-SEM) and an image processing apparatus attached thereto, and an area existing per unit area of 0.01 μm 2 or more. The number of second phase particles (A value) was determined. Similarly, 100 crystal grains are selected at random, and the number density of second phase particles having an area of 0.01 μm 2 or more existing in each crystal grain is counted to obtain the number density, which is 10 / μm 2. The number of crystal grains (B value) as follows was determined. Table 2 shows the A value, B value, crystal grain size (GS), 0.2% yield strength, and MBR / t of the inventive examples and comparative examples.

表2に示すが如く、本発明例においては、いずれも0.2%耐力が850MPa以上でMBR/t値が1.0以下となっている。特に実施例No.3〜10は、Tiが好ましい範囲となっているので、0.2%耐力が更に向上し、870MPa以上の値となっている。No.4〜6はそれぞれ、Fe,Co,Niに加えてPを、そしてNo.9〜10はそれぞれV,Zrに対してBを添加しているので、結晶粒が更に微細化し、880MPa以上の0.2%耐力が得られている。また、A値を満足するものはほぼB値も満足していることが判る。また、図2に第2相粒子密度が規定通り抑制された状態を示したが、図1に比べ、第2相粒子が少なくなっている。   As shown in Table 2, in the examples of the present invention, the 0.2% proof stress is 850 MPa or more and the MBR / t value is 1.0 or less. In particular, Example No. In 3 to 10, since Ti is in a preferable range, the 0.2% proof stress is further improved and has a value of 870 MPa or more. No. Nos. 4 to 6 are P in addition to Fe, Co and Ni, respectively. Since Nos. 9 to 10 have B added to V and Zr, the crystal grains are further refined, and a 0.2% yield strength of 880 MPa or more is obtained. Further, it can be seen that those satisfying the A value substantially satisfy the B value. Further, FIG. 2 shows a state in which the density of the second phase particles is suppressed as prescribed, but the number of second phase particles is smaller than that in FIG.

一方、比較例No.11は、Tiが2.0質量%より少ないので、十分な0.2%耐力が得られていない。逆に、比較例No.12は、4.0質量%以上のTiが含有しているので、曲げ加工性が悪化している。比較例No.13は、本発明で規定した第3元素が添加されていないので、結晶粒が微細化せず、十分な0.2%耐力が得られていない。また、結晶粒が粗大化しているために曲げ加工性も劣る。逆に比較例No.14〜17は、第3元素の合計値が0.5質量%を超えているために、第2相粒子が必要以上に析出してしまい、曲げ加工性が悪化している。特に比較例No.16〜17は、最終の溶体化処理前に従来効果があると信じられていた時効処理を行なっているために、過剰な第2相粒子の析出によって母相中のTiが失われ時効硬化能も低減して十分な0.2%耐力が得られていない。   On the other hand, Comparative Example No. No. 11 has a Ti content of less than 2.0% by mass, so a sufficient 0.2% yield strength is not obtained. Conversely, Comparative Example No. Since No. 12 contains 4.0 mass% or more of Ti, bending workability is deteriorated. Comparative Example No. In No. 13, since the third element defined in the present invention is not added, the crystal grains are not refined and sufficient 0.2% yield strength is not obtained. Further, since the crystal grains are coarsened, the bending workability is also inferior. Conversely, Comparative Example No. In Nos. 14 to 17, since the total value of the third elements exceeds 0.5% by mass, the second phase particles are precipitated more than necessary, and the bending workability is deteriorated. In particular, Comparative Example No. Nos. 16 to 17 are subjected to an aging treatment that is believed to have a conventional effect before the final solution treatment, so that Ti in the parent phase is lost due to precipitation of excessive second-phase particles, so that age hardening ability can be obtained. As a result, sufficient 0.2% yield strength is not obtained.

比較例No.18は、溶体化処理でTiが完全に固溶する温度までの昇温速度が遅かったために、第3元素の添加量は適正範囲であるが、TiCu粒子の析出が多くなり、その結果時効硬化に支障をきたし、十分な0.2%耐力及び曲げ加工性が得られなかった。比較例No.19は、最終の冷延加工度が高すぎたために、最終の時効処理で第2相粒子の析出が多くなり、十分な0.2%耐力及び曲げ加工性が得られなかった。比較例No.20は、最終の時効処理において長時間加熱しすぎたために、第2相粒子が析出し過ぎて、十分な0.2%耐力及び曲げ加工性が得られなかった。 Comparative Example No. In No. 18, the rate of temperature increase to a temperature at which Ti was completely dissolved by solution treatment was slow, so the amount of the third element added was in an appropriate range, but precipitation of TiCu 3 particles increased, resulting in aging. Hardening was hindered, and sufficient 0.2% yield strength and bending workability were not obtained. Comparative Example No. In No. 19, since the final cold rolling work degree was too high, precipitation of second phase particles increased in the final aging treatment, and sufficient 0.2% yield strength and bending workability were not obtained. Comparative Example No. No. 20 was overheated for a long time in the final aging treatment, so the second phase particles precipitated too much, and sufficient 0.2% yield strength and bending workability were not obtained.

第2相粒子が規定以上に析出した状態を示す画像である。It is an image which shows the state which the 2nd phase particle precipitated more than regulation. 第2相粒子密度が規定通り抑制された状態を示す画像である。It is an image which shows the state by which the 2nd phase particle density was suppressed as prescribed.

Claims (2)

Tiを2.0〜4.0質量%含有する銅基合金において、第3元素としてFe,Co,Ni,Si,Cr,V,Zr,B,Pの中から1種または2種以上を0.01〜0.50質量%含有し、平均結晶粒径が1.0〜10.0μmであり、かつ面検鏡によって観察される面積0.01μm以上の第2相粒子の平均粒子密度が10個/μm以下であることを特徴とする曲げ加工性に優れた高強度銅合金。 In a copper base alloy containing 2.0 to 4.0% by mass of Ti, one or more of Fe, Co, Ni, Si, Cr, V, Zr, B, and P is used as the third element. The average particle density of the second phase particles containing 0.01 to 0.50% by mass, having an average crystal grain size of 1.0 to 10.0 μm, and an area of 0.01 μm 2 or more as observed by a surface microscope. A high-strength copper alloy excellent in bending workability characterized by being 10 pieces / μm 2 or less. Ti:2.0〜4.0質量%含有する銅基合金において、第3元素としてFe,Co,Ni,Si,Cr,V,Zr,B,Pの中から1種または2種以上を0.01〜0.50質量%含有し、平均結晶粒径が1.0〜10.0μmであり、かつ断面検鏡によって結晶粒内に観察される面積0.01μm以上の第2相粒子の粒子密度が10個/μm以下である結晶粒の割合が結晶粒全体の70%以上であることを特徴とする曲げ加工性に優れた高強度銅合金。 In a copper base alloy containing Ti: 2.0 to 4.0% by mass, one or more of Fe, Co, Ni, Si, Cr, V, Zr, B, and P is used as the third element. .01 to 0.50 mass% of the second phase particles having an average crystal grain size of 1.0 to 10.0 μm and an area of 0.01 μm 2 or more observed in the crystal grains by cross-sectional microscopy A high-strength copper alloy excellent in bending workability, wherein the proportion of crystal grains having a particle density of 10 particles / μm 2 or less is 70% or more of the entire crystal grains.
JP2003329423A 2003-09-22 2003-09-22 High strength copper alloy with excellent bending workability Expired - Fee Related JP4313135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329423A JP4313135B2 (en) 2003-09-22 2003-09-22 High strength copper alloy with excellent bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329423A JP4313135B2 (en) 2003-09-22 2003-09-22 High strength copper alloy with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2005097638A true JP2005097638A (en) 2005-04-14
JP4313135B2 JP4313135B2 (en) 2009-08-12

Family

ID=34458664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329423A Expired - Fee Related JP4313135B2 (en) 2003-09-22 2003-09-22 High strength copper alloy with excellent bending workability

Country Status (1)

Country Link
JP (1) JP4313135B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP2008248355A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Titanium copper for electronic parts, and electronic parts using the same
JP2009242881A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Titanium copper for electronic component
JP2009242882A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Titanium copper suitable for precise press working
JP4663031B1 (en) * 2010-06-29 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper products, electronic components and connectors
JP4663030B1 (en) * 2010-06-25 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP2011179069A (en) * 2010-03-01 2011-09-15 Jx Nippon Mining & Metals Corp Method for producing titanium copper for electronic part
JP2012207254A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same
KR20150055071A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
KR20150055055A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
WO2015098201A1 (en) 2013-12-27 2015-07-02 Jx日鉱日石金属株式会社 Copper-titanium alloy for electronic component
KR20160075690A (en) 2013-11-18 2016-06-29 제이엑스금속주식회사 Copper-titanium alloy for electronic component
WO2020044700A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
WO2020044699A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634955B2 (en) * 2006-03-31 2011-02-16 Jx日鉱日石金属株式会社 High strength copper alloy with excellent bending workability and dimensional stability
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability
JP2008081767A (en) * 2006-09-26 2008-04-10 Nikko Kinzoku Kk Titanium-copper for electronic part
JP2008248355A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Titanium copper for electronic parts, and electronic parts using the same
JP2009242881A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Titanium copper for electronic component
JP2009242882A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Titanium copper suitable for precise press working
JP2011179069A (en) * 2010-03-01 2011-09-15 Jx Nippon Mining & Metals Corp Method for producing titanium copper for electronic part
JP2012007215A (en) * 2010-06-25 2012-01-12 Jx Nippon Mining & Metals Corp Titanium copper, copper elongation product, electronic component, connector, and method for manufacturing the titanium copper
JP4663030B1 (en) * 2010-06-25 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP2012012631A (en) * 2010-06-29 2012-01-19 Jx Nippon Mining & Metals Corp Titanium copper, wrought copper product, electronic component and connector
JP4663031B1 (en) * 2010-06-29 2011-03-30 Jx日鉱日石金属株式会社 Titanium copper, wrought copper products, electronic components and connectors
JP2012207254A (en) * 2011-03-29 2012-10-25 Jx Nippon Mining & Metals Corp Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same
KR20150055071A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
KR20150055055A (en) 2012-10-25 2015-05-20 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper alloy
US10100387B2 (en) 2013-11-18 2018-10-16 Jx Nippon Mining & Metals Corporation Copper-titanium alloy for electronic component
KR20160075690A (en) 2013-11-18 2016-06-29 제이엑스금속주식회사 Copper-titanium alloy for electronic component
KR20160096696A (en) 2013-12-27 2016-08-16 제이엑스금속주식회사 Copper-titanium alloy for electronic component
WO2015098201A1 (en) 2013-12-27 2015-07-02 Jx日鉱日石金属株式会社 Copper-titanium alloy for electronic component
US10351932B2 (en) 2013-12-27 2019-07-16 Jx Nippon Mining & Metals Corporation Copper-titanium alloy for electronic component
WO2020044700A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
WO2020044699A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
KR20210038639A (en) 2018-08-30 2021-04-07 제이엑스금속주식회사 Manufacturing method of titanium copper plate, press-processed product and press-processed product
KR20210038638A (en) 2018-08-30 2021-04-07 제이엑스금속주식회사 Manufacturing method of titanium copper plate, press-processed product and press-processed product

Also Published As

Publication number Publication date
JP4313135B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4943095B2 (en) Copper alloy and manufacturing method thereof
JP4191159B2 (en) Titanium copper with excellent press workability
JP4708485B2 (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4313135B2 (en) High strength copper alloy with excellent bending workability
JP4025632B2 (en) Copper alloy
JP4634955B2 (en) High strength copper alloy with excellent bending workability and dimensional stability
JP2006283142A (en) High-strength copper alloy superior in bending workability
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP2010261066A (en) Method for manufacturing titanium-copper for electronic component
KR20130109209A (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP2012072470A (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
JP3748859B2 (en) High-strength copper alloy with excellent bendability
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP2004027257A (en) Copper alloy with excellent bendability, and its manufacturing method
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP4313136B2 (en) High strength copper alloy with excellent bending workability
JP3729454B2 (en) Copper alloy and manufacturing method thereof
JP4904455B2 (en) Copper alloy and manufacturing method thereof
JP5378286B2 (en) Titanium copper and method for producing the same
JP2012007215A (en) Titanium copper, copper elongation product, electronic component, connector, and method for manufacturing the titanium copper
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4313135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees