JP2011179069A - Method for producing titanium copper for electronic part - Google Patents

Method for producing titanium copper for electronic part Download PDF

Info

Publication number
JP2011179069A
JP2011179069A JP2010044292A JP2010044292A JP2011179069A JP 2011179069 A JP2011179069 A JP 2011179069A JP 2010044292 A JP2010044292 A JP 2010044292A JP 2010044292 A JP2010044292 A JP 2010044292A JP 2011179069 A JP2011179069 A JP 2011179069A
Authority
JP
Japan
Prior art keywords
copper
phase particles
strength
copper alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044292A
Other languages
Japanese (ja)
Other versions
JP5319578B2 (en
Inventor
Hiroyasu Horie
弘泰 堀江
Naohiko Era
尚彦 江良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010044292A priority Critical patent/JP5319578B2/en
Publication of JP2011179069A publication Critical patent/JP2011179069A/en
Application granted granted Critical
Publication of JP5319578B2 publication Critical patent/JP5319578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium copper in which a balance between strength and bending workability is improved. <P>SOLUTION: The copper alloy has a composition comprising Ti of, by mass, 2.0 to 4.0%, and comprising, as a third additive element(s), one or more selected from Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B and P by 0 to 0.5% in total, and the balance copper with inevitable impurities, and in which the average number density (Y) of the second phase grains with a grain size of 0.05 to 1.0 &mu;m obtained by microscopic examination in the cross-section parallel to the rolling direction is 10 to 20 pieces/&mu;m<SP>2</SP>, and 0.2% proof stress (YS) is reduced by &ge;400 MPa when heat treatment is applied for 5hrs at a material temperature of 550&deg;C. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクターは狭ピッチ化及び低背化の傾向が著しい。小型のコネクターほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する素材には、必要なバネ性を得るための高い強度と、過酷な曲げ加工に耐え得る優れた曲げ加工性が求められる。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used therefor have a tendency of narrow pitch and low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the material used must have high strength to obtain the necessary spring properties and excellent bending workability that can withstand severe bending work. It is done.

この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、特に素材強度が要求される信号系端子用素材として、古くから使用されてきた。チタン銅は時効硬化型の銅合金である。具体的には、溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。かかる強化機構を基本としてチタン銅の更なる特性向上を目指して種々の手法が研究されている。   In this regard, a copper alloy containing titanium (hereinafter referred to as “titanium copper”) has a relatively high strength and the best stress relaxation characteristics among copper alloys. It has been used for a long time as a signal system terminal material. Titanium copper is an age-hardening type copper alloy. Specifically, when a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment, and heat treatment is performed at a low temperature for a relatively long time from that state, periodic fluctuations in Ti concentration in the parent phase due to spinodal decomposition The modulation structure is developed and the strength is improved. Based on this strengthening mechanism, various methods have been studied with the aim of further improving the properties of titanium copper.

この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。そこで、Fe、Co、Ni、Siなどの第三元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする研究開発が従来なされてきた。   At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained. Therefore, a third element such as Fe, Co, Ni, Si or the like is added (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these elements are added to the second phase particles (Cu-Ti- X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3), etc., research and development have been made in order to achieve both the strength and bending workability of titanium copper.

特許文献1では0.2%耐力が最大で888MPaのチタン銅が得られており、このときのMBR/tが0.7であったことが記載されている(実施例No.10)。特許文献2では、0.2%耐力が最大で839MPaのチタン銅が得られており、このときのMBR/tが1.7であったことが記載されている(実施例No.10)。特許文献3では、0.2%耐力が最大で888MPaのチタン銅が得られており、このときのMBR/tが0.5であったことが記載されている(実施例No.10)。   Patent Document 1 describes that titanium copper having a maximum 0.2% proof stress of 888 MPa was obtained, and MBR / t at this time was 0.7 (Example No. 10). Patent Document 2 describes that titanium copper having a maximum 0.2% proof stress of 839 MPa was obtained, and MBR / t at this time was 1.7 (Example No. 10). Patent Document 3 describes that titanium copper having a maximum 0.2% proof stress of 888 MPa was obtained, and MBR / t at this time was 0.5 (Example No. 10).

また、特許文献4では、チタン銅の場合、母相であるα相に対して整合性の悪いβ相(TiCu3)と、整合性の良いβ’相(TiCu4)が存在し、β相は曲げ加工性に悪影響を与える一方で、β’相を均一かつ微細に分散させることが強度と曲げ加工性の両立に寄与するとして、β相を抑制しつつβ’相を微細分散させたチタン銅を開示している。特許文献4では、0.2%耐力が最大で1019MPaのチタン銅が得られており、このときのMBR/tが2であったことが記載されている(実施例No.4)。 Further, in Patent Document 4, in the case of titanium copper, there exists a β phase (TiCu 3 ) having poor consistency with the α phase as a parent phase and a β ′ phase (TiCu 4 ) having good consistency, and the β phase Titanium with finely dispersed β 'phase while suppressing β phase, while having an adverse effect on bendability, and that uniform and finely dispersing β' phase contributes to both strength and bending workability Copper is disclosed. Patent Document 4 describes that titanium copper having a maximum 0.2% proof stress of 1019 MPa was obtained, and MBR / t at this time was 2 (Example No. 4).

また、これらの文献にはチタン銅を、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造することが記載されている。特に、最終溶体化処理では安定相であるTiCu3又は母相に対して非整合な第二相粒子の析出を抑制することが重要とされている。 Also, in these documents, titanium copper is manufactured in the order of melting casting of ingot → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. It is described. In particular, in the final solution treatment, it is important to suppress the precipitation of second phase particles that are inconsistent with the stable phase of TiCu 3 or the parent phase.

特開2004−231985号公報Japanese Patent Laid-Open No. 2004-231985 特開2004−176163号公報JP 2004-176163 A 特開2005−97638号公報JP-A-2005-97638 特開2006−283142号公報JP 2006-283142 A

このように、チタン銅は、インゴットの溶解鋳造→均質化焼鈍→熱間圧延→(焼鈍及び冷間圧延の繰り返し)→最終溶体化処理→冷間圧延→時効処理の順序によって製造するのが一般的であり、この工程を基本として特性の改善を図ってきたのである。しかしながら、チタン銅における強度及び曲げ加工性のバランスは未だ改善の余地が残されている。   In this way, titanium copper is generally manufactured in the order of melt casting of ingot → homogenization annealing → hot rolling → (repetition of annealing and cold rolling) → final solution treatment → cold rolling → aging treatment. The improvement of the characteristics has been attempted on the basis of this process. However, there is still room for improvement in the balance between strength and bending workability in titanium copper.

そこで、本発明は強度及び曲げ加工性のバランスが向上したチタン銅を提供することを課題とする。また、本発明はそのようなチタン銅を備えた電子部品を提供することを別の課題とする。また、本発明はそのようなチタン銅の製造方法を提供することを更に別の課題とする。   Accordingly, an object of the present invention is to provide titanium copper having an improved balance between strength and bending workability. Moreover, this invention makes it another subject to provide the electronic component provided with such titanium copper. Moreover, this invention makes it another subject to provide the manufacturing method of such titanium copper.

従来のチタン銅の製造方法は、最終の溶体化処理によってチタンを母相に充分に固溶させた後、冷間圧延を行って強度を一定程度上昇させ、最後に時効処理でスピノーダル分解を起こして高強度チタン銅を得るというものであった。そのため、最終の溶体化処理によってせっかく固溶させたチタンの安定相が第二相粒子として析出しかねない熱処理を冷間圧延前に実施することは考えられなかった。   In the conventional titanium copper manufacturing method, titanium is sufficiently dissolved in the matrix by the final solution treatment, then cold rolled to increase the strength to a certain extent, and finally spinodal decomposition is caused by aging treatment. High strength titanium copper was obtained. For this reason, it has not been considered to carry out a heat treatment before the cold rolling, in which the stable phase of titanium solid-dissolved by the final solution treatment may precipitate as second phase particles.

しかしながら、本発明者は鋭意研究の結果、最終の溶体化処理後に所定の条件で時効処理を行い、その後に冷間圧延を行う工程によって製造されたチタン銅は、強度及び曲げ加工性のバランスが有意に向上することを見出した。冷間圧延後には所定条件で更に焼鈍を行うことで更に強度アップを図ることもできる。   However, as a result of diligent research, the inventor has performed a aging treatment under a predetermined condition after the final solution treatment, and titanium titanium manufactured by a cold rolling process thereafter has a balance between strength and bending workability. It was found to improve significantly. After cold rolling, the strength can be further increased by further annealing under predetermined conditions.

このようにして得られた本発明に係るチタン銅の特徴の一つは、従来のチタン銅に比べて第二相粒子の個数密度が高い点である。もう一点は、所定の熱処理を施した後の強度低下が従来のチタン銅に比べて大きいという点である。   One of the features of the titanium copper according to the present invention thus obtained is that the number density of the second phase particles is higher than that of the conventional titanium copper. Another point is that the strength decrease after performing a predetermined heat treatment is larger than that of conventional titanium copper.

以上を基礎として完成した本発明は一側面において、Tiを2.0〜4.0質量%含有し、第3添加元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Pの中から1種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、圧延方向に平行な断面の検鏡によって観察される粒径0.05μm以上1.0μm以下の第二相粒子の平均個数密度(Y)が10〜20個/μm2であり、材料温度550℃で5時間の熱処理を加えたときに0.2%耐力(YS)が400MPa以上低下する銅合金である。 The present invention completed on the basis of the above, in one aspect, contains 2.0 to 4.0% by mass of Ti, and the third additive element is Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, It is a copper alloy containing 0 to 0.5% by mass in total of one or more of Zr, Si, B, and P, and is composed of the remaining copper and unavoidable impurities. The average number density (Y) of the observed second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less is 10 to 20 particles / μm 2 , and a heat treatment is performed at a material temperature of 550 ° C. for 5 hours. It is a copper alloy whose 0.2% yield strength (YS) decreases by 400 MPa or more.

本発明に係る銅合金の一実施形態においては、圧延方向に平行な断面の検鏡によって観察される粒径1.0μmを超える第二相粒子の平均個数密度(X)が0.15個/μm2以下である。 In one embodiment of the copper alloy according to the present invention, the average number density (X) of the second phase particles having a particle diameter of more than 1.0 μm observed by a spectroscopic cross section parallel to the rolling direction is 0.15 / μm 2 or less.

本発明に係る銅合金の別の一実施形態においては、圧延方向に平行な断面の検鏡によって観察される粒径0.05μm以上1.0μm以下の第二相粒子の面積率が4.0〜15.0%である。   In another embodiment of the copper alloy according to the present invention, the area ratio of the second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less observed by a microscopic cross section parallel to the rolling direction is 4.0. ~ 15.0%.

本発明に係る銅合金の更に別の一実施形態においては、平均結晶粒径が3〜30μmである。   In still another embodiment of the copper alloy according to the present invention, the average crystal grain size is 3 to 30 μm.

本発明は別の一側面において、Tiを2.0〜4.0質量%含有し、第3添加元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Pの中から1種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金の製造方法であって、材料を730〜880℃のTiの固溶限が添加量と同じになる温度以上として0.5〜3分間加熱する条件で実施する最終の溶体化処理の後、材料温度400〜500℃で0.5〜24時間加熱する条件で行う時効処理及び冷間圧延を順に実施する製造方法である。   In another aspect of the present invention, Ti is contained in an amount of 2.0 to 4.0% by mass, and the third additive element is Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, A method for producing a copper alloy comprising 0 to 0.5% by mass in total of one or more of B and P, the balance being copper and unavoidable impurities, wherein the material is a solid solution of Ti at 730 to 880 ° C. Aging performed under the condition of heating at a material temperature of 400 to 500 ° C. for 0.5 to 24 hours after the final solution treatment performed under the condition of heating for 0.5 to 3 minutes at a temperature equal to or higher than the addition amount. It is a manufacturing method which performs processing and cold rolling in order.

本発明に係る銅合金の製造方法の一実施形態においては、前記冷間圧延の後に材料温度250〜550℃で0.001〜0.5時間加熱する条件で焼鈍を更に実施する。   In one embodiment of the method for producing a copper alloy according to the present invention, after the cold rolling, annealing is further performed under the condition of heating at a material temperature of 250 to 550 ° C. for 0.001 to 0.5 hours.

本発明は別の一側面において、本発明に係る銅合金を備えた電子部品である。   In another aspect, the present invention is an electronic component including the copper alloy according to the present invention.

本発明に係る電子部品は一実施形態においてコネクターである。   The electronic component according to the present invention is a connector in one embodiment.

本発明によれば、強度及び曲げ加工性のバランスが向上したチタン銅を得ることができる。   According to the present invention, titanium copper having an improved balance between strength and bending workability can be obtained.

本発明の製法により、特性が向上する理由は十分解明されていないが、これは以下のように推測される。チタン銅では、時効処理においてチタンの変調構造が発達していくにつれ、チタンの濃度変化の振幅(濃淡)が大きくなっていくが、一定の振幅にまで達すると、ゆらぎに耐えられなくなった頂点付近のチタンがより安定なβ’相、更にはβ相へと変化する。すなわち、溶体化処理によって母相に固溶したチタンは、その後に熱処理を加えていくことで、Ti濃度の周期的変動である変調構造が徐々に発達していき、これが準安定相であるβ’相へ変化し、最終的には安定相であるβ相へと変化するのである。ところが、最終溶体化処理後、冷間圧延前に、予めスピノーダル分解を起こすことのできる時効処理を施すと、時効処理時に通常ではβ’相が析出するはずの振幅に達してもβ’相が析出しにくくなり、従来のチタン銅に比べてスピノーダル分解による変調構造の発達限界が大きくなり、強度のピークを迎える時効処理の度合が従来に比べて大きくなると考えられる。その結果、第二相粒子の析出量は従来のチタン銅よりも多くなるものの、従来の製法によるチタン銅に比べて強度を大きくできると考えられる。   The reason why the characteristics are improved by the production method of the present invention has not been sufficiently elucidated, but this is presumed as follows. In titanium copper, as the titanium modulation structure develops in the aging treatment, the amplitude of the titanium concentration change (light and shade) increases, but when it reaches a certain amplitude, near the peak where it can no longer withstand fluctuations The titanium changes to a more stable β ′ phase and further to a β phase. That is, titanium dissolved in the mother phase by solution treatment gradually develops a modulation structure, which is a periodic variation of Ti concentration, by applying heat treatment thereafter, and this is a metastable phase β 'Change to phase, and finally to β phase, which is a stable phase. However, after the final solution treatment and before cold rolling, if an aging treatment that can cause spinodal decomposition is performed in advance, the β ′ phase is not reached even when the β ′ phase should normally precipitate during the aging treatment. It becomes difficult to precipitate, the development limit of the modulation structure by spinodal decomposition becomes larger than conventional titanium copper, and the degree of aging treatment that reaches the peak of strength is considered to be larger than the conventional one. As a result, although the precipitation amount of the second phase particles is larger than that of conventional titanium copper, it is considered that the strength can be increased as compared with titanium copper produced by the conventional manufacturing method.

また、本発明で規定する第二相粒子の析出量は従来のチタン銅に比べて多いにもかかわらず、良好な曲げ加工性が得られる理由は十分に解明できていないが、第二相粒子の析出が均一でかつ粒界への析出が少ないことが考えられる。   Further, although the amount of precipitation of the second phase particles defined in the present invention is larger than that of the conventional titanium copper, the reason why good bending workability can be obtained has not been fully clarified. It is conceivable that the precipitation is uniform and there is little precipitation at the grain boundary.

<Ti含有量>
Tiが2.0質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4.0質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性のバランスが劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2.0〜4.0質量%であり、好ましくは2.7〜3.5質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
<Ti content>
If Ti is less than 2.0% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of the original modulation structure of titanium copper, so that sufficient strength cannot be obtained. Conversely, if Ti exceeds 4.0% by mass, coarse TiCu 3 tends to precipitate, and the balance between strength and bending workability tends to deteriorate. Therefore, the content of Ti in the copper alloy according to the present invention is 2.0 to 4.0 mass%, preferably 2.7 to 3.5 mass%. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

<第3元素>
第3元素は結晶粒の微細化に寄与するため、所定の第3元素を添加することができる。具体的には、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度が向上しやすい。また、第3元素は変調構造の形成を促進する。更に、TiCu3の析出を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。
<Third element>
Since the third element contributes to the refinement of crystal grains, a predetermined third element can be added. Specifically, even if the solution treatment is performed at a high temperature at which Ti is sufficiently dissolved, the crystal grains are easily refined and the strength is easily improved. The third element also promotes the formation of the modulation structure. Furthermore, there is an effect of suppressing precipitation of TiCu 3 . Therefore, the original age hardening ability of titanium copper can be obtained.

チタン銅において上記効果が最も高いのがFeである。そして、Mn、Mg、Co、Ni、Si、Cr、V、Nb、Mo、Zr、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。   In titanium copper, Fe has the highest effect. And in Mn, Mg, Co, Ni, Si, Cr, V, Nb, Mo, Zr, B, and P, the effect according to Fe can be expected, and even if added alone, the effect is seen, but two or more Multiple additions may be made.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有することができ、合計で0.05〜0.5質量%含有するのが好ましい。   When these elements contain a total of 0.05% by mass or more, the effect appears. However, when the total exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability is deteriorated. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Accordingly, the total of one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element group is 0 to 0 in total. It can contain 0.5 mass%, and it is preferable to contain 0.05-0.5 mass% in total.

<第二相粒子>
本発明において、「第二相粒子」とは母相の成分組成とは異なる組成の粒子を指す。本発明で制御の対象としているのは、種々の熱処理中に析出して母相と境界を形成するCuとTiを主成分とした粒子であり、具体的にはTiCu3粒子、又は第3元素群の構成要素X(具体的にはMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPの何れか)を含むCu−Ti−X系粒子として現れる。
<Second phase particles>
In the present invention, “second phase particles” refers to particles having a composition different from the component composition of the parent phase. The object of control in the present invention is a particle mainly composed of Cu and Ti that precipitates during various heat treatments to form a parent phase and a boundary, specifically, TiCu 3 particles or a third element. Appears as Cu-Ti-X-based particles containing group component X (specifically, any of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B and P) .

本発明では、第二相粒子を粒径0.05μm以上1.0μm以下のものと粒径1.0μmを超えるものの二種類に分け、それらの平均個数密度を規定している。粒径0.05μm以上1.0μm以下の第二相粒子は主に時効処理時に析出したものであり、粒径1.0μmを超える第二相粒子は主に時効処理を行う前に析出して残留していたものが時効処理時に更に成長したものであると考えられる。なお、前者の粒径を0.05μm以上としたのは、あまりにも微細な第二相粒子はカウントするのが困難だからである。   In the present invention, the second phase particles are classified into two types, those having a particle size of 0.05 μm or more and 1.0 μm or less and those having a particle size exceeding 1.0 μm, and the average number density thereof is defined. The second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less are mainly precipitated during the aging treatment, and the second phase particles having a particle size of more than 1.0 μm are mainly precipitated before the aging treatment. It is believed that what remained was further grown during the aging treatment. The reason why the former particle size is set to 0.05 μm or more is that it is difficult to count too fine second-phase particles.

従って、粒径0.05μm以上1.0μm以下の第二相粒子の平均個数密度(Y)は時効処理における条件を反映することになり、粒径1.0μmを超える第二相粒子の平均個数密度(X)は時効処理における条件に加えて溶体化処理終了時までの熱処理条件も反映することとなる。   Therefore, the average number density (Y) of the second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less reflects the conditions in the aging treatment, and the average number of the second phase particles having a particle size of more than 1.0 μm. The density (X) reflects the heat treatment conditions up to the end of the solution treatment in addition to the conditions in the aging treatment.

粒径0.05μm以上1.0μm以下の第二相粒子の個数密度(Y)は、時効処理の度合を小さく(例:低温短時間)行うと小さくなり、時効処理の度合を大きく(例:高温長時間)で行うと大きくなる。Yが小さ過ぎると時効処理の度合が不十分であったこと(亜時効)を示し、必要な強度が得られない。一方、Yが大きすぎても今度は時効処理の度合が過剰であったこと(過時効)を示し、ピーク強度が得られる時効処理条件を超えて強度が低下するとともに曲げ加工性が悪化する。   The number density (Y) of the second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less decreases when the degree of aging treatment is reduced (eg, low temperature and short time), and the degree of aging treatment is increased (eg: It becomes larger when performed at high temperature for a long time. If Y is too small, it indicates that the degree of aging treatment is insufficient (sub-aging) and the required strength cannot be obtained. On the other hand, even if Y is too large, this indicates that the degree of aging treatment was excessive (overaging), and the aging treatment conditions under which the peak intensity is obtained are lowered and the bending workability is deteriorated.

本発明に係るチタン銅では、圧延方向に平行な断面の検鏡によって観察される粒径0.05μm以上1.0μm以下の第二相粒子の平均個数密度(Y)を10〜20個/μm2に制御することが強度及び曲げ加工性の良好なバランスを得る上で適切であると考えられ、12〜17個/μm2が好ましく、13〜15個/μm2がより好ましい。前述したように、この個数密度は従来のチタン銅で言えば過時効条件のときに得られる個数密度に相当する。 In the titanium copper according to the present invention, the average number density (Y) of the second phase particles having a particle diameter of 0.05 μm or more and 1.0 μm or less observed by a microscopic cross section parallel to the rolling direction is 10 to 20 particles / μm. Controlling to 2 is considered appropriate for obtaining a good balance between strength and bending workability, preferably 12 to 17 pieces / μm 2, and more preferably 13 to 15 pieces / μm 2 . As described above, this number density corresponds to the number density obtained in the case of over-aging conditions in the case of conventional titanium copper.

また、粒径0.05μm以上1.0μm以下の第二相粒子の分布状態に関しては、個数密度のみならず、断面検鏡時に観察視野に占める当該第二相粒子の面積率の観点からも規定することができる。当該粒径範囲の第二相粒子の面積率は析出量と共に増加するが、析出量の著しい増加は強度及び曲げ加工性に悪影響を与えることは前述した通りである。従って、強度と曲げ加工性の良好なバランスを得る上で好ましい面積率というのが存在する。   Further, the distribution state of the second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less is defined not only from the number density but also from the viewpoint of the area ratio of the second phase particles occupying the observation field at the time of cross-sectional inspection. can do. As described above, the area ratio of the second phase particles in the particle size range increases with the amount of precipitation, but a significant increase in the amount of precipitation adversely affects strength and bending workability. Therefore, there is a preferable area ratio for obtaining a good balance between strength and bending workability.

本発明者の検討結果によれば、圧延方向に平行な断面の検鏡によって観察される粒径0.05μm以上1.0μm以下の第二相粒子の面積率が4.0〜15.0%であるのが好ましく、5.0〜9.0%であるのがより好ましい。   According to the examination result of the present inventor, the area ratio of the second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less observed by a speculum of a cross section parallel to the rolling direction is 4.0 to 15.0%. It is preferable that it is 5.0 to 9.0%.

一方、粒径1.0μmを超える第二相粒子の個数密度(X)は、Yと同様に時効処理の影響も受けるが、時効処理前の熱処理条件、とりわけ最終の溶体化処理条件に影響を受ける。最終の溶体化処理を適切に行うことにより、それ以前の工程で析出した第二相粒子を固溶させることができるが、溶体化処理の条件が不適切であれば第二相粒子が残留したり、新たに析出したりする。粒径1.0μmを超える第二相粒子は粒径1.0μm以下のものに比べて強度及び曲げ加工性に与える悪影響が大きいので、極力少ないことが望ましい。   On the other hand, the number density (X) of the second phase particles having a particle size exceeding 1.0 μm is affected by the aging treatment in the same manner as Y, but it affects the heat treatment conditions before the aging treatment, particularly the final solution treatment conditions. receive. By appropriately performing the final solution treatment, the second phase particles precipitated in the previous step can be dissolved, but if the conditions of the solution treatment are inappropriate, the second phase particles remain. Or newly deposited. Since the second phase particles having a particle size exceeding 1.0 μm have a greater adverse effect on the strength and bending workability than those having a particle size of 1.0 μm or less, it is desirable that the second phase particles be as small as possible.

従って、本発明に係るチタン銅の好ましい一実施形態においては、圧延方向に平行な断面の検鏡によって観察される粒径1.0μmを超える第二相粒子の平均個数密度(X)が0.15個/μm2以下であり、0.1個/μm2以下であるのがより好ましく、例えば0.05〜0.15個/μm2とすることができる。 Therefore, in a preferred embodiment of the titanium-copper according to the present invention, the average number density (X) of the second phase particles having a particle size exceeding 1.0 μm observed by a microscopic cross section parallel to the rolling direction is 0.00. is 15 pieces / [mu] m 2 or less, may be 0.1 or / [mu] m more preferably 2 or less, for example 0.05 to 0.15 pieces / [mu] m 2.

本発明においては、第二相粒子の粒径を、上記検鏡によって観察したときに、第二相粒子を取り囲む最小円の直径として定義する。   In the present invention, the particle diameter of the second phase particles is defined as the diameter of the smallest circle surrounding the second phase particles when observed with the above-mentioned microscope.

<熱処理による強度低下特性>
本発明に係るチタン銅の興味深い特性の一つとして、所定の熱処理を施した後の強度低下が従来のチタン銅と比較して大きいということが挙げられる。これは、前述したように最終溶体化後、冷間圧延前に、予めスピノーダル分解を起こすことのできる所定の熱処理を施すことで従来のチタン銅よりも高いピーク強度が得られることに起因する。同一組成のチタン銅であれば、両者に対して所定の熱処理を加え第二相粒子の析出を発達させると強度が降下して同程度のボトム強度となる。このため、本発明に係るチタン銅は従来のチタン銅に比べて強度の低下が大きくなるのである。
<Strength reduction characteristics by heat treatment>
One of the interesting properties of the titanium copper according to the present invention is that the strength reduction after performing a predetermined heat treatment is larger than that of conventional titanium copper. This is because, as described above, a peak strength higher than that of conventional titanium copper can be obtained by performing a predetermined heat treatment that can cause spinodal decomposition in advance after the final solution and before cold rolling. In the case of titanium copper having the same composition, when a predetermined heat treatment is applied to both to develop the precipitation of the second phase particles, the strength decreases and the same bottom strength is obtained. For this reason, the titanium copper according to the present invention is greatly reduced in strength as compared with conventional titanium copper.

具体的には、本発明に係るチタン銅は、材料温度を550℃として5時間加熱したときに0.2%耐力(YS)が400MPa以上低下し、好ましくは450MPa以上低下し、より好ましくは500MPa以上低下し、例えば400〜550MPa低下する。   Specifically, the titanium copper according to the present invention has a 0.2% yield strength (YS) of 400 MPa or more, preferably 450 MPa or more, more preferably 500 MPa when heated at a material temperature of 550 ° C. for 5 hours. For example, the pressure drops by 400 to 550 MPa.

<結晶粒径>
チタン銅の強度及び曲げ加工性を向上させるためには、結晶粒が小さいほどよい。そこで、好ましい平均結晶粒径は30μm以下、より好ましくは20μm以下、更により好ましくは10μm以下である。下限については特に制限はないが、未再結晶領域がなく均一に再結晶するためには、3μm以上が好ましい。本発明において、平均結晶粒径は光学顕微鏡又は電子顕微鏡による観察で圧延方向に平行な断面の組織観察における円相当径で表す。
<Crystal grain size>
In order to improve the strength and bending workability of titanium copper, the smaller the crystal grains, the better. Therefore, the preferable average crystal grain size is 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. Although there is no restriction | limiting in particular about a minimum, In order to recrystallize uniformly without an unrecrystallized area | region, 3 micrometers or more are preferable. In the present invention, the average crystal grain size is represented by the equivalent circle diameter in the observation of the structure of the cross section parallel to the rolling direction by observation with an optical microscope or electron microscope.

<本発明に係る銅合金の特性>
本発明に係る銅合金は一実施形態において、以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が950MPa以上1000MPa未満
(B)BadwayのW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値が0.8〜1.2
<Characteristics of copper alloy according to the present invention>
In one embodiment, the copper alloy according to the present invention can have the following characteristics.
(A) The 0.2% proof stress in the rolling parallel direction is 950 MPa or more and less than 1000 MPa. (B) MBR / t, which is the ratio of the minimum radius (MBR) to the thickness (t) at which cracks do not occur in the Badway W bending test. Value 0.8-1.2

本発明に係る銅合金は別の一実施形態において、以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が1000MPa以上1050MPa未満
(B)BadwayのW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値が1.2〜1.7
In another embodiment, the copper alloy according to the present invention can have the following characteristics.
(A) The 0.2% proof stress in the rolling parallel direction is 1000 MPa or more and less than 1050 MPa. (B) MBR / t, which is the ratio of the minimum radius (MBR) to the thickness (t) at which cracks do not occur in the Badway W bending test. Values are 1.2-1.7

本発明に係る銅合金は更に別の一実施形態において、以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が1050MPa以上1100MPa以下
(B)BadwayのW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値が1.7〜2.0
In yet another embodiment, the copper alloy according to the present invention can have the following characteristics.
(A) The 0.2% proof stress in the rolling parallel direction is 1050 MPa or more and 1100 MPa or less. (B) MBR / t, which is a ratio of the minimum radius (MBR) to the plate thickness (t) at which cracks do not occur in the Badway W bending test. The value is 1.7 to 2.0

<用途>
本発明に係る銅合金は種々の伸銅品、例えば板、条、管、棒及び線として提供されることができる。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクター、ジャック、端子、リレー等の電子部品の材料として好適に使用することができる。
<Application>
The copper alloy according to the present invention can be provided as various copper products, such as plates, strips, tubes, rods and wires. The titanium copper according to the present invention is not limited, but can be suitably used as a material for electronic parts such as switches, connectors, jacks, terminals, relays and the like.

<本発明に係る銅合金の製造方法>
本発明に係るチタン銅は、特に最終の溶体化処理及びそれ以降の工程で適切な熱処理及び冷間圧延を実施することにより製造可能である。以下に、好適な製造例を工程毎に順次説明する。
<The manufacturing method of the copper alloy which concerns on this invention>
Titanium copper according to the present invention can be produced by carrying out appropriate heat treatment and cold rolling, particularly in the final solution treatment and the subsequent steps. Below, a suitable manufacture example is demonstrated one by one for every process.

1)インゴット製造
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の第3元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜0.50質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造することが望ましい。
1) Ingot production Ingot production by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high melting point third element such as Fe or Cr, and after sufficiently stirring, hold for a certain period of time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element is dissolved. Therefore, Cu includes one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P in total from 0 to 0.0. It is desirable to add so as to contain 50% by mass, and then add Ti so as to contain 2.0 to 4.0% by mass to produce an ingot.

2)均質化焼鈍及び熱間圧延
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。
具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の圧下率が90%までのパスは900℃以上とするのが好ましい。そして、パス毎に適度な再結晶を起こしてTiの偏析を効果的に低減するために、パスごとの圧下量を10〜20mmで実施するとよい。
2) Homogenization annealing and hot rolling Solidification segregation and crystallized material generated during ingot production are coarse, so it is desirable to make it as small as possible by dissolving it in the parent phase as much as possible by homogenization annealing. This is because it is effective in preventing bending cracks.
Specifically, after the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, it is preferable that the temperature is 960 ° C. or lower before and during hot rolling, and that the pass from the original thickness to 90% of the total rolling reduction is 900 ° C. or higher. And in order to raise | generate moderate recrystallization for every pass and to reduce the segregation of Ti effectively, it is good to implement the amount of rolling reduction for every pass at 10-20 mm.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。
3) First solution treatment It is then preferable to perform the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. In this case, it is preferable to increase the heating rate and the cooling rate as much as possible so that the second phase particles do not precipitate.

4)中間圧延
最終の溶体化処理前の中間圧延における圧下率を高くするほど、最終の溶体化処理における再結晶粒を均一かつ微細に制御できる。従って、中間圧延の圧下率は好ましくは70〜99%ある。圧下率は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the rolling reduction in the intermediate rolling before the final solution treatment is increased, the recrystallized grains in the final solution treatment can be controlled more uniformly and finely. Therefore, the rolling reduction of the intermediate rolling is preferably 70 to 99%. The rolling reduction is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化しやすいので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度は730〜840℃程度であり、例えばTiの添加量が3.2質量%では800℃程度)。そしてこの温度まで急速に加熱し、冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。従って、典型的には、730〜880℃のTiの固溶限が添加量と同じになる温度以上に加熱し、より典型的には730〜880℃のTiの固溶限が添加量と同じになる温度に比べて0〜20℃高い温度、好ましくは0〜10℃高い温度に加熱する。
5) Final solution treatment In the final solution treatment, it is desirable to completely dissolve the precipitates, but if heated to a high temperature until it completely disappears, the crystal grains tend to coarsen, so the heating temperature is the second phase. The temperature is around the solid solubility limit of the particle composition (the temperature at which the solid solubility limit of Ti becomes equal to the addition amount in the range where the addition amount of Ti is 2.0 to 4.0% by mass is about 730 to 840 ° C, For example, when the added amount of Ti is 3.2 mass%, it is about 800 ° C.). And if it heats rapidly to this temperature and a cooling rate is also made fast, generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Therefore, typically, heating is performed at a temperature at which the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount, and more typically, the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount. It is heated to a temperature that is 0 to 20 ° C. higher, preferably 0 to 10 ° C. higher than the temperature that becomes.

また、最終の溶体化処理での加熱時間は短いほうが結晶粒の粗大化を抑制できる。加熱時間は例えば0.5〜3分とすることができ、典型的には0.5〜1.5分とすることができる。この時点で第2相粒子が発生しても微細かつ均一に分散していれば、強度と曲げ加工性に対してほとんど無害である。しかし粗大なものは最終の時効処理で更に成長する傾向にあるので、この時点での第2相粒子は生成してもなるべく少なく、小さくしなければならない。   Moreover, the coarsening of a crystal grain can be suppressed when the heating time in the final solution treatment is shorter. The heating time can be, for example, 0.5 to 3 minutes, and typically 0.5 to 1.5 minutes. Even if the second phase particles are generated at this point, if they are finely and uniformly dispersed, they are almost harmless to strength and bending workability. However, since coarse particles tend to grow further in the final aging treatment, the number of second-phase particles at this point must be reduced as much as possible.

6)時効処理
最終の溶体化処理に引き続いて、時効処理を行う。従来は最終の溶体化処理の後は冷間圧延を行うことが通例であったが、本発明に係るチタン銅を得る上では先述したように最終の溶体化処理の後、冷間圧延を行わずに直ちに時効処理を行うことが重要である。時効処理は溶体化処理直後に行うので析出の駆動力となる歪が少ないことから、また、ピーク強度が得られる熱処理の度合が従来に比べて大きい地点にあることから、慣例の時効条件よりもやや高温で行うとよい。具体的には、材料温度400〜500℃で0.5〜24時間加熱することが好ましく、3〜12時間加熱することがより好ましい。
6) Aging treatment An aging treatment is performed following the final solution treatment. Conventionally, it was customary to perform cold rolling after the final solution treatment, but in order to obtain titanium copper according to the present invention, cold rolling is performed after the final solution treatment as described above. It is important to perform an aging treatment immediately without aging. Since the aging treatment is performed immediately after the solution treatment, there is little distortion that becomes the driving force for precipitation, and because the degree of heat treatment at which the peak intensity is obtained is at a point larger than conventional, the aging treatment is more than the conventional aging conditions. It should be done at a slightly high temperature. Specifically, heating is preferably performed at a material temperature of 400 to 500 ° C. for 0.5 to 24 hours, and more preferably 3 to 12 hours.

材料温度と加熱時間の関係をより詳細に説明すると、材料温度400℃以上450℃未満の場合は1〜24時間加熱することが好ましく、7〜12時間加熱することがより好ましい。材料温度450℃以上500℃未満の場合は0.5〜12時間加熱することが好ましく、3〜7時間加熱することがより好ましい。   The relationship between the material temperature and the heating time will be described in more detail. When the material temperature is 400 ° C. or higher and lower than 450 ° C., it is preferably heated for 1 to 24 hours, more preferably 7 to 12 hours. When the material temperature is 450 ° C. or higher and lower than 500 ° C., heating is preferably performed for 0.5 to 12 hours, and more preferably 3 to 7 hours.

7)最終の冷間圧延
上記時効処理後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができる。具体的には圧下率を5%以上、好ましくは10%以上、より好ましくは15%以上とする。但し、圧下率が高くなると強度は上昇するものの曲げ性が劣化することから、圧下率を40%以下、好ましくは30%以下、より好ましくは25%以下とする。
7) Final cold rolling After the aging treatment, final cold rolling is performed. The strength of titanium copper can be increased by the final cold working. Specifically, the rolling reduction is 5% or more, preferably 10% or more, more preferably 15% or more. However, as the rolling reduction increases, the strength increases but the bendability deteriorates. Therefore, the rolling reduction is set to 40% or less, preferably 30% or less, more preferably 25% or less.

8)焼鈍
最終の冷間圧延の後、更なる強度向上を目的として、焼鈍を行ってもよい。冷間圧延の後に焼鈍を行うことにより更に強度が向上するメカニズムは現状では十分に解明されていないが、スピノーダル分解のよる変調構造の発達が更に進行することが考えられる。ただし、あまり強度の焼鈍を行うと過時効となり、強度が低下し曲げ性が劣化するので比較的穏やかな加熱条件として行う。焼鈍の具体的な条件としては、材料温度250℃以上550℃以下で0.001〜0.5時間加熱の条件で行うのが好ましく、低温であれば長時間(例えば材料温度250〜300℃で0.01〜0.25時間加熱)、高温であれば短時間(例えば材料温度500〜550℃で0.005〜0.0075時間加熱)、両者の中間的な温度(材料温度300℃を超えて500℃未満の場合)であれば0.075〜0.3時間加熱の条件で行うのがより好ましい。
8) Annealing After the final cold rolling, annealing may be performed for the purpose of further improving the strength. Although the mechanism of further improving the strength by annealing after cold rolling has not been fully elucidated at present, it is considered that the development of the modulation structure by spinodal decomposition further proceeds. However, if the annealing is too strong, it will be over-aged and the strength will be lowered and the bendability will be deteriorated. As specific conditions for the annealing, it is preferable to perform the heating at a material temperature of 250 ° C. or more and 550 ° C. or less for 0.001 to 0.5 hours, and for a long time at a low temperature (for example, at a material temperature of 250 to 300 ° C. 0.01 to 0.25 hour heating), if it is high temperature for a short time (for example, 0.005 to 0.0075 hour heating at a material temperature of 500 to 550 ° C.), an intermediate temperature between the two (material temperature exceeding 300 ° C.) If it is less than 500 ° C.), it is more preferably carried out under the heating condition for 0.075 to 0.3 hours.

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

例1(製造工程がチタン銅の組織及び特性に与える影響)
本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。
Example 1 (Effect of manufacturing process on the structure and properties of titanium copper)
When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

Tiを3.2質量%、Feを0.2質量%含有し、残部が銅及び不可避的不純物からなる組成となるように、CuにFeを添加した後、Tiを添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、約2kgのインゴットを製造した。   After adding Fe to Cu so that the composition contains 3.2% by mass of Ti and 0.2% by mass of Fe, and the balance is made of copper and inevitable impurities, Ti was added. After giving sufficient consideration to the retention time after the addition so that the additive element did not remain undissolved, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingot.

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とし、素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で10分間加熱とした。次いで、中間の板厚(0.10mm)まで冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を表1に記載の条件で行った。次いで、表1に記載の条件で時効処理、冷間圧延、及び焼鈍を行った。冷間圧延の前には酸洗による脱スケールを行った。冷間圧延では板厚0.075mmまで圧延した。時効処理は不活性ガス(Ar)雰囲気中で行い、その他の熱処理は空気中で行った。   After the homogenization annealing which heats at 950 degreeC with respect to the said ingot for 3 hours, it hot-rolled at 900-950 degreeC, and obtained the hot-rolled sheet of 10 mm in thickness. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (2.0 mm), and a primary solution treatment was performed on the strip. The conditions for the primary solution treatment were heating at 850 ° C. for 10 minutes. Next, after cold rolling to an intermediate plate thickness (0.10 mm), the steel sheet was inserted into an annealing furnace capable of rapid heating, and the final solution treatment was performed under the conditions shown in Table 1. Subsequently, an aging treatment, cold rolling, and annealing were performed under the conditions described in Table 1. Before cold rolling, descaling was performed by pickling. In cold rolling, the sheet was rolled to a thickness of 0.075 mm. The aging treatment was performed in an inert gas (Ar) atmosphere, and the other heat treatment was performed in air.

得られた各試験片について、以下の条件で特性評価を行った。
<強度>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の0.2%耐力(YS)を測定した。
<曲げ加工性>
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
<第二相粒子の個数密度>
圧延方向に平行な断面をFIBにて切断することで、断面を露出した後、断面をSIM観察し、観察視野30μm×30μmを撮影した。
個々の第二相粒子について、第二相粒子を取り囲む最小円の直径をそれぞれ写真上で測定し、粒径0.05μm以上1.0μm以下の第二相粒子と、粒径1.0μmを超える第二相粒子に分けて数え、それぞれの個数密度Y及びXを測定した。
<粒径0.05μm以上1.0μm以下の第二相粒子の面積率>
圧延方向に平行な断面をFIBにて切断することで、断面を露出した後、断面をSIM観察し、観察視野30μm×30μmを撮影した。観察視野において、粒径0.05μm以上1.0μm以下の第二相粒子をマークし、これが占める面積を画像解析装置により求め、5視野の平均値を算出し、粒径0.05μm以上1.0μm以下の第二相粒子の面積率を求めた。画像解析は粒径0.05μm以上1.0μm以下の第二相粒子のみを白色とし、それ以外の領域を黒色にして二値化することで行った。
<平均結晶粒径>
平均結晶粒径の測定は、圧延方向に平行な断面をFIBにて切断することで、断面を露出した後、断面をSIM観察し、単位面積当たりの結晶粒の数をカウントして、結晶粒の平均の円相当径を求めた。具体的には、100μm×100μmの枠を作成し、この枠の中に存在する結晶粒の数をカウントした。なお、枠を横切っている結晶粒については、すべて1/2個としてカウントした。枠の面積10000μm2をその合計で除したものが結晶粒1個当たりの面積の平均値である。その面積を持つ真円の直径が円相当径であるので、これを平均結晶粒径とした。
<熱処理による強度低下特性>
得られた試験片に対して、材料温度を550℃として5時間加熱する熱処理を行った後に上述した手順で0.2%耐力(YS)を測定し、熱処理前後のYSの低下度合いを求めた。
About each obtained test piece, characteristic evaluation was performed on the following conditions.
<Strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The specimen was subjected to a tensile test according to JIS-Z2241, and the 0.2% proof stress (YS) in the rolling parallel direction was measured.
<Bending workability>
In accordance with JIS H 3130, a W-bending test of Badway (the bending axis is the same direction as the rolling direction) was performed to measure the MBR / t value, which is the ratio of the minimum radius (MBR) at which cracks do not occur to the plate thickness (t).
<Number density of second phase particles>
By cutting the cross section parallel to the rolling direction with FIB, the cross section was exposed, and then the cross section was observed with SIM, and an observation visual field of 30 μm × 30 μm was photographed.
For each second phase particle, the diameter of the smallest circle surrounding the second phase particle is measured on the photograph, the second phase particle having a particle size of 0.05 μm or more and 1.0 μm or less, and a particle size exceeding 1.0 μm. The number density was divided into second phase particles, and the respective number densities Y and X were measured.
<Area ratio of second phase particles having a particle size of 0.05 μm to 1.0 μm>
By cutting the cross section parallel to the rolling direction with FIB, the cross section was exposed, and then the cross section was observed with SIM, and an observation visual field of 30 μm × 30 μm was photographed. In the observation field of view, second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less are marked, the area occupied by this is obtained by an image analyzer, and the average value of the five fields of view is calculated. The area ratio of the second phase particles of 0 μm or less was determined. Image analysis was performed by binarizing only the second phase particles having a particle size of 0.05 μm or more and 1.0 μm or less in white and other regions in black.
<Average crystal grain size>
The average crystal grain size is measured by cutting a cross section parallel to the rolling direction with FIB, exposing the cross section, observing the cross section with SIM, and counting the number of crystal grains per unit area. The average equivalent circle diameter was obtained. Specifically, a frame of 100 μm × 100 μm was created, and the number of crystal grains present in this frame was counted. Note that all the crystal grains crossing the frame were counted as ½. The average value of the area per crystal grain is obtained by dividing the frame area of 10,000 μm 2 by the total. Since the diameter of the perfect circle having the area is the equivalent circle diameter, this was defined as the average crystal grain size.
<Strength reduction characteristics by heat treatment>
The obtained test piece was subjected to a heat treatment of heating for 5 hours at a material temperature of 550 ° C., and then the 0.2% yield strength (YS) was measured by the procedure described above to determine the degree of decrease in YS before and after the heat treatment. .

発明例No.1と発明例No.2では、焼鈍の有無で相違する。No.1では冷間圧延後に焼鈍を行ったため、更に強度が上昇した。
発明例No.3は、発明例No.1と比較して時効処理を高温長時間側で行った例であり、強度が上昇している。
発明例No.4は発明例No.1と比較して最終溶体化処理を高温長時間側で行った例であり、結晶粒径が大きくなった。その結果、本発明例は発明例No.1〜3と比較して強度及び曲げ加工性のバランスが劣っているが、本発明例における強度及びバランスが比較例に比べて優れていることは、結晶粒径が同程度である比較例No.5やNo.6との対比で理解できる。
発明例No.5は発明例であるが時効処理時間が短かったため、第二相粒子の析出度合が他の発明例に比べて低かった。
比較例No.1は従来例である。冷間圧延後に時効処理を行ったため、第二相粒子の析出度合が発明例に比べて低かった。また、ボトム強度は同じだが、製造条件の差によってピーク強度が低いため、熱処理によるYS低下量が小さかった。
比較例No.2も従来例である。比較例No.1よりも第二相粒子の析出度合を高くすべく時効処理を比較例No.1よりも高温長時間実施としたところ、過時効となってしまった。そのため、熱処理によるYS低下量が更に小さくなった。
比較例No.3は最終の溶体化処理直後に時効処理を行ったが、亜時効条件で行ったために第二相粒子が十分に析出せず、熱処理によるYS低下量も小さかった。
比較例No.4は最終の溶体化処理直後に時効処理を行ったが、過時効条件で行ったために第二相粒子が過剰に析出し、熱処理によるYS低下量が小さかった。
比較例No.5は比較例No.1よりも高温で溶体化処理を行ない、析出に寄与する固溶量の増加を狙ったが従来工程であるために、時効処理での第二相粒子の析出が不十分となった。そのため、熱処理によるYS低下量が小さかった。
比較例No.6は、比較例No.5に比べて第二相粒子の析出度合を高めるために時効処理を高温で行った。しかしながら、今度は過時効となってしまい、熱処理によるYS低下量が更に小さくなってしまった。
比較例No.7は、比較例No.5に対して溶体化処理温度を更に高くした例であり、第二相粒子の析出度合が低い上に、結晶粒径が成長し過ぎた。
比較例No.8は比較例No.1に対して溶体化処理温度を低く設定した例である。溶体化処理によって第二相粒子が十分に固溶せずに多量に残存したため、時効処理後の第二相粒子の析出度合が過剰になった。また、結晶粒径は1.0μm未満となった。
Invention Example No. 1 and Invention Example No. 1 2 differs depending on the presence or absence of annealing. No. In No. 1, since the annealing was performed after cold rolling, the strength further increased.
Invention Example No. 3 is Invention Example No. This is an example in which the aging treatment is performed on the high temperature and long time side as compared with 1, and the strength is increased.
Invention Example No. No. 4 is Invention Example No. This is an example in which the final solution treatment was performed on the high temperature and long time side as compared with 1, and the crystal grain size was increased. As a result, the present invention example is an invention example no. Although the balance of strength and bending workability is inferior compared to 1 to 3, the strength and balance in the examples of the present invention are superior to those in the comparative examples. . 5 or No. This can be understood by comparison with 6.
Invention Example No. Although 5 is an invention example, since the aging treatment time was short, the degree of precipitation of the second phase particles was lower than that of the other invention examples.
Comparative Example No. Reference numeral 1 is a conventional example. Since the aging treatment was performed after the cold rolling, the degree of precipitation of the second phase particles was lower than that of the inventive examples. Further, although the bottom strength was the same, the peak strength was low due to the difference in manufacturing conditions, so the amount of YS reduction due to heat treatment was small.
Comparative Example No. 2 is also a conventional example. Comparative Example No. In order to make the precipitation degree of the second phase particles higher than 1, the aging treatment was conducted in Comparative Example No. 1. When it was carried out for a long time at a temperature higher than 1, it was over-aged. Therefore, the amount of YS reduction due to heat treatment was further reduced.
Comparative Example No. No. 3 was subjected to an aging treatment immediately after the final solution treatment, but since it was performed under sub-aging conditions, the second phase particles were not sufficiently precipitated, and the amount of YS decrease due to the heat treatment was also small.
Comparative Example No. No. 4 was subjected to an aging treatment immediately after the final solution treatment, but because it was carried out under overaging conditions, the second phase particles precipitated excessively, and the amount of YS reduction due to heat treatment was small.
Comparative Example No. 5 is Comparative Example No. The solution treatment was performed at a temperature higher than 1 to increase the amount of solid solution that contributes to precipitation, but because of the conventional process, precipitation of the second phase particles in the aging treatment was insufficient. Therefore, the amount of YS reduction by heat treatment was small.
Comparative Example No. 6 is Comparative Example No. In order to increase the degree of precipitation of the second phase particles compared to 5, aging treatment was performed at a high temperature. However, this time, overaging has occurred, and the amount of YS reduction due to heat treatment has become even smaller.
Comparative Example No. 7 is Comparative Example No. In this example, the solution treatment temperature was further increased with respect to 5, the degree of precipitation of the second phase particles was low, and the crystal grain size grew too much.
Comparative Example No. No. 8 is Comparative Example No. In this example, the solution treatment temperature is set lower than 1. Due to the solution treatment, the second phase particles were not sufficiently dissolved but remained in a large amount, so that the precipitation degree of the second phase particles after the aging treatment became excessive. The crystal grain size was less than 1.0 μm.

例2(組成がチタン銅の特性に与える影響)
表3に記載の添加元素濃度を有するチタン銅となるように、Cuに所定の第三元素を添加した後、Tiを添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、約2kgのインゴットを製造した。
Example 2 (Effect of composition on titanium copper properties)
Ti was added after adding a predetermined third element to Cu so that titanium copper having the additive element concentrations shown in Table 3 was obtained. After giving sufficient consideration to the retention time after the addition so that the additive element did not remain undissolved, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingot.

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とし、素条での第1次溶体化処理を行った。第1次溶体化処理の条件は850℃で10分間加熱とした。次いで、中間の板厚(0.10mm)まで冷間圧延した後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を表4に記載の条件で行った。次いで、表4に記載の条件で時効処理、冷間圧延、及び焼鈍を行った。冷間圧延の前には酸洗による脱スケールを行った。冷間圧延では板厚0.075mmまで圧延した。時効処理は不活性ガス(Ar)雰囲気中で行い、その他の熱処理は空気中で行った。   After the homogenization annealing which heats at 950 degreeC with respect to the said ingot for 3 hours, it hot-rolled at 900-950 degreeC, and obtained the hot-rolled sheet of 10 mm in thickness. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (2.0 mm), and a primary solution treatment was performed on the strip. The conditions for the primary solution treatment were heating at 850 ° C. for 10 minutes. Then, after cold rolling to an intermediate plate thickness (0.10 mm), the steel sheet was inserted into an annealing furnace capable of rapid heating and subjected to the final solution treatment under the conditions shown in Table 4. Next, aging treatment, cold rolling, and annealing were performed under the conditions described in Table 4. Before cold rolling, descaling was performed by pickling. In cold rolling, the sheet was rolled to a thickness of 0.075 mm. The aging treatment was performed in an inert gas (Ar) atmosphere, and the other heat treatment was performed in air.

得られた各試験片についての特性評価を例1と同様に行った結果を表5に示す。合金組成を規定範囲内で変化させても、本発明が意図する効果が得られることが分かる。   Table 5 shows the results of the evaluation of the properties of the obtained test pieces in the same manner as in Example 1. It can be seen that the intended effect of the present invention can be obtained even if the alloy composition is changed within the specified range.

Claims (8)

Tiを2.0〜4.0質量%含有し、第3添加元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Pの中から1種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金であって、圧延方向に平行な断面の検鏡によって観察される粒径0.05μm以上1.0μm以下の第二相粒子の平均個数密度(Y)が10〜20個/μm2であり、材料温度550℃で5時間の熱処理を加えたときに0.2%耐力(YS)が400MPa以上低下する銅合金。 It contains 2.0 to 4.0% by mass of Ti, and one or more of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third additive element Is a copper alloy consisting of the remaining copper and unavoidable impurities, and having a particle size of 0.05 μm or more and 1.0 μm or less as observed by a microscopic cross section parallel to the rolling direction The average number density (Y) of the second phase particles is 10 to 20 particles / μm 2 , and 0.2% proof stress (YS) decreases by 400 MPa or more when heat treatment is performed at a material temperature of 550 ° C. for 5 hours. Copper alloy. 圧延方向に平行な断面の検鏡によって観察される粒径1.0μmを超える第二相粒子の平均個数密度(X)が0.15個/μm2以下である請求項1記載の銅合金。 2. The copper alloy according to claim 1, wherein the average number density (X) of the second phase particles having a particle diameter exceeding 1.0 μm observed by a spectroscopic cross section parallel to the rolling direction is 0.15 particles / μm 2 or less. 圧延方向に平行な断面の検鏡によって観察される粒径0.05μm以上1.0μm以下の第二相粒子の面積率が4.0〜15.0%である請求項1又は2記載の銅合金。   3. The copper according to claim 1, wherein the area ratio of the second phase particles having a particle diameter of 0.05 μm or more and 1.0 μm or less observed by a spectroscopic cross section parallel to the rolling direction is 4.0 to 15.0%. alloy. 平均結晶粒径が3〜30μmである請求項1〜3何れか一項記載の銅合金。   The copper alloy according to any one of claims 1 to 3, wherein the average crystal grain size is 3 to 30 µm. Tiを2.0〜4.0質量%含有し、第3添加元素としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Pの中から1種以上を合計で0〜0.5質量%含有し、残部銅及び不可避的不純物からなる銅合金の製造方法であって、材料を730〜880℃のTiの固溶限が添加量と同じになる温度以上として0.5〜3分間加熱する条件で実施する最終の溶体化処理の後、材料温度400〜500℃で0.5〜24時間加熱する条件で行う時効処理及び冷間圧延を順に実施する製造方法。   It contains 2.0 to 4.0% by mass of Ti, and one or more of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third additive element Is a method for producing a copper alloy comprising a total of 0 to 0.5% by mass, the balance being copper and unavoidable impurities, and the temperature at which the solid solubility limit of Ti at 730 to 880 ° C. is the same as the addition amount As above, after the final solution treatment performed under the condition of heating for 0.5 to 3 minutes, the aging treatment and the cold rolling performed under the condition of heating at the material temperature of 400 to 500 ° C. for 0.5 to 24 hours are sequentially performed. Production method. 前記冷間圧延の後に材料温度250〜550℃で0.001〜0.5時間加熱する条件で焼鈍を更に実施する請求項5記載の製造方法。   The manufacturing method of Claim 5 which further implements annealing on the conditions heated for 0.001-0.5 hours at material temperature 250-550 degreeC after the said cold rolling. 請求項1〜4何れか一項記載の銅合金を備えた電子部品。   The electronic component provided with the copper alloy as described in any one of Claims 1-4. コネクターである請求項7記載の電子部品。   The electronic component according to claim 7, which is a connector.
JP2010044292A 2010-03-01 2010-03-01 Manufacturing method of titanium copper for electronic parts Active JP5319578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044292A JP5319578B2 (en) 2010-03-01 2010-03-01 Manufacturing method of titanium copper for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044292A JP5319578B2 (en) 2010-03-01 2010-03-01 Manufacturing method of titanium copper for electronic parts

Publications (2)

Publication Number Publication Date
JP2011179069A true JP2011179069A (en) 2011-09-15
JP5319578B2 JP5319578B2 (en) 2013-10-16

Family

ID=44690892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044292A Active JP5319578B2 (en) 2010-03-01 2010-03-01 Manufacturing method of titanium copper for electronic parts

Country Status (1)

Country Link
JP (1) JP5319578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208240A (en) * 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp Titanium copper and method of producing the same
CN106834785A (en) * 2015-12-03 2017-06-13 黄波 A kind of Gu-Nd-Au-B alloy lead wires and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2004176163A (en) * 2002-11-29 2004-06-24 Nikko Metal Manufacturing Co Ltd Copper alloy
JP2004231985A (en) * 2003-01-28 2004-08-19 Nikko Metal Manufacturing Co Ltd High strength copper alloy with excellent bendability
JP2005097638A (en) * 2003-09-22 2005-04-14 Nikko Metal Manufacturing Co Ltd High-strength copper alloy superior in bending workability
JP2006097113A (en) * 2004-09-30 2006-04-13 Nippon Mining & Metals Co Ltd Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JP2006283142A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High-strength copper alloy superior in bending workability
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027257A (en) * 2002-06-21 2004-01-29 Nippon Mining & Metals Co Ltd Copper alloy with excellent bendability, and its manufacturing method
JP2004176163A (en) * 2002-11-29 2004-06-24 Nikko Metal Manufacturing Co Ltd Copper alloy
JP2004231985A (en) * 2003-01-28 2004-08-19 Nikko Metal Manufacturing Co Ltd High strength copper alloy with excellent bendability
JP2005097638A (en) * 2003-09-22 2005-04-14 Nikko Metal Manufacturing Co Ltd High-strength copper alloy superior in bending workability
JP2006097113A (en) * 2004-09-30 2006-04-13 Nippon Mining & Metals Co Ltd Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JP2006283142A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High-strength copper alloy superior in bending workability
JP2008075172A (en) * 2006-09-25 2008-04-03 Nikko Kinzoku Kk Cu-Ni-Si-BASED ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208240A (en) * 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp Titanium copper and method of producing the same
CN106834785A (en) * 2015-12-03 2017-06-13 黄波 A kind of Gu-Nd-Au-B alloy lead wires and preparation method thereof

Also Published As

Publication number Publication date
JP5319578B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP4889801B2 (en) Manufacturing method of titanium copper for electronic parts
JP5226057B2 (en) Copper alloys, copper products, electronic components and connectors
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP5718436B1 (en) Titanium copper for electronic parts
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP5718443B1 (en) Titanium copper for electronic parts
JP5319590B2 (en) Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
JP5368581B2 (en) Titanium copper for electronic parts
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JP6125409B2 (en) Titanium copper for electronic parts
JP6151636B2 (en) Titanium copper for electronic parts
JP6080823B2 (en) Titanium copper for electronic parts
JP6125410B2 (en) Titanium copper for electronic parts
JP4961049B2 (en) Titanium copper for electronic parts
JP6080822B2 (en) Titanium copper for electronic parts and manufacturing method thereof
JP4663030B1 (en) Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper
JP5378286B2 (en) Titanium copper and method for producing the same
JP2016130370A (en) Titanium copper for electronic part
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts
JP6192552B2 (en) Titanium copper for electronic parts
JP6165071B2 (en) Titanium copper for electronic parts
JP6310131B1 (en) Titanium copper for electronic parts
JP2016117952A (en) Titanium copper for electronic component
JP2016117951A (en) Titanium copper for electronic component
JP2016138335A (en) Titanium copper for electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130711

R150 Certificate of patent or registration of utility model

Ref document number: 5319578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250