JP2006097113A - Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product - Google Patents

Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product Download PDF

Info

Publication number
JP2006097113A
JP2006097113A JP2004287204A JP2004287204A JP2006097113A JP 2006097113 A JP2006097113 A JP 2006097113A JP 2004287204 A JP2004287204 A JP 2004287204A JP 2004287204 A JP2004287204 A JP 2004287204A JP 2006097113 A JP2006097113 A JP 2006097113A
Authority
JP
Japan
Prior art keywords
copper alloy
hardening type
type copper
precipitation
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004287204A
Other languages
Japanese (ja)
Inventor
Masazumi Mori
正澄 森
Taro Kimura
太郎 木村
Yoshiteru Nishi
義輝 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004287204A priority Critical patent/JP2006097113A/en
Publication of JP2006097113A publication Critical patent/JP2006097113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a precipitation-hardening type copper alloy, which includes a heat treatment step for precipitating fine precipitates by a different process from conventional multi-stage aging treatment; the precipitation hardening type copper alloy manufactured with the above method; and an elongated copper product. <P>SOLUTION: The method for manufacturing the precipitation-hardening type copper alloy includes the heat treatment step for multi-stage-ageing a solution-treated precipitation-hardening type copper alloy at temperatures from low to high, while skipping the step of promoting the precipitation of the precipitates. The precipitation-hardening type copper alloy is manufactured by the method. The elongated copper product is made from the alloy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、析出硬化型銅合金の製造方法に関し、特に多段時効を伴う熱処理工程を含む析出硬化型銅合金の製造方法に関する。また、本発明は前記方法により製造した析出硬化型銅合金及び伸銅品に関する。   The present invention relates to a method for producing a precipitation hardening type copper alloy, and more particularly to a method for producing a precipitation hardening type copper alloy including a heat treatment step with multistage aging. Moreover, this invention relates to the precipitation hardening type copper alloy and the copper-stretched article which were manufactured by the said method.

銅及び銅合金は、リードフレーム、コネクタ、ピン、リード端子等の電子部品及びフレキシブル回路基板を含め、多用途に渡って幅広く利用されている材料である。急速に展開するIT化に伴う情報機器の高機能化及び小型化・薄肉化は、銅及び銅合金に対して更なる特性(強度、導電性)の向上を要求している。
ところが一般には、強度と導電性は相反する特性であり、銅に添加元素を加えて強度を上げると導電性は低くなる。したがって、強度と導電性の両立をいかにして行うべきかが銅合金の開発にあたって大きな課題となっている。
Copper and copper alloys are materials that are widely used for many purposes including electronic components such as lead frames, connectors, pins, lead terminals, and flexible circuit boards. With the rapid development of IT, information devices with higher functionality, smaller size, and thinner walls are demanding further improvements in properties (strength and conductivity) for copper and copper alloys.
However, in general, strength and conductivity are contradictory properties, and the conductivity decreases when an additive element is added to copper to increase the strength. Therefore, how to achieve both strength and conductivity is a major issue in the development of copper alloys.

銅合金は、添加元素による強化機構によって、固溶型銅合金と析出硬化型銅合金に分けられる。固溶型銅合金は、比較的容易に強度を向上させることができる反面、添加元素の固溶による導電率低下は避けることができない。そこで、金属間化合物の析出による高強度と高導電性を満足する銅合金として析出硬化型銅合金が用いられてきた。しかしながら、近年、高強度と高導電性を両立した銅合金が求められる状況において、析出硬化型銅合金の更なる高強度化が主として検討されてきている。   Copper alloys are classified into a solid solution type copper alloy and a precipitation hardening type copper alloy by a strengthening mechanism using an additive element. The solid solution type copper alloy can improve the strength relatively easily, but the decrease in conductivity due to the solid solution of the additive element cannot be avoided. Accordingly, a precipitation hardening type copper alloy has been used as a copper alloy satisfying high strength and high conductivity due to precipitation of intermetallic compounds. However, in recent years, in the situation where a copper alloy having both high strength and high conductivity is required, further enhancement of the strength of the precipitation hardening type copper alloy has been mainly studied.

銅合金の導電性を下げずに強度を向上させる手段としては、第一に強加工による加工硬化が考えられる。しかし、現状量産レベルで実施している強加工(加工度:90%程度)以上に加工度を上げても加工硬化による強度向上はほとんど起こらず、冷間圧延の工程において加工度を大きくし過ぎると破断しやすくなり、歩留まり低下を起こす恐れがある。   As a means for improving the strength without lowering the conductivity of the copper alloy, first, work hardening by strong working can be considered. However, even if the workability is increased beyond the strong processing (working degree: about 90%) that is currently performed at the mass production level, there is almost no improvement in strength due to work hardening, and the workability is increased too much in the cold rolling process. It becomes easy to break, and there is a risk of lowering the yield.

第二に、結晶粒微細化が考えられる。これは結晶粒径の逆数の平方根と降伏応力又は耐力とは比例関係にあるとするHall-Petch則に基づいたものである。しかし、一般には銅合金の結晶粒微細化の技術は加工に関するものがほとんどであり、大歪み加工が有効とされているが、量産レベルを考えるとかなり実現が難しいのが実情である。   Second, crystal grain refinement can be considered. This is based on the Hall-Petch rule in which the square root of the reciprocal of the crystal grain size is proportional to the yield stress or proof stress. However, in general, the technology for refining crystal grains of copper alloys is mostly related to processing, and large strain processing is considered effective, but it is actually difficult to realize in terms of mass production level.

第三に、析出硬化型銅合金においては析出物による析出強化が考えられる。析出物による析出強化を向上させるには、時効処理で析出を制御し、析出量の増加又は析出物の微細化を行わなければならない。析出量を増やす一つの手段としては、合金への添加元素量を増やす方法があるが、これは導電率の低下につながり好ましくない。よって、導電率を維持したまま析出強化を向上させるには、添加元素量を増やさずに析出量を増やすか析出物の微細化が必要である。
時効処理で析出を促進し、かつ析出物を微細化する方法として従来から多段時効が用いられている。この多段時効による析出物微細化に関しては、Ti合金、Al合金等に適用した例は多いが、銅合金に適用した例は少ない。その中で銅合金に適用した稀な例として、例えば特許文献1にて開示されたものがある。この開示に係る技術によれば、Cu−Cr−Zr合金の多段時効処理において、2段目の時効処理を1段目より低温にすることにより析出物のサイズ及び分布を細かく制御し、更なる時効硬化の促進を狙っている。
Thirdly, in precipitation hardening type copper alloys, precipitation strengthening due to precipitates can be considered. In order to improve precipitation strengthening by precipitates, it is necessary to control precipitation by an aging treatment to increase the amount of precipitation or to refine the precipitate. One means for increasing the amount of precipitation is to increase the amount of elements added to the alloy, but this is not preferable because it leads to a decrease in conductivity. Therefore, in order to improve the precipitation strengthening while maintaining the electrical conductivity, it is necessary to increase the amount of precipitation or to refine the precipitate without increasing the amount of additive elements.
Conventionally, multi-stage aging has been used as a method of promoting precipitation by aging treatment and refining the precipitate. Regarding the refinement of precipitates by this multi-stage aging, there are many examples applied to Ti alloys, Al alloys, etc., but few examples are applied to copper alloys. Among them, a rare example applied to a copper alloy is disclosed in Patent Document 1, for example. According to the technology according to this disclosure, in the multi-stage aging treatment of Cu—Cr—Zr alloy, the size and distribution of precipitates are finely controlled by lowering the temperature of the second stage aging treatment from that of the first stage. It aims to promote age hardening.

特許第2673781号明細書Japanese Patent No. 2673781

しかしながら、特許文献1に開示された技術では、一段時効よりは析出が促進されるものの、析出物の微細化の観点からは更なる技術的進歩が求められている。   However, although the technique disclosed in Patent Document 1 promotes precipitation rather than one-stage aging, further technical progress is required from the viewpoint of finer precipitates.

したがって本発明は、従来とは異なる方法で微細な析出物を析出させることのできる熱処理工程を含む析出硬化型銅合金の製造方法と当該方法により製造した析出硬化型銅合金及び伸銅品を提供することを課題とする。更には上記従来技術よりも微細な析出物を析出させることのできる熱処理工程を含む析出硬化型銅合金の製造方法と当該方法により製造した析出硬化型銅合金及び伸銅品を提供することを課題とする。   Therefore, the present invention provides a method for producing a precipitation hardening type copper alloy including a heat treatment step capable of precipitating fine precipitates by a method different from the conventional method, and a precipitation hardening type copper alloy and a copper drawn product produced by the method. The task is to do. Furthermore, it is an object to provide a method for producing a precipitation-hardening type copper alloy including a heat treatment step capable of precipitating fine precipitates than the prior art, and a precipitation-hardening type copper alloy and a rolled copper product produced by the method. And

本発明者らは、上記課題を解決すべく種々の熱処理方法について鋭意研究を重ねた結果、析出硬化型銅合金の溶体化材を析出物の析出を促進する工程を経ずに低温から高温に多段時効することで微細な析出物が数多く析出することを見出した。本発明は上記知見に基づき完成したものである。したがって本発明は一側面において析出硬化型銅合金を溶体化処理後、析出物の析出を促進する工程を経ずに低温から高温に多段時効する熱処理工程を含む析出硬化型銅合金の製造方法と当該方法により製造した析出硬化型銅合金及び伸銅品である。   As a result of intensive research on various heat treatment methods to solve the above-mentioned problems, the present inventors have made it possible to increase the precipitation hardening type copper alloy solution material from a low temperature to a high temperature without going through a step of promoting precipitation of the precipitate. It has been found that many fine precipitates are precipitated by multi-stage aging. The present invention has been completed based on the above findings. Accordingly, the present invention provides, in one aspect, a method for producing a precipitation hardening type copper alloy including a heat treatment step in which a precipitation hardening type copper alloy is subjected to solution treatment and then subjected to a multistage aging from a low temperature to a high temperature without going through a step of promoting precipitation of precipitates. These are precipitation hardened copper alloys and copper products manufactured by the method.

また、本発明者らは前記多段時効において何れかの段における時効処理と他の何れかの段における時効処理の温度差を100℃以上にすることにより、更には、200℃以上500℃未満での低温時効処理を少なくとも1回、500℃以上700℃以下での高温時効処理を少なくとも1回行うことにより析出物の更なる微細化が促進されることを見出した。したがって、本発明は別の一側面において、前記多段時効における何れかの段における時効処理と他の何れかの段における時効処理の温度差が100℃以上である熱処理工程を含む析出硬化型銅合金の製造方法と当該方法により製造した析出硬化型銅合金及び伸銅品であり、更に別の一側面においては、前記多段時効において200℃以上500℃未満での低温時効処理を少なくとも1回、500℃以上700℃以下での高温時効処理を少なくとも1回行う熱処理工程を含む析出硬化型銅合金の製造方法と当該方法により製造した析出硬化型銅合金及び伸銅品である。   In addition, the present inventors set the temperature difference between the aging treatment in any stage and the aging treatment in any other stage in the multistage aging to 100 ° C. or more, and further to 200 ° C. or more and less than 500 ° C. It has been found that further refinement of the precipitate is promoted by performing at least one low temperature aging treatment and at least one high temperature aging treatment at 500 ° C. or more and 700 ° C. or less. Therefore, in another aspect of the present invention, a precipitation hardening type copper alloy including a heat treatment step in which a temperature difference between an aging treatment in any stage of the multistage aging and an aging treatment in any other stage is 100 ° C. or more. In another aspect, the low-temperature aging treatment at 200 ° C. or more and less than 500 ° C. in the multistage aging is performed at least once, It is a precipitation hardening type copper alloy manufacturing method including the heat treatment process which performs a high temperature aging treatment at 1 degreeC or more and 700 degrees C or less at least once, the precipitation hardening type copper alloy manufactured by the said method, and a copper elongation product.

更に、本発明者らは前記多段時効における低温時効処理の所定の温度に保持する時間の合計を2時間以上とすることが好ましいことを見出した。したがって、本発明は更に別の一側面において、前記多段時効における低温時効処理の所定の温度に保持する時間の合計が2時間以上である熱処理工程を含む析出硬化型銅合金の製造方法と当該方法により製造した析出硬化型銅合金及び伸銅品である。   Furthermore, the present inventors have found that the total time for holding at a predetermined temperature of the low temperature aging treatment in the multistage aging is preferably 2 hours or more. Therefore, in yet another aspect of the present invention, a method for producing a precipitation-hardening type copper alloy including a heat treatment step in which the total time for holding at a predetermined temperature of the low-temperature aging treatment in the multistage aging is 2 hours or more and the method It is a precipitation hardening type copper alloy and a wrought copper product manufactured by the above.

本発明によれば、微細な析出物を有する析出硬化型銅合金の製造が可能となり、電子機器用材料として必要な強度及び導電性の向上を図ることができる。理論によって本発明が限定されることを意図するものではないが、このように低温から高温への多段時効によって微細な析出物が得られたのは低温時効処理で微細な析出核が生成し、高温時効処理で微細な析出物に成長したためと推定される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacture of the precipitation hardening type copper alloy which has a fine precipitate is attained, and the intensity | strength and electroconductivity required as an electronic device material can be aimed at. Although it is not intended that the present invention be limited by theory, the fact that fine precipitates were obtained by multistage aging from low temperature to high temperature in this way produced fine precipitation nuclei in low temperature aging treatment, This is presumably due to the growth of fine precipitates by high temperature aging treatment.

従来、多段時効は導電率を回復させるために1段目の時効を高温とし、2段目以降の時効処理を1段目より低温にすることにより行うことが当然と考えられていた。これは初段での高温時効により析出の駆動力を得て、2段目以降の低温時効で析出物のサイズ及び分布を細かく制御できると考えられてきたことと、1段目の時効処理を低温で行い2段目以降の時効処理を高温で行っても、高温側の時効処理による影響が強いので、結局高温で1段時効を行うのとほとんど変わらないと考えられていたことなどによる。
本発明はそのような技術的偏見を克服して創作されたものであり、析出硬化型銅合金を溶体化処理後、析出物の析出を促進する工程を経ずに低温から高温に多段時効することで析出物を微細化する熱処理工程を含むことを特徴とする析出硬化型銅合金の製造方法である。
Conventionally, it has been considered natural that multi-stage aging is performed by setting the first stage aging to a high temperature and lowering the aging treatment after the second stage to a temperature lower than the first stage in order to restore the conductivity. It was thought that the driving force of precipitation was obtained by high temperature aging at the first stage, and the size and distribution of precipitates could be finely controlled by low temperature aging after the second stage, and the first stage aging treatment was performed at a low temperature. Even if the aging treatment after the second stage is performed at a high temperature, the influence of the aging treatment on the high temperature side is strong, so that it was thought that it was almost the same as performing the first stage aging at a high temperature.
The present invention has been created by overcoming such technical prejudice, and is subjected to multi-stage aging from a low temperature to a high temperature without undergoing a step of promoting precipitation of precipitates after solution treatment of the precipitation hardening type copper alloy. This is a method for producing a precipitation hardening type copper alloy characterized by including a heat treatment step for refining the precipitate.

本発明に用いることのできる析出硬化型銅合金は特に限定されるものではないが、例えばCu−Cr−Zr系合金、Cu−Cr系合金、Cu−Zr系合金、Cu−Ni−Si系合金、Cu−Be系合金、Cu−Ni−P系合金、Cu−Ti系合金、Cu−Fe系合金が挙げられ、少なくともCu−Cr−Zr系合金、Cu−Cr系合金及びCu−Zr系合金は本発明に好適に使用される。   Although the precipitation hardening type copper alloy which can be used for this invention is not specifically limited, For example, Cu-Cr-Zr system alloy, Cu-Cr system alloy, Cu-Zr system alloy, Cu-Ni-Si system alloy Cu-Be alloy, Cu-Ni-P alloy, Cu-Ti alloy, Cu-Fe alloy, at least Cu-Cr-Zr alloy, Cu-Cr alloy and Cu-Zr alloy Is preferably used in the present invention.

Cu−Cr−Zr合金の中でも特に、Cr:0.1〜0.5質量%及びZr:0.01〜0.20質量%の何れか一方又は両方を含み、残部Cu及び不可避的不純物からなるCu−Cr−Zr合金が本発明では有用である。
Crは時効処理によって析出し、合金の強度及び導電性を向上させる作用を有する。しかしCr含有量が0.1質量%未満ではその効果があまり得られず、一方0.5質量%を超えると溶体化処理後にも未溶解Crが母相中に残留し、更には粗大晶出物として存在し、冷間加工時のピンホール発生及び破断の原因となる。そのためCrは0.1〜0.5質量%とするのが好ましく、より好ましくは0.2〜0.4質量%である。
Zrは時効処理によってCuと化合物を形成して母相中に析出し、合金の強度を高める作用を発揮する。しかしZr含有量が0.01質量%未満ではその効果があまり得られず、一方0.20質量%を超えると溶体化処理後も未溶解Zrが母相中に残留し、Cr同様粗大晶出物として、冷間加工時のピンホール発生及び破断の原因となる。そのためZrは0.01〜0.20質量%とするのが好ましく、より好ましくは0.05〜0.15質量%である。
Among Cu—Cr—Zr alloys, it contains any one or both of Cr: 0.1 to 0.5 mass% and Zr: 0.01 to 0.20 mass%, and consists of the remainder Cu and inevitable impurities. Cu-Cr-Zr alloys are useful in the present invention.
Cr is precipitated by an aging treatment and has an action of improving the strength and conductivity of the alloy. However, when the Cr content is less than 0.1% by mass, the effect is not obtained so much. On the other hand, when the Cr content exceeds 0.5% by mass, undissolved Cr remains in the parent phase even after the solution treatment, and further, coarse crystallization occurs. It exists as a product and causes pinholes and breakage during cold working. Therefore, Cr is preferably 0.1 to 0.5% by mass, more preferably 0.2 to 0.4% by mass.
Zr forms a compound with Cu by aging treatment and precipitates in the parent phase, and exhibits an effect of increasing the strength of the alloy. However, when the Zr content is less than 0.01% by mass, the effect is not obtained so much. On the other hand, when the Zr content exceeds 0.20% by mass, undissolved Zr remains in the parent phase even after the solution treatment. As a thing, it causes pinhole generation and breakage during cold working. Therefore, Zr is preferably 0.01 to 0.20% by mass, more preferably 0.05 to 0.15% by mass.

上記Cu−Cr−Zr系合金、Cu−Cr系合金及びCu−Zr系合金等には更にIn:0.1〜1.0質量%及びSn:0.1〜0.4質量%の何れか一方又は両方を総量で0.1〜1.0質量%含有させても良い。
In及びSnはいずれも合金の導電率を大きく低下させずに主として強度の向上を目的として添加するものである。しかしこれらの含有量が総量で0.1質量%未満だとその効果があまり得られず、一方1.0質量%を超えると合金の導電率を劣化させる傾向がある。そのためIn及びSnは何れか一方又は両方で0.1〜1.0質量%とするのが好ましく、より好ましくは0.2〜0.8質量%である。
The Cu-Cr-Zr alloy, Cu-Cr alloy, Cu-Zr alloy, etc. are either In: 0.1 to 1.0 mass% or Sn: 0.1 to 0.4 mass%. One or both may be contained in a total amount of 0.1 to 1.0% by mass.
Both In and Sn are added mainly for the purpose of improving the strength without greatly reducing the electrical conductivity of the alloy. However, when the total content is less than 0.1% by mass, the effect is not obtained so much. On the other hand, when the content exceeds 1.0% by mass, the conductivity of the alloy tends to be deteriorated. Therefore, it is preferable that either one or both of In and Sn be 0.1 to 1.0% by mass, and more preferably 0.2 to 0.8% by mass.

溶体化処理は基本的に溶体化処理温度が高い方が添加元素の固溶量が増加するのでその後の時効処理による析出強化が大になると期待されるが、溶体化処理温度が高すぎると結晶粒が粗大化して曲げ加工性が劣化するという問題が生じる。したがって、使用する析出硬化型銅合金の種類に応じて適切な溶体化処理温度を選定する必要がある。一例を挙げれば、溶体化処理を800〜1000℃の溶体化処理温度、100℃/秒以上の冷却速度(水冷)で行うことができる。
しかし、当業者であれば使用する析出硬化型銅合金の組成に応じて適切な溶体化処理条件(温度×時間)を見出すことができ、更にはその他の条件、例えば昇温条件や冷却条件等も適宜選択することができると考えられる。溶体化処理は熱間加工で兼ねることもできる。
In the solution treatment, the higher the solution treatment temperature, the more the amount of solid solution of the additive element increases, so it is expected that the precipitation strengthening due to the subsequent aging treatment will increase, but if the solution treatment temperature is too high, the crystal The problem arises that the grains become coarse and the bending workability deteriorates. Therefore, it is necessary to select an appropriate solution treatment temperature depending on the type of precipitation hardening type copper alloy to be used. For example, the solution treatment can be performed at a solution treatment temperature of 800 to 1000 ° C. and a cooling rate (water cooling) of 100 ° C./second or more.
However, those skilled in the art can find appropriate solution treatment conditions (temperature × time) according to the composition of the precipitation hardening type copper alloy to be used, and other conditions such as temperature rise conditions and cooling conditions. It is considered that can be selected as appropriate. The solution treatment can also be performed by hot working.

本発明でいう多段時効とは溶体化処理後に異なる温度で2回以上の時効処理を連続して行う熱処理のことである。時効処理は2回以上行うことができるが、生産効率の観点から通常2〜4回であり、好ましくは2回である。
また、析出硬化型銅合金製造プロセスでは溶体化処理後に析出物の析出促進のために冷間加工を行い、その後に時効処理を行うことが多いが、本発明においては逆に析出物の成長速度を抑制するため冷間加工を経ずに時効処理を行う。
溶体化処理後に冷間加工を行うと、加工歪により析出の駆動力が高くなることでその後の時効処理で析出物の成長速度が速くなり、生成した析出物が粗大化し、結果として本発明の多段時効による析出物微細化効果が期待できないからである。
したがって「析出物の析出を促進する工程を経ずに」とは上記の観点から理解されるべきであり、塑性変形を与えて加工歪により析出を促進する冷間圧延、冷間鍛造、プレス、押出、伸線、引き抜き、引張り、及び曲げ加工等の冷間加工やその他の析出を促進する工程を行わずに時効処理に入ることを意味するのであって、実質的に析出を促進しないような工程、例えば溶体化処理後の析出硬化型銅合金に対して表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を時効処理前に行うことを排除するものではない。
The multi-stage aging referred to in the present invention is a heat treatment in which aging treatment is continuously performed at two or more times at different temperatures after the solution treatment. The aging treatment can be carried out twice or more, but usually 2 to 4 times, preferably 2 times from the viewpoint of production efficiency.
In addition, in the precipitation hardening type copper alloy manufacturing process, cold working is often performed after precipitation treatment to promote precipitation of precipitates, and then aging treatment is often performed. However, in the present invention, the growth rate of precipitates is reversed. In order to suppress this, aging treatment is performed without cold working.
When cold working is performed after the solution treatment, the driving force of precipitation increases due to processing strain, so that the growth rate of the precipitate is increased in the subsequent aging treatment, and the generated precipitate is coarsened. This is because the precipitate refinement effect due to multi-stage aging cannot be expected.
Therefore, “without passing through the step of promoting precipitation of precipitates” should be understood from the above viewpoint, and cold rolling, cold forging, pressing, which imparts plastic deformation and promotes precipitation by processing strain, It means that aging treatment is entered without performing cold working such as extrusion, wire drawing, drawing, pulling, and bending, and other steps that promote precipitation, and does not substantially promote precipitation. It is not excluded to perform processes such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface of the precipitation hardening type copper alloy after solution treatment before aging treatment.

本発明による多段時効においては、何れかの段における時効処理と他の何れかの段における時効処理の温度差を大きくすれば析出物の粒径を小さくすることができるが、その温度差は通常50℃以上であり、好ましくは100℃以上であり、より好ましくは150℃以上であり、もっとも好ましくは200℃以上である。また、200℃以上500℃未満、好ましくは250℃以上450℃以下での低温時効処理を少なくとも1回、500℃以上700℃以下、好ましくは500℃以上650℃以下での高温時効処理を少なくとも1回行うことにより微細な析出物をより多数析出させることができる。前記温度差の条件は低温時効処理の最高段と高温時効処理の最低段の温度差に適用するとより好ましい。
一つの段における時効処理では温度は一定とするのが原則であるが、±10℃程度の変動があっても差し支えない。
In the multistage aging according to the present invention, if the temperature difference between the aging treatment in any stage and the aging treatment in any other stage is increased, the particle size of the precipitate can be reduced, but the temperature difference is usually It is 50 degreeC or more, Preferably it is 100 degreeC or more, More preferably, it is 150 degreeC or more, Most preferably, it is 200 degreeC or more. Further, at least one low temperature aging treatment at 200 ° C. or more and less than 500 ° C., preferably 250 ° C. or more and 450 ° C. or less, at least one high temperature aging treatment at 500 ° C. or more and 700 ° C. or less, preferably 500 ° C. or more and 650 ° C. or less. By performing the process once, a larger number of fine precipitates can be precipitated. The temperature difference condition is more preferably applied to the temperature difference between the highest stage of the low temperature aging treatment and the lowest stage of the high temperature aging treatment.
In principle, the temperature is constant in the aging treatment in one stage, but there is no problem even if there is a fluctuation of about ± 10 ° C.

また、本発明による多段時効においては、低温時効処理を行う時間が析出物の平均粒径を微細化する上で重要な意味を持つ。低温時効処理の時間が短すぎると後の高温時効処理で析出物の微細化があまり促進されないとともに析出個数も減少する傾向にあるため、低温時効処理全体で2時間以上低温時効処理を行うのが好ましく、2〜5時間程度行うのがより好ましく、3〜4時間程度行うのがもっとも好ましい。ただし、生産効率を考慮すれば、あまりに長時間行う必要はない。   Further, in the multistage aging according to the present invention, the time for performing the low temperature aging treatment is important in reducing the average particle size of the precipitate. If the time for the low temperature aging treatment is too short, the subsequent high temperature aging treatment does not promote the refinement of precipitates and the number of precipitates tends to decrease. Therefore, the low temperature aging treatment is generally performed for 2 hours or more. Preferably, it is performed for about 2 to 5 hours, more preferably about 3 to 4 hours. However, if production efficiency is taken into consideration, it is not necessary to carry out for too long.

高温時効処理を行う時間も析出物の粒径や個数に影響を与える。理論によって本発明が限定されることを意図するものではないが、高温時効処理によって低温時効処理で生じた析出核が成長し、析出が促進されると考えられるので、高温時効処理の時間をあまり長くすると析出核の成長が過度に進行し、析出物の平均粒径の増大及び析出物の個数の減少が見られる。また、平均粒径の増大に伴い、粒径分布の標準偏差の拡大も見られる。
したがって、粒径が小さく偏差も少ない析出物を多く析出させることを目的とすれば高温時効処理の時間は一般に低温時効処理の時間と同程度又はそれよりも短い時間で行い、好ましくは低温時効処理の時間の1/2程度、更には1/6程度とすることもできる。特定の実施形態においては、高温時効処理は4時間、2時間又は1時間とすることができ、更には30分程度とすることもできる。
The time for performing the high temperature aging treatment also affects the particle size and number of precipitates. Although it is not intended that the present invention be limited by theory, it is considered that precipitation nuclei generated by the low temperature aging treatment grow by the high temperature aging treatment, and the precipitation is promoted. When the length is increased, the growth of precipitation nuclei proceeds excessively, and an increase in the average particle size of the precipitates and a decrease in the number of precipitates are observed. In addition, as the average particle size increases, the standard deviation of the particle size distribution increases.
Therefore, for the purpose of precipitating a large amount of precipitates having a small particle size and small deviation, the high temperature aging treatment time is generally the same as or shorter than the low temperature aging treatment time, preferably low temperature aging treatment. It is also possible to set the time to about ½ of the time, and further to about 6. In certain embodiments, the high temperature aging treatment can be 4 hours, 2 hours, or 1 hour, and even about 30 minutes.

最高段での時効処理後の冷却は、水冷、空冷、ガス冷却のいずれでも可能であり、また、高温から低温に向けて更に多段時効処理を行うこともできる。   Cooling after the aging treatment at the highest stage can be any of water cooling, air cooling, and gas cooling, and further, multistage aging treatment can be performed from high temperature to low temperature.

本発明による多段時効処理後、得られた析出硬化型銅合金に冷間加工を行えば、導電率の低下を抑制しつつ強度を更に向上させることが可能となる。本発明における「冷間加工」には、条・板を製造する冷間圧延は勿論のこと、冷間鍛造、プレス、押出、伸線、引き抜きのような塑性加工も含まれる。したがって棒や線などの塑性加工や、更には圧延ロールを用いて製造する場合に限らずダイスを用いた引抜やプレスを用いた鍛造においても本発明の効果を得ることができる。
本発明の析出硬化型銅合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、本発明の析出硬化型銅合金は特にリードフレーム、コネクタ、ピン、リード端子等の電子部品及びフレキシブル回路基板等に用いる電子材料として好適である。
If the obtained precipitation hardening type copper alloy is subjected to cold working after the multistage aging treatment according to the present invention, the strength can be further improved while suppressing a decrease in conductivity. The “cold working” in the present invention includes not only cold rolling for producing strips and plates, but also plastic working such as cold forging, pressing, extrusion, wire drawing and drawing. Therefore, the effects of the present invention can be obtained not only in the case of plastic working such as bars and wires, but also in the case of manufacturing using rolling rolls, and also in drawing using a die or forging using a press.
The precipitation-hardening type copper alloy of the present invention can be processed into various copper products, for example, plates, strips, tubes, rods and wires, and the precipitation-hardening type copper alloy of the present invention is particularly suitable for lead frames, connectors, pins, leads. It is suitable as an electronic material used for electronic parts such as terminals and flexible circuit boards.

本発明による熱処理を行った後、析出硬化型銅合金に加工度の大きな冷間加工(例えば70%以上、更には90%以上の加工度)を施すことが可能であり、加工度を70%以上とすることで、より高い強度を有する析出硬化型銅合金に仕上げることができる。   After the heat treatment according to the present invention, it is possible to subject the precipitation-hardening type copper alloy to cold working (for example, 70% or more, further 90% or more) having a high workability. By setting it as the above, it can finish to the precipitation hardening type copper alloy which has higher intensity | strength.

本発明による析出硬化型銅合金の析出物の平均粒径は1nm以上20nm以下、好ましくは10nm以下、より好ましくは5nm以下とすることができる。
また、本発明による析出硬化型銅合金の析出物の粒径分布の標準偏差は3nm以下とすることができ、好ましくは2nm以下とすることができる。
例えば、平均粒径を1nm以上10nm以下とし、かつ粒径分布の標準偏差を1nm以上3nm以下とすることができ、又は平均粒径を1nm以上5nm以下として粒径分布の標準偏差を1nm以上2nm以下、更には1.5nm以下とすることができる。
したがって、本発明によれば平均粒径が小さく、かつ粒径分布の狭い析出物が生じるため、微細な析出物が一様に分布した均質な析出硬化型銅合金が得られる。
The average particle size of the precipitate of the precipitation hardening type copper alloy according to the present invention can be 1 nm or more and 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less.
Moreover, the standard deviation of the particle size distribution of the precipitate of the precipitation hardening type copper alloy according to the present invention can be 3 nm or less, preferably 2 nm or less.
For example, the average particle size can be 1 nm to 10 nm and the standard deviation of the particle size distribution can be 1 nm to 3 nm, or the average particle size can be 1 nm to 5 nm and the standard deviation of the particle size distribution can be 1 nm to 2 nm. Hereinafter, it may be 1.5 nm or less.
Therefore, according to the present invention, precipitates having a small average particle size and a narrow particle size distribution are generated, so that a homogeneous precipitation hardening type copper alloy in which fine precipitates are uniformly distributed can be obtained.

本発明による析出硬化型銅合金の導電率は50%IACS以上、好ましくは60%IACS以上、より好ましくは70%IACS以上とすることができる。
また、本発明による析出硬化型銅合金の0.2%耐力は500MPa以上、好ましくは520MPa以上、より好ましくは540MPa以上とすることができる。
The conductivity of the precipitation hardening type copper alloy according to the present invention can be 50% IACS or more, preferably 60% IACS or more, more preferably 70% IACS or more.
Further, the 0.2% proof stress of the precipitation hardening type copper alloy according to the present invention can be 500 MPa or more, preferably 520 MPa or more, more preferably 540 MPa or more.

本発明による析出硬化型銅合金は、0.2%耐力が450MPa以上でかつ導電率が78%IACS以上とすることができ、0.2%耐力が520MPa以上でかつ導電率が70%IACS以上とすることができ、更には0.2%耐力が540MPa以上でかつ導電率が60%IACS以上とすることもできる。   The precipitation hardening type copper alloy according to the present invention can have a 0.2% proof stress of 450 MPa or higher and a conductivity of 78% IACS or higher, a 0.2% proof stress of 520 MPa or higher and a conductivity of 70% IACS or higher. Furthermore, the 0.2% proof stress can be 540 MPa or more and the conductivity can be 60% IACS or more.

析出硬化型銅合金の製造においては、原料の配合、溶解・鋳造、熱間圧延、面削、焼鈍、めっき加工、冷間圧延、酸洗等の種々の工程を本発明の熱処理工程の前後に導入するのが一般的である。当業者であれば本発明の熱処理工程に他の様々な工程を導入して析出硬化型銅合金を製造することができる。   In the production of precipitation hardening type copper alloys, various processes such as mixing of raw materials, melting / casting, hot rolling, chamfering, annealing, plating, cold rolling, pickling are performed before and after the heat treatment process of the present invention. It is common to introduce. A person skilled in the art can produce a precipitation hardening type copper alloy by introducing various other processes into the heat treatment process of the present invention.

本発明によれば、従来の一段時効処理及び多段時効処理に比べて微細な析出物を数多く有し、強度及び導電性に優れた析出硬化型銅合金の製造が可能となり、該銅合金を利用した種々の電子機器用材料が実用化されることが期待される。   According to the present invention, it is possible to produce a precipitation-hardening type copper alloy having many fine precipitates compared to the conventional one-stage aging treatment and multi-stage aging treatment, and having excellent strength and conductivity. It is expected that various materials for electronic devices will be put to practical use.

以下に本発明の具体例を示すが、これら実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Specific examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.

本実施例で用いた銅合金は以下の組成を有する析出硬化型銅合金である。
(1−1A) Zr:0.10%(質量%、以下同様)及びCr:0.25%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−1B) Zr:0.10%、Cr:0.25%及びIn:0.8%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−1C) Zr:0.10%、Cr:0.25%及びSn:0.3%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−1D) Zr:0.10%、Cr:0.25%、In:0.5%及びSn:0.3%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−2A) Cr:0.25%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−2B) Cr:0.25%及びIn:0.8%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−2C) Cr:0.25%及びSn:0.3%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−2D) Cr:0.25%、In:0.5%及びSn:0.3%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−3A) Zr:0.10%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−3B) Zr:0.10%及びIn:0.8%を含み、残部Cu及び不可避的不純物からなる銅合金;
(1−3C) Zr:0.10%及びSn:0.3%を含み、残部Cu及び不可避的不純物からなる銅合金;及び
(1−3D) Zr:0.10%、In:0.5%及びSn:0.3%を含み、残部Cu及び不可避的不純物からなる銅合金
The copper alloy used in this example is a precipitation hardening type copper alloy having the following composition.
(1-1A) Zr: 0.10% (mass%, the same applies hereinafter) and Cr: 0.25%, a copper alloy consisting of the balance Cu and unavoidable impurities;
(1-1B) A copper alloy containing Zr: 0.10%, Cr: 0.25%, and In: 0.8%, and the balance being Cu and inevitable impurities;
(1-1C) A copper alloy containing Zr: 0.10%, Cr: 0.25%, and Sn: 0.3%, and the balance being Cu and inevitable impurities;
(1-1D) A copper alloy containing Zr: 0.10%, Cr: 0.25%, In: 0.5%, and Sn: 0.3%, and the balance being Cu and inevitable impurities;
(1-2A) Cr: a copper alloy containing 0.25% and comprising the balance Cu and inevitable impurities;
(1-2B) A copper alloy containing Cr: 0.25% and In: 0.8%, the balance being Cu and inevitable impurities;
(1-2C) A copper alloy containing Cr: 0.25% and Sn: 0.3%, and the balance Cu and inevitable impurities;
(1-2D) A copper alloy containing Cr: 0.25%, In: 0.5% and Sn: 0.3%, and the balance being Cu and inevitable impurities;
(1-3A) Zr: a copper alloy containing 0.10% and comprising the balance Cu and inevitable impurities;
(1-3B) A copper alloy containing Zr: 0.10% and In: 0.8%, the balance being Cu and inevitable impurities;
(1-3C) Zr: 0.10% and Sn: 0.3%, a copper alloy consisting of the balance Cu and inevitable impurities; and (1-3D) Zr: 0.10%, In: 0.5 And Sn: 0.3% copper alloy comprising the balance Cu and inevitable impurities

上記各組成が得られるように所定の原料を配合し、真空溶解炉(VIM炉)で1300℃で30分かけて溶製してそれぞれ2kgの鋳片を得た。鋳造組織を破壊するために該鋳片(厚さ25mm)を850℃で0.5時間加熱後、板厚12mmまで熱間圧延した。いったん室温まで冷却した後に再び1000℃まで加熱して1時間溶体化処理を行った後、水冷した。表面の酸化スケール除去を機械加工で行い、片面1mmずつ表裏面を研削し板厚10mmの素条とした。   Predetermined raw materials were blended so as to obtain the respective compositions, and melted at 1300 ° C. for 30 minutes in a vacuum melting furnace (VIM furnace) to obtain 2 kg slabs. In order to destroy the cast structure, the slab (thickness 25 mm) was heated at 850 ° C. for 0.5 hour, and then hot-rolled to a plate thickness of 12 mm. After cooling to room temperature, the solution was heated again to 1000 ° C. for solution treatment for 1 hour, and then cooled with water. The oxide scale on the surface was removed by machining, and the front and back surfaces were ground by 1 mm on each side to form a strip with a thickness of 10 mm.

これらの素条を、幅15mm×長さ15mmの大きさに切出し、表1に示す熱処理条件にてAr雰囲気中で時効処理を施した。本実施例では2段時効処理とした。
この時効処理によって得られた試験片について、組織に影響を与えないように機械研磨及び電解研磨で薄膜化し、TEM(Transmission Electron Microscope)観察によって析出物を検鏡した。検鏡より得られた析出物の平均粒径、粒径の標準偏差、個数及び体積率を表1に併記する。
These strips were cut into a size of 15 mm wide × 15 mm long and subjected to an aging treatment in an Ar atmosphere under the heat treatment conditions shown in Table 1. In this embodiment, a two-stage aging treatment is used.
The test piece obtained by this aging treatment was thinned by mechanical polishing and electrolytic polishing so as not to affect the structure, and the precipitate was examined by TEM (Transmission Electron Microscope) observation. Table 1 shows the average particle size, standard deviation of particle size, number and volume ratio of the precipitates obtained from the speculum.

次に、これらの素条を加工度90%で冷間圧延して板厚1mmとした後、特性評価を行った。特性評価は、圧延平行方向での引張試験及びWブリッジによる体積抵抗率測定を行い、0.2%耐力(MPa)及び導電率(%IACS)を求めた結果をそれぞれ表1に併記する。
なお、表1−1にCu−0.25%Cr−0.10%Zr含有銅合金、表1−2にCu−0.25%Cr含有銅合金及び表1−3にCu−0.10%Zr含有銅合金の処理条件及び結果をそれぞれ示す。
Next, these strips were cold-rolled at a workability of 90% to obtain a plate thickness of 1 mm, and then the characteristics were evaluated. The characteristic evaluation is shown in Table 1 together with the results of the 0.2% yield strength (MPa) and the conductivity (% IACS) obtained by performing a tensile test in the rolling parallel direction and volume resistivity measurement by W bridge.
Table 1-1 shows a Cu-0.25% Cr-0.10% Zr containing copper alloy, Table 1-2 shows a Cu-0.25% Cr containing copper alloy, and Table 1-3 shows a Cu-0.10. The treatment conditions and results of the% Zr-containing copper alloy are shown.

Figure 2006097113
Figure 2006097113

Figure 2006097113
Figure 2006097113

Figure 2006097113
Figure 2006097113

Figure 2006097113
Figure 2006097113

表1−1及び表1−2に記載のCu−0.25%−Cr−0.10%Zr含有合金の結果を中心に述べる。
これらの表から判るように、析出硬化型銅合金であるCu−Cr−Zr系合金に本発明の熱処理を施すことにより、微細な析出物を析出させることが可能であったが、当該銅合金に対しては表1−1の発明例の熱処理条件とすることでより顕著な特性の向上が見られたので、それについて従来技術であるNo.23〜36の結果と比較しながら述べる。
表1−1の発明例では適宜処理条件を好ましいものとすることにより、一段時効(熱処理条件No.23〜28)や高温から低温への多段時効処理(熱処理条件No.29〜36)では得られないような微細な析出物を析出させることも可能となり、その後の加工度:90%の冷間加工で、優れた特性(強度及び導電性)を得ることができた。例えば発明例の熱処理条件No.1、3、5、13、17、19、21に示すように、平均粒径5nm以下の微細析出物と、その後の加工で520MPa以上の0.2%耐力を得ることができた。中でもNo.1、3、5、13は70%IACS以上の導電率も併せて得ることができた。
また、図1に示すように、低温を300℃、高温を600℃とし、低温→高温で多段時効した発明例と高温→低温で多段時効した比較例の特性を比べると導電率はほぼ同等であるが、強度については、本発明例が明らかに高いことがわかる。図2に低温を400℃、高温を500℃の場合を示すが同様である。
更にIn及びSnを添加した本発明例の熱処理条件No.17〜22については540MPa以上の0.2%耐力を得ることができた。
The results of the Cu-0.25% -Cr-0.10% Zr-containing alloys shown in Table 1-1 and Table 1-2 will be mainly described.
As can be seen from these tables, it was possible to precipitate fine precipitates by subjecting the Cu—Cr—Zr alloy, which is a precipitation hardening type copper alloy, to the heat treatment of the present invention. For the heat treatment conditions of the invention examples in Table 1-1, a more remarkable improvement in characteristics was observed. This will be described in comparison with the results of 23-36.
In the example of Table 1-1, by appropriately setting the treatment conditions appropriately, it can be obtained by one-stage aging (heat treatment conditions No. 23 to 28) or multistage aging treatment from high temperature to low temperature (heat treatment conditions No. 29 to 36). It was possible to deposit fine precipitates that could not be obtained, and excellent properties (strength and conductivity) could be obtained by subsequent cold working with a working degree of 90%. For example, heat treatment conditions No. As shown in 1, 3, 5, 13, 17, 19, and 21, fine precipitates having an average particle diameter of 5 nm or less and 0.2% proof stress of 520 MPa or more could be obtained by subsequent processing. Among these, No. 1, 3, 5, and 13 were also able to obtain a conductivity of 70% IACS or higher.
In addition, as shown in FIG. 1, when the characteristics of the invention example in which the low temperature is set to 300 ° C. and the high temperature is set to 600 ° C. and the comparative example in which the multistage aging is performed from the low temperature to the high temperature are compared with those of the comparative example that is subjected to the multistage aging from the high temperature to the low temperature. However, regarding the strength, it can be seen that the example of the present invention is clearly high. FIG. 2 shows the case where the low temperature is 400 ° C. and the high temperature is 500 ° C., which is the same.
Furthermore, heat treatment conditions No. 1 of the present invention example in which In and Sn were added. About 17-22, 0.2% yield strength of 540 MPa or more was able to be obtained.

次に、表1−1と表1−2の結果を比較する。No.37、38は1回目の時効処理の温度が200℃より低いためにNo.1、2と比べると導電率が若干高いが強度が低いことがわかる。同様に、No.39、40は2回目の時効処理の温度が700℃を超えているためにNo.3、4と比べると強度も導電率も低く、No.41、42は2回目の時効処理の温度が500℃より低いため、No.5、6と比べると強度も導電率も低い。
以上から、低温時効処理を200℃以上500℃未満とし、高温時効処理を500℃以上700℃以下とした場合には導電率の低下を抑制しつつ、より高強度化が図れることがわかる。
また、No.43、44は1回目の時効処理の温度と2回目の時効処理の温度との差が100℃未満のため、No.9、10と比べると強度が低く、さらに、No.45、46は1回目の時効処理の時間が2時間より短いため、No.4、14と比べると導電率が若干高いが強度が低い。
以上から、低温時効処理の温度と高温時効処理の温度差が100℃以上である場合や、低温時効処理の時間が2時間以上の場合には、より高強度化が図れる事もわかる。
Next, the results of Table 1-1 and Table 1-2 are compared. No. Nos. 37 and 38 are No. 1 because the temperature of the first aging treatment is lower than 200 ° C. Compared with 1 and 2, the conductivity is slightly higher but the strength is lower. Similarly, no. Nos. 39 and 40 are No. because the temperature of the second aging treatment exceeds 700 ° C. Compared with 3 and 4, the strength and conductivity are low. Nos. 41 and 42 are No. 4 because the temperature of the second aging treatment is lower than 500 ° C. Compared with 5 and 6, both strength and conductivity are low.
From the above, it can be seen that when the low temperature aging treatment is set to 200 ° C. or higher and lower than 500 ° C. and the high temperature aging treatment is set to 500 ° C. or higher and 700 ° C. or lower, the strength can be further increased while suppressing the decrease in conductivity.
No. Nos. 43 and 44 are No. 1 because the difference between the temperature of the first aging treatment and the temperature of the second aging treatment is less than 100 ° C. Compared with Nos. 9 and 10, the strength is low. In Nos. 45 and 46, the time for the first aging treatment is shorter than 2 hours. Compared with 4 and 14, the conductivity is slightly higher but the strength is lower.
From the above, it can also be seen that higher strength can be achieved when the temperature difference between the low temperature aging treatment and the high temperature aging treatment is 100 ° C. or more, or when the low temperature aging treatment time is 2 hours or more.

また、表1−3及び表1−4に示すCu−0.25%Cr含有合金及びCu−0.10%Zr含有合金についても同様の結果が得られた。全体的な傾向として、これらの銅合金はCu−0.25%Cr−0.10%Zr含有合金よりも導電率が高く、強度が低い。また、Cu−0.25%Cr含有合金とCu−0.10%Zr含有合金を比較すると、Cu−0.10%Zr含有合金の方が全体的に高い強度を示した。   Similar results were obtained for Cu-0.25% Cr-containing alloys and Cu-0.10% Zr-containing alloys shown in Tables 1-3 and 1-4. Overall, these copper alloys have higher electrical conductivity and lower strength than Cu-0.25% Cr-0.10% Zr containing alloys. Further, when the Cu-0.25% Cr-containing alloy and the Cu-0.10% Zr-containing alloy were compared, the Cu-0.10% Zr-containing alloy generally showed higher strength.

低温→高温(発明例)と高温→低温(比較例)で多段時効したときの合金特性の差を示す図である(300℃⇔600℃)。It is a figure which shows the difference of the alloy characteristic when multistage aging is carried out by low temperature-> high temperature (invention example) and high temperature-> low temperature (comparative example) (300 degreeC 600 degreeC). 低温→高温(発明例)と高温→低温(比較例)で多段時効したときの合金特性の差を示す図である(400℃⇔500℃)。It is a figure which shows the difference of the alloy characteristic when multistage aging is carried out by low temperature-> high temperature (invention example) and high temperature-> low temperature (comparative example) (400 degreeC-500 degreeC).

Claims (14)

析出硬化型銅合金を溶体化処理した後、析出物の析出を促進する工程を経ずに低温から高温に多段時効する工程を含む析出硬化型銅合金の製造方法。   A method for producing a precipitation-hardening type copper alloy comprising a step of subjecting a precipitation-hardening type copper alloy to a solution treatment and then multi-stage aging from a low temperature to a high temperature without going through a step of promoting precipitation of the precipitate. 前記多段時効は、何れかの段における時効処理と他の何れかの段における時効処理の温度差が100℃以上である請求項1に記載の析出硬化型銅合金の製造方法。   The method for producing a precipitation hardening type copper alloy according to claim 1, wherein the multistage aging has a temperature difference of 100 ° C or more between an aging treatment in any one stage and an aging treatment in any other stage. 前記多段時効は、200℃以上500℃未満での低温時効処理を少なくとも1回、500℃以上700℃以下での高温時効処理を少なくとも1回行う熱処理である請求項1又は2に記載の析出硬化型銅合金の製造方法。   The precipitation hardening according to claim 1 or 2, wherein the multistage aging is a heat treatment in which a low temperature aging treatment at 200 ° C or more and less than 500 ° C is performed at least once, and a high temperature aging treatment at 500 ° C or more and 700 ° C or less is performed at least once. A method for producing a mold copper alloy. 前記多段時効は、前記低温時効処理の所定の温度に保持する時間の合計が2時間以上の熱処理である請求項3に記載の析出硬化型銅合金の製造方法。   The said multistage aging is a manufacturing method of the precipitation hardening type copper alloy of Claim 3 which is the heat processing for which the sum total of the time hold | maintained at the predetermined temperature of the said low temperature aging treatment is 2 hours or more. 前記多段時効は、前記高温時効処理が前記低温時効処理と同一の又はそれより短い時間行われる熱処理である請求項3又は4に記載の析出硬化型銅合金の製造方法。   The method for producing a precipitation hardening type copper alloy according to claim 3 or 4, wherein the multi-stage aging is a heat treatment in which the high temperature aging treatment is performed for a time equal to or shorter than the low temperature aging treatment. 前記多段時効は、段数が2の熱処理である請求項1〜5の何れか一項に記載の析出硬化型銅合金の製造方法。   The method for producing a precipitation hardening type copper alloy according to any one of claims 1 to 5, wherein the multistage aging is a heat treatment with two stages. 請求項1〜6の何れか一項に記載の熱処理後に前記析出硬化型銅合金を70%以上の加工度で冷間圧延する工程を含む析出硬化型銅合金の製造方法。   The manufacturing method of the precipitation hardening type copper alloy including the process of cold-rolling the said precipitation hardening type copper alloy with a workability of 70% or more after the heat processing as described in any one of Claims 1-6. 前記析出硬化型銅合金は、Cr:0.1〜0.5質量%及びZr:0.01〜0.20質量%の何れか一方又は両方を含み、残部Cu及び不可避的不純物からなることを特徴とする請求項1〜7の何れか一項に記載の析出硬化型銅合金の製造方法。   The precipitation hardening type copper alloy contains one or both of Cr: 0.1 to 0.5% by mass and Zr: 0.01 to 0.20% by mass, and is composed of the remainder Cu and inevitable impurities. The manufacturing method of the precipitation hardening type copper alloy as described in any one of Claims 1-7 characterized by the above-mentioned. 前記析出硬化型銅合金は、更にIn:0.1〜1.0質量%及びSn:0.1〜0.4質量%の何れか一方又は両方を総量で0.1〜1.0質量%含有することを特徴とする請求項8に記載の析出硬化型銅合金の製造方法。   The precipitation hardening type copper alloy further includes one or both of In: 0.1 to 1.0 mass% and Sn: 0.1 to 0.4 mass% in a total amount of 0.1 to 1.0 mass%. It contains, The manufacturing method of the precipitation hardening type copper alloy of Claim 8 characterized by the above-mentioned. 請求項1〜9の何れか一項に記載の製造方法により製造した析出硬化型銅合金。   Precipitation hardening type copper alloy manufactured by the manufacturing method according to any one of claims 1 to 9. 析出物の平均粒径が1nm以上10nm以下であることを特徴とする請求項10に記載の析出硬化型銅合金。   The precipitation hardening type copper alloy according to claim 10, wherein the average particle size of the precipitate is 1 nm or more and 10 nm or less. 析出物の粒径分布の標準偏差が3nm以下であることを特徴とする請求項10又は11に記載の析出硬化型銅合金。   The precipitation hardening type copper alloy according to claim 10 or 11, wherein the standard deviation of the particle size distribution of the precipitate is 3 nm or less. 導電率が60%IACS以上であることを特徴とする請求項10〜12の何れか一項に記載の析出硬化型銅合金。   Conductivity is 60% IACS or more, The precipitation hardening type copper alloy as described in any one of Claims 10-12 characterized by the above-mentioned. 請求項10〜13の何れか一項に記載の析出硬化型銅合金から冷間加工した伸銅品。
A rolled copper product cold-worked from the precipitation hardening type copper alloy according to any one of claims 10 to 13.
JP2004287204A 2004-09-30 2004-09-30 Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product Pending JP2006097113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287204A JP2006097113A (en) 2004-09-30 2004-09-30 Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287204A JP2006097113A (en) 2004-09-30 2004-09-30 Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product

Publications (1)

Publication Number Publication Date
JP2006097113A true JP2006097113A (en) 2006-04-13

Family

ID=36237198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287204A Pending JP2006097113A (en) 2004-09-30 2004-09-30 Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product

Country Status (1)

Country Link
JP (1) JP2006097113A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140915A1 (en) 2009-06-04 2010-12-09 Kostln Sergei Alekseevich Method for producing a precipitation-hardened lean copper-based alloy, and method for producing a metal product therefrom
JP2011001593A (en) * 2009-06-18 2011-01-06 Hitachi Cable Ltd Method for producing copper alloy, and copper alloy
JP2011179069A (en) * 2010-03-01 2011-09-15 Jx Nippon Mining & Metals Corp Method for producing titanium copper for electronic part
JP2013007062A (en) * 2011-06-22 2013-01-10 Mitsubishi Materials Corp Copper alloy for electrical and electronic device and method for producing copper alloy for electrical and electronic device
CN103249851A (en) * 2010-12-13 2013-08-14 Jx日矿日石金属株式会社 Cu-Ni-Si-Co copper alloy for electron material and method for producing same
JP2014114485A (en) * 2012-12-10 2014-06-26 Kobe Steel Ltd Copper alloy
JP2014187010A (en) * 2013-02-22 2014-10-02 Furukawa Electric Co Ltd:The Terminal, method of manufacturing the terminal, and termination connection structure of electric wire
JP2016211054A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140915A1 (en) 2009-06-04 2010-12-09 Kostln Sergei Alekseevich Method for producing a precipitation-hardened lean copper-based alloy, and method for producing a metal product therefrom
JP2011001593A (en) * 2009-06-18 2011-01-06 Hitachi Cable Ltd Method for producing copper alloy, and copper alloy
JP2011179069A (en) * 2010-03-01 2011-09-15 Jx Nippon Mining & Metals Corp Method for producing titanium copper for electronic part
CN103249851A (en) * 2010-12-13 2013-08-14 Jx日矿日石金属株式会社 Cu-Ni-Si-Co copper alloy for electron material and method for producing same
JP2013007062A (en) * 2011-06-22 2013-01-10 Mitsubishi Materials Corp Copper alloy for electrical and electronic device and method for producing copper alloy for electrical and electronic device
JP2014114485A (en) * 2012-12-10 2014-06-26 Kobe Steel Ltd Copper alloy
JP2014187010A (en) * 2013-02-22 2014-10-02 Furukawa Electric Co Ltd:The Terminal, method of manufacturing the terminal, and termination connection structure of electric wire
JP2016211054A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP4171735B2 (en) Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products
JP5490439B2 (en) Manufacturing method of titanium copper for electronic parts
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
TWI429765B (en) Copper alloy, copper products, electronic parts and connectors
CN107208191B (en) Copper alloy material and method for producing same
JP2010248592A (en) Method for producing copper alloy and copper alloy
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP6835638B2 (en) Copper alloy plate with excellent strength and conductivity
CN110885937B (en) Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof
JP6835636B2 (en) Copper alloy plate with excellent strength and conductivity
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
JP6246456B2 (en) Titanium copper
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP2006097113A (en) Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2016211077A (en) Titanium copper
JP7133327B2 (en) Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation
JP2011208240A (en) Titanium copper and method of producing the same
JP2021046590A (en) Copper alloy, drawn copper article and electronic apparatus component
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP2012229469A (en) Cu-Si-Co BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP6310131B1 (en) Titanium copper for electronic parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060511

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060511

A621 Written request for application examination

Effective date: 20070315

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090513

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A02