JP2009242881A - Titanium copper for electronic component - Google Patents

Titanium copper for electronic component Download PDF

Info

Publication number
JP2009242881A
JP2009242881A JP2008091704A JP2008091704A JP2009242881A JP 2009242881 A JP2009242881 A JP 2009242881A JP 2008091704 A JP2008091704 A JP 2008091704A JP 2008091704 A JP2008091704 A JP 2008091704A JP 2009242881 A JP2009242881 A JP 2009242881A
Authority
JP
Japan
Prior art keywords
copper alloy
copper
rolling
solution treatment
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008091704A
Other languages
Japanese (ja)
Other versions
JP5208555B2 (en
Inventor
Yasutaka Sugawara
保孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2008091704A priority Critical patent/JP5208555B2/en
Publication of JP2009242881A publication Critical patent/JP2009242881A/en
Application granted granted Critical
Publication of JP5208555B2 publication Critical patent/JP5208555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium copper in which the roughening of a bent part can be suppressed without refining crystal grains over the whole of the material. <P>SOLUTION: A copper alloy is disclosed for an electronic component having a composition comprising, by mass, 2 to 4% Ti, and comprising one or more selected from the group consisting of Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B and P as the third element group by 0.05 to 0.5% in total, and the balance copper with inevitable impurities, and in the average major axis (a) of the crystals in the rolling face of the copper alloy, the relation of 1<a/b is valid with the average major axis (b) of the crystals at the inside of ≥10 μm from the rolling face. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品用のチタン銅に関し、特にコネクター用のチタン銅に関する。   The present invention relates to titanium copper for electronic components, and more particularly to titanium copper for connectors.

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクターは狭ピッチ化及び低背化の傾向が著しい。小型のコネクターほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する素材には、必要なバネ性を得るための高い強度と、過酷な曲げ加工に耐え得る優れた曲げ加工性が求められる。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used therefor have a tendency of narrow pitch and low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the material used must have high strength to obtain the necessary spring properties and excellent bending workability that can withstand severe bending work. It is done.

この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、特に素材強度が要求される信号系端子用素材として、古くから使用されてきた。チタン銅は時効硬化型の銅合金である。具体的には、溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。かかる強化機構を基本としてチタン銅の更なる特性向上を目指して種々の手法が研究されている。   In this regard, a copper alloy containing titanium (hereinafter referred to as “titanium copper”) has a relatively high strength and the best stress relaxation characteristics among copper alloys. It has been used for a long time as a signal system terminal material. Titanium copper is an age-hardening type copper alloy. Specifically, when a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment and heat treatment is performed at a low temperature for a relatively long time from that state, a modulation structure that is a periodic variation of Ti concentration in the matrix phase Develops and strength increases. Based on this strengthening mechanism, various methods have been studied with the aim of further improving the properties of titanium copper.

チタン銅の強度及び曲げ加工性の向上に関して、結晶粒を微細化させることが有効であることが知られており、これに関する特許文献がいくつか存在する。例えば、PbやZn等の第3元素を微量添加して析出させた第二相粒子の組成に着目した技術(特開2004−176163号公報)、結晶粒のばらつきに着目した技術(特許第3942505号公報)、結晶粒界に存在する第二相粒子の面積率に着目した技術(特開2005−97639号公報)、結晶粒内に存在する第二相粒子の存在密度に着目した技術(特開2005−97638号公報)などが公開されている。
特開2004−176163号公報 特許第3942505号公報 特開2005−97639号公報 特開2005−97638号公報
It is known that it is effective to make crystal grains fine for improving the strength and bending workability of titanium copper, and there are several patent documents relating to this. For example, a technique focusing on the composition of second phase particles precipitated by adding a small amount of a third element such as Pb or Zn (Japanese Patent Laid-Open No. 2004-176163), a technique focusing on crystal grain variation (Patent No. 3924505). No.), a technique focusing on the area ratio of the second phase particles existing in the crystal grain boundary (Japanese Patent Laid-Open No. 2005-97639), and a technique focusing on the density of the second phase particles existing in the crystal grains (specialty). No. 2005-97638) is published.
JP 2004-176163 A Japanese Patent No. 3924505 JP 2005-97639 A JP-A-2005-97638

従来の曲げ加工性の評価方法というのは、曲げたときに亀裂が生じるかどうかであった。コネクターの曲げ部は嵌合時に応力が集中する箇所であり、この部分に亀裂が生じていると、設計通りの接圧が得られず、継電上の信頼性が損なわれるからである。
ところが、今後は亀裂が生じる前段階である肌荒れの有無すら評価対象になると考えられる。肌荒れが生じると、板厚が不均一になるので、細いピンほど接圧に影響するようになる。つまり、軽薄短小化が著しい携帯電話などの電子機器に使用されるコネクターにおいては、板厚が0.1mm以下、ピン幅が0.2mm以下のコネクタピンが主流になりつつあり、このような小型コネクターを製造する上では肌荒れについても無視できない。
更に、省スペース化の都合上、曲げ部が接点部となる場合がある。接点部は、接触抵抗を下げるためと耐食性の観点から金メッキが施される場合が多い。金メッキ厚は従来0.1〜0.2μm程度が一般的であったが、金は高価な金属であるため、年々薄くなる傾向にある。金メッキした部分を曲げたときに肌荒れが生じると、凹部が新生面であるので、金メッキ面に段差が生じ、素地がむき出しになるので、耐食性が劣化する。
よって、小型コネクター用の素材に要求される曲げ性としては、単に亀裂が生じないだけでなく、肌荒れも生じにくいということが重要となってきた。
The conventional evaluation method for bending workability was whether or not a crack would occur when bent. This is because the bent part of the connector is a part where stress is concentrated at the time of fitting, and if this part is cracked, the contact pressure as designed cannot be obtained and the reliability in relaying is impaired.
However, in the future, it is considered that even the presence or absence of rough skin, which is a stage before the occurrence of cracks, is to be evaluated. When rough skin occurs, the plate thickness becomes non-uniform, so the thinner the pin, the more the contact pressure is affected. In other words, in connectors used in electronic devices such as mobile phones that are extremely light and thin, connector pins having a plate thickness of 0.1 mm or less and a pin width of 0.2 mm or less are becoming mainstream. When manufacturing connectors, rough skin cannot be ignored.
Furthermore, the bent portion may become a contact portion for the sake of space saving. The contact portion is often subjected to gold plating from the viewpoint of reducing contact resistance and corrosion resistance. Conventionally, the gold plating thickness is generally about 0.1 to 0.2 μm. However, since gold is an expensive metal, it tends to become thinner year by year. If rough skin occurs when the gold-plated portion is bent, the concave portion is a new surface, so that a step is generated on the gold-plated surface, and the substrate is exposed, so that the corrosion resistance is deteriorated.
Therefore, it has become important as a bendability required for a material for a small connector that not only the crack does not occur but also the rough skin does not easily occur.

銅合金の曲げ加工において、曲げ部の肌荒れを少なくするには、結晶粒の微細化が有効であることが分かっている。そこで、背景技術の欄に記載した先行技術を用いれば限度はあるにせよ結晶粒を微細化していくことは可能であると考えられる。しかしながら、これまではチタン銅の材料全体にわたって均一に結晶粒を微細化させることを狙ったものであった。しかしながら、材料全体の結晶粒を微細化するために溶体化処理時の加熱温度を低くする必要があるが、粗大な第二相粒子(安定相)が生成しやすい。粗大な析出物は材料の機械的特性に悪影響を与えるため、好ましいものではない。   In bending of copper alloy, it has been found that refinement of crystal grains is effective to reduce the rough surface of the bent portion. Therefore, it is considered that if the prior art described in the background art column is used, it is possible to refine the crystal grains even if there is a limit. However, until now, the aim has been to uniformly refine crystal grains throughout the entire titanium-copper material. However, although it is necessary to lower the heating temperature during the solution treatment in order to refine the crystal grains of the entire material, coarse second-phase particles (stable phase) are likely to be generated. Coarse precipitates are undesirable because they adversely affect the mechanical properties of the material.

そこで、本発明の課題は、材料全体にわたって結晶粒を微細化することなく、曲げ部の肌荒れを抑制することのできるチタン銅を提供することである。   Then, the subject of this invention is providing the titanium copper which can suppress the rough skin of a bending part, without refining a crystal grain over the whole material.

本発明者は上記課題を解決すべく鋭意研究したところ、表面近傍だけでも結晶粒が微細化できれば、曲げたときの肌荒れが生じにくい傾向にあることが判明した。つまり素材全体の結晶粒が微細化されていなくても、曲げ加工したときの塑性流動の大きい表面部さえしっかり微細化していれば、肌荒れの発生が防げるのである。そしてそのような組織形態は、チタン銅の場合、窒素を含有した還元性の雰囲気で溶体化処理を行うことにより実現できることを見出した。更に、このような処理をしたチタン銅は、プレス加工において工具磨耗が生じにくいこともわかった。   As a result of intensive studies to solve the above problems, the present inventor has found that if the crystal grains can be refined only in the vicinity of the surface, rough skin tends to hardly occur when bent. In other words, even if the crystal grains of the entire material are not miniaturized, the occurrence of rough skin can be prevented as long as even the surface portion having a large plastic flow when bent is finely refined. And in the case of titanium copper, it discovered that such a structure | tissue form was realizable by performing a solution treatment in the reducing atmosphere containing nitrogen. Further, it was also found that the titanium copper subjected to such treatment hardly causes tool wear in press working.

以上の知見に基づいて完成された本発明は、一側面において、Tiを2〜4質量%含有し、第3元素群としてMn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0.05〜0.5質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、該銅合金の圧延面における結晶の平均長径(a)は、圧延面から10μm以上内部にある結晶の平均長径(b)と1<a/bの関係が成立する電子部品用銅合金である。   This invention completed based on the above knowledge contains 2-4 mass% of Ti in one side surface, Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, as 3rd element group, A copper alloy for electronic parts comprising 0.05 to 0.5% by mass in total of one or more selected from the group consisting of Si, B and P, comprising the balance copper and unavoidable impurities, The average major axis (a) of the crystal on the rolled surface of the copper alloy is a copper alloy for electronic parts in which a relationship of 1 <a / b is established with the average major axis (b) of the crystal 10 μm or more inside the rolled surface.

本発明に係る電子部品用銅合金の一実施形態においては、表面が窒化されている。   In one embodiment of the copper alloy for electronic parts according to the present invention, the surface is nitrided.

本発明に係る電子部品用銅合金の別の一実施形態においては、圧延面から10μm以上内部にある結晶の平均結晶粒径は、圧延方向に平行な厚み方向の断面から観察したときに、円相当径で表して2〜10μmである。   In another embodiment of the copper alloy for electronic parts according to the present invention, the average crystal grain size of the crystal 10 μm or more from the rolling surface is a circle when observed from a cross section in the thickness direction parallel to the rolling direction. The equivalent diameter is 2 to 10 μm.

本発明に係る電子部品用銅合金の更に別の一実施形態においては、圧延面の平均結晶粒径は、圧延面から観察したときに、円相当径で表して1〜5μmである。   In still another embodiment of the copper alloy for electronic parts according to the present invention, the average crystal grain size of the rolled surface is 1 to 5 μm in terms of an equivalent circle diameter when observed from the rolled surface.

本発明に係る電子部品用銅合金の更に別の一実施形態においては、0.4≦a/b≦0.8の関係が成立する。   In still another embodiment of the copper alloy for electronic parts according to the present invention, a relationship of 0.4 ≦ a / b ≦ 0.8 is established.

本発明に係る電子部品用銅合金の更に別の一実施形態においては、圧延面の母相中のN濃度は最大値が10〜200ppmである。   In still another embodiment of the copper alloy for electronic parts according to the present invention, the maximum value of the N concentration in the parent phase of the rolled surface is 10 to 200 ppm.

本発明は別の一側面において、上記銅合金を備えた伸銅品である。   In another aspect of the present invention, a copper product including the above-described copper alloy.

本発明はまた別の一側面において、上記銅合金を備えた電子部品である。   In another aspect, the present invention is an electronic component comprising the above copper alloy.

本発明はまた別の一側面において、上記銅合金を備えたコネクターである。   Another aspect of the present invention is a connector including the above copper alloy.

以上説明したように、本発明によれば、チタン銅において、材料全体にわたって結晶粒を微細化することなく、曲げ部の肌荒れを抑制することが可能となる。   As described above, according to the present invention, it is possible to suppress roughening of the bent portion of the titanium copper without refining crystal grains throughout the material.

Ti含有量
Tiが2質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に4質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明に係る銅合金中のTiの含有量は2〜4質量%であり、好ましくは2.7〜3.5質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
If the Ti content Ti is less than 2% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of the original modulation structure of titanium copper. On the contrary, if the Ti content exceeds 4% by mass, coarse TiCu 3 Tends to precipitate, and the strength and bending workability tend to deteriorate. Therefore, the content of Ti in the copper alloy according to the present invention is 2 to 4% by mass, preferably 2.7 to 3.5% by mass. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.

第3元素
第3元素は結晶粒の微細化に寄与する。本発明では、特に表層の結晶粒の微細化を特徴としているが、電子部品として使用可能な基本的特性を得るには、内部組織も一定程度は微細化されていることが望ましい。そこで、所定の第3元素を添加することとした。
Third element The third element contributes to the refinement of crystal grains. The present invention is particularly characterized by the refinement of crystal grains on the surface layer. However, in order to obtain basic characteristics that can be used as an electronic component, it is desirable that the internal structure is also refined to a certain extent. Therefore, a predetermined third element is added.

第3元素の添加効果は、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化することである。また、第3元素が第二相粒子として析出することにより母相中に固溶している該元素の含有量は無視できるほど微量となるため、母相中に形成されるチタンの濃度波の波長や振幅に乱れが生ずることはなくなる。更に、TiCu3の析出を抑制する効果もある。そのため、チタン銅本来の時効硬化能が得られるようになる。 The effect of adding the third element is that crystal grains are easily refined even when solution treatment is performed at a high temperature at which Ti is sufficiently dissolved. In addition, since the content of the element dissolved in the matrix is negligibly small because the third element is precipitated as the second phase particles, the concentration wave of titanium formed in the matrix is There will be no disturbance in wavelength and amplitude. Furthermore, there is an effect of suppressing precipitation of TiCu 3 . Therefore, the original age hardening ability of titanium copper can be obtained.

チタン銅において上記効果が最も高いのがFeである。そして、Mn、Co、Ni、Si、Cr、V、Nb、Mo、Zr、B及びPにおいてもFeに準じた効果が期待でき、単独の添加でも効果が見られるが、2種以上を複合添加してもよい。   In titanium copper, Fe has the highest effect. And in Mn, Co, Ni, Si, Cr, V, Nb, Mo, Zr, B and P, an effect similar to Fe can be expected, and even if added alone, the effect can be seen, but two or more kinds are added in combination May be.

これらの元素は、合計で0.05質量%以上含有するとその効果が現れだすが、合計で0.5質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、本発明に係るチタン銅では、第3元素群としてMn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0.05〜0.5質量%含有する。   When these elements contain a total of 0.05% by mass or more, the effect appears. However, when the total exceeds 0.5% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability is deteriorated. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Therefore, in the titanium copper according to the present invention, one or two selected from the group consisting of Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B and P as the third element group. The total amount is 0.05 to 0.5% by mass.

これら第3元素のより好ましい範囲は、Feにおいて0.17〜0.23質量%であり、Co、Ni、Cr、Si、V、Nb、Mn、Moにおいて0.15〜0.25質量%、Zr、B、Pにおいて0.05〜0.1質量%である。   A more preferable range of these third elements is 0.17 to 0.23% by mass in Fe, and 0.15 to 0.25% by mass in Co, Ni, Cr, Si, V, Nb, Mn, and Mo, It is 0.05-0.1 mass% in Zr, B, P.

表面の窒化層
純銅中に窒素は固溶しにくいが、チタン銅の場合、窒素と親和性の高いTiが主成分として含有されているので、還元性の窒素雰囲気中、例えば窒素と水素の混合ガス雰囲気中で加熱すれば、容易に窒化する。そして、窒化により表面に微細な窒化物が形成されるので、これが再結晶後の粒の粗大化を著しく阻害する。そのため、溶体化処理をこのような還元性の窒素雰囲気中で行えば、素材表面の結晶粒を素材内部の結晶粒よりも微細化することができる。従って、本発明に係るチタン銅においては、圧延面における結晶の平均長径をaとし、圧延面から10μm以上内部にある結晶の平均長径をbとすると、1<a/bの関係が成立する。圧延面から10μm以上内部にある結晶との差を評価することとしたのは、圧延面から10μm以上離れていれば窒化による結晶粒微細化の影響がほとんど及ばないからである。
長径とは圧延方向の粒径のことであり、aは材料を圧延面から観察することによって、bは材料を圧延方向に平行な厚み方向の断面から観察することによって、計測することができる(図1参照)。窒化の度合いは基本的には溶体化処理時の雰囲気中の窒素分圧の上昇と共に高くすることが可能であり、これに応じてa/bも低くしていくことが可能である。ただし、Tiの窒化物は安定であり、一度形成されると、銅中に固溶しないので、変調構造の形成には寄与しないことから過度の窒化は避けた方がよい。また、表面の結晶粒径と内部組織の結晶粒径との差異が大き過ぎると、曲げ加工を行ったときに、その境界面のところに応力集中部が発生し、場合によっては曲げクラックが生じるので好ましくない。この点を考慮すると、a/bは0.4〜0.8とするのが好ましく、0.5〜0.7とするのがより好ましい。
Nitrogen layer on the surface is hard to dissolve nitrogen in pure copper, but in the case of titanium copper, Ti, which has high affinity with nitrogen, is contained as a main component, so in a reducing nitrogen atmosphere, for example, a mixture of nitrogen and hydrogen If heated in a gas atmosphere, it is easily nitrided. And since fine nitride is formed on the surface by nitriding, this significantly hinders the coarsening of grains after recrystallization. Therefore, if the solution treatment is performed in such a reducing nitrogen atmosphere, the crystal grains on the surface of the material can be made finer than the crystal grains inside the material. Therefore, in the titanium copper according to the present invention, the relationship of 1 <a / b is established, where a is the average major axis of the crystal on the rolled surface and b is the average major axis of the crystal 10 μm or more from the rolled surface. The reason for evaluating the difference with the crystal in the interior of 10 μm or more from the rolling surface is that the effect of crystal grain refinement due to nitriding is hardly exerted if it is 10 μm or more away from the rolling surface.
The major axis is the grain size in the rolling direction, a can be measured by observing the material from the rolling surface, and b can be measured by observing the material from a cross section in the thickness direction parallel to the rolling direction ( (See FIG. 1). The degree of nitriding can be basically increased with an increase in the nitrogen partial pressure in the atmosphere during the solution treatment, and a / b can be lowered accordingly. However, Ti nitride is stable, and once formed, it does not dissolve in copper, so it does not contribute to the formation of the modulation structure, so it is better to avoid excessive nitridation. In addition, if the difference between the crystal grain size of the surface and the crystal grain size of the internal structure is too large, when bending is performed, a stress concentration part is generated at the boundary surface, and in some cases, a bending crack is generated. Therefore, it is not preferable. Considering this point, a / b is preferably 0.4 to 0.8, and more preferably 0.5 to 0.7.

窒化の程度は素材表面に検出されるN濃度からも捉えることができる。窒化による結晶粒径微細化の効果は、電界放出型オージェ電子分光分析装置(FE−AES)で、素材表面から深さ方向にN濃度分布を調査したときに、N濃度の最大値が1質量ppm以上となると徐々に表れ、10質量ppm以上であると顕著に表れる。ただし、過度の窒化を避ける観点からは、N濃度の最大値は高すぎないほうがよい。このような観点から、本発明において「表面が窒化されている」とは素材表面に検出されるNの最大濃度が1質量ppm以上である場合をいう。そして、素材表面に検出されるNの最大濃度は10〜200質量ppmとするのが好ましく、20〜100質量ppmとするのがより好ましい。なお、N濃度の最大値が表れるのは、一般に圧延面から2〜10nm程度内部である。   The degree of nitriding can also be grasped from the N concentration detected on the material surface. The effect of refining the crystal grain size by nitriding is that when the N concentration distribution is investigated from the surface of the material in the depth direction using a field emission Auger electron spectrometer (FE-AES), the maximum N concentration is 1 mass. When it becomes ppm or more, it appears gradually, and when it is 10 mass ppm or more, it appears remarkably. However, from the viewpoint of avoiding excessive nitriding, the maximum value of the N concentration should not be too high. From such a viewpoint, in the present invention, “the surface is nitrided” means a case where the maximum concentration of N detected on the surface of the material is 1 mass ppm or more. The maximum concentration of N detected on the surface of the material is preferably 10 to 200 ppm by mass, and more preferably 20 to 100 ppm by mass. Note that the maximum value of the N concentration appears generally about 2 to 10 nm from the rolling surface.

表面の結晶粒径
曲げ加工を行ったとき、曲げ表面に肌荒れを生じさせているのは、表面近傍の塑性変形の不均一さである。過酷な曲げ加工ほど、個々の結晶粒ごとに変形の方向に差が生じるので、肌荒れは顕著に生じる。しかし、表面近傍の組織を細かくすれば、変形の不連続点となる粒界が増えるので、肌荒れは目立たなくなる。よって、表面の結晶粒は小さいほど好ましい。具体的には、圧延面から観察したときに、表面の結晶粒径の平均値が円相当径で表して5μmより小さくなれば、現在実用化されているコネクターの曲げ加工を行う上においては、問題が生じないレベルとなる。尚、近い将来、更に過酷な曲げ加工が要求される可能性があるので、それに対応するためには、3μm以下であることが好ましい。そして安全上更に望ましいレベルは、2μm以下である。ただし、後述するように内部組織の平均結晶粒径は2μm程度までの微細化が限度であるので、表面を窒化することによって更に結晶粒を小さくしたとしても1μm未満とするのは実際上困難である。従って、本発明が想定している典型的な表面の結晶粒の平均値は1〜5μmである。
When performing grain size bending surface, what causes skin roughness on the bent surface, a non-uniformity of plastic deformation near the surface. The more severe the bending process, the more the roughness of the skin occurs because the difference in the direction of deformation occurs for each crystal grain. However, if the structure in the vicinity of the surface is made finer, grain boundaries that become discontinuous points of deformation increase, so that rough skin becomes inconspicuous. Therefore, the smaller the crystal grains on the surface, the better. Specifically, when the average value of the crystal grain size on the surface is smaller than 5 μm in terms of the equivalent circle diameter when observed from the rolling surface, when bending a connector that is currently in practical use, At a level where no problem occurs. In the near future, more severe bending may be required, and in order to cope with this, the thickness is preferably 3 μm or less. A more desirable level for safety is 2 μm or less. However, as will be described later, since the average grain size of the internal structure is limited to refinement to about 2 μm, even if the crystal grains are further reduced by nitriding the surface, it is actually difficult to make the grain size less than 1 μm. is there. Therefore, the average value of typical surface crystal grains assumed by the present invention is 1 to 5 μm.

内部の結晶粒径
曲げ性のみを考慮するなら、表面の結晶粒のみ微細化できれば問題はないが、強度を高くするには、素材全体の結晶粒を細かくする必要がある。換言すれば、結晶粒が微細化するほど、強度と曲げ性を良好にする。しかし、チタン銅の溶体化処理において、微量添加元素と溶体化処理条件の最適化を行ったとしても、安定相の成長を抑制した上で、結晶粒径を5μm以下に制御することは、現実的に困難である。その理由は、結晶粒を微細化させているのは、再結晶と同時に起こる安定相の微細析出であり、結晶粒を5μm以下に制御しようとすれば、この相の析出を更に多量にさせなければならない。この時点での安定相の多量析出は、強度と曲げ性において、逆効果となる。この逆効果の方が大きくなると、結晶粒を微細化しても意味がなくなる。安定相の多量析出による弊害が大きくなるのは結晶粒径が2μm未満のときである。この場合、結晶粒微細化による強度向上及び曲げ性向上の効果よりも、安定相析出による逆効果の方が大きくなり、意味が無くなる。また、平均結晶粒径を2μm未満にすると、応力緩和特性の低下が現れだす。
If considering only inside of the crystal grain size bendability, there is no problem as long grain only refinement of the surface, to increase the strength, it is necessary to finer crystal grains of the whole material. In other words, the finer the crystal grains, the better the strength and bendability. However, in the solution treatment of titanium copper, even if a trace amount of added elements and solution treatment conditions are optimized, the crystal grain size is controlled to 5 μm or less while suppressing the growth of the stable phase. Is difficult. The reason is that the crystal grains are refined because of the fine precipitation of the stable phase that occurs simultaneously with the recrystallization. If the crystal grains are controlled to 5 μm or less, the precipitation of this phase must be further increased. I must. A large amount of stable phase precipitation at this point has an adverse effect on strength and bendability. If this adverse effect is greater, it will not make sense to make crystal grains finer. The adverse effect due to the large amount of precipitation of the stable phase increases when the crystal grain size is less than 2 μm. In this case, the reverse effect due to the stable phase precipitation is larger than the effect of improving the strength and bendability due to the refinement of crystal grains, and the meaning is lost. In addition, when the average crystal grain size is less than 2 μm, the stress relaxation characteristics deteriorate.

従って、本発明に係る銅合金の一実施形態においては、圧延面から10μm以上内部にある結晶粒の平均結晶粒径は、圧延方向に平行な厚み方向の断面から観察したときに、円相当径で表して2〜10μmであり、好ましくは3〜8μmであり、より好ましくは5〜7μmである。   Therefore, in one embodiment of the copper alloy according to the present invention, the average crystal grain size of the crystal grains within 10 μm or more from the rolling surface is equivalent to the circle equivalent diameter when observed from the cross section in the thickness direction parallel to the rolling direction. And 2 to 10 μm, preferably 3 to 8 μm, more preferably 5 to 7 μm.

本発明に係る銅合金の特性
本発明に係る銅合金は、優れた強度及び曲げ加工性を有することができる。例えば、0.2%耐力が850MPa以上、好ましくは900MPa以上を有することができ、W曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値は2.0以下、好ましくは1.5以下、より好ましくは1.0以下とすることができる。
Characteristics of the copper alloy according to the present invention The copper alloy according to the present invention can have excellent strength and bending workability. For example, the 0.2% proof stress can be 850 MPa or more, preferably 900 MPa or more, and the MBR / t value that is the ratio of the minimum radius (MBR) to the plate thickness (t) at which cracks do not occur in the W bending test. Can be 2.0 or less, preferably 1.5 or less, and more preferably 1.0 or less.

また、本発明に係る銅合金の大きな特徴は、曲げ加工をしたときに曲げ部外周部にクラックが発生しにくいばかりではなく、曲げ部に肌荒れが生じにくいということである。先述したように、コネクターの小型化が進むほど、曲げ部の肌荒れの問題が顕在化するので、このような分野に使用される素材は、肌荒れの小さな曲げ性が重要なのである。   In addition, a major feature of the copper alloy according to the present invention is that not only cracks are hardly generated at the outer peripheral portion of the bent portion but also rough skin is hardly generated at the bent portion when bending is performed. As described above, the problem of rough skin at the bending portion becomes more obvious as the connector becomes smaller, and therefore, the material used in such a field is important to bend with little rough skin.

曲げたときの曲げ部表面の肌荒れ状況については、光学顕微鏡または、SEMにより観察できるが、定量的な評価を行うには、共焦点レーザー顕微鏡を用いることが有効である。共焦点レーザー顕微鏡では、光学的に焦点距離が異なる凹凸面であっても、ボケのない高解像度のイメージが得られ、三次元情報の再構築が可能なため、コンピュータ上で画像処理をすることにより、表面粗さの解析をすることができる。曲げ部表面は平面ではないので、ここで行う画像処理は、走査して得られた粗さ曲線を中心線が直線になるように加工する操作を行い、そのうえでRa、Rzなどの各評価値を計算する。理解を容易にするため、肌荒れの大きい状態及び肌荒れの小さい状態を示す曲げ部断面の模式図を図2及び図3に示した。   The rough skin condition on the surface of the bent part when bent can be observed with an optical microscope or SEM, but it is effective to use a confocal laser microscope for quantitative evaluation. With a confocal laser microscope, high-resolution images without blur can be obtained even on uneven surfaces with optically different focal lengths, and three-dimensional information can be reconstructed. Thus, the surface roughness can be analyzed. Since the surface of the bent portion is not a flat surface, the image processing performed here is an operation to process the roughness curve obtained by scanning so that the center line becomes a straight line, and then evaluate each evaluation value such as Ra and Rz. calculate. For easy understanding, FIGS. 2 and 3 are schematic views of a cross-section of a bending portion showing a state in which the rough skin is large and a state in which the rough skin is small.

そして、本発明に係る銅合金条は、JIS H 3130規定の90°W曲げ試験をBadway,R/t=1の条件で行ったとき、上述の共焦点レーザー顕微鏡を用いて、曲げ部表面の表面粗さを測定したとき、JIS B 0601規定のRa及びRzにおいて、Ra≦0.20μm、Rz≦1.00μmとすることができる。   The copper alloy strip according to the present invention is obtained by performing the 90 ° W bending test of JIS H 3130 under the condition of Badway, R / t = 1, using the above confocal laser microscope, When the surface roughness is measured, in Ra and Rz defined in JIS B 0601, Ra ≦ 0.20 μm and Rz ≦ 1.00 μm can be obtained.

更に、本発明に係る銅合金のもう一つの大きな特徴は、プレス打ち抜き性が良好であるという点である。具体的には、本発明品を素材として、連続プレス機によりコネクターを加工する場合、プレス金型が磨耗しにくく、研磨してから次に研磨するまでの金型寿命が長いということである。チタン銅をプレス加工する際に生じる金型摩耗の原因の一つは金型材料中に存在するC成分がTiと反応して硬くて脆いチタンカーバイド(TiC)を生成するとともに、工具表面を形成していた炭化物のCが奪われ、少しずつ崩れて磨耗していくことにある。
ところが、チタン銅の表面が窒化されていると、窒化物(TiN)は比較的高温でも熱分解することなく安定であることから、表面にTiNとして存在するものは、工具と高温高圧で接触してもCと反応しにくい。よって、表面が窒化されている本発明に係るチタン銅は金型摩耗が進行しにくくなるのである。
Furthermore, another major feature of the copper alloy according to the present invention is that the press punchability is good. Specifically, when a connector is processed by a continuous press using the product of the present invention as a raw material, the press mold is not easily worn, and the mold life from polishing to the next polishing is long. One of the causes of mold wear that occurs when pressing titanium copper is to form hard and brittle titanium carbide (TiC) by reacting with the Ti component in the mold material and forming the tool surface It is that the carbon of the carbide that has been taken is deprived, gradually collapse and wear.
However, when the surface of titanium copper is nitrided, nitride (TiN) is stable without being thermally decomposed even at a relatively high temperature, so that what exists as TiN on the surface is in contact with the tool at high temperature and high pressure. However, it is difficult to react with C. Therefore, the titanium copper according to the present invention whose surface is nitrided is hard to progress in mold wear.

更に、窒素は固体潤滑の効果があり、プレス加工中、剪断面が形成される領域とパンチ側面との摩擦を低減させる。   Furthermore, nitrogen has the effect of solid lubrication, and reduces the friction between the area where the shear surface is formed and the side surface of the punch during pressing.

本発明に係る銅合金は種々の板厚の伸銅品に加工することができ、以上説明してきたように、プレス加工によって加工される各種の電子部品の素材として有用である。本発明に係る銅合金は特に高い寸法精度が要求される小型のばね材として優れており、限定的ではないが、スイッチ、コネクター、ジャック、端子、リレー等の材料として好適に使用することができる。   The copper alloy according to the present invention can be processed into copper products having various plate thicknesses, and as described above, is useful as a material for various electronic components processed by pressing. The copper alloy according to the present invention is excellent as a small spring material requiring particularly high dimensional accuracy, and can be suitably used as a material for a switch, a connector, a jack, a terminal, a relay and the like, although not limited thereto. .

本発明に係る銅合金の製造方法
本発明に係る銅合金は、例えば特開2004−176163号公報、特開2005−97639号公報、特開2005−97638号公報に記載されているような公知のチタン銅の製造工程に、表面窒化工程を組み合わせることで製造可能であるが、電子部品用のチタン銅に要求される強度、導電率、曲げ性といった特性を得る上で好適な製造例を工程毎に順次説明する。
Manufacturing method of copper alloy according to the present invention The copper alloy according to the present invention is known as described in, for example, JP-A-2004-176163, JP-A-2005-97639, JP-A-2005-97638. Although it can be manufactured by combining the surface nitriding process with the titanium copper manufacturing process, suitable manufacturing examples for obtaining the properties such as strength, conductivity, and bendability required for titanium copper for electronic parts Will be described in turn.

1)インゴット製造工程
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の添加元素は、添加してから十分に攪拌したうで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素群の溶解後に添加すればよい。従って、溶製に関しては、適当量のCuに第3元素群としてMn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPの中から1種以上を合計で0.05〜0.50質量%添加し、十分保持した後にTiを2〜4質量%添加する。
1) Ingot manufacturing process Manufacturing of an ingot by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to hold high-melting-point additive elements such as Fe and Cr for a certain period of time after being added and sufficiently stirred. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element group is dissolved. Therefore, regarding melting, at least one type of Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as a third element group is added to an appropriate amount of Cu in total. Add 0.05 to 0.50% by mass and hold 2 to 4% by mass of Ti.

2)均質化焼鈍及び熱間圧延
ここでは凝固偏析や鋳造中に発生した晶出物をできるだけ無くすことが望ましい。後の溶体化処理において、第二相粒子の析出を微細かつ均一に分散させる為であり、混粒の防止にも効果があるからである。
インゴット製造工程後には、900〜960℃、例えば950℃で3〜5時間の均質化焼鈍を行った後に、熱間圧延を実施する。チタン銅は900℃以上では拡散速度及び塑性流動性が高く、Ti濃度の違いによる変形抵抗に差異が生じないので、偏析層が分断されて均質化が助長される。また、偏析部ではチタンが濃化して低融点となっているため、960℃を超える加熱をすると、液相が出現して、そのまま熱間圧延をするとその部分で割れるという液体金属脆性が生じてしまう。そこで、熱間圧延の加熱温度について、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の加工度が90%までのパスは900℃以上とする。そして、パス毎に適度な再結晶を起こしてTiの偏析を効果的に低減するために、板厚が50mmまでは、パスごとの圧下量を10mm以上とし、板厚が50mm以下からは、1パス当たりの加工度が20%以上となるようなパススケジュールで行う。1パスあたりの圧下量は10〜15mmとする。
2) Homogenization annealing and hot rolling Here, it is desirable to eliminate solidified segregation and crystallized substances generated during casting as much as possible. This is because, in the subsequent solution treatment, the precipitation of the second phase particles is finely and uniformly dispersed, which is effective in preventing mixed grains.
After the ingot manufacturing process, hot rolling is performed after performing homogenization annealing at 900 to 960 ° C., for example, 950 ° C. for 3 to 5 hours. Titanium copper has a high diffusion rate and plastic fluidity at 900 ° C. or higher, and there is no difference in deformation resistance due to a difference in Ti concentration. Therefore, the segregation layer is divided and homogenization is promoted. In addition, since the titanium is concentrated in the segregation part and has a low melting point, when heated above 960 ° C., a liquid phase appears, and when hot rolling is performed as it is, liquid metal brittleness is generated that cracks at that part. End up. Therefore, the heating temperature of the hot rolling is set to 960 ° C. or lower before hot rolling and during hot rolling, and the pass from the original thickness to the entire workability of 90% is set to 900 ° C. or higher. In order to effectively reduce the segregation of Ti by causing appropriate recrystallization for each pass, the rolling amount per pass is set to 10 mm or more up to a plate thickness of 50 mm, and from the plate thickness of 50 mm or less, 1 A pass schedule is used so that the degree of processing per pass is 20% or more. The amount of reduction per pass is 10 to 15 mm.

3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行う。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。したがって、最終の溶体化処理では、再結晶粒の粗大化が抑制でき、均質な微細粒が得られるのである。途中の焼鈍でも温度が低いと第二相粒子が形成されるので、この第二相粒子が完全に固溶する温度で行う。但し、不必要に高温で行うと、固溶していた第3元素群が、表面から進入して拡散してきた酸素によって、表層部より内部酸化してしまうので好ましくない。そこで、第一溶体化処理は加熱温度を850〜900℃とし、3〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、第二相粒子が析出しないようにする。それは、第二相粒子が完全に固溶した状態から後の最終の溶体化処理を行った方が、微細で均質な組織が得られるからである。
3) First solution treatment After that, cold rolling and annealing are repeated as appropriate, followed by solution treatment. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Therefore, in the final solution treatment, coarsening of recrystallized grains can be suppressed, and uniform fine grains can be obtained. Since the second phase particles are formed when the temperature is low even during the annealing in the middle, the annealing is performed at a temperature at which the second phase particles are completely dissolved. However, it is not preferable to perform at an unnecessarily high temperature because the third element group that has been in solid solution is internally oxidized from the surface layer by oxygen that has entered and diffused from the surface. Therefore, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 3 to 10 minutes. At that time, the heating rate and the cooling rate are increased as much as possible so that the second phase particles do not precipitate. This is because a fine and homogeneous structure can be obtained by performing the final solution treatment after the second phase particles are completely dissolved.

4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における第二相粒子が均一かつ微細に析出する。それは、集積した加工ひずみが再結晶の核生成サイトとなるので、加工度を高くしてひずみをためた方が、多数の再結晶核が生成するため、結晶粒が微細化するのである。但し、加工度をあまり高くして最終の溶体化処理を行うと、再結晶集合組織が発達して、塑性異方性が生じ、プレス整形性を害することがある。従って、中間圧延の加工度は好ましくは70〜99%ある。加工度は{(圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
4) Intermediate rolling As the degree of processing in the intermediate rolling before the final solution treatment is increased, the second phase particles in the final solution treatment are precipitated more uniformly and finely. This is because accumulated processing strain becomes a nucleation site for recrystallization. Therefore, when the strain is increased by increasing the degree of processing, a large number of recrystallization nuclei are generated, so that the crystal grains become finer. However, if the final solution treatment is performed with a too high degree of processing, a recrystallized texture develops and plastic anisotropy occurs, which may impair the press formability. Therefore, the processing degree of intermediate rolling is preferably 70 to 99%. The degree of work is defined by {(thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

5)最終の溶体化処理
最終の溶体化処理は、本発明において最もポイントとなる工程である。まず、雰囲気ガスは窒素を含んだ還元性ガスとする。具体的には、アンモニア分解ガス(25%N2+75%H2)が工業的に利用しやすいという理由で使用される。チタン銅をこのような雰囲気で加熱すると、再結晶する前の昇温中の段階から窒化が進行し、表面近傍に非常に微細なチタンの窒化物(TiN)を形成する。そして、再結晶が生じる温度に達しても、窒化物が再結晶粒の成長の抵抗となり、結果として、表面の結晶粒が特に微細化した組織が得られるのである。このような溶体化処理は、工業的には、雰囲気制御が可能な連続光輝焼鈍炉で行うことができる。
大気中にも多量の窒素を含んでいるが、大気中で溶体化処理を行うと表面酸化の方が強く進行し、安定な酸化皮膜に遮断されて、窒化が全く進行しない。純窒素雰囲気で行っても、非常に僅かな残留酸素により、酸化皮膜が形成されるので、窒化はほとんど期待できない。酸化を防ぐには、やはり、水素を含んだ還元性の雰囲気とする必要がある。
加熱温度は析出物が完全に固溶する温度とすることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化するので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2〜4質量%の範囲でTiの固溶限が添加量と等しくなる温度は730〜840℃であり、例えばTiの添加量が3質量%では800℃程度)。そしてこの温度まで急速に加熱し、冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。また、固溶温度での加熱時間は短い程、結晶粒が微細化する。加熱時間は例示的には30〜60秒である。この時点で発生した第二相粒子は微細かつ均一に分散していれば、強度と曲げ加工性に対してほとんど無害である。しかし粗大なものは最終の時効で更に成長する傾向にあるので、有害である。
加熱後は急冷することが望ましいので、冷却速度の高い冷却設備を有することが重要である。チタン銅の溶体化は水冷するのが一般的であるが、充分な冷却速度が得られるのであれば、水冷である必要はない。ここで充分な冷却速度とは、降温中に析出が生じる隙を与えないない速度という意味で、50℃/s以上であればよい。
5) Final solution treatment The final solution treatment is the most important step in the present invention. First, the atmospheric gas is a reducing gas containing nitrogen. Specifically, ammonia decomposition gas (25% N 2 + 75% H 2 ) is used because it is industrially easy to use. When titanium copper is heated in such an atmosphere, nitriding proceeds from the stage of temperature rise before recrystallization, and very fine titanium nitride (TiN) is formed in the vicinity of the surface. Even when the temperature at which recrystallization occurs is reached, the nitride becomes a resistance to the growth of the recrystallized grains, and as a result, a structure in which the surface crystal grains are particularly fined is obtained. Such solution treatment can be industrially performed in a continuous bright annealing furnace capable of controlling the atmosphere.
Although a large amount of nitrogen is also contained in the atmosphere, when the solution treatment is performed in the atmosphere, the surface oxidation proceeds more strongly, is blocked by a stable oxide film, and nitriding does not proceed at all. Even in a pure nitrogen atmosphere, an oxide film is formed by very little residual oxygen, so that nitriding can hardly be expected. In order to prevent oxidation, it is necessary to make a reducing atmosphere containing hydrogen.
It is desirable that the heating temperature is a temperature at which the precipitate is completely dissolved, but if it is heated to a high temperature until it completely disappears, the crystal grains become coarse, so the heating temperature is around the solid solubility limit of the second phase particle composition. (The temperature at which the solid solubility limit of Ti becomes equal to the addition amount in the range of 2 to 4% by mass of Ti is 730 to 840 ° C., for example, about 800 ° C. when the addition amount of Ti is 3% by mass. ). And if it heats rapidly to this temperature and a cooling rate is also made fast, generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Further, the shorter the heating time at the solid solution temperature, the finer the crystal grains. The heating time is illustratively 30 to 60 seconds. If the second phase particles generated at this time are finely and uniformly dispersed, they are almost harmless to strength and bending workability. But the coarse ones are harmful because they tend to grow further in the final aging.
Since it is desirable to rapidly cool after heating, it is important to have a cooling facility with a high cooling rate. The solution of titanium copper is generally water-cooled, but need not be water-cooled if a sufficient cooling rate can be obtained. Here, the sufficient cooling rate means a rate that does not give a gap in which precipitation occurs during temperature reduction, and may be 50 ° C./s or more.

冷却速度は、冷媒の熱伝達、および素材と冷媒との界面の熱伝達、更に素材の単位面積当たりの熱容量に依存する。本発明品は、より小型化されるコネクター用の素材をターゲットとしており、板厚が薄いアイテム、すなわち単位面積当たりの熱容量が小さい場合が多い。したがって、冷媒ガスを吹き付けるジェットクーラント方式でも、流量と圧力を調整すれば充分な冷却速度が得られる。しかし、板厚が薄い場合であっても、操業安定性の観点から最も好ましいのは水冷である。   The cooling rate depends on the heat transfer of the refrigerant, the heat transfer at the interface between the material and the refrigerant, and the heat capacity per unit area of the material. The product of the present invention is targeted for a connector material that is further miniaturized, and often has a thin plate thickness, that is, a small heat capacity per unit area. Therefore, even with a jet coolant system that blows refrigerant gas, a sufficient cooling rate can be obtained by adjusting the flow rate and pressure. However, even when the plate thickness is thin, water cooling is most preferable from the viewpoint of operational stability.

6)最終の冷延加工度・最終の時効処理
上記溶体化処理工程後、最終の冷間圧延及び時効処理を行う。最終の冷間加工によってチタン銅の強度を高めることができる。この際、加工度が10%未満では充分な効果が得られないので加工度を10%以上とするのが好ましい。但し、加工度が高いほど次の時効処理で粒界析出が起こり易いので、加工度を50%以下、より好ましくは25%以下とする。時効処理については、低温ほど粒界への析出を抑制することができる。同じ強度が得られる条件であっても、高温短時間側より低温長時間側の方が、粒界析出を抑制できるのである。従来技術において適正範囲とされていた420〜450℃では、時効が進むにつれて強度は向上するが、粒界析出が生じやすく、僅かな過時効でも安定相であるCuTi3が発生して曲げ加工性を低下させてしまう。従って、添加元素によっても適正な時効条件は異なってくるが、通常は360〜420℃で1〜24時間であり、380〜400℃で12時間〜24時間とするのが好ましい。390〜400℃では12〜18時間とし、380℃〜390℃では18〜24時間とするのがより好ましい。例えば400℃×12h、380℃×24hとすることができる。
6) Final cold rolling work degree / final aging treatment After the solution treatment step, final cold rolling and aging treatment are performed. The strength of titanium copper can be increased by the final cold working. At this time, if the degree of work is less than 10%, a sufficient effect cannot be obtained, so that the degree of work is preferably 10% or more. However, the higher the degree of work, the more likely grain boundary precipitation occurs in the next aging treatment, so the degree of work is 50% or less, more preferably 25% or less. About aging treatment, precipitation to a grain boundary can be suppressed, so that it is low temperature. Even under conditions where the same strength can be obtained, grain boundary precipitation can be suppressed on the low temperature long time side than on the high temperature short time side. At 420 to 450 ° C., which was an appropriate range in the prior art, the strength is improved as aging progresses, but grain boundary precipitation is likely to occur, and CuTi 3 which is a stable phase is generated even with slight overaging, resulting in bending workability. Will be reduced. Accordingly, although the appropriate aging conditions vary depending on the additive element, it is usually 1 to 24 hours at 360 to 420 ° C., and preferably 12 to 24 hours at 380 to 400 ° C. It is more preferably 12 to 18 hours at 390 to 400 ° C and 18 to 24 hours at 380 to 390 ° C. For example, it can be set to 400 ° C. × 12 h and 380 ° C. × 24 h.

次に本発明の実施例を説明するが、本発明はこれらに限定されない。
本発明例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるから、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。
Next, examples of the present invention will be described, but the present invention is not limited thereto.
When manufacturing the copper alloy of the present invention example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.

まず、No.1〜14について、Cuに、Mn、Fe、Co、Ni、Cr、Mo、V、Nb、Zr、Si、B及びPを表1に示す組成でそれぞれ添加した後、同表に示す組成のTiをそれぞれ添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, no. 1 to 14, Mn, Fe, Co, Ni, Cr, Mo, V, Nb, Zr, Si, B and P were added to Cu in the compositions shown in Table 1, respectively, and Ti having the composition shown in the same table was added. Was added respectively. After sufficient consideration was given to the retention time after the addition so that there was no undissolved residue of the added elements, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingots.

上記インゴットに対して均質化焼鈍、及びそれに続く熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(1.5〜2.0mm)とし、素条での第1次溶体化処理を行って、中間の板厚(0.10〜0.50mm)まで冷間圧延した。その後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、酸洗による脱スケール後、冷間圧延して板厚0.075mmとし、不活性ガス雰囲気中で時効して発明例及び比較例の試験片とした。尚、成分組成、均質化焼鈍の条件、熱間圧延条件、素条での第1次溶体化処理条件、最終の溶体化処理条件、最終の冷間圧延加工度、時効条件については、表1〜3に示す通りとした。   The ingot was subjected to homogenization annealing and subsequent hot rolling to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, it is cold-rolled to obtain a strip thickness (1.5 to 2.0 mm), and a primary solution treatment with the strip is performed to obtain an intermediate thickness (0.10). To 0.50 mm). Thereafter, it is inserted into an annealing furnace capable of rapid heating to perform a final solution treatment, and after descaling by pickling, it is cold-rolled to a sheet thickness of 0.075 mm and aged in an inert gas atmosphere. It was set as the test piece of the example and the comparative example. Table 1 shows the component composition, homogenization annealing conditions, hot rolling conditions, primary solution treatment conditions with raw strips, final solution treatment conditions, final cold rolling workability, and aging conditions. As shown in ~ 3.

Figure 2009242881
Figure 2009242881

Figure 2009242881
Figure 2009242881

Figure 2009242881
Figure 2009242881

内部の結晶粒径
圧延方向に平行な厚み方向の断面を電解研磨し、SEM(倍率:2000)により断面組織を観察し、単位面積当たりの結晶粒の数をカウントした。このとき、観察視野は、表面から10μm以上離れた領域とし、全観察視野面積は、10000μm2(100μm×100μm)以上とした。観察視野の枠の直線部が結晶粒を横切っている場合、その結晶粒については1/2個とカウントし、枠の頂点(四隅)が結晶粒に差し掛かっている場合、その結晶粒については、1/4個とカウントすることとした。そして、複数の箇所をカウントしたときは、全観察視野面積を合計し、それをカウントした結晶粒の合計で除し、結晶粒一個あたりの面積を計算した。その面積より、その面積と同じ面積を有する真円の直径(円相当径)を計算し、これを平均結晶粒径とした。ここで、圧延方向に平行な厚み方向の断面から平均結晶粒径を求めたのは、最終の冷間圧延加工度が如何なるものであっても、最終の溶体化処理にて形成された再結晶組織の各結晶粒の面積が幾何学上保存されるからである。
Internal electrolytic polishing the thickness direction of the cross section parallel to the grain size rolling direction, SEM (magnification: 2000) by observing the cross-sectional structure, and count the number of crystal grains per unit area. At this time, the observation visual field was a region separated by 10 μm or more from the surface, and the total observation visual field area was 10,000 μm 2 (100 μm × 100 μm) or more. When the straight part of the frame of the observation field crosses the crystal grain, the crystal grain is counted as ½, and when the apex (four corners) of the frame is approaching the crystal grain, It was decided to count as 1/4. Then, when a plurality of locations were counted, the total observation visual field area was summed, and the total area of the observed crystal grains was divided by the sum of the counted crystal grains to calculate the area per crystal grain. From the area, the diameter of a perfect circle having the same area as that area (equivalent circle diameter) was calculated and used as the average crystal grain size. Here, the average crystal grain size was determined from the cross section in the thickness direction parallel to the rolling direction, regardless of the final cold rolling degree, the recrystallization formed in the final solution treatment This is because the area of each crystal grain of the structure is preserved geometrically.

表面の結晶粒径
素材表面を軽く電解エッチングし、SEM(倍率:2000)により圧延面の組織を観察し、上記と同じ方法で、単位面積当たりの結晶粒の数をカウントし、表面の平均結晶粒径をもとめた。このとき、電解エッチングによる表面の腐食量は、1μm以下とした。
なお、上述したように圧延平行断面の場合、最終の溶体化処理にて形成された各結晶粒の面積はどのような加工度で圧延を行っても理論上同じとなるが、表面の場合は、圧延加工度に比例して、圧延方向に伸ばされるので、各結晶粒の面積はその分増加する。よって、ここで求めた表面の結晶粒径と上述の平均結晶粒径とは単純に比較できないことに留意すべきである。
内部組織と表面組織の粒径比(a/b)
SEMにより得られた圧延方向に平行な厚み方向の組織を(株)ニレコ社のLUZEXを用いて画像処理し、それぞれの粒子の長径(圧延方向の径)の平均値bを求めた。同様にSEMにより観察された圧延面の表面組織を画像処理し、それぞれの粒子の長径(圧延方向の径)の平均値aを求めた。尚このときの観察視野は、平均結晶粒径を求めたときと同様に、10000μm2(100μm×100μm)以上とした。
なお、a/bは内部組織と表面組織の粒径比を考える上では適切な評価方法である。最終の溶体化処理後に行う冷間圧延の加工度が異なっていても、この比は一定であり、この値が1より小さければ、内部組織よりも表面の方が結晶粒径が小さくなっていることを意味するからである。
Lightly electrolytic etching the grain size material surface surface, SEM (magnification: 2000) to observe the rolled surface tissue, in the same manner as described above, by counting the number of grains per unit area, average crystal surface The particle size was determined. At this time, the amount of surface corrosion caused by electrolytic etching was set to 1 μm or less.
As described above, in the case of a rolled parallel cross section, the area of each crystal grain formed in the final solution treatment is the same regardless of the degree of processing, but in the case of the surface, Since the film is stretched in the rolling direction in proportion to the degree of rolling, the area of each crystal grain increases accordingly. Therefore, it should be noted that the surface crystal grain size obtained here cannot be simply compared with the above-mentioned average crystal grain size.
Particle size ratio between internal structure and surface structure (a / b)
The structure in the thickness direction parallel to the rolling direction obtained by SEM was subjected to image processing using LUZEX manufactured by Nireco Co., Ltd., and the average value b of the major axis (diameter in the rolling direction) of each particle was obtained. Similarly, the surface texture of the rolling surface observed by SEM was subjected to image processing, and the average value a of the major axis (diameter in the rolling direction) of each particle was obtained. In addition, the observation visual field at this time was set to 10000 μm 2 (100 μm × 100 μm) or more similarly to the case of obtaining the average crystal grain size.
Note that a / b is an appropriate evaluation method in considering the particle size ratio between the internal structure and the surface structure. Even if the degree of cold rolling performed after the final solution treatment is different, this ratio is constant. If this value is smaller than 1, the crystal grain size is smaller on the surface than on the internal structure. It means that.

表面の窒素濃度
電界放出型オージェ電子分光分析装置(FE−AES)(日本電子株式会社製型式JUNP−7800F)で、スパッタレートを10nm/minとして表面より深さ方向にN濃度分布を調査し、その最大値(最大濃化部)を測定した。何れの試験片においても最大値が表れるのは表面のごく近傍で、表面から概ね2〜10nmの深さであった。尚、測定箇所は、母相とし、析出物は避けた。それは、Nは、Tiとの親和性が非常に高いため、Ti濃度の高い析出物の周囲に濃化しやすいので、平均的な値とならないからである。
Surface nitrogen concentration field emission Auger electron spectrometer (FE-AES) (JEOL Co., Ltd. model JUNP-7800F) was used to investigate the N concentration distribution in the depth direction from the surface at a sputtering rate of 10 nm / min. The maximum value (maximum concentration part) was measured. The maximum value appears in any test piece in the very vicinity of the surface, and the depth is approximately 2 to 10 nm from the surface. In addition, the measurement location was made into the mother phase and the deposit was avoided. This is because N has a very high affinity with Ti, and therefore tends to concentrate around precipitates with a high Ti concentration, and thus does not have an average value.

Figure 2009242881
Figure 2009242881

機械的性質
まず引っ張り試験を行って、JIS Z 2201に準拠して圧延平行方向の0.2%耐力を測定し、JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行って割れの発生しない最小半径(MBR)の板厚(t)に対する比であるMBR/t値を測定した。
Mechanical properties First, a tensile test is performed to measure a 0.2% proof stress in the rolling parallel direction in accordance with JIS Z 2201, and a W-bend test in Badway (the bending axis is the same direction as the rolling direction) in accordance with JIS H 3130. The MBR / t value, which is the ratio of the minimum radius (MBR) at which no cracks occur to the plate thickness (t), was measured.

曲げ部の表面粗さ
JIS H 3130に従って、Badway(曲げ軸が圧延方向と同一方向)のW曲げ試験を行い、曲げ部の表面を共焦点レーザー顕微鏡で解析し、JIS B 0601規定のRa及びRzを求めた。
In accordance with JIS H 3130, the surface roughness of the bent part is subjected to a W-bend test (the bending axis is the same direction as the rolling direction), the surface of the bent part is analyzed with a confocal laser microscope, and Ra and Rz defined in JIS B 0601 are specified. Asked.

プレス打ち抜き性
プレス打ち抜き性については、実際に連続プレス機で材料を大量に打ち抜き、金型の磨耗状況によって変化する切断部のバリ高さと破断面比率を測定して評価した。ここで、バリ高さとは図4に示す突起部の高さであり、金型が磨耗するにしたがってバリが高くなってくる。また金型が磨耗するにしたがって、図5に示す剪断面の割合が多くなり、即ち破断面比率(板厚−剪断面の板厚方向の長さ)/板厚は小さくなる。潤滑剤がない場合と有る場合の2種類行なった。
Press punchability The press punchability was evaluated by actually punching a large amount of material with a continuous press, and measuring the burr height and fracture surface ratio of the cut part, which varies depending on the wear condition of the mold. Here, the burr height is the height of the protrusion shown in FIG. 4, and the burr becomes higher as the mold is worn. Further, as the mold is worn, the ratio of the shear plane shown in FIG. 5 increases, that is, the fracture surface ratio (plate thickness-length in the plate thickness direction of the shear plane) / plate thickness decreases. Two types were performed, with and without the lubricant.

なお、他のプレス条件は以下の通りであった。
金型工具材料:SKD11、クリアランス:10μm、ストローク:400spm 図6に評価に用いた金型セット形状を示す。1辺約5mmの正方形で4つの角の曲率が異なっており、それぞれの曲率半径は、0.05mm、0.1mm、0.2mm、0.3mmである。曲率半径が小さい程、剪断加工時に応力集中が生じるので磨耗し易い。しかし、曲率半径が小さい程切断面形状がばらついて観察しにくくなる。また、プレス加工後の孔部と抜き落とし部とでは、抜き落とし側の方が観察し易い。以上を考慮し、今回の評価は抜き落とし側の曲率半径が0.1mmの角を観察した。
Other press conditions were as follows.
Mold tool material: SKD11, clearance: 10 μm, stroke: 400 spm FIG. 6 shows a mold set shape used for evaluation. The curvature of four corners is different in a square of about 5 mm on a side, and the curvature radii are 0.05 mm, 0.1 mm, 0.2 mm, and 0.3 mm, respectively. The smaller the radius of curvature, the easier it is to wear because stress concentration occurs during shearing. However, the smaller the radius of curvature is, the more difficult it is to observe because the cut surface shape varies. In addition, it is easier to observe the punched-out side and the punched-out side of the punched-out side. Considering the above, in this evaluation, the corner having a radius of curvature of 0.1 mm on the removal side was observed.

潤滑剤無しの場合は、十万回打ちぬいたときに素材間の差異が顕著となり、潤滑剤有りの場合は百万回打ち抜いたときに素材間の差異が顕著となったので、そのときの値を評価値として採用した。潤滑剤としては、銅合金のプレス加工油として通常に用いられている日本工作油(株)製のG6515を使用し、双葉電子工業(株)のトップロールを用いて塗布し、給油量は1cc/minとした。バリ高さは、レーザー変位計で測定し、破断面比率は光学顕微鏡による断面観察を行い、ダレ部と剪断面の長さを測定し、(板厚−剪断面)/板厚を破断面比率として求めた。   When there is no lubricant, the difference between the materials becomes remarkable when punched 100,000 times, and when there is a lubricant, the difference between the materials becomes remarkable when punched one million times. The value was adopted as the evaluation value. As the lubricant, G6515 manufactured by Nippon Yasaku Osamu Co., Ltd., which is normally used as a press working oil for copper alloys, is used and applied using the top roll of Futaba Electronics Industry Co., Ltd. / Min. The burr height is measured with a laser displacement meter, the fracture surface ratio is observed with an optical microscope, the length of the sag portion and the shear surface is measured, and (sheet thickness-shear surface) / sheet thickness is determined as the fracture surface ratio. As sought.

Figure 2009242881
Figure 2009242881

No.1(比較)とNo.2(比較)は、最終の溶体化処理を大気中で行ったため、全く窒化せず、プレス打ち抜き性が通常のレベルであった。そのうち、No.1は、このときの加熱温度が高かったため、結晶粒が粗大化し、大きな曲げ部に肌荒れが生じるとともに強度も低かった。No.3(比較)は、最終の溶体化処理を、還元性の雰囲気ではなく、純窒素雰囲気で行ったため、表面酸化が先行して表面窒化が生じなかった。また、No.4(比較)は最終の溶体化処理を還元性雰囲気で行ったものの雰囲気中に窒素が全く含有されていなかったので、表面窒化が生じなかった。よって、No.3及びNo.4は、表面の結晶粒が微細化せず、プレス打ち抜き性が通常のレベルにとどまり、曲げ部の肌荒れも通常のレベルであった。No.5は、最終の溶体化処理を窒素を含有した還元性の雰囲気で行ったため、窒化が生じ、良好なプレス打ち抜き性が得られた。但し、結晶粒の微細化に寄与する元素が添加されていなかったので、結晶粒が全体的に大きくなり、強度が低くなった。また、結晶粒は、内部より表面の方が小さくなったものの、全体的に大きくなったので、曲げ部の肌荒れはある程度生じることとなった。No.6は、最終の溶体化処理を理想的な条件で行ったが、第3元素の含有量が合計で0.5質量%を超えたために、粗大な析出物が生じ、高い強度は得られたものの曲げ性が著しく低下した。No.7は、最終の溶体化処理の雰囲気は窒化に対して理想的であったが、加熱温度が高かったために、結晶粒が粗大化し、強度が低くなった。よって、No.5と同様に、良好なプレス打ち抜き性が得られたが、曲げ部の肌荒れは、ある程度大きくなった。No.8は、組成及び溶体化処理での雰囲気は、適切であったが、溶体化処理温度が低かったので、全体的に結晶粒が微細化したが、粗大な析出物が多数生じたため曲げ性が著しく低下した。   No. 1 (comparison) and No. 1 In No. 2 (Comparative), since the final solution treatment was performed in the air, no nitriding occurred, and the press punchability was at a normal level. Of these, No. In No. 1, since the heating temperature at this time was high, the crystal grains were coarsened, rough skin was generated in a large bent portion, and the strength was low. No. In No. 3 (Comparative), the final solution treatment was performed in a pure nitrogen atmosphere instead of a reducing atmosphere, and therefore surface oxidation was preceded and surface nitridation did not occur. No. In No. 4 (Comparative), the final solution treatment was performed in a reducing atmosphere, but no nitrogen was contained in the atmosphere, so no surface nitriding occurred. Therefore, no. 3 and no. In No. 4, the crystal grains on the surface were not refined, the press punchability remained at a normal level, and the rough surface of the bent portion was also at a normal level. No. In No. 5, since the final solution treatment was performed in a reducing atmosphere containing nitrogen, nitriding occurred and good press punchability was obtained. However, since the element contributing to the refinement of the crystal grains was not added, the crystal grains became larger as a whole and the strength was lowered. In addition, although the crystal grains were smaller on the surface than in the interior, they became larger as a whole, resulting in some roughness of the bent portion. No. In No. 6, the final solution treatment was performed under ideal conditions. However, since the total content of the third elements exceeded 0.5% by mass, coarse precipitates were generated and high strength was obtained. The bendability of the material was significantly reduced. No. In No. 7, the final solution treatment atmosphere was ideal for nitriding, but the heating temperature was high, so the crystal grains became coarse and the strength was low. Therefore, no. As in the case of No. 5, good press punchability was obtained, but the rough surface of the bent portion was somewhat increased. No. In No. 8, the composition and the atmosphere in the solution treatment were appropriate, but the solution treatment temperature was low, so the crystal grains were refined as a whole, but a large number of coarse precipitates were produced, so that the bendability was high. Remarkably reduced.

一方、No.9〜No.14は、組成及び最終の溶体化処理条件が適正であるために、強度と曲げ性のバランスが良く、曲げ部の肌荒れが少なく、プレス打ち抜き性も良好である。特に、No.11〜No.14は、チタン含有量が好ましい範囲となっているために、強度と曲げ性のバランスが更に良好となっている。   On the other hand, no. 9-No. No. 14, because the composition and final solution treatment conditions are appropriate, the balance between strength and bendability is good, the skin roughness of the bent portion is small, and the press punchability is also good. In particular, no. 11-No. In No. 14, since the titanium content is in a preferable range, the balance between strength and bendability is further improved.

材料表面における結晶の平均長径a、及び窒化されていない材料内部の結晶の平均長径bの観察箇所を示す模式図である。It is a schematic diagram which shows the observation location of the average major axis a of the crystal | crystallization in the material surface, and the average major axis b of the crystal | crystallization inside the material which is not nitrided. 肌荒れの大きい曲げ部断面の例Example of a cross section of a bent part with a rough skin 肌荒れの小さい曲げ部断面の例Example of a cross-section of a bent part with low skin roughness バリ高さの定義を示す図である。It is a figure which shows the definition of burr height. 剪断加工した板の切断面を示す図である。It is a figure which shows the cut surface of the board which carried out the shearing process. 金型磨耗試験で用いたパンチとダイの断面形状を示す図である。It is a figure which shows the cross-sectional shape of the punch and die used by the metal mold | die abrasion test.

Claims (9)

Tiを2〜4質量%含有し、第3元素群としてMn、Fe、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0.05〜0.5質量%含有し、残部銅及び不可避的不純物からなる電子部品用銅合金であって、該銅合金の圧延面における結晶の平均長径(a)は、圧延面から10μm以上内部にある結晶の平均長径(b)と1<a/bの関係が成立する電子部品用銅合金。   One or two selected from the group consisting of Mn, Fe, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, and P as the third element group containing 2 to 4% by mass of Ti A copper alloy for electronic parts containing 0.05 to 0.5% by mass in total and the balance being copper and inevitable impurities, wherein the average major axis (a) of crystals on the rolled surface of the copper alloy is rolled A copper alloy for electronic parts in which a relationship of 1 <a / b is established with an average major axis (b) of crystals within 10 μm or more from the surface. 表面が窒化されている請求項1記載の電子部品用銅合金。   The copper alloy for electronic parts according to claim 1, wherein the surface is nitrided. 圧延面から10μm以上内部にある結晶の平均結晶粒径は、圧延方向に平行な厚み方向の断面から観察したときに、円相当径で表して2〜10μmである請求項1記載の電子部品用銅合金。   2. The electronic component according to claim 1, wherein an average crystal grain size of a crystal within 10 μm or more from the rolling surface is 2 to 10 μm in terms of an equivalent circle diameter when observed from a cross section in a thickness direction parallel to the rolling direction. Copper alloy. 圧延面の平均結晶粒径は、圧延面から観察したときに、円相当径で表して1〜5μmである請求項1又は2記載の電子部品用銅合金。   3. The copper alloy for electronic parts according to claim 1, wherein the average crystal grain size of the rolled surface is 1 to 5 μm in terms of equivalent circle diameter when observed from the rolled surface. 0.4≦a/b≦0.8の関係が成立する請求項1〜3何れか一項記載の電子部品用銅合金。   The copper alloy for electronic parts as described in any one of Claims 1-3 in which the relationship of 0.4 <= a / b <= 0.8 is materialized. 圧延面の母相中のN濃度は最大値が10〜200ppmである請求項1〜4何れか一項記載の電子部品用銅合金。   The copper alloy for electronic parts according to any one of claims 1 to 4, wherein the maximum value of the N concentration in the matrix of the rolled surface is 10 to 200 ppm. 請求項1〜5の何れか一項に記載の銅合金を備えた伸銅品。   The copper-stretched article provided with the copper alloy as described in any one of Claims 1-5. 請求項1〜5の何れか一項に記載の銅合金を備えた電子部品。   The electronic component provided with the copper alloy as described in any one of Claims 1-5. 請求項1〜5の何れか一項に記載の銅合金を備えたコネクター。   The connector provided with the copper alloy as described in any one of Claims 1-5.
JP2008091704A 2008-03-31 2008-03-31 Titanium copper for electronic parts Active JP5208555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091704A JP5208555B2 (en) 2008-03-31 2008-03-31 Titanium copper for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091704A JP5208555B2 (en) 2008-03-31 2008-03-31 Titanium copper for electronic parts

Publications (2)

Publication Number Publication Date
JP2009242881A true JP2009242881A (en) 2009-10-22
JP5208555B2 JP5208555B2 (en) 2013-06-12

Family

ID=41305111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091704A Active JP5208555B2 (en) 2008-03-31 2008-03-31 Titanium copper for electronic parts

Country Status (1)

Country Link
JP (1) JP5208555B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097307A (en) * 2010-10-29 2012-05-24 Jx Nippon Mining & Metals Corp Copper alloy, copper rolled product, electronic component and connector using the same, and method for manufacturing copper alloy
JP2014037613A (en) * 2012-07-19 2014-02-27 Jx Nippon Mining & Metals Corp Method for manufacturing high-strength titanium-copper foil
JP2015054997A (en) * 2013-09-12 2015-03-23 国立大学法人東北大学 Cu-Ti-BASED COPPER ALLOY AND PRODUCTION METHOD
JP2015193914A (en) * 2014-03-24 2015-11-05 国立大学法人東北大学 Titanium copper alloy material having surface coat formed thereon and production method thereof
CN107267804A (en) * 2016-03-31 2017-10-20 Jx金属株式会社 copper alloy for electronic material
TWI649435B (en) * 2016-03-31 2019-02-01 日商Jx金屬股份有限公司 Titanium copper foil, expanded copper products, electronic equipment parts, and autofocus camera modules
CN113802026A (en) * 2021-09-18 2021-12-17 宁波博威合金板带有限公司 Titanium bronze strip and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208476A (en) * 1984-04-03 1985-10-21 Nippon Mining Co Ltd Surface treatment of copper alloy
JPS63310952A (en) * 1987-06-11 1988-12-19 Fukuhisa Matsuda Surface hardened copper alloy
JPH0853751A (en) * 1994-08-11 1996-02-27 Furukawa Electric Co Ltd:The Copper alloy excellent in bendability and its production
JP2005097639A (en) * 2003-09-22 2005-04-14 Nikko Metal Manufacturing Co Ltd High-strength copper alloy superior in bending workability
JP2005097638A (en) * 2003-09-22 2005-04-14 Nikko Metal Manufacturing Co Ltd High-strength copper alloy superior in bending workability
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208476A (en) * 1984-04-03 1985-10-21 Nippon Mining Co Ltd Surface treatment of copper alloy
JPS63310952A (en) * 1987-06-11 1988-12-19 Fukuhisa Matsuda Surface hardened copper alloy
JPH0853751A (en) * 1994-08-11 1996-02-27 Furukawa Electric Co Ltd:The Copper alloy excellent in bendability and its production
JP2005097639A (en) * 2003-09-22 2005-04-14 Nikko Metal Manufacturing Co Ltd High-strength copper alloy superior in bending workability
JP2005097638A (en) * 2003-09-22 2005-04-14 Nikko Metal Manufacturing Co Ltd High-strength copper alloy superior in bending workability
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097307A (en) * 2010-10-29 2012-05-24 Jx Nippon Mining & Metals Corp Copper alloy, copper rolled product, electronic component and connector using the same, and method for manufacturing copper alloy
JP2014037613A (en) * 2012-07-19 2014-02-27 Jx Nippon Mining & Metals Corp Method for manufacturing high-strength titanium-copper foil
KR20150034275A (en) * 2012-07-19 2015-04-02 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 High-strength titanium-copper foil, and method for producing same
KR101704941B1 (en) 2012-07-19 2017-02-08 제이엑스금속주식회사 High-strength titanium-copper foil, and method for producing same
JP2015054997A (en) * 2013-09-12 2015-03-23 国立大学法人東北大学 Cu-Ti-BASED COPPER ALLOY AND PRODUCTION METHOD
JP2015193914A (en) * 2014-03-24 2015-11-05 国立大学法人東北大学 Titanium copper alloy material having surface coat formed thereon and production method thereof
CN107267804A (en) * 2016-03-31 2017-10-20 Jx金属株式会社 copper alloy for electronic material
TWI649435B (en) * 2016-03-31 2019-02-01 日商Jx金屬股份有限公司 Titanium copper foil, expanded copper products, electronic equipment parts, and autofocus camera modules
CN110273083A (en) * 2016-03-31 2019-09-24 Jx金属株式会社 Copper alloy for electronic material
CN107267804B (en) * 2016-03-31 2022-02-22 Jx金属株式会社 Copper alloy for electronic material
CN113802026A (en) * 2021-09-18 2021-12-17 宁波博威合金板带有限公司 Titanium bronze strip and preparation method thereof

Also Published As

Publication number Publication date
JP5208555B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4191159B2 (en) Titanium copper with excellent press workability
EP2784167B1 (en) Cu-Ti based copper alloy sheet, method for producing the same, and electric current carrying component
KR101667812B1 (en) Copper alloy plate and method for producing same
JP4357548B2 (en) Cu-Ti-based copper alloy sheet and method for producing the same
JP5208555B2 (en) Titanium copper for electronic parts
JP5916964B2 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP4634955B2 (en) High strength copper alloy with excellent bending workability and dimensional stability
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6696769B2 (en) Copper alloy plate and connector
JP2008056977A (en) Copper alloy and its production method
WO2015182776A1 (en) Copper alloy sheet, connector comprising copper alloy sheet, and method for producing copper alloy sheet
WO2007015549A1 (en) High strength copper alloy for electronic parts and electronic parts
WO2019189558A1 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
KR20090094458A (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
TWI705148B (en) Copper alloy plate and its manufacturing method
JP2008248355A (en) Titanium copper for electronic parts, and electronic parts using the same
JP7202121B2 (en) Cu-Ni-Al-based copper alloy plate material, manufacturing method thereof, and conductive spring member
JP2008081767A (en) Titanium-copper for electronic part
JP4350049B2 (en) Method for producing copper alloy sheet with excellent stress relaxation resistance
WO2015099098A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP5225645B2 (en) Titanium copper for precision press working and manufacturing method thereof
JP5544316B2 (en) Cu-Co-Si-based alloys, copper products, electronic parts, and connectors
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4875772B2 (en) Copper alloy sheet for electrical and electronic parts and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250