JP5400877B2 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5400877B2
JP5400877B2 JP2011514942A JP2011514942A JP5400877B2 JP 5400877 B2 JP5400877 B2 JP 5400877B2 JP 2011514942 A JP2011514942 A JP 2011514942A JP 2011514942 A JP2011514942 A JP 2011514942A JP 5400877 B2 JP5400877 B2 JP 5400877B2
Authority
JP
Japan
Prior art keywords
heat treatment
copper alloy
minutes
hours
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011514942A
Other languages
Japanese (ja)
Other versions
JPWO2011068126A1 (en
Inventor
洋 金子
浩二 佐藤
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011514942A priority Critical patent/JP5400877B2/en
Publication of JPWO2011068126A1 publication Critical patent/JPWO2011068126A1/en
Application granted granted Critical
Publication of JP5400877B2 publication Critical patent/JP5400877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Description

本発明は銅合金板材およびその製造方法に関し、詳しくは車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly to a copper alloy sheet that is applied to lead frames, connectors, terminal materials, relays, switches, sockets, and the like for in-vehicle components and electrical / electronic devices, and a method for manufacturing the same. .

車載部品用や電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどの用途に使用される銅合金板材に要求される特性項目としては、例えば、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性などがある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの要求特性のレベルが高まっている。
そのため、銅合金板材が使用される状況には、以下の様な変化が挙げられる。
一つ目に、自動車や電機・電子機器の高機能化とともに、コネクタの多極化が進行しているため、端子や接点部品の一つ一つの小型化が進行している。例えば、タブ幅が約1.0mmの端子を0.64mmへダウンサイズする動きが進んでいる。
二つ目に、鉱物資源の低減や、部品の軽量化を背景に、基体材料の薄肉化が進行しており、なおかつバネ接圧を保つために、従来よりも高強度な基体材料が使用されている。
三つ目に使用環境の高温化が進行している。例えば自動車部品では、二酸化炭素発生量の低減のために、車体軽量化が進められている。このため、従来、ドアに設置していた様なエンジン制御用のECUなどの電子機器をエンジンルーム内やエンジン付近に設置し、電子機器とエンジンの間のワイヤーハーネスを短くする動きが進んでいる。
Characteristic items required for copper alloy sheet materials used in applications such as lead frames, connectors, terminal materials, relays, switches and sockets for automotive parts and electrical / electronic equipment include, for example, conductivity, yield strength (yield) Stress), tensile strength, bending workability, and stress relaxation resistance. In recent years, the level of these required characteristics has increased as electric and electronic devices have become smaller, lighter, more functional, denser, and used in higher temperatures.
Therefore, the following changes are mentioned in the situation where a copper alloy plate material is used.
First, as the functionality of automobiles, electrical equipment, and electronic devices has increased, the number of connectors has been increasing, and so miniaturization of terminals and contact parts has been progressing. For example, a movement to downsize a terminal having a tab width of about 1.0 mm to 0.64 mm is progressing.
Secondly, the base material is becoming thinner due to the reduction of mineral resources and weight reduction of parts, and in order to maintain the spring contact pressure, a base material with higher strength than before is used. ing.
Third, the use environment is becoming hot. For example, automobile parts are being reduced in weight to reduce carbon dioxide generation. For this reason, an electronic device such as an ECU for controlling an engine, which has been conventionally installed on a door, is installed in an engine room or in the vicinity of the engine, and a movement for shortening a wire harness between the electronic device and the engine is progressing. .

そして、上記の変化に伴い、銅合金材料には下記の様な問題が生じている。
第一に、端子の小型化に伴い、接点部分やバネ部分に施される曲げ加工の曲げ半径は小さくなり、材料には従来よりも厳しい曲げ加工が施される。そのため、材料にクラックやシワが発生する問題が生じている。
第二に、材料の高強度化に伴い、材料にクラックが発生する問題が生じている。これは、材料の曲げ加工性が、一般的に強度とトレードオフの関係にあるためである。
第三に、接点部分やバネ部分に施される曲げ加工部にクラックが発生すると、接点部分の接圧が低下することにより、接点部分の接触抵抗が上昇し、電気的接続が絶縁され、コネクタとしての機能が失われるため、重大な問題となる。
With the above changes, the following problems have arisen in the copper alloy material.
First, with the miniaturization of the terminals, the bending radius of the bending process applied to the contact part and the spring part becomes smaller, and the material is subjected to a stricter bending process than before. Therefore, there is a problem that cracks and wrinkles occur in the material.
Second, with the increase in strength of materials, there is a problem that cracks occur in the materials. This is because the bending workability of the material is generally in a trade-off relationship with the strength.
Third, when a crack occurs in the bent part applied to the contact part or spring part, the contact pressure of the contact part decreases, the contact resistance of the contact part increases, the electrical connection is insulated, and the connector As the function is lost, it becomes a serious problem.

この曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。特許文献1では、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度がある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献2では、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。また、特許文献3では、Cu−Ni−Si系銅合金において、Cube方位{100}<001>の割合の制御によって曲げ加工性が優れることが見出されている。その他、特許文献4〜8においても、種々の原子面についてのX線回折強度で規定された曲げ加工性に優れる材料が提案されている。特許文献4では、Cu−Ni−Co−Si系銅合金において、{200}面からのX線回折強度が、{111}面、{200}面、{220}面及び{311}面からのX線回折強度に対してある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献5では、Cu−Ni−Si系銅合金において、{420}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献6では、Cu−Ni−Si系銅合金において、{123}<412>方位に関してある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。特許文献7では、Cu−Ni−Si系銅合金において、{111}面、{311}面及び{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、Bad Way(後述)の曲げ加工性が優れることが見出されている。また、特許文献8では、Cu−Ni−Si系銅合金において、{200}面、{311}面及び{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが見出されている。
特許文献1、2、4、5、7、8におけるX線回折強度による規定は、板面方向(圧延法線方向、ND)への特定の結晶面の集積について規定したものである。
Several proposals have been made to solve this demand for improvement in bending workability by controlling the crystal orientation. In Patent Document 1, in a Cu—Ni—Si based copper alloy, the crystal grain size and the X-ray diffraction intensity from the {311}, {220}, {200} planes satisfy a certain condition. It has been found that bending workability is excellent. Further, in Patent Document 2, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. Has been found. Further, in Patent Document 3, it has been found that in a Cu—Ni—Si based copper alloy, bending workability is excellent by controlling the ratio of the Cube orientation {100} <001>. In addition, Patent Documents 4 to 8 propose materials having excellent bending workability defined by X-ray diffraction intensities for various atomic planes. In Patent Document 4, in the Cu—Ni—Co—Si based copper alloy, the X-ray diffraction intensity from the {200} plane is from the {111} plane, {200} plane, {220} plane, and {311} plane. It has been found that bending workability is excellent when the crystal orientation satisfies a certain condition with respect to the X-ray diffraction intensity. Patent Document 5 shows that in a Cu—Ni—Si-based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {420} plane and the {220} plane is satisfied. Has been issued. In Patent Document 6, it has been found that, in a Cu—Ni—Si based copper alloy, bending workability is excellent when the crystal orientation satisfies a certain condition with respect to the {123} <412> orientation. In Patent Document 7, in a Cu—Ni—Si based copper alloy, in the case of crystal orientation satisfying the condition that the X-ray diffraction intensity from the {111} plane, {311} plane, and {220} plane is satisfied, It has been found that the bending workability (described later) is excellent. Further, in Patent Document 8, in a Cu—Ni—Si based copper alloy, bending is performed when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane, {311} plane, and {220} plane is satisfied. It has been found that processability is excellent.
The specifications based on the X-ray diffraction intensity in Patent Documents 1, 2, 4, 5, 7, and 8 specify the accumulation of specific crystal planes in the plate surface direction (rolling normal direction, ND).

特開2006−009137号公報JP 2006-009137 A 特開2008−013836号公報JP 2008-013836 A 特開2006−283059号公報JP 2006-283059 A 特開2009−007666号公報JP 2009-007666 A 特開2008−223136号公報JP 2008-223136 A 特開2007−092135号公報JP 2007-092135 A 特開2006−016629号公報JP 2006-016629 A 特開平11−335756号公報JP-A-11-335756

ところで、特許文献1または特許文献2に記載された発明は、特定の結晶面からのX線回折による結晶方位の測定に基づくものであって、ある広がりを持った結晶方位の分布の中のごく一部の特定の面にのみ関するものである。しかも、板面方向(ND)の結晶面のみを測定しているに過ぎず、圧延方向(RD)や板幅方向(TD)にどの結晶面が向いているかについては制御できない。よって、曲げ加工性を完全に制御するには、なお不十分な方法であった。また、特許文献3に記載された発明においては、Cube方位の有効性が指摘されているが、その他の結晶方位成分については制御されておらず、曲げ加工性の改善が不十分な場合があった。また、特許文献4〜8では、それぞれ上記特定の結晶面または方位について測定、制御する検討しかなされておらず、特許文献1〜3と同様に、曲げ加工性の改善が不十分な場合があった。   By the way, the invention described in Patent Document 1 or Patent Document 2 is based on the measurement of crystal orientation by X-ray diffraction from a specific crystal plane, and is very small in the distribution of crystal orientation having a certain spread. It only concerns some specific aspects. Moreover, only the crystal plane in the plate direction (ND) is measured, and it cannot be controlled which crystal plane is oriented in the rolling direction (RD) or the plate width direction (TD). Therefore, the method is still insufficient to completely control the bending workability. In the invention described in Patent Document 3, the effectiveness of the Cube orientation is pointed out, but other crystal orientation components are not controlled, and there are cases where the improvement of bending workability is insufficient. It was. Further, in Patent Documents 4 to 8, only the measurement and control of the specific crystal plane or orientation have been studied, and the bending workability may not be improved as in Patent Documents 1 to 3. It was.

上記のような課題に鑑み、本発明の目的は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材およびその製造方法を提供することにある。   In view of the problems as described above, the object of the present invention is to provide excellent bending workability, excellent strength, and lead frames, connectors, terminal materials, etc. for electrical and electronic equipment, such as connectors for automobiles and terminals. An object of the present invention is to provide a copper alloy sheet suitable for materials, relays, switches, and the like, and a method for manufacturing the same.

本発明者らは、種々検討を重ね、電気・電子部品用途に適した銅合金について研究を行い、圧延板の幅方向(TD)に(111)面が向く領域を低減することにより、曲げ加工時のクラックが抑制されることを見出し、さらに、その領域の面積率を所定の値以下とすることで曲げ加工性を著しく良化できることを見出した。また、それに加えて、本合金系において特定の添加元素を用いることにより、導電率や曲げ加工性を損なうことなく、強度や耐応力緩和特性を向上させうることを見出した。本発明は、これらの知見に基づきなされるに至ったものである。   The present inventors have made various studies and studied copper alloys suitable for electric / electronic component applications, and reduced the region in which the (111) plane faces in the width direction (TD) of the rolled plate, thereby bending the work. It was found that cracking at the time was suppressed, and further, bending workability could be remarkably improved by setting the area ratio of the region to a predetermined value or less. In addition, it has been found that by using a specific additive element in this alloy system, the strength and stress relaxation resistance can be improved without impairing electrical conductivity and bending workability. The present invention has been made based on these findings.

すなわち、本発明は、以下の解決手段を提供する。
(1)Coを0.5〜1.86mass%又はNiとCoの合計で0.5〜5.0mass%(ただし、Coを0.5〜1.86mass%とする)、Siを0.1〜1.5mass%、残部が銅と不可避不純物からなる合金組成を有し、
EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材(ただし、EBSD測定における結晶方位解析において、Cube方位{001}<100>の面積率が50%以上となるものを除く。)
(2)さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有することを特徴とする(1)に記載の銅合金板材。
(3)コネクタ用材料であることを特徴とする(1)又は(2)に記載の銅合金板材。
(4)前記銅合金板材を与える合金組成の銅合金に、
(a)高周波溶解炉による溶解と鋳造とを行って鋳塊を得る鋳造工程、
(b)700℃〜1020℃で10分〜10時間行う均質化熱処理工程、
(c)500℃〜1020℃の加工温度で30%〜98%の加工率で行う熱間圧延工程、
(d)50%〜99%の加工率で行う冷間圧延工程、
(e)600℃〜900℃で10秒〜5分間保持する熱処理工程、
(f)5%〜55%の加工率で行う冷間加工工程、
(g)溶質原子の完全固溶温度をP℃とした場合に、(P−200)℃以上で(P−10)℃以下の温度において1秒〜20時間保持する中間再結晶熱処理工程、
(h)(P+10)℃以上で(P+150)℃以下において、1秒〜10分間保持する最終溶体化熱処理工程、を順に施し、
その後に、(i)350℃〜600℃で5分間〜20時間行う時効析出熱処理工程を施す銅合金板材の製造方法により得られたことを特徴とする(1)〜(3)のいずれか1項に記載の銅合金板材。
(5)前記(4)の(i)の時効析出熱処理工程の後に、(j)2%〜45%の加工率で仕上げ圧延する冷間圧延工程、及び(k)300℃〜700℃で10秒〜2時間保持する調質焼鈍工程をこの順に施す銅合金板材の製造方法により得られたことを特徴とする(1)〜(3)のいずれか1項に記載の銅合金板材。
(6)(1)〜(3)のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金組成の銅合金に、
(a)高周波溶解炉による溶解と鋳造とを行って鋳塊を得る鋳造工程(後述の[工程1])、
(b)700℃〜1020℃で10分〜10時間行う均質化熱処理工程(後述の[工程2])、
(c)500℃〜1020℃の加工温度で30%〜98%の加工率で行う熱間圧延工程(後述の[工程3])、
(d)50%〜99%の加工率で行う冷間圧延工程(後述の[工程6])、
(e)600℃〜900℃で10秒〜5分間保持する熱処理工程(後述の[工程7])、
(f)5%〜55%の加工率で行う冷間加工工程(後述の[工程8])、
(g)溶質原子の完全固溶温度をP℃とした場合に、(P−200)℃以上で(P−10)℃以下の温度において1秒〜20時間保持する中間再結晶熱処理工程(後述の[工程9])、
(h)(P+10)℃以上で(P+150)℃以下において、1秒〜10分間保持する最終溶体化熱処理工程(後述の[工程10])、を順に施し、
その後に、(i)350℃〜600℃で5分間〜20時間行う時効析出熱処理工程(後述の[工程11])を施すことを特徴とする銅合金板材の製造方法。
(7)前記(i)の時効析出熱処理工程の後に、(j)2%〜45%の加工率で仕上げ圧延する冷間圧延工程(後述の[工程12])、及び(k)300℃〜700℃で10秒〜2時間保持する調質焼鈍工程(後述の[工程13])をこの順に施すことを特徴とする(6)に記載の銅合金板材の製造方法。
That is, the present invention provides the following solutions.
(1) Co is 0.5 to 1.86 mass% or the total of Ni and Co is 0.5 to 5.0 mass% (provided that Co is 0.5 to 1.86 mass%), and Si is 0.1 ~ 1.5 mass%, the balance has an alloy composition consisting of copper and inevitable impurities,
In the crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement, regarding the accumulation of atomic planes in the width direction (TD) of the rolled plate, the angle between the normal of the (111) plane and TD is A copper alloy sheet characterized in that the area ratio of the region having an atomic plane within 20 ° is 50% or less, the proof stress is 500 MPa or more, and the conductivity is 30% IACS or more (however, the crystal orientation in EBSD measurement) (In the analysis, the case where the area ratio of the Cube orientation {001} <100> is 50% or more is excluded) .
(2) Further, 0.005 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr, and Hf is contained. The copper alloy sheet according to (1), characterized in that:
(3) The copper alloy sheet according to (1) or (2), which is a connector material.
(4) To a copper alloy having an alloy composition that gives the copper alloy sheet,
(A) a casting process for obtaining an ingot by melting and casting with a high-frequency melting furnace;
(B) A homogenization heat treatment step performed at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours,
(C) a hot rolling step performed at a processing temperature of 500 ° C. to 1020 ° C. and a processing rate of 30% to 98%;
(D) a cold rolling process performed at a processing rate of 50% to 99%;
(E) a heat treatment step of holding at 600 ° C. to 900 ° C. for 10 seconds to 5 minutes,
(F) a cold working step performed at a working rate of 5% to 55%;
(G) an intermediate recrystallization heat treatment step of maintaining a temperature of (P-200) ° C. to (P-10) ° C. for 1 second to 20 hours when the complete solid solution temperature of the solute atoms is P ° C.,
(H) In the order of (P + 10) ° C. to (P + 150) ° C., a final solution heat treatment step of holding for 1 second to 10 minutes,
Any one of (1) to (3) obtained by (i) a method for producing a copper alloy sheet material which is then subjected to an aging precipitation heat treatment step performed at 350 ° C. to 600 ° C. for 5 minutes to 20 hours. The copper alloy sheet material according to item.
(5) After the aging precipitation heat treatment step (i) of (4), (j) a cold rolling step of finish rolling at a processing rate of 2% to 45%, and (k) 10 at 300 ° C. to 700 ° C. The copper alloy sheet according to any one of (1) to (3), wherein the copper alloy sheet is obtained by a method for producing a copper alloy sheet that is subjected to a temper annealing step in this order for 2 seconds to 2 hours.
(6) A method for producing a copper alloy sheet according to any one of (1) to (3), wherein the copper alloy has an alloy composition that gives the copper alloy sheet.
(A) A casting step (to be described later [Step 1]) for obtaining an ingot by melting and casting with a high-frequency melting furnace,
(B) A homogenization heat treatment step ([Step 2] described later) performed at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours,
(C) a hot rolling step performed at a processing rate of 30% to 98% at a processing temperature of 500 ° C. to 1020 ° C. ([Step 3] described later),
(D) a cold rolling step performed at a processing rate of 50% to 99% (described later [Step 6]),
(E) a heat treatment step of holding at 600 ° C. to 900 ° C. for 10 seconds to 5 minutes (described later [Step 7]),
(F) a cold working step performed at a working rate of 5% to 55% (described later [Step 8]),
(G) Intermediate recrystallization heat treatment step (described later) that is maintained for 1 second to 20 hours at a temperature of (P-200) ° C. or higher and (P-10) ° C. or lower when the complete solute temperature of solute atoms is P ° C. [Step 9]),
(H) A final solution heat treatment step (described below [Step 10]) that is held for 1 second to 10 minutes at (P + 10) ° C. or higher and (P + 150) ° C. or lower in order,
Thereafter, (i) an aging precipitation heat treatment step ([Step 11] described later) performed at 350 ° C. to 600 ° C. for 5 minutes to 20 hours is performed.
(7) After the aging precipitation heat treatment step of (i), (j) a cold rolling step of finishing rolling at a processing rate of 2% to 45% (described later [Step 12]), and (k) 300 ° C. to The method for producing a copper alloy sheet according to (6), wherein a temper annealing step (described later [Step 13]) that is held at 700 ° C. for 10 seconds to 2 hours is performed in this order.

本発明の銅合金板材は、曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適である。
また、本発明の銅合金板材の製造方法は、上記の曲げ加工性に優れ、優れた強度を有し、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに好適な銅合金板材を製造する方法として好適なものである。
The copper alloy sheet material of the present invention is excellent in bending workability and has excellent strength, such as lead frames, connectors and terminal materials for electric and electronic equipment, connectors and terminal materials for automobiles, relays, switches, etc. It is suitable for.
In addition, the copper alloy sheet manufacturing method of the present invention is excellent in the above bending workability and has excellent strength, such as lead frames, connectors and terminal materials for electric and electronic equipment, connectors for automobiles, etc. This is a suitable method for producing a copper alloy sheet suitable for terminal materials, relays, switches, and the like.

耐応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態をそれぞれ示す。It is explanatory drawing of the test method of a stress relaxation resistance, (a) shows the state before heat processing, (b) shows the state after heat processing, respectively. 熱処理温度の上昇にともなう導電率変化の典型例を示すグラフであり、それにより溶質原子が完全に固溶する温度(P)℃を決定する方法を模式的に示すものである。It is a graph which shows the typical example of the electrical conductivity change accompanying the heat processing temperature rise, and shows the method of determining temperature (P) degreeC by which a solute atom completely dissolves by it. (a)は、(111)面の法線とTDのなす角の角度が20°以内の原子面の例を図示するものであり、(b)は、(111)面の法線とTDのなす角の角度が20°を超える原子面の例を図示するものである。図3(a),(b)点線で示す円錐領域は、(111)面の法線とのなす角が20°以内の領域を示す。(A) illustrates an example of an atomic plane in which the angle between the normal of the (111) plane and the TD is within 20 °, and (b) illustrates the normal of the (111) plane and the TD. An example of an atomic plane having an angle of more than 20 ° is illustrated. 3 (a) and 3 (b), a conical region indicated by a dotted line indicates a region where an angle formed with the normal line of the (111) plane is within 20 °. FCC(面心立方格子)金属における代表的な集合組織方位成分の中で、(111)面の法線とTDのなす角の角度が20°以内の原子面が圧延板幅方向(TD)に向く集合組織方位成分の例を図示するものである。Among typical texture orientation components in FCC (face-centered cubic lattice) metal, an atomic plane whose angle between the normal of the (111) plane and TD is within 20 ° is in the width direction of the rolled sheet (TD). An example of a texture orientation component that faces is illustrated.

本発明の銅合金板材の好ましい実施の態様について、詳細に説明する。ここで、「銅合金材料」とは、銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものを意味する。そのなかで板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。ここで、板材において、「材料表層」とは、「板表層」を意味し、「材料の深さ位置」とは、「板厚方向の位置」を意味する。板材の厚さは特に限定されないが、本発明の効果が一層よく顕れ実際的なアプリケーションに適合することを考慮すると、8〜800μmが好ましく、50〜70μmがより好ましい。
なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有していれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではなく、本発明では、管材も板材として解釈して取り扱うことができるものとする。
A preferred embodiment of the copper alloy sheet material of the present invention will be described in detail. Here, the “copper alloy material” means a material obtained by processing a copper alloy material into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, or the like). Among them, the plate material refers to a material having a specific thickness and stable in shape and having a spread in the surface direction, and in a broad sense, includes a strip material. Here, in the plate material, “material surface layer” means “plate surface layer”, and “material depth position” means “position in the plate thickness direction”. The thickness of the plate material is not particularly limited, but it is preferably 8 to 800 μm, and more preferably 50 to 70 μm, considering that the effects of the present invention are better manifested and suitable for practical applications.
In addition, although the copper alloy plate material of this invention prescribes | regulates the characteristic with the integration rate of the atomic surface in the predetermined direction of a rolled sheet, this should just have such a characteristic as a copper alloy plate material. Therefore, the shape of the copper alloy sheet is not limited to a sheet or a strip, and in the present invention, the pipe can be interpreted and handled as a sheet.

(EBSD測定による規定)
銅合金板材の曲げ加工時のクラックが発生する原因を明らかにするために、本発明者らは、曲げ変形した後の材料の金属組織を詳細に調査した。その結果、基体材料は均一に変形しているのではなく、特定の結晶方位の領域のみに変形が集中し、不均一な変形が進行することが観察された。そして、その不均一変形により、曲げ加工した後の基体材料表面には、数ミクロンの深さのシワや、微細なクラックが発生するがその解決方法が判らなかった。しかし、本発明者らは鋭意研究の結果、EBDS測定により規定される圧延板の幅方向(TD)に(111)面が向く原子面の領域(この領域については、以下に詳述する。)を低減させた場合に、不均一な変形が抑制され、基体材料の表面に発生するシワが低減され、クラックが抑制されることを見出した。
この現象のメカニズムとして、(111)面は引張応力に対して最も加工硬化し易い方位の一つであり、曲げ変形中の応力下においても転位が増殖し易い方位と考えられる。高密化した転位はマイクロボイドの発生源となり、クラックの原因となる。この(111)面がTDを向く原子面の領域の割合を減らすことによって、特に圧延方向に対して曲げ軸が平行になるBW曲げにおいて、曲げ加工性が改善されたと考えられる。
(Regulation by EBSD measurement)
In order to clarify the cause of the occurrence of cracks during bending of a copper alloy sheet, the present inventors investigated in detail the metal structure of the material after bending deformation. As a result, it was observed that the base material was not uniformly deformed, but the deformation was concentrated only in the region of a specific crystal orientation, and the non-uniform deformation progressed. Due to the non-uniform deformation, wrinkles with a depth of several microns and fine cracks are generated on the surface of the base material after bending, but no solution has been found. However, as a result of intensive research, the inventors of the present invention have an atomic plane region in which the (111) plane is oriented in the width direction (TD) of the rolled sheet defined by EBDS measurement (this region will be described in detail below). It has been found that, when the amount is reduced, uneven deformation is suppressed, wrinkles generated on the surface of the base material are reduced, and cracks are suppressed.
As the mechanism of this phenomenon, the (111) plane is one of the orientations that are most easily work-hardened with respect to tensile stress, and it is considered that the dislocations are likely to proliferate even under stress during bending deformation. High density dislocations become a source of microvoids and cause cracks. It is considered that the bending workability is improved particularly in the BW bending in which the bending axis is parallel to the rolling direction by reducing the proportion of the atomic plane region in which the (111) plane faces TD.

(111)面の法線とTDのなす角の角度が20°以内の原子面がTDに向く集合組織の方位成分の中から代表的なものを図4に示した。P方位{0 1 1}<1 1 1>、SB方位{1 8 6}<2 1 1>、S方位{1 3 2}<6 4 3>、Z方位{1 1 1}<1 1 0>、Cube方位の双晶方位{1 2 2}<2 2 1>、Brass方位{1 1 0}<1 1 2>などが該当する。これらの方位成分を含む、(111)面がTDに向く集合組織方位成分の割合が総合的に抑制された状態が、本発明で規定される所定の面積率を有する集合組織である。従来、これらの方位を有する原子面の面積率を同時に制御したものは知られていない。
圧延板の幅方向(TD)に、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下のときに、上記の効果が得られる。好ましくは45%以下、更に好ましくは1%以上40%以下であり、特に好ましくは30%以上35%以下である。この面積率を定義し上記の範囲に特定することで、上述したように、曲げ加工性の改善を図ることができる。
FIG. 4 shows representative ones of the orientation components of the texture in which the atomic plane whose angle between the normal of the (111) plane and the TD is within 20 ° faces the TD. P orientation {0 1 1} <1 1 1>, SB orientation {1 8 6} <2 1 1>, S orientation {1 3 2} <6 4 3>, Z orientation {1 1 1} <1 1 0 >, Cube orientation twin orientation {1 2 2} <2 2 1>, Brass orientation {1 1 0} <1 1 2>, and the like. A state in which the proportion of the texture orientation component in which the (111) plane faces TD including these orientation components is comprehensively suppressed is the texture having a predetermined area ratio defined in the present invention. Conventionally, there is no known device that simultaneously controls the area ratio of atomic planes having these orientations.
When the area ratio of the region having an atomic plane in which the angle formed by the normal of the (111) plane and the TD is within 20 ° in the width direction (TD) of the rolled sheet is 50% or less, the above effect is obtained. can get. It is preferably 45% or less, more preferably 1% or more and 40% or less, and particularly preferably 30% or more and 35% or less. By defining this area ratio and specifying it in the above range, it is possible to improve the bending workability as described above.

本明細書における結晶方位の表示方法は、材料の圧延方向(RD)をX軸、板幅方向(TD)をY軸、圧延法線方向(ND)をZ軸の直角座標系を取り、TDに(111)面が向いている領域の割合を、その面積率で規定したものである。測定領域内の各結晶粒の(111)面の法線とTDの二つのベクトルのなす角の角度を計算し、この角度が20°以内の原子面を有するものについて面積を合計し、これを全測定面積で除して得た値を、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率(%)とした。
すなわち、本発明において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域とは、圧延板の幅方向(TD)に向く、つまりTDに対向する原子面の集積に関して、理想方位である圧延板の幅方向(TD)を法線とする(111)面自体と、(111)面の法線とTDのなす角の角度が20°以内であるそれぞれの原子面を合わせた原子面が存在する面方位の領域の総和をいう。以下、これらの領域を、単に、TDに(111)面が向く原子面の領域ともいう。
図3に上記の内容を図示した。図3(a)は、(111)面の法線とTDのなす角の角度が20°以内の原子面の例を図示するものであって、本明細書では、この例で示される原子面を、圧延板幅方向(TD)に(111)面が向く方位を有する原子面と簡略化した記載を併用するので、圧延板幅方向(TD)に(111)面が向く方位を有する原子面と記載されている場合でも、(111)面の法線とTDのなす角の角度が20°以内の原子面の面方位の総和を表すものとする。
図3(b)は、(111)面の法線とTDのなす角の角度が20°を超える原子面の例を図示するものであって、この例で示される原子面を、圧延板幅方向(TD)に(111)面が向かない方位を有する原子面という。銅合金において(111)面は8個あるが、その中から法線ベクトルがTDに最も近い(111)面についてのみ、(111)面の法線となす角の角度が20°以内となるベクトルの領域を図中に円錐(点線)で示している。
EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、本明細書中では面積率として記載した。
In this specification, the crystal orientation display method takes a rectangular coordinate system in which the rolling direction (RD) of the material is the X axis, the sheet width direction (TD) is the Y axis, and the rolling normal direction (ND) is the Z axis. The ratio of the area where the (111) plane faces is defined by the area ratio. Calculate the angle between the two vectors of (111) plane normal and TD of each crystal grain in the measurement region, and sum the area for those having an atomic plane within 20 °. The value obtained by dividing by the total measurement area was defined as the area ratio (%) of the region having an atomic plane in which the angle formed by the normal of the (111) plane and the TD is within 20 °.
That is, in the present invention, regarding the accumulation of atomic planes in the width direction (TD) of the rolled sheet, the region having an atomic plane whose angle formed by the normal of the (111) plane and the TD is within 20 ° is: The (111) plane itself, which is normal to the width direction (TD) of the rolled sheet, which is the ideal orientation, with respect to the accumulation of atomic planes facing the width direction (TD) of the rolled sheet, that is, facing the TD, and the (111) plane The sum of the area of the plane orientation in which the atomic plane combining the respective atomic planes whose angle between the normal line and TD is within 20 ° exists. Hereinafter, these regions are also simply referred to as atomic plane regions in which the (111) plane faces TD.
FIG. 3 illustrates the above contents. FIG. 3A illustrates an example of an atomic plane in which the angle formed by the normal of the (111) plane and the TD is within 20 °. In this specification, the atomic plane shown in this example is shown. Is used in combination with a simplified description of an atomic plane having an orientation in which the (111) plane is oriented in the rolled sheet width direction (TD), so that an atomic plane having an orientation in which the (111) plane is oriented in the rolled sheet width direction (TD) Even if it is described, the sum of the plane orientations of atomic planes where the angle between the normal of the (111) plane and the TD is within 20 ° is assumed.
FIG. 3B illustrates an example of an atomic plane in which the angle formed by the normal of the (111) plane and the TD exceeds 20 °. An atomic plane having an orientation in which the (111) plane does not face in the direction (TD). In the copper alloy, there are eight (111) planes, but only the (111) plane whose normal vector is closest to TD is a vector in which the angle formed by the (111) plane normal is within 20 °. This area is indicated by a cone (dotted line) in the figure.
The information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample. It was described as an area ratio.

本発明における上記結晶方位の解析には、EBSD法を用いた。EBSDとは、Electron Back Scatter Diffraction(電子後方散乱回折)の略で、走査電子顕微鏡(Scanning Electron Microscope:SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用した結晶方位解析技術のことである。本発明においては、結晶粒を200個以上含む、500μm四方の試料面積に対し、0.5μmのステップでスキャンし、方位を解析した。
結晶方位の解析にEBSD測定を用いることにより、従来のX線回折法による板面方向(ND)に対する特定原子面の集積の測定とは大きく異なり、三次元方向のより完全に近い結晶方位情報がより高い分解能で得られるため、曲げ加工性を支配する結晶方位について全く新しい知見を獲得することができる。
The EBSD method was used for the analysis of the crystal orientation in the present invention. EBSD is an abbreviation of Electron Back Scatter Diffraction (Electron Back Scattering Diffraction). Reflected electron Kikuchi line diffraction (Kikuchi pattern) generated when a sample is irradiated with an electron beam in a scanning electron microscope (Scanning Electron Microscope: SEM). This is the crystal orientation analysis technology used. In the present invention, a 500 μm square sample area containing 200 or more crystal grains was scanned in 0.5 μm steps, and the orientation was analyzed.
By using EBSD measurement for analysis of crystal orientation, it differs greatly from the measurement of the accumulation of specific atomic planes in the plate direction (ND) by the conventional X-ray diffraction method. Since it can be obtained with higher resolution, it is possible to acquire completely new knowledge about the crystal orientation that governs the bending workability.

なお、EBSD測定にあたっては、鮮明な菊地線回折像を得るために、機械研磨の後に、コロイダルシリカの砥粒を使用して、基体表面を鏡面研磨した後に、測定を行うことが好ましい。また、測定は板表面から行った。   In the EBSD measurement, in order to obtain a clear Kikuchi diffraction image, it is preferable to perform the measurement after mirror polishing the surface of the substrate using colloidal silica abrasive grains after mechanical polishing. The measurement was performed from the plate surface.

(合金組成等)
・Ni,Co,Si
本発明のコネクタ用材料としては、銅または銅合金が用いられる。コネクタに要求される導電性、機械的強度および耐熱性を有するものとして、銅の他に、リン青銅、黄銅、洋白、ベリリウム銅、コルソン系合金(Cu−Ni−Si系)などの銅合金が好ましい。特に、本発明の特定の結晶方位集積関係を満たす面積率を得たい場合には、純銅系の材料やベリリウム銅、コルソン系合金を含む析出型合金が好ましい。更に、最先端の小型端子材料に求められるような、高強度と高導電性を両立させるためには、Cu−Ni−Co−Si系、Cu−Co−Si系の析出型銅合金が好ましい。
これは、りん青銅や黄銅などの固溶型合金では、熱処理中の結晶粒成長においてCube方位粒成長の核となる、冷間圧延材中のCube方位をもつ微少領域が減少するためである。これは、りん青銅や黄銅などの積層欠陥エネルギーが低い系では、冷間圧延中に剪断帯が発達し易いためである。
(Alloy composition, etc.)
・ Ni, Co, Si
Copper or copper alloy is used as the connector material of the present invention. In addition to copper, copper alloys such as phosphor bronze, brass, white, beryllium copper, corson alloy (Cu-Ni-Si), etc. as those having electrical conductivity, mechanical strength and heat resistance required for connectors Is preferred. In particular, when it is desired to obtain an area ratio satisfying the specific crystal orientation accumulation relationship of the present invention, a pure copper-based material, a beryllium copper, and a precipitation type alloy including a Corson alloy are preferable. Furthermore, as determined on the cutting edge of the small terminal material, in order to achieve both high strength and high conductivity, C u-Ni-Co- Si -based, Cu-Co-Si-based precipitation copper alloy is preferred .
This is because, in a solid solution type alloy such as phosphor bronze or brass, a minute region having a Cube orientation in the cold-rolled material, which becomes a nucleus of Cube orientation grain growth in crystal grain growth during heat treatment, is reduced. This is because in a system with low stacking fault energy such as phosphor bronze and brass, a shear band is likely to develop during cold rolling.

本発明において、銅(Cu)に添加する第1の添加元素群であるニッケル(Ni)とコバルト(Co)とケイ素(Si)について、それぞれの添加量を制御することにより、Co−Si、Ni−Co−Siの化合物を析出させて銅合金の強度を向上させることができる。その添加量は、NiとCoのいずれか1種または2種を合計で、好ましくは0.5〜5.0mass%、さらに好ましくは0.6〜4.5mass%、より好ましくは0.8〜4.0mass%である。Niの添加量は好ましくは1.5〜4.2mass%、さらに好ましくは1.8〜3.9mass%であり、一方、Coの添加量は0.5〜1.86mass%である。特に導電率を高めたい場合は、Coを必須とすることが好ましい。これらの元素の合計の添加量を過多としないことで導電率を十分に確保することができ、また、過少としないことで強度を十分に確保することができる。また、Siの含有量は好ましくは0.1〜1.5mass%、さらに好ましくは0.2〜1.2mass%である。
In the present invention, the copper-nickel as a first additive element group to be added to the (Cu) (Ni) and cobalt (Co) and silicon (Si), by controlling the respective amount, C o-Si, Ni—Co—Si compounds can be precipitated to improve the strength of the copper alloy. The amount of addition is one or two of Ni and Co in total, preferably 0.5 to 5.0 mass%, more preferably 0.6 to 4.5 mass%, more preferably 0.8 to 4.0 mass%. The addition amount of Ni is preferably 1.5 to 4.2 mass%, more preferably 1.8 to 3.9 mass%, while the addition amount of Co is 0.5 to 1. 86 mass%. In particular, when it is desired to increase the conductivity, it is preferable to make Co essential. By not adding too much the total amount of these elements, the electrical conductivity can be sufficiently secured, and by not making it too small, the strength can be sufficiently secured. The Si content is preferably 0.1 to 1.5 mass%, more preferably 0.2 to 1.2 mass%.

・その他の元素
次に、耐応力緩和特性などの特性(二次特性)を向上させる添加元素の効果について示す。好ましい添加元素としては、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfが挙げられる。添加効果を充分に活用し、かつ導電率を低下させないためには、総量で0.005〜2.0mass%であることが好ましく、さらに好ましくは0.01〜1.5mass%、より好ましくは、0.03〜0.8mass%である。これらの添加元素が総量を過多としないことで導電率を十分に確保することができる。なお、これらの添加元素を総量で過少としないことで、これらの元素を添加した効果を十分に発揮させることができる。
-Other elements Next, effects of additive elements that improve characteristics (secondary characteristics) such as stress relaxation resistance will be described. Preferred additive elements include Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf. In order to fully utilize the additive effect and not lower the electrical conductivity, the total amount is preferably 0.005 to 2.0 mass%, more preferably 0.01 to 1.5 mass%, more preferably It is 0.03-0.8 mass%. The conductivity can be sufficiently ensured by not adding the total amount of these additive elements. In addition, the effect which added these elements can fully be exhibited by not making these addition elements excessive with the total amount.

以下に、各元素の添加効果を示す。Mg、Sn、Znは、Cu−Ni−Co−Si系、Cu−Co−Si系銅合金に添加することで耐応力緩和特性が向上する。それぞれを単独で添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化を著しく改善する効果がある。
The effect of adding each element is shown below. Mg, Sn, Zn is, C u-Ni-Co- Si system, stress relaxation resistance is improved by adding to the Cu-Co-Si based copper alloy. The stress relaxation resistance is further improved by a synergistic effect when each of them is added together than when they are added alone. In addition, there is an effect of remarkably improving solder embrittlement.

Mn、Ag、B、Pは添加すると熱間加工性を向上させるとともに、強度を向上する。   When Mn, Ag, B, and P are added, the hot workability is improved and the strength is improved.

Cr、Fe、Ti、Zr、Hfは、主な添加元素であるNiやCoやSiとの化合物や単体で微細に析出し、析出硬化に寄与する。また、化合物として50〜500nmの大きさで析出し、粒成長を抑制することによって結晶粒径を微細にする効果があり、曲げ加工性を良好にする。   Cr, Fe, Ti, Zr, and Hf are finely precipitated as a single additive or a compound with Ni, Co, or Si as main additive elements, and contribute to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50-500 nm as a compound, and there exists an effect which makes a crystal grain size fine by suppressing grain growth, and makes bending workability favorable.

(製造方法等)
次に、本発明の銅合金板材の製造方法(その結晶方位を制御する方法)について説明する。ここでは、析出型銅合金の板材(条材)を例に挙げて説明するが、固溶型合金材料、希薄系合金材料、純銅系材料に展開することが可能である。
一般に、析出型銅合金は、均質化熱処理した鋳塊を熱間と冷間の各ステップで薄板化し、700〜1020℃の温度範囲で最終溶体化熱処理を行って溶質原子を再固溶させた後に、時効析出熱処理と仕上げ冷間圧延によって必要な強度を満足させるように製造される。時効析出熱処理と仕上げ冷間圧延の条件は、所望の強度及び導電性などの特性に応じて、調整される。銅合金の集合組織については、この一連のステップにおける、最終溶体化熱処理中に起きる再結晶によってそのおおよそが決定し、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
(Manufacturing method etc.)
Next, a method for producing a copper alloy sheet according to the present invention (a method for controlling the crystal orientation) will be described. Here, a plate material (strip material) of a precipitation-type copper alloy will be described as an example, but the present invention can be applied to a solid solution alloy material, a dilute alloy material, and a pure copper material.
In general, a precipitation-type copper alloy is obtained by thinning a homogenized heat-treated ingot at each step of hot and cold, and performing a final solution heat treatment in a temperature range of 700 to 1020 ° C. to re-solidify solute atoms. Later, it is manufactured to satisfy the required strength by aging precipitation heat treatment and finish cold rolling. The conditions for the aging precipitation heat treatment and the finish cold rolling are adjusted according to characteristics such as desired strength and conductivity. The texture of the copper alloy is roughly determined by recrystallization that occurs during the final solution heat treatment in this series of steps, and finally determined by the rotation of the orientation that occurs during finish rolling.

本発明の銅合金板材の製造方法としては、例えば、所定の合金成分組成から成る銅合金素材を高周波溶解炉により溶解し、これを鋳造して鋳塊を得て[工程1]、該鋳塊を700℃〜1020℃で10分〜10時間の均質化熱処理に施し[工程2]、加工温度が500〜1020℃で加工率が30〜98%の熱間圧延[工程3]、水冷[工程4]、面削[工程5]、50〜99%の冷間圧延[工程6]、600〜900℃で10秒〜5分間保持する熱処理[工程7]、5〜55%の加工率の冷間加工[工程8]、(P−200)℃以上(P−10)℃以下において、1秒〜20時間保持する中間再結晶熱処理[工程9]、(P+10)℃以上(P+150)以下において1秒〜10分間保持する最終溶体化熱処理[工程10]を行い、その後、350〜600℃において5分間〜20時間の時効析出熱処理[工程11]、2〜45%の加工率の仕上げ圧延[工程12]、300〜700℃で10秒〜2時間保持する調質焼鈍[工程13]を行うことにより、前記[工程1]〜[工程13]をこの順序で行なうことによって本発明の銅合金板材を得る方法が挙げられる。   As a method for producing a copper alloy sheet according to the present invention, for example, a copper alloy material having a predetermined alloy component composition is melted by a high-frequency melting furnace, and this is cast to obtain an ingot [Step 1]. Is subjected to a homogenization heat treatment at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours [Step 2], hot rolling with a processing temperature of 500 to 1020 ° C. and a processing rate of 30 to 98% [Step 3], and water cooling [Step 4], chamfering [Step 5], cold rolling at 50 to 99% [Step 6], heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes [Step 7], cooling at a processing rate of 5 to 55% Intermediate processing [Step 8], (P-200) Intermediate recrystallization heat treatment held for 1 second to 20 hours at (P−200) ° C. or more and (P−10) ° C. or less [Step 9], (P + 10) at 1 ° C. or more and (P + 150) or less Perform final solution heat treatment [step 10] held for 10 seconds, then Aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours [Step 11], finish rolling at a processing rate of 2 to 45% [Step 12], temper annealing to be maintained at 300 to 700 ° C. for 10 seconds to 2 hours [ By carrying out [Step 13], a method of obtaining the copper alloy sheet of the present invention by carrying out [Step 1] to [Step 13] in this order can be mentioned.

本発明の銅合金板材は上記の実施態様の製造方法により製造することが好ましいが、EBSD測定における結晶方位解析において、前記所定の面積率を満足するならば、上記[工程1]〜[工程13]をこの順にすべて行うことに必ずしも拘束されるものではない。上記の方法に含まれるものではあるが、上記[工程1]〜[工程13]の内、例えば、[工程11]を最終工程として終了してもよい。あるいは、上記[工程11]〜[工程13]は、この内1つまたは2つ以上を2回以上繰り返して行うこともできる。例えば、[工程11]を施す前に、2〜45%の加工率の冷間圧延[工程12’]を行なってもよい。
熱間圧延[工程3]の終了温度が低い場合には、析出速度が遅くなるため、水冷[工程4]は必ずしも必要ではない。どの温度以下で熱間圧延を終了すれば、水冷が不要になるかは、合金濃度や熱間圧延中の析出量によって異なり、適宜選択すれば良い。面削[工程5]は、熱間圧延後の材料表面のスケールによっては、省かれる場合もある。また、酸洗浄などによる溶解によって、スケールを除去しても良い。
動的再結晶温度以上で行う高温圧延を熱間圧延、室温以上の高温で動的再結晶温度以下の高温圧延を温間圧延と、用語を使い分ける場合もあるが、両者を含めて熱間圧延とするのが一般的である。本発明においても、両者を合わせて熱間圧延と呼ぶ。
The copper alloy sheet material of the present invention is preferably manufactured by the manufacturing method of the above embodiment. However, if the predetermined area ratio is satisfied in the crystal orientation analysis in the EBSD measurement, the above [Step 1] to [Step 13]. ] Is not necessarily constrained to do all in this order. Although included in the above method, among [Step 1] to [Step 13], for example, [Step 11] may be ended as a final step. Alternatively, the above-mentioned [Step 11] to [Step 13] can be performed by repeating one or more of them two or more times. For example, before performing [Step 11], cold rolling [Step 12 ′] with a processing rate of 2 to 45% may be performed.
When the end temperature of the hot rolling [Step 3] is low, the precipitation rate becomes slow, so the water cooling [Step 4] is not necessarily required. The temperature at which the hot rolling is to be completed and water cooling is not required depends on the alloy concentration and the amount of precipitation during hot rolling, and may be appropriately selected. The chamfering [step 5] may be omitted depending on the scale of the material surface after hot rolling. Further, the scale may be removed by dissolution by acid cleaning or the like.
Hot rolling is a hot rolling performed at a temperature higher than the dynamic recrystallization temperature, and hot rolling is a hot rolling at a temperature higher than the room temperature and lower than the dynamic recrystallization temperature. Is generally. Also in the present invention, both are collectively called hot rolling.

本発明の銅合金板材の製造方法においては、前記最終溶体化熱処理において、板幅方向に向く(111)面の割合を減少させるには、下記の様な製造方法が有効である。
従来の析出型銅合金の一般的な製造方法として、溶体化熱処理時に再結晶も起きるため、溶質原子の固溶と再結晶の二つの目的の達成が兼ねられていた。一方、本発明の銅合金板材の製造方法においては、この二つの目的を一つ一つ達成し、合わせて集合組織の結晶方位を制御するものであり、このためにそれぞれ別々の熱処理によって行うものである。即ち、提供材に対して、第一に、中間再結晶熱処理[工程9]を行い、その後に最終溶体化熱処理[工程10]を行うものである。
そして、この中間再結晶熱処理と最終溶体化熱処理の温度は、溶質原子が完全に固溶する温度であるP℃を用いて規定された特定の温度範囲として規定される。
中間再結晶熱処理の温度は、(P−200)℃以上で(P−10)℃以下である。この温度が低すぎる場合は、再結晶が不十分であり、逆に高すぎる場合は、TDに向く(111)面の割合が充分に低下しない。中間再結晶熱処理の温度は、好ましくは、(P−170)℃〜(P−20)℃、更に好ましくは、(P−140)℃〜(P−30)℃である。
最終溶体化熱処理の温度は、(P+10)℃以上で(P+150)℃以下である。この温度が低すぎる場合は、溶質原子の固溶が不十分であり、逆に高すぎる場合は、結晶粒が粗大化する。最終溶体化熱処理の温度は、好ましくは、(P+20)℃〜(P+130)℃、更に好ましくは、(P+30)℃〜(P+100)℃である。
In the method for producing a copper alloy sheet according to the present invention, the following production method is effective in reducing the ratio of the (111) plane facing in the sheet width direction in the final solution heat treatment.
As a general method for producing a conventional precipitation-type copper alloy, recrystallization also occurs during solution heat treatment, so that the two purposes of solid solution of solute atoms and recrystallization have been achieved. On the other hand, in the method for producing a copper alloy sheet according to the present invention, these two objectives are achieved one by one, and the crystal orientation of the texture is controlled at the same time. It is. That is, first, an intermediate recrystallization heat treatment [Step 9] is performed on the provided material, followed by a final solution heat treatment [Step 10].
The temperature of the intermediate recrystallization heat treatment and the final solution heat treatment is defined as a specific temperature range defined using P ° C., which is the temperature at which the solute atoms are completely dissolved.
The temperature of the intermediate recrystallization heat treatment is (P-200) ° C. or higher and (P-10) ° C. or lower. When this temperature is too low, recrystallization is insufficient, and when it is too high, the proportion of the (111) plane facing TD is not sufficiently reduced. The temperature of the intermediate recrystallization heat treatment is preferably (P-170) ° C to (P-20) ° C, more preferably (P-140) ° C to (P-30) ° C.
The temperature of the final solution heat treatment is (P + 10) ° C. or higher and (P + 150) ° C. or lower. When this temperature is too low, the solute atoms are not sufficiently dissolved, and when the temperature is too high, the crystal grains become coarse. The temperature of the final solution heat treatment is preferably (P + 20) ° C. to (P + 130) ° C., more preferably (P + 30) ° C. to (P + 100) ° C.

溶質原子が完全に固溶する温度P(℃)は、下記の様な一般的な方法によって求めた。鋳塊を1000℃で1時間の均質化後、熱間圧延と冷間圧延を施して板材とし、その後にソルトバスにて700〜1000℃まで10℃おき30秒間保持する熱処理の後に水焼き入れを行い、各温度における固溶及び析出の状態を凍結し、導電率を測定した。導電率を固溶元素量の代用特性として使用し、熱処理温度の上昇にともなう導電率の低下が飽和する温度を、完全固溶温度P(℃)とした。典型的な導電率変化と、それによって前記温度P(℃)を決定する方法を模式的に図2に示す。特定な組成に対する完全固溶温度P(℃)は合金の種類や加工・処理の条件等によって異なるが、典型例として示すと、720〜980℃程度であることが一般的である。   The temperature P (° C.) at which the solute atoms are completely dissolved is determined by the following general method. The ingot is homogenized at 1000 ° C. for 1 hour, then subjected to hot rolling and cold rolling to form a plate material, and then subjected to water quenching after heat treatment of holding at 700 ° C. every 10 ° C. for 30 seconds in a salt bath. The state of solid solution and precipitation at each temperature was frozen and the conductivity was measured. The conductivity was used as a substitute characteristic for the amount of solid solution element, and the temperature at which the decrease in conductivity with the increase in the heat treatment temperature was saturated was defined as the complete solid solution temperature P (° C.). A typical conductivity change and a method for determining the temperature P (° C.) thereby are schematically shown in FIG. The complete solution temperature P (° C.) for a specific composition varies depending on the type of alloy, processing / processing conditions, and the like, but is typically about 720 to 980 ° C. as a typical example.

中間再結晶熱処理の処理時間は1秒〜20時間であり、更に好ましくは5秒〜10時間である。中間再結晶熱処理の処理時間が短すぎる場合は再結晶が進行せず、また、これが長すぎる場合は結晶粒が粗大化して成形性が低下する。
最終溶体化熱処理の処理時間は1秒〜10分間であり、更に好ましくは5秒〜5分間である。最終溶体化熱処理の処理時間が短すぎる場合は溶質原子の固溶が不十分であり、また、これが長すぎる場合は結晶粒が粗大化して成形性が低下する。
The treatment time for the intermediate recrystallization heat treatment is 1 second to 20 hours, more preferably 5 seconds to 10 hours. When the treatment time of the intermediate recrystallization heat treatment is too short, recrystallization does not proceed, and when it is too long, crystal grains become coarse and formability deteriorates.
The treatment time for the final solution heat treatment is 1 second to 10 minutes, more preferably 5 seconds to 5 minutes. When the treatment time of the final solution heat treatment is too short, the solute atoms are not sufficiently dissolved, and when it is too long, the crystal grains are coarsened and the formability is lowered.

本発明においては、中間熱処理(工程7)も特別な技術的意味を有するのでここで述べておく。完全固溶温度P℃に対してやや低い温度で、しかも比較的低温の条件の熱処理によって、全面が再結晶していない組織が得られる。即ち、圧延材中の結晶方位の中でも、回復の速い結晶方位と遅い結晶方位が存在するために、その差によって不均一に再結晶した組織となる。この意図的に作られる不均一性が、中間再結晶熱処理[工程9]における再結晶集合組織の優先発達を促す。回復が遅い方位の一部が再結晶組織となるが、回復が早い組織結晶方位は再結晶化しない。   In the present invention, the intermediate heat treatment (step 7) also has a special technical meaning and will be described here. A structure in which the entire surface is not recrystallized can be obtained by heat treatment at a temperature slightly lower than the complete solid solution temperature P ° C. and at a relatively low temperature. That is, among the crystal orientations in the rolled material, there are crystal orientations with fast recovery and slow crystal orientations, so that a structure recrystallized non-uniformly due to the difference. This intentionally created non-uniformity promotes the preferential development of the recrystallization texture in the intermediate recrystallization heat treatment [Step 9]. Some of the orientations that recover slowly become recrystallized structures, but the crystallographic orientations that recover quickly do not recrystallize.

本発明の銅合金板材は、例えばコネクタ用銅合金板材に要求される特性を満足することができる。特に0.2%耐力については500MPa以上(好ましくは600MPa以上、更に好ましくは700MPa以上)、曲げ加工性については90°W曲げ試験においてクラックなく曲げ加工が可能な最小曲げ半径(r:mm)を板厚(t:mm)で割った値(r/t)が1以下、導電率については30%IACS以上(好ましくは35%IACS以上、更に好ましくは40%IACS以上)を満足するものであり、さらには、耐応力緩和特性については後述する150℃に1000時間保持する測定方法によって応力緩和率(SR)30%以下(好ましくは25%以下)を満たすこともできる、という良好な特性を実現することができる。   The copper alloy sheet of the present invention can satisfy the characteristics required for a copper alloy sheet for connectors, for example. In particular, the 0.2% proof stress is 500 MPa or more (preferably 600 MPa or more, more preferably 700 MPa or more), and the bending workability is the minimum bending radius (r: mm) that allows bending without cracks in a 90 ° W bending test. The value (r / t) divided by the plate thickness (t: mm) is 1 or less, and the electrical conductivity satisfies 30% IACS or more (preferably 35% IACS or more, more preferably 40% IACS or more). Furthermore, with regard to the stress relaxation resistance, a satisfactory characteristic is achieved that the stress relaxation rate (SR) can be satisfied by 30% or less (preferably 25% or less) by a measurement method of holding at 150 ° C. for 1000 hours, which will be described later. can do.

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例1
表1−1の合金成分の欄の組成に示すように、少なくともNiとCoの中から1種または2種を合計で0.5〜5.0mass%、Siを0.1〜1.5mass%含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを鋳造して鋳塊を得た。その後に、700℃〜1020℃で10分〜10時間の均質化熱処理、加工温度が500〜1020℃で加工率が30〜98%の熱間圧延、水冷、50〜99%の冷間圧延と、この順に施し、この状態を提供材とし、下記A〜Fのいずれかの工程にて、本発明例1−1〜1−19及び比較例1−1〜1−9の銅合金板材の供試材を製造した。
Example 1
As shown in the composition in the column of alloy components in Table 1-1, at least one or two of Ni and Co are added in a total amount of 0.5 to 5.0 mass%, and Si is set to 0.1 to 1.5 mass%. The alloy which contains and the remainder which consists of Cu and an inevitable impurity was melt | dissolved with the high frequency melting furnace, this was cast, and the ingot was obtained. Thereafter, homogenization heat treatment at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours, hot rolling at a processing temperature of 500 to 1020 ° C. and a processing rate of 30 to 98%, water cooling, and cold rolling at 50 to 99% In this order, this state is used as a providing material, and the copper alloy sheet materials of Invention Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-9 are provided in any of the following processes A to F. A sample was produced.

(工程A)
600〜900℃で10秒〜5分間保持する熱処理、5〜55%の加工率の冷間加工、(P−200)℃以上(P−10)℃以下において、1秒〜20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒〜1分間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜45%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process A)
Heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes, cold working at a processing rate of 5 to 55%, intermediate holding for 1 second to 20 hours at (P-200) ° C. to (P-10) ° C. A recrystallization heat treatment, a final solution heat treatment is performed at (P + 10) ° C. or higher and (P + 150) ° C. or lower for 1 second to 1 minute. Thereafter, aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 45%, and temper annealing that is maintained at 300 to 700 ° C. for 10 seconds to 2 hours are performed.

(工程B)
600〜900℃で10秒〜5分間保持する熱処理、5〜55%の加工率の冷間加工、(P−200)℃以上(P−10)℃以下において、1秒〜20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒〜1分間保持する最終溶体化熱処理を行う。その後、2〜40%の加工率の圧延、350〜600℃において5分間〜20時間の時効析出熱処理、2〜45%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process B)
Heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes, cold working at a processing rate of 5 to 55%, intermediate holding for 1 second to 20 hours at (P-200) ° C. to (P-10) ° C. A recrystallization heat treatment, a final solution heat treatment is performed at (P + 10) ° C. or higher and (P + 150) ° C. or lower for 1 second to 1 minute. Thereafter, rolling at a processing rate of 2 to 40%, aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 45%, and holding at 300 to 700 ° C. for 10 seconds to 2 hours. Perform temper annealing.

(工程C)
600〜900℃で10秒〜5分間保持する熱処理、5〜55%の加工率の冷間加工、(P−200)℃以上(P−10)℃以下において、1秒〜20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒〜1分間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理を行う。
(Process C)
Heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes, cold working at a processing rate of 5 to 55%, intermediate holding for 1 second to 20 hours at (P-200) ° C. to (P-10) ° C. A recrystallization heat treatment, a final solution heat treatment is performed at (P + 10) ° C. or higher and (P + 150) ° C. or lower for 1 second to 1 minute. Thereafter, an aging precipitation heat treatment is performed at 350 to 600 ° C. for 5 minutes to 20 hours.

(工程D)
600〜900℃で10秒〜5分間保持する熱処理、5〜55%の加工率の冷間加工、(P−200)℃以上(P−10)℃以下において、1秒〜20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒〜1分間保持する最終溶体化熱処理を行う。その後、2〜45%の加工率の圧延、350〜600℃において5分間〜20時間の時効析出熱処理を行う。
(Process D)
Heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes, cold working at a processing rate of 5 to 55%, intermediate holding for 1 second to 20 hours at (P-200) ° C. to (P-10) ° C. A recrystallization heat treatment, a final solution heat treatment is performed at (P + 10) ° C. or higher and (P + 150) ° C. or lower for 1 second to 1 minute. Thereafter, rolling at a processing rate of 2 to 45% and aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours are performed.

(工程E)
(P−200)℃以上(P−10)℃以下において、1秒〜20時間保持する中間再結晶熱処理、(P+10)℃以上(P+150)℃以下において1秒〜1分間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜45%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process E)
Intermediate recrystallization heat treatment held at (P-200) ° C. to (P-10) ° C. for 1 second to 20 hours, and final solution heat treatment held at (P + 10) ° C. to (P + 150) ° C. for 1 second to 1 minute. I do. Thereafter, aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 45%, and temper annealing that is maintained at 300 to 700 ° C. for 10 seconds to 2 hours are performed.

(工程F)
600〜900℃で10秒〜5分間保持する熱処理、5〜55%の加工率の冷間加工、(P+10)℃以上(P+150)℃以下において1秒〜1分間保持する最終溶体化熱処理を行う。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜45%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行う。
(Process F)
Heat treatment held at 600 to 900 ° C. for 10 seconds to 5 minutes, cold working at a processing rate of 5 to 55%, and final solution heat treatment held at (P + 10) ° C. to (P + 150) ° C. for 1 second to 1 minute. . Thereafter, aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 45%, and temper annealing that is maintained at 300 to 700 ° C. for 10 seconds to 2 hours are performed.

なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。   After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape.

この供試材について下記の特性調査を行った。ここで、供試材の厚さは0.15mmとした。本発明例及び参考例の結果を表1−1に、比較例の結果を表1−2に、それぞれ示す。
The following property investigation was conducted on this specimen. Here, the thickness of the test material was 0.15 mm. The results of Examples of the present invention and Reference Examples are shown in Table 1-1, and the results of Comparative Examples are shown in Table 1-2.

a.TDに(111)面が向く原子面の領域の面積率:
EBSD法により、約500μm四方の測定領域で、スキャンステップが0.5μmの条件で測定を行った。測定面積は結晶粒を200個以上含むことを基準として調整した。上述したように、各理想方位であるTDを法線とする(111)面と、(111)面の法線とTDのなす角の角度が20°以内である原子面各々とを合わせた領域(これらを併せて、前述のTDに(111)面が向く原子面の領域である)について、これらの合計の面積率を以下の式によって算出した。
面積率(%)={((111)面の法線とTDのなす角の角度が20°以内に向く原子面の面積の合計)/全測定面積}×100
以下の各表中には、これを単に「面積率(%)」として示す。
なお、EBSD測定装置として、TSL社製OIM5.0HIKARIを用いた。
a. Area ratio of the area of the atomic plane with the (111) plane facing TD:
By the EBSD method, measurement was performed in a measurement region of about 500 μm square under the condition that the scan step was 0.5 μm. The measurement area was adjusted based on the inclusion of 200 or more crystal grains. As described above, the (111) plane whose normal is TD, which is each ideal orientation, and the atomic plane whose angle between the normal of the (111) plane and TD is within 20 ° are combined. For these (in combination, the region of the atomic plane with the (111) plane facing the aforementioned TD), the total area ratio of these was calculated by the following equation.
Area ratio (%) = {(total of the area of the atomic plane in which the angle between the normal of (111) plane and TD is within 20 °) / total measurement area} × 100
In the following tables, this is simply indicated as “area ratio (%)”.
In addition, TSL OIM5.0HIKARI was used as an EBSD measuring apparatus.

b.曲げ加工性:
圧延方向に垂直に幅10mm、長さ25mmに切出し、これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、曲げ部を50倍の光学顕微鏡で観察し、クラックの有無を調査した。
曲げ加工部にクラックがなく、シワも軽微なものを「良(◎)」、クラックがないがシワが大きいものの実用上問題ないものを「可(○)」、クラックのあるものを「不可(×)」と判定した。各曲げ部の曲げ角度は90°、曲げ部の内側半径は0.15mmとした。
b. Bending workability:
Cut into a width of 10 mm and a length of 25 mm perpendicular to the rolling direction, and W-bended so that the axis of bending is perpendicular to the rolling direction is GW (Good Way) and W-bent so as to be parallel to the rolling direction. The thing was made into BW (Bad Way), the bending part was observed with the optical microscope of 50 time, and the presence or absence of the crack was investigated.
Bending part has no cracks and wrinkles are “good (◎)”, no cracks are large but wrinkles are practically acceptable, “good (○)”, and those with cracks are “impossible ( ×) ”. The bending angle of each bent portion was 90 °, and the inner radius of the bent portion was 0.15 mm.

c.0.2%耐力 [YS]:
圧延平行方向から切り出したJIS Z 2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。
c. 0.2% yield strength [YS]:
Three test pieces of JIS Z 2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown.

d:導電率 [EC]:
20℃(±0.5℃)に保たれた恒温漕中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
d: Conductivity [EC]:
The specific resistance was measured by a four-terminal method in a constant temperature bath maintained at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.

e.応力緩和率 [SR]:
日本伸銅協会 JCBA T309:2001(これは仮規格である。旧規格は「日本電子材料工業会標準規格 EMAS−3003」であった。)に準じ、以下に示すように、150℃で1000時間保持後の条件で測定した。片持ち梁法により耐力の80%の初期応力を負荷した。
e. Stress relaxation rate [SR]:
Japan Copper and Brass Association JCBA T309: 2001 (This is a tentative standard. The old standard was “The Japan Electronic Materials Industry Standard ESMA-3003”), as shown below, at 150 ° C. for 1000 hours. It measured on the conditions after holding | maintenance. An initial stress of 80% of the proof stress was applied by the cantilever method.

図1は耐応力緩和特性の試験方法の説明図であり、(a)は熱処理前、(b)は熱処理後の状態である。図1(a)に示すように、試験台4に片持ちで保持した試験片1に、耐力の80%の初期応力を付与した時の試験片1の位置は、基準からδの距離である。これを150℃の恒温槽に1000時間保持(前記試験片1の状態での熱処理)し、負荷を除いた後の試験片2の位置は、図1(b)に示すように基準からHの距離である。3は応力を負荷しなかった場合の試験片であり、その位置は基準からHの距離である。この関係から、応力緩和率(%)は(H−H)/(δ−H)×100と算出した。式中、δは、基準から試験片1までの距離であり、Hは、基準から試験片3までの距離であり、Hは、基準から試験片2までの距離である。FIG. 1 is an explanatory diagram of a stress relaxation resistance test method, in which (a) shows a state before heat treatment and (b) shows a state after heat treatment. As shown in FIG. 1A, the position of the test piece 1 when an initial stress of 80% of the proof stress is applied to the test piece 1 held in a cantilever manner on the test stand 4 is a distance of δ 0 from the reference. is there. This is held in a thermostatic bath at 150 ° C. for 1000 hours (heat treatment in the state of the test piece 1), and the position of the test piece 2 after removing the load is determined from the reference H t as shown in FIG. Is the distance. 3 is a test piece when no stress is applied, and its position is a distance H 1 from the reference. From this relationship, the stress relaxation rate (%) was calculated as (H t −H 1 ) / (δ 0 −H 1 ) × 100. In the equation, δ 0 is the distance from the reference to the test piece 1, H 1 is the distance from the reference to the test piece 3, and H t is the distance from the reference to the test piece 2.

表1−1に示すように、本発明例1−1〜1−19は、曲げ加工性、耐力、導電率、耐応力緩和特性に優れた。
一方、表1−2に示すように、本発明の規定を満たさない場合は、特性が劣る結果となった。
すなわち、比較例1−1は、NiとCoの総量が少ないために、析出硬化に寄与する化合物(析出物)の密度が低下し強度が劣った。また、NiまたはCoと化合物を形成しないSiが金属組織中に過剰に固溶し導電率が劣った。比較例1−2は、NiとCoの総量が多いために、導電率が劣った。比較例1−3は、Siが少ないために強度が劣った。比較例1−4は、Siが多いために導電率が劣った。
比較例1−5〜1−9はTDに(111)面が向く割合が高く、曲げ加工性が劣った。特にBW曲げにおいて、顕著なクラックが見られた。
As shown in Table 1-1, Invention Examples 1-1 to 1-19 were excellent in bending workability, yield strength, electrical conductivity, and stress relaxation resistance.
On the other hand, as shown in Table 1-2, when the provisions of the present invention were not satisfied, the characteristics were inferior.
That is, in Comparative Example 1-1, since the total amount of Ni and Co was small, the density of the compound (precipitate) contributing to precipitation hardening was lowered and the strength was inferior. Further, Si that does not form a compound with Ni or Co was excessively dissolved in the metal structure, resulting in poor conductivity. Since Comparative Example 1-2 had a large total amount of Ni and Co, the conductivity was inferior. Comparative Example 1-3 was inferior in strength due to a small amount of Si. Comparative Example 1-4 was inferior in electrical conductivity because of a large amount of Si.
In Comparative Examples 1-5 to 1-9, the ratio of the (111) plane facing TD was high, and the bending workability was poor. In particular, remarkable cracks were observed in BW bending.

実施例2
表2の合金成分の欄に示す組成で、残部がCuと不可避不純物からなる銅合金について、実施例1と同様にして、本発明例、参考例および比較例の銅合金板材の供試材を製造し、実施例1と同様に特性を調査した。結果を表2に示す。
Example 2
For the copper alloy composed of Cu and inevitable impurities with the composition shown in the column of the alloy component in Table 2, in the same manner as in Example 1, test materials for the copper alloy sheet materials of the present invention example , reference example, and comparative example were used. Manufactured and examined for properties as in Example 1. The results are shown in Table 2.

表2に示すように、本発明例2−1〜本発明例2−17は、曲げ加工性、耐力、導電率、耐応力緩和特性に優れた。
一方、本発明の規定を満たさない場合は、特性が劣った。すなわち、比較例2−1、2−2、2−3(いずれも、前記(3)項に係る発明の比較例)は、Ni、CoおよびSi以外のその他の元素の添加量が多いために、導電率が劣った。
As shown in Table 2, Invention Example 2-1 to Invention Example 2-17 were excellent in bending workability, yield strength, electrical conductivity, and stress relaxation resistance.
On the other hand, when the provisions of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Examples 2-1, 2-2, and 2-3 (both are comparative examples of the invention according to the above item (3)), the amount of other elements other than Ni, Co, and Si is large The conductivity was inferior.

参考例
表3に示す組成で、残部がCuと不可避不純物からなる銅合金について、鋳塊を700℃〜1020℃で10分〜10時間の均質化熱処理後、実施例1と同様に熱間圧延の後に水冷し、50〜99%の冷間圧延、600〜900℃で10秒〜5分間保持する熱処理、5〜55%の加工率の冷間加工、をこの順に施した。
その後に表4に示す様な、中間再結晶熱処理と最終溶体化熱処理を行った。その後、350〜600℃において5分間〜20時間の時効析出熱処理、2〜45%の加工率の仕上げ圧延、300〜700℃で10秒〜2時間保持する調質焼鈍を行い、供試材を製造した。実施例1と同様に特性を調査した。結果を表4に示す。
Reference Example For a copper alloy having the composition shown in Table 3 and the balance being Cu and inevitable impurities, the ingot is subjected to homogenization heat treatment at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours, and then hot rolled in the same manner as in Example 1. After that, it was cooled with water, cold-rolled at 50 to 99%, heat-treated at 600 to 900 ° C. for 10 seconds to 5 minutes, and cold worked at a processing rate of 5 to 55% in this order.
Thereafter, an intermediate recrystallization heat treatment and a final solution heat treatment as shown in Table 4 were performed. Thereafter, aging precipitation heat treatment at 350 to 600 ° C. for 5 minutes to 20 hours, finish rolling at a processing rate of 2 to 45%, and temper annealing held at 300 to 700 ° C. for 10 seconds to 2 hours, Manufactured. The characteristics were investigated in the same manner as in Example 1. The results are shown in Table 4.

表4に示すように、参考例3−1〜参考例3−6は、曲げ加工性、耐力、導電率、耐応力緩和特性に優れた。
一方、本発明の規定を満たさない場合は、特性が劣った。すなわち、比較例3−1は、中間再結晶熱処理の温度が低いためにTDに(111)面が向く領域が高まり、曲げ性が劣った。比較例3−2は、中間再結晶熱処理の温度が高いためにTDに(111)面が向く領域が高まり、曲げ性が劣った。比較例3−3は、中間再結晶熱処理の処理時間が長いために溶質原子が粗大な析出物となり、最終溶体化熱処理にて充分に固溶されず、耐力が劣った。比較例3−4は、最終溶体化熱処理の処理温度が低いために溶質原子の固溶が不十分で、耐力が劣った。比較例3−5は、最終溶体化熱処理の処理温度が高いために結晶粒が粗大化し、耐力が劣った。比較例3−6は、最終溶体化熱処理の処理時間が長いために結晶粒が粗大化し、耐力が劣った。また、比較例3−5、3−6は結晶粒径が大きいために曲げシワが大きく、良好ではなかった。
As shown in Table 4, Reference Example 3-1 to Reference Example 3-6 were excellent in bending workability, yield strength, electrical conductivity, and stress relaxation resistance.
On the other hand, when the provisions of the present invention were not satisfied, the characteristics were inferior. That is, in Comparative Example 3-1, since the temperature of the intermediate recrystallization heat treatment was low, the region where the (111) plane was directed to TD increased, and the bendability was inferior. In Comparative Example 3-2, since the temperature of the intermediate recrystallization heat treatment was high, the region where the (111) plane was directed to TD increased, and the bendability was inferior. In Comparative Example 3-3, since the treatment time of the intermediate recrystallization heat treatment was long, the solute atoms became coarse precipitates, which were not sufficiently solid solution in the final solution heat treatment, and the yield strength was inferior. In Comparative Example 3-4, since the treatment temperature of the final solution heat treatment was low, the solid solution of solute atoms was insufficient and the yield strength was inferior. In Comparative Example 3-5, since the treatment temperature of the final solution heat treatment was high, the crystal grains became coarse and the yield strength was inferior. In Comparative Example 3-6, since the treatment time for the final solution heat treatment was long, the crystal grains became coarse and the yield strength was inferior. Moreover, since Comparative Example 3-5 and 3-6 had a large crystal grain size, bending wrinkles were large and were not good.

この様に、本発明により、例えばコネクタ材などの車載部品や電気・電子機器の材料(特にその基体材料)として非常に好適な特性が実現可能である。   As described above, according to the present invention, it is possible to realize a characteristic that is very suitable as a material for an in-vehicle component such as a connector material or an electric / electronic device (particularly, the base material).

つづいて、従来の製造条件により製造した銅合金板材について、本願発明に係る銅合金板材との相違を明確化するために、その条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。   Subsequently, in order to clarify the difference from the copper alloy sheet material according to the present invention, the copper alloy sheet material produced under the conventional production conditions, the copper alloy sheet material is produced under the conditions, and the same characteristic items as described above are evaluated. Went. In addition, the processing rate was adjusted so that the thickness of each board | plate material might become the same thickness as the said Example unless there is particular notice.

(比較例101)・・・特開2009−007666号公報の条件
上記本発明例1−1と同様の金属元素を配合し、残部がCuと不可避不純物から成る合金を高周波溶解炉により溶解し、これを0.1〜100℃/秒の冷却速度で鋳造して鋳塊を得た。これを900〜1020℃で3分から10時間の保持後、熱間加工を行った後に水焼き入れを行い、酸化スケール除去のために面削を行った。この後の工程は、次に記載する工程A−3,B−3の処理を施すことによって銅合金c01を製造した。
製造工程には、1回または2回以上の溶体化熱処理を含み、ここでは、その中の最後の溶体化熱処理の前後で工程を分類し、中間溶体化までの工程でA−3工程とし、中間溶体化より後の工程でB−3工程とした。
(Comparative Example 101) ... Conditions of JP2009-007666 A metal element similar to that of Invention Example 1-1 is blended, and an alloy composed of Cu and inevitable impurities is melted in a high-frequency melting furnace. This was cast at a cooling rate of 0.1 to 100 ° C./second to obtain an ingot. This was held at 900 to 1020 ° C. for 3 minutes to 10 hours, then hot worked, then water quenched, and chamfered to remove oxide scale. In the subsequent steps, the copper alloy c01 was manufactured by performing the processes of steps A-3 and B-3 described below.
The manufacturing process includes one or more solution heat treatments, and here, the process is classified before and after the last solution heat treatment, and the process up to the intermediate solution is A-3 process, It was set as B-3 process in the process after intermediate solution.

工程A−3:断面減少率が20%以上の冷間加工を施し、350〜750℃で5分〜10時間の熱処理を施し、断面減少率が5〜50%の冷間加工を施し、800〜1000℃で5秒〜30分の溶体化熱処理を施す。
工程B−3:断面減少率が50%以下の冷間加工を施し、400〜700℃で5分〜10時間の熱処理を施し、断面減少率が30%以下の冷間加工を施し、200〜550℃で5秒〜10時間の調質焼鈍を施す。
Step A-3: A cold working with a cross-sectional reduction rate of 20% or more is performed, a heat treatment is performed at 350 to 750 ° C. for 5 minutes to 10 hours, a cold working with a cross-sectional reduction rate of 5 to 50% is performed, and 800 A solution heat treatment is performed at ˜1000 ° C. for 5 seconds to 30 minutes.
Step B-3: cold working with a cross-section reduction rate of 50% or less, heat treatment at 400 to 700 ° C. for 5 minutes to 10 hours, and cold working with a cross-section reduction rate of 30% or less, 200 to Temper annealing is performed at 550 ° C. for 5 seconds to 10 hours.

得られた試験体c01は、上記実施例とは製造条件について中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性について要求特性を満たさない結果となった。   The obtained specimen c01 differs from the above examples in terms of production conditions in the presence or absence of intermediate recrystallization heat treatment [Step 9 in the present application], and has a high area ratio with the (111) plane facing TD, and bending workability. The result did not meet the required characteristics.

(比較例102)・・・特開2006−283059号公報の条件
上記本発明例1−1の組成の銅合金を、電気炉により大気中にて木炭被覆下で溶解し、鋳造可否を判断した。溶製した鋳塊を熱間圧延し、厚さ15mmに仕上げた。つづいてこの熱間圧延材に対し、冷間圧延及び熱処理(冷間圧延1→溶体化連続焼鈍→冷間圧延2→時効処理→冷間圧延3→短時間焼鈍)を施し、所定の厚さの銅合金薄板(c0)を製造した。
(Comparative Example 102) ... Conditions of Japanese Patent Application Laid-Open No. 2006-283059 The copper alloy having the composition of Example 1-1 of the present invention was melted in the atmosphere under charcoal coating in an electric furnace to determine whether casting was possible . The molten ingot was hot-rolled to a thickness of 15 mm. Subsequently, the hot rolled material is subjected to cold rolling and heat treatment (cold rolling 1 → solution annealing, cold rolling 2 → aging treatment → cold rolling 3 → short annealing) to a predetermined thickness. We were prepared of a copper alloy sheet (c0 2).

得られた試験体c02は、上記実施例1とは製造条件について熱処理[本願における工程7]及び、中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性を満たさない結果となった。   The obtained specimen c02 differs from Example 1 in terms of the manufacturing conditions in terms of the presence or absence of heat treatment [Step 7 in the present application] and intermediate recrystallization heat treatment [Step 9 in the present application], and the TD has a (111) plane. The area ratio facing was high, and the bending workability was not satisfied.

(比較例103)・・・特開2006−152392号公報の条件
上記本発明例1−1の組成をもつ合金について、クリプトル炉において大気中で木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を得た。そして、鋳塊の表面を面削した後、950℃の温度で厚さが15mmになるまで熱間圧延し、750℃以上の温度から水中に急冷した。次に、酸化スケールを除去した後、冷間圧延を行い、所定の厚さの板を得た。
(Comparative Example 103) ... Conditions of Japanese Patent Application Laid-Open No. 2006-152392 The alloy having the composition of the present invention example 1-1 was melted under a charcoal coating in the atmosphere in a kryptor furnace and cast into a cast iron book mold. Thus, an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm was obtained. Then, after chamfering the surface of the ingot, it was hot-rolled at a temperature of 950 ° C. until the thickness became 15 mm, and rapidly cooled into water from a temperature of 750 ° C. or higher. Next, after removing the oxide scale, cold rolling was performed to obtain a plate having a predetermined thickness.

続いて、塩浴炉を使用し、温度で20秒間加熱する溶体化処理を行なった後に、水中に急冷した後、後半の仕上げ冷間圧延により、各厚みの冷延板にした。この際、下記に示すように、これら冷間圧延の加工率(%)を種々変えて冷延板(c03)にした。これらの冷延板を、下記に示すように、温度(℃)と時間(hr)とを種々変えて時効処理した。   Subsequently, after using a salt bath furnace and performing a solution treatment by heating at a temperature for 20 seconds, the solution was rapidly cooled in water, and then cold-rolled sheets having various thicknesses were obtained by finish cold rolling in the latter half. At this time, as shown below, the cold-rolled sheet (c03) was obtained by variously changing the cold rolling processing rate (%). As shown below, these cold-rolled sheets were subjected to aging treatment at various temperatures (° C.) and times (hr).

冷間加工率: 95%
溶体化処理温度: 900℃
人工時効硬化処理温度×時間: 450℃×4時間
板厚: 0.6mm
Cold working rate: 95%
Solution treatment temperature: 900 ° C
Artificial age hardening temperature x time: 450 ° C x 4 hours Thickness: 0.6mm

得られた試験体c03は、上記実施例1とは製造条件について熱処理[本願における工程7]及び、中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性を満たさない結果となった。   The obtained specimen c03 differs from Example 1 in terms of the manufacturing conditions in terms of the presence or absence of heat treatment [Step 7 in the present application] and intermediate recrystallization heat treatment [Step 9 in the present application], and the TD has a (111) plane. The area ratio facing was high, and the bending workability was not satisfied.

(比較例104)・・・特開2008−223136号公報の条件
実施例1に示す銅合金を溶製し、縦型連続鋳造機を用いて鋳造した。得られた鋳片(厚さ180mm)から厚さ50mmの試料を切り出し、これを950℃に加熱したのち抽出して、熱間圧延を開始した。その際、950℃〜700℃の温度域での圧延率が60%以上となり、かつ700℃未満の温度域でも圧延が行われるようにパススケジュールを設定した。熱間圧延の最終パス温度は600℃〜400℃の間にある。鋳片からのトータルの熱間圧延率は約90%である。熱間圧延後、表層の酸化層を機械研磨により除去(面削)した。
(Comparative Example 104) ... Conditions of JP-A-2008-223136 The copper alloy shown in Example 1 was melted and cast using a vertical continuous casting machine. A sample with a thickness of 50 mm was cut out from the obtained slab (thickness 180 mm), heated to 950 ° C., extracted, and hot rolling was started. At that time, the pass schedule was set so that the rolling rate in the temperature range of 950 ° C. to 700 ° C. was 60% or more and the rolling was performed even in the temperature range of less than 700 ° C. The final pass temperature of hot rolling is between 600 ° C and 400 ° C. The total hot rolling rate from the slab is about 90%. After hot rolling, the surface oxide layer was removed (faced) by mechanical polishing.

次いで、冷間圧延を行った後、溶体化処理に供した。試料表面に取り付けた熱電対により溶体化処理時の温度変化をモニターし、昇温過程における100℃から700℃までの昇温時間を求めた。溶体化処理後の平均結晶粒径(双晶境界を結晶粒界とみなさない)が10〜60μmとなるように到達温度を合金組成に応じて700〜850℃の範囲内で調整し、700〜850℃の温度域での保持時間を10sec〜10minの範囲で調整した。続いて、上記溶体化処理後の板材に対して、圧延率で中間冷間圧延を施し、次いで時効処理を施した。時効処理温度は材温450℃とし、時効時間は合金組成に応じて450℃の時効で硬さがピークになる時間に調整した。このような合金組成に応じて最適な溶体化処理条件や時効処理時間は予備実験により把握してある。次いで、圧延率で仕上げ冷間圧延を行った。仕上げ冷間圧延を行ったものについては、その後さらに、400℃の炉中に5min装入する低温焼鈍を施した。このようにして供試材c04を得た。なお、必要に応じて途中で面削を行い、供試材の板厚は0.2mmに揃えた。主な製造条件は下記に記載してある。   Subsequently, after performing cold rolling, it used for the solution treatment. The temperature change during the solution treatment was monitored by a thermocouple attached to the sample surface, and the temperature raising time from 100 ° C. to 700 ° C. in the temperature raising process was determined. The ultimate temperature is adjusted within the range of 700 to 850 ° C. according to the alloy composition so that the average crystal grain size after solution treatment (the twin boundary is not regarded as a grain boundary) is 10 to 60 μm. The holding time in the temperature range of 850 ° C. was adjusted in the range of 10 sec to 10 min. Subsequently, the plate material after the solution treatment was subjected to intermediate cold rolling at a rolling rate and then subjected to an aging treatment. The aging treatment temperature was adjusted to a material temperature of 450 ° C., and the aging time was adjusted to a time when the hardness peaked at 450 ° C. according to the alloy composition. The optimum solution treatment conditions and aging treatment time according to such an alloy composition have been grasped by preliminary experiments. Next, finish cold rolling was performed at a rolling rate. About what performed finish cold rolling, the low temperature annealing which puts it in a 400 degreeC furnace for 5 minutes after that was given after that. In this way, a test material c04 was obtained. If necessary, chamfering was performed in the middle, and the thickness of the specimen was adjusted to 0.2 mm. The main production conditions are described below.

[特開2008−223136 実施例1の条件]
700℃未満〜400℃での熱間圧延率: 56%(1パス)
溶体化処理前 冷間圧延率: 92%
中間冷間圧延 冷間圧延率: 20%
仕上げ冷間圧延 冷間圧延率: 30%
100℃から700℃までの昇温時間: 10秒
[Conditions of JP-A-2008-223136 Example 1]
Hot rolling rate at less than 700 ° C to 400 ° C: 56% (1 pass)
Before solution treatment Cold rolling rate: 92%
Intermediate cold rolling Cold rolling rate: 20%
Finish cold rolling Cold rolling rate: 30%
Temperature rising time from 100 ° C to 700 ° C: 10 seconds

得られた試験体c04は、上記実施例1とは製造条件について熱処理[本願における工程7]及び、中間再結晶熱処理[本願における工程9]の有無の点で異なり、TDに(111)面が向く面積率が高く、曲げ加工性を満たさない結果となった。   The obtained specimen c04 differs from Example 1 in terms of the manufacturing conditions in the presence or absence of heat treatment [Step 7 in the present application] and intermediate recrystallization heat treatment [Step 9 in the present application], and the TD has a (111) plane. The area ratio facing was high, and the bending workability was not satisfied.

1 初期応力を付与した時の試験片
2 負荷を除いた後の試験片
3 応力を負荷しなかった場合の試験片
4 試験台
DESCRIPTION OF SYMBOLS 1 Test piece when initial stress was applied 2 Test piece after removing load 3 Test piece when stress was not applied 4 Test stand

Claims (7)

Coを0.5〜1.86mass%又はNiとCoの合計で0.5〜5.0mass%(ただし、Coを0.5〜1.86mass%とする)、Siを0.1〜1.5mass%、残部が銅と不可避不純物からなる合金組成を有し、
EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析において、圧延板の幅方向(TD)に向く原子面の集積に関し、(111)面の法線とTDのなす角の角度が20°以内である原子面を有する領域の面積率が50%以下であり、耐力が500MPa以上、導電率が30%IACS以上であることを特徴とする銅合金板材(ただし、EBSD測定における結晶方位解析において、Cube方位{001}<100>の面積率が50%以上となるものを除く。)
Co is 0.5 to 1.86 mass%, or the total of Ni and Co is 0.5 to 5.0 mass% (where Co is 0.5 to 1.86 mass%), and Si is 0.1 to 1. 5 mass%, the balance has an alloy composition consisting of copper and inevitable impurities,
In the crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement, regarding the accumulation of atomic planes in the width direction (TD) of the rolled plate, the angle between the normal of the (111) plane and TD is A copper alloy sheet characterized in that the area ratio of the region having an atomic plane within 20 ° is 50% or less, the proof stress is 500 MPa or more, and the conductivity is 30% IACS or more (however, the crystal orientation in EBSD measurement) (In the analysis, the case where the area ratio of the Cube orientation {001} <100> is 50% or more is excluded) .
さらに、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Fe、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種を合計で0.005〜2.0mass%含有することを特徴とする請求項1に記載の銅合金板材。   Furthermore, it contains 0.005 to 2.0 mass% in total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Fe, Ti, Zr and Hf. The copper alloy sheet material according to claim 1. コネクタ用材料であることを特徴とする請求項1又は2に記載の銅合金板材。   It is a material for connectors, The copper alloy board | plate material of Claim 1 or 2 characterized by the above-mentioned. 前記銅合金板材を与える合金組成の銅合金に、
(a)高周波溶解炉による溶解と鋳造とを行って鋳塊を得る鋳造工程、
(b)700℃〜1020℃で10分〜10時間行う均質化熱処理工程、
(c)500℃〜1020℃の加工温度で30%〜98%の加工率で行う熱間圧延工程、
(d)50%〜99%の加工率で行う冷間圧延工程、
(e)600℃〜900℃で10秒〜5分間保持する熱処理工程、
(f)5%〜55%の加工率で行う冷間加工工程、
(g)溶質原子の完全固溶温度をP℃とした場合に、(P−200)℃以上で(P−10)℃以下の温度において1秒〜20時間保持する中間再結晶熱処理工程、
(h)(P+10)℃以上で(P+150)℃以下において、1秒〜10分間保持する最終溶体化熱処理工程、を順に施し、
その後に、(i)350℃〜600℃で5分間〜20時間行う時効析出熱処理工程を施す銅合金板材の製造方法により得られたことを特徴とする請求項1〜3のいずれか1項に記載の銅合金板材。
In the copper alloy of the alloy composition that gives the copper alloy sheet,
(A) a casting process for obtaining an ingot by melting and casting with a high-frequency melting furnace;
(B) A homogenization heat treatment step performed at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours,
(C) a hot rolling step performed at a processing temperature of 500 ° C. to 1020 ° C. and a processing rate of 30% to 98%;
(D) a cold rolling process performed at a processing rate of 50% to 99%;
(E) a heat treatment step of holding at 600 ° C. to 900 ° C. for 10 seconds to 5 minutes,
(F) a cold working step performed at a working rate of 5% to 55%;
(G) an intermediate recrystallization heat treatment step of maintaining a temperature of (P-200) ° C. to (P-10) ° C. for 1 second to 20 hours when the complete solid solution temperature of the solute atoms is P ° C.,
(H) In the order of (P + 10) ° C. to (P + 150) ° C., a final solution heat treatment step of holding for 1 second to 10 minutes,
It obtained by the manufacturing method of the copper alloy board | plate material which performs the aging precipitation heat treatment process performed after that (i) 350 degreeC-600 degreeC for 5 minutes-20 hours after that in any one of Claims 1-3 characterized by the above-mentioned. The copper alloy sheet material described.
前記請求項4の(i)の時効析出熱処理工程の後に、(j)2%〜45%の加工率で仕上げ圧延する冷間圧延工程、及び(k)300℃〜700℃で10秒〜2時間保持する調質焼鈍工程をこの順に施す銅合金板材の製造方法により得られたことを特徴とする請求項1〜3のいずれか1項に記載の銅合金板材。   After the aging precipitation heat treatment step of (i) of claim 4, (j) a cold rolling step of finish rolling at a processing rate of 2% to 45%, and (k) 300 ° C to 700 ° C for 10 seconds to 2 It obtained by the manufacturing method of the copper alloy board | plate material which performs the temper annealing process hold | maintained for this time in this order, The copper alloy board | plate material of any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜請求項3のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金組成の銅合金に、
(a)高周波溶解炉による溶解と鋳造とを行って鋳塊を得る鋳造工程、
(b)700℃〜1020℃で10分〜10時間行う均質化熱処理工程、
(c)500℃〜1020℃の加工温度で30%〜98%の加工率で行う熱間圧延工程、
(d)50%〜99%の加工率で行う冷間圧延工程、
(e)600℃〜900℃で10秒〜5分間保持する熱処理工程、
(f)5%〜55%の加工率で行う冷間加工工程、
(g)溶質原子の完全固溶温度をP℃とした場合に、(P−200)℃以上で(P−10)℃以下の温度において1秒〜20時間保持する中間再結晶熱処理工程、
(h)(P+10)℃以上で(P+150)℃以下において、1秒〜10分間保持する最終溶体化熱処理工程、を順に施し、
その後に、(i)350℃〜600℃で5分間〜20時間行う時効析出熱処理工程を施すことを特徴とする銅合金板材の製造方法。
It is a method of manufacturing the copper alloy sheet material according to any one of claims 1 to 3, wherein the copper alloy having an alloy composition that gives the copper alloy sheet material,
(A) a casting process for obtaining an ingot by melting and casting with a high-frequency melting furnace;
(B) A homogenization heat treatment step performed at 700 ° C. to 1020 ° C. for 10 minutes to 10 hours,
(C) a hot rolling step performed at a processing temperature of 500 ° C. to 1020 ° C. and a processing rate of 30% to 98%;
(D) a cold rolling process performed at a processing rate of 50% to 99%;
(E) a heat treatment step of holding at 600 ° C. to 900 ° C. for 10 seconds to 5 minutes,
(F) a cold working step performed at a working rate of 5% to 55%;
(G) an intermediate recrystallization heat treatment step of maintaining a temperature of (P-200) ° C. to (P-10) ° C. for 1 second to 20 hours when the complete solid solution temperature of the solute atoms is P ° C.,
(H) In the order of (P + 10) ° C. to (P + 150) ° C., a final solution heat treatment step of holding for 1 second to 10 minutes,
Then, (i) The manufacturing method of the copper alloy board | plate material characterized by performing the aging precipitation heat treatment process performed for 5 minutes-20 hours at 350 to 600 degreeC.
前記(i)の時効析出熱処理工程の後に、(j)2%〜45%の加工率で仕上げ圧延する冷間圧延工程、及び(k)300℃〜700℃で10秒〜2時間保持する調質焼鈍工程をこの順に施すことを特徴とする請求項6に記載の銅合金板材の製造方法。
(J) After the aging precipitation heat treatment step of (i), (j) a cold rolling step of finish rolling at a processing rate of 2% to 45%, and (k) a condition of holding at 300 ° C. to 700 ° C. for 10 seconds to 2 hours. The method for producing a copper alloy sheet according to claim 6, wherein the quality annealing step is performed in this order.
JP2011514942A 2009-12-02 2010-12-01 Copper alloy sheet and manufacturing method thereof Active JP5400877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514942A JP5400877B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009274995 2009-12-02
JP2009274995 2009-12-02
PCT/JP2010/071499 WO2011068126A1 (en) 2009-12-02 2010-12-01 Copper alloy sheet and process for producing same
JP2011514942A JP5400877B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013186574A Division JP5503791B2 (en) 2009-12-02 2013-09-09 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2011068126A1 JPWO2011068126A1 (en) 2013-04-18
JP5400877B2 true JP5400877B2 (en) 2014-01-29

Family

ID=44114972

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011514942A Active JP5400877B2 (en) 2009-12-02 2010-12-01 Copper alloy sheet and manufacturing method thereof
JP2013186574A Active JP5503791B2 (en) 2009-12-02 2013-09-09 Copper alloy sheet and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013186574A Active JP5503791B2 (en) 2009-12-02 2013-09-09 Copper alloy sheet and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP2508633A4 (en)
JP (2) JP5400877B2 (en)
KR (1) KR101747475B1 (en)
CN (1) CN102666889A (en)
WO (1) WO2011068126A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503208B1 (en) * 2010-08-27 2015-03-17 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and manufacturing method for same
JP5039863B1 (en) * 2011-10-21 2012-10-03 Jx日鉱日石金属株式会社 Corson alloy and manufacturing method thereof
CN105518165B (en) * 2013-09-06 2017-08-18 古河电气工业株式会社 Copper alloy wire and its manufacture method
JP6317967B2 (en) * 2014-03-25 2018-04-25 Dowaメタルテック株式会社 Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP6504868B2 (en) * 2015-03-19 2019-04-24 Jx金属株式会社 Rolled copper foil and manufacturing method thereof, copper clad laminate, flexible printed circuit board and electronic device
JP6310538B1 (en) * 2016-12-14 2018-04-11 古河電気工業株式会社 Copper alloy wire rod and method for producing the same
CN110998814B (en) * 2017-08-09 2021-04-23 日铁化学材料株式会社 Cu alloy bonding wire for semiconductor device
CN108315579B (en) * 2018-03-06 2019-12-06 北京科技大学 textured rare earth CuNiSiCr alloy material, preparation process and application
JP6713074B1 (en) * 2019-04-16 2020-06-24 Dowaメタルテック株式会社 Copper alloy sheet and method for producing the same
CN112030030B (en) * 2020-08-06 2021-09-10 国网江西省电力有限公司电力科学研究院 High-strength high-conductivity copper alloy wire and preparation method thereof
CN115094258B (en) * 2022-07-13 2023-02-17 浙江惟精新材料股份有限公司 High-strength high-plasticity high-bending Cu-Ni-Si-Co alloy and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185847A (en) * 1986-02-12 1987-08-14 Furukawa Electric Co Ltd:The High strength copper alloy for high thermal and electric conductivity use and its production
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006219733A (en) * 2005-02-14 2006-08-24 Kobe Steel Ltd Copper alloy sheet for electric-electronic component having reduced anisotropy
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP2007270171A (en) * 2006-03-30 2007-10-18 Dowa Holdings Co Ltd High-conductivity copper-based alloy with excellent bendability, and its manufacturing method
JP2009242932A (en) 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739214B2 (en) 1998-03-26 2006-01-25 株式会社神戸製鋼所 Copper alloy sheet for electronic parts
JP4809602B2 (en) 2004-05-27 2011-11-09 古河電気工業株式会社 Copper alloy
JP4166197B2 (en) 2004-06-30 2008-10-15 日鉱金属株式会社 Cu-Ni-Si-based copper alloy strips with excellent BadWay bending workability
JP4408275B2 (en) 2005-09-29 2010-02-03 日鉱金属株式会社 Cu-Ni-Si alloy with excellent strength and bending workability
JP5028657B2 (en) 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
EP1967596B1 (en) * 2007-02-13 2010-06-16 Dowa Metaltech Co., Ltd. Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
US20080190523A1 (en) 2007-02-13 2008-08-14 Weilin Gao Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP4357536B2 (en) * 2007-02-16 2009-11-04 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent strength and formability
US8287669B2 (en) * 2007-05-31 2012-10-16 The Furukawa Electric Co., Ltd. Copper alloy for electric and electronic equipments
JP4981748B2 (en) 2007-05-31 2012-07-25 古河電気工業株式会社 Copper alloy for electrical and electronic equipment
KR101161597B1 (en) * 2007-09-28 2012-07-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
US20090183803A1 (en) * 2007-12-21 2009-07-23 Mutschler Ralph A Copper-nickel-silicon alloys
JP4875768B2 (en) * 2008-06-03 2012-02-15 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP4563495B1 (en) * 2009-04-27 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
KR20120104553A (en) * 2009-12-02 2012-09-21 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material having low young's modulus and method for producing same
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185847A (en) * 1986-02-12 1987-08-14 Furukawa Electric Co Ltd:The High strength copper alloy for high thermal and electric conductivity use and its production
JPH11222641A (en) * 1998-01-30 1999-08-17 Furukawa Electric Co Ltd:The Copper alloy for elctrically conductive spring and its production
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP2006152392A (en) * 2004-11-30 2006-06-15 Kobe Steel Ltd High-strength copper alloy sheet superior in bendability and manufacturing method therefor
JP2006219733A (en) * 2005-02-14 2006-08-24 Kobe Steel Ltd Copper alloy sheet for electric-electronic component having reduced anisotropy
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
JP2007270171A (en) * 2006-03-30 2007-10-18 Dowa Holdings Co Ltd High-conductivity copper-based alloy with excellent bendability, and its manufacturing method
JP2009242932A (en) 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Cu-Ni-Si-Co BASED ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
EP2508633A1 (en) 2012-10-10
JP2014029031A (en) 2014-02-13
KR20120087985A (en) 2012-08-07
EP2508633A4 (en) 2014-07-23
JPWO2011068126A1 (en) 2013-04-18
JP5503791B2 (en) 2014-05-28
WO2011068126A1 (en) 2011-06-09
CN102666889A (en) 2012-09-12
KR101747475B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP4885332B2 (en) Copper alloy sheet and manufacturing method thereof
JP5400877B2 (en) Copper alloy sheet and manufacturing method thereof
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5170916B2 (en) Copper alloy sheet and manufacturing method thereof
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP5158910B2 (en) Copper alloy sheet and manufacturing method thereof
JP4875768B2 (en) Copper alloy sheet and manufacturing method thereof
JP5261582B2 (en) Copper alloy sheet and manufacturing method thereof
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
JP2013104082A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
JP2012197503A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R151 Written notification of patent or utility model registration

Ref document number: 5400877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350