JPH03188247A - Production of high strength and high conductivity copper alloy excellent in bendability - Google Patents

Production of high strength and high conductivity copper alloy excellent in bendability

Info

Publication number
JPH03188247A
JPH03188247A JP32270389A JP32270389A JPH03188247A JP H03188247 A JPH03188247 A JP H03188247A JP 32270389 A JP32270389 A JP 32270389A JP 32270389 A JP32270389 A JP 32270389A JP H03188247 A JPH03188247 A JP H03188247A
Authority
JP
Japan
Prior art keywords
copper alloy
temperature
strength
cold rolling
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32270389A
Other languages
Japanese (ja)
Inventor
Yasuo Hirano
康雄 平能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP32270389A priority Critical patent/JPH03188247A/en
Publication of JPH03188247A publication Critical patent/JPH03188247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce a high strength and high conductivity copper alloy having superior bendability by subjecting a copper alloy with a specific composition to solution treatment at specific temp., to final cold working at a specific draft, and then to ageing treatment at a specific temp. CONSTITUTION:A copper alloy which has a composition consisting of, by weight, 0.4-4.0% Ni, 0.1-1.0% Si, 0.1-3.5% Sn, and the balance Cu with inevitable impurities and satisfying [wt.% Ni]+[wt.% Si]+[wt.% Sn]<5.0 is produced. This copper alloy is subjected, in succession, to final solution treatment at >=700 deg.C for regulating crystalline grain size to 1-10mum, to final cold rolling at <40% draft, and then to ageing treatment at 300-700 deg.C. By this method, this copper alloy can meet the recent demand for the miniaturization of electronic parts and the thinning of material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明の製造方法は、電子部品を始めとする良好な曲げ
加工性が要求され、場合によっては高いばね性が要求さ
れるあらゆる分野の製品の製造に利用可能である。
[Detailed Description of the Invention] [Industrial Field of Application] The manufacturing method of the present invention can be applied to products in all fields that require good bending workability, including electronic parts, and in some cases, high springiness. It can be used for manufacturing.

[従来の技術] 従来、強度が要求される電子部品には、黄銅、洋白、り
ん青銅、ベリリウム銅等の銅合金や、ステンレス等の鉄
合金が用いられている。これらの電子部品用の材料の中
で、洋白は光沢が美しく、展延性、耐疲労性、耐食性が
良く、電子、通信、情報、電機計測機器用のスイッチ、
コネクター リレーなどに幅広く用いられている。
[Prior Art] Conventionally, copper alloys such as brass, nickel silver, phosphor bronze, and beryllium copper, and iron alloys such as stainless steel have been used for electronic components that require strength. Among these materials for electronic parts, nickel silver has a beautiful luster, good malleability, fatigue resistance, and corrosion resistance, and is suitable for switches for electronic, communication, information, and electrical measuring equipment.
Widely used in connectors and relays.

ところで、近年、部品の小型化が各方面で急速に進んで
いる。部品を小型化する場合、材料も薄いものになるこ
とから、材料は高強度でなければならない。又、部品の
熱容量が小さくなることから、通電時の発生熱が小さく
、熱放散性に優れることも必要になるので、材料は高導
電でなければならない。更に、材料の曲げ部の曲げ半径
も小さくなるため、材料は曲げ加工性に優れていなけれ
ばならない。
Incidentally, in recent years, miniaturization of components has progressed rapidly in various fields. As parts become smaller, the materials must also be thinner, so they must have higher strength. Furthermore, since the heat capacity of the component becomes small, it is necessary that the heat generated during energization is small and that the material has excellent heat dissipation properties, so the material must be highly conductive. Furthermore, since the bending radius of the bent portion of the material is also small, the material must have excellent bending properties.

ところが、洋白の強化機構は、Cu中へのNi、Znの
固溶強化と冷間加工(圧延)による加工硬化の組合せに
よるものであり、高強度で高導電の洋白を得ようとする
と、Ni、Zn濃度を低くし、かつ、冷間圧延の加工度
を高くしなければならず、そのため曲げ加工性が悪くな
る。特に曲げ軸が圧延方向に対し平行方向の曲げ加工性
が悪くなる。又、Ni、Zn濃度の低い洋白の加工硬化
による強度の向上もおのずと限界がある。現在用いられ
ているJIS規格のばね用洋白(7701)は高強度で
あり、曲げ加工性も極めて良好であるが、導電率が低く
高価なNiを18%も含有しているため、地金コストも
高い。
However, the strengthening mechanism of nickel silver is due to a combination of solid solution strengthening of Ni and Zn in Cu and work hardening by cold working (rolling). , Ni, and Zn concentrations must be lowered and the degree of cold rolling must be increased, resulting in poor bending workability. In particular, the bending workability in the direction in which the bending axis is parallel to the rolling direction becomes poor. Further, there is a limit to the improvement in strength by work hardening of nickel silver with low Ni and Zn concentrations. The currently used JIS standard nickel silver for springs (7701) has high strength and extremely good bending workability, but it has low electrical conductivity and contains 18% of expensive Ni, so it cannot be used with bare metal. The cost is also high.

これに対して、本発明の製造方法で対象とするSnn添
加コルシン合金、Cu5NiSSi。
On the other hand, the Snn-added Corsin alloy, Cu5NiSSi, is targeted by the manufacturing method of the present invention.

Snが主成分の高強度高導電性銅合金である。It is a high-strength, highly conductive copper alloy whose main component is Sn.

この合金の強化機構は、Ni5Siによる析出硬化とS
nによる固溶強化を組合せたものである。一般に、コル
ソン合金の板条は他の分散強化型銅合金と同様曲げ加工
性が極めて悪い。又、コルソン合金へのSnの添加は、
曲げ加工性を更に劣化させる。このため、Snを添加し
たコルソン合金は、ICリードフレームのような厳しい
曲げ加工を施さない用途の材料にしか用いられていない
のが現状である。
The strengthening mechanism of this alloy is precipitation hardening due to Ni5Si and S
This is a combination of solid solution strengthening by n. Generally, Corson alloy strips have extremely poor bending workability like other dispersion-strengthened copper alloys. In addition, the addition of Sn to Corson alloy is
This further deteriorates bending workability. For this reason, Sn-added Corson alloys are currently only used as materials for applications that do not undergo severe bending, such as IC lead frames.

[発明が解決しようとする課題] 上述のように、部品の小型化に伴い、材料は高強度高導
電であり、曲げ加工性も良好であることが要求されるよ
うになってきているが、元来、高強度で高導電であるS
nn添加コルシン合金曲げ加工性の改善が課題とされて
きた。
[Problems to be Solved by the Invention] As mentioned above, with the miniaturization of parts, materials are required to have high strength, high conductivity, and good bending workability. S is inherently high strength and highly conductive.
Improvement of the bending workability of nn-added Corsin alloys has been an issue.

[課題を解決するための手段] 本発明はこのような点に鑑み、曲げ加工性に優れた高強
度高導電銅合金の製造方法を提供するものである。
[Means for Solving the Problems] In view of the above points, the present invention provides a method for manufacturing a high-strength, high-conductivity copper alloy with excellent bending workability.

すなわち、本発明は、Ni0.4〜4.0wt%、S 
i  0.1〜1.0wt%、S n  0.1〜3.
5 wt%を含み、かつ、[wt%Niコ+[wt%S
i]+[wt%Sn]<5.0で、あるいは更に副成分
として、F e SM g s A l 、Cr s 
M n SCo s Z n sT l s Z r 
% P b SCd SI n SA g s Pの中
から1種又は2種以上を0.001〜2.0wt%含み
、残部Cu及び不可避的不純物からなる銅合金の製造に
おいて、 (1)結晶粒度を1〜10μlに調整する、700℃以
上の温度での最終の溶体化処理 (1)加工度40%未満の最終の冷間圧延(1)  3
00〜700℃の温度での時効処理からなる工程、ある
いは (1)結晶粒度を1〜lOμ謹に調整する、700℃以
上の温度での最終の溶体化処理 (1)最終溶体化処理直後の加工度X%(0≦xく40
)の冷間圧延 (III)  300〜700℃の温度での時効処理(
ff)加工度Y%(0(I1−(1−X/100)(1
−Y/100)l XI Q O< 40)の最終の冷
間圧延(V)  150〜800℃の温度で再結晶しな
い時間の熱処理からなる工程を、番号順に順次行うこと
を特徴とする方法である。
That is, in the present invention, Ni0.4 to 4.0wt%, S
i 0.1-1.0wt%, Sn 0.1-3.
5 wt%, and [wt%Ni+[wt%S
i]+[wt%Sn]<5.0, or further as a subcomponent, F e SM g s A l , Cr s
M n SCo s Z n s T l s Z r
% P b SCd SI n SA g s In the production of a copper alloy containing 0.001 to 2.0 wt% of one or more of two or more of P, and the balance being Cu and unavoidable impurities, (1) Grain size is Final solution treatment at a temperature of 700°C or higher to adjust the volume to 1 to 10 μl (1) Final cold rolling with a working degree of less than 40% (1) 3
A process consisting of an aging treatment at a temperature of 00 to 700 °C, or (1) a final solution treatment at a temperature of 700 °C or higher to carefully adjust the grain size to 1 to 10μ; (1) immediately after the final solution treatment; Processing rate X% (0≦x40
) Cold rolling (III) Aging treatment at a temperature of 300-700°C (
ff) Machining degree Y% (0(I1-(1-X/100)(1
Final cold rolling (V) of -Y/100)l be.

[本発明の詳細な説明] 次に本発明の各成分及び製造条件の限定理由を述べる。[Detailed description of the invention] Next, the reasons for limiting each component and manufacturing conditions of the present invention will be described.

本発明でNi含有量を0.4〜4.0wt%としたのは
、Ni含有量が0.4wt%未満ではStを共添し、時
効処理を行っても強度が低く、ばね性が十分ではなく、
Ni含有量が4.0wt%を超えると、強度は得られる
が、導電性が低下し、半田付は性が著しく劣化するため
である。Si含有量を0.1〜1.0wt%とじたのは
、Ni含有量が0.1wt%未満では、Niを共添して
時効処理を行っても高い導電性は得られず、Siが1.
0wt%を超えると、加工性、導電性が著しく低下し、
半田付は性も劣化するためである。
The reason why the Ni content is set to 0.4 to 4.0 wt% in the present invention is that when the Ni content is less than 0.4 wt%, even if St is co-added and an aging treatment is performed, the strength is low and the spring property is insufficient. not,
This is because when the Ni content exceeds 4.0 wt%, strength is obtained, but conductivity decreases and soldering properties deteriorate significantly. The reason for limiting the Si content to 0.1 to 1.0 wt% is that if the Ni content is less than 0.1 wt%, high conductivity cannot be obtained even if Ni is co-added and an aging treatment is performed. 1.
If it exceeds 0 wt%, workability and conductivity will decrease significantly,
This is because soldering also deteriorates the properties.

Snを含有するのは、Ni、Stによる析出硬化だけで
は強度、ばね性が不十分であることから、Snによる固
溶強化を期待するためであり、0.1wt%未満では効
果はなく、3.5νt%を超えると、導電性が低下し、
又、熱間加工性も悪くなるためである。又、Ni、Si
、Snの含有量を[wt%Nil+[wt%Si]+[
wt%Sn]<5.0とするのは、5.0wt%以上で
は曲げ加工性が劣化するためである。
The reason for containing Sn is to expect solid solution strengthening by Sn, since precipitation hardening by Ni and St alone is insufficient for strength and spring properties, and if it is less than 0.1 wt%, there is no effect; When it exceeds .5vt%, the conductivity decreases,
Moreover, hot workability also deteriorates. Also, Ni, Si
, the content of Sn is [wt%Nil+[wt%Si]+[
wt%Sn]<5.0 because bending workability deteriorates at 5.0wt% or more.

又、副成分として、F e s M g s A I 
SCr 5Mn5Co、Z n ST i s Z r
 SP b % Cd sI n N A g s P
のうち1種又は2種以上を総量でo、oot〜2.0w
t%添加する理由は、これらの副成分を添加することに
より、強度、ばね特性を向上させるためであるが、0.
001vt%未満では効果はなく 、2.0wt%を超
えると、導電性が低下し、加工性も劣化するためである
In addition, as a subcomponent, F e s M g s A I
SCr 5Mn5Co, Z n ST i s Z r
SP b % Cd sI n N A g s P
One or more of these in total amount o, oot ~ 2.0w
The reason for adding t% is to improve strength and spring characteristics by adding these subcomponents, but 0.t% is added.
This is because if it is less than 0.001 wt%, there is no effect, and if it exceeds 2.0 wt%, the conductivity will decrease and the workability will also deteriorate.

次に、溶体化処理を行うのは、後の時効処理で高強度高
導電の材料を得るためである。処理温度を700℃以上
とするのは、700℃未満ではNi5Siの組成によっ
ては、Ni、Stが未固溶となり、時効硬化型銅合金の
特徴である高強度が得られないためである。又、結晶粒
度を1〜10μ層とするのは、結晶粒度は曲げ加工性に
大きく影響を及ぼすためである。結晶粒度が1μm未満
では、未再結晶部分と再結晶部分とが混合した組織とな
り曲げ加工性が悪くなり、材料は割れやす(なる。又、
lOμ−を超えると粒界に沿っての肌あれが生じやすく
なり、曲げ半径が小さい場合は割れることもある。
Next, the solution treatment is performed in order to obtain a material with high strength and high conductivity in the subsequent aging treatment. The reason why the treatment temperature is set to 700° C. or higher is that if the temperature is lower than 700° C., depending on the composition of Ni5Si, Ni and St will not form a solid solution, making it impossible to obtain the high strength characteristic of age-hardening copper alloys. Further, the reason why the crystal grain size is set to 1 to 10 μm layer is because the crystal grain size greatly affects bending workability. If the crystal grain size is less than 1 μm, the structure will be a mixture of unrecrystallized portions and recrystallized portions, resulting in poor bending workability and the material becoming susceptible to cracking.
If it exceeds lOμ-, roughness tends to occur along the grain boundaries, and if the bending radius is small, cracks may occur.

溶体化処理後に1回又は2回の冷間圧延を行うのは、加
工硬化により強度を得るためである。
The reason why cold rolling is performed once or twice after solution treatment is to obtain strength through work hardening.

冷間圧延の加工度を40%未満とするのは、40%以上
では圧延による集合組織の発達が顕著に生じ、異方性が
大きくなり、圧延方向と平行方向の曲げ軸での曲げ加工
性が著しく劣化するためである。
The reason why the degree of workability of cold rolling is less than 40% is that if it is more than 40%, the development of texture due to rolling will occur significantly, the anisotropy will increase, and the bending workability with the bending axis parallel to the rolling direction will decrease. This is because it deteriorates significantly.

なお、本発明の製造方法において、Nf、Si、Snの
総濃度、結晶粒度及び冷間圧延加工度の規定は、良好な
曲げ加工性を得るために必要不可欠であり、そのすべて
がいずれも規定した条件を満たさない限り、良好な曲げ
性を有する材料は得られない。
In addition, in the manufacturing method of the present invention, it is essential to specify the total concentration of Nf, Si, and Sn, grain size, and cold rolling workability in order to obtain good bending workability, and all of them are specified. Unless these conditions are met, a material with good bendability cannot be obtained.

時効処理は、強度、導電性を向上させるために必要であ
るが、時効処理温度を300〜700℃とする理由は、
300℃未満では時効処理に時間がかかり、経済的では
なく、700℃を超えると、Ni5Siの組成によって
は、Nl s S tが固溶してしまい、時効硬化型の
合金の特徴である強度及び導電性が得られないためであ
る。実操業的には420〜480℃での時効処理が推奨
される。
Aging treatment is necessary to improve strength and conductivity, but the reason why the aging treatment temperature is set at 300 to 700°C is as follows.
At temperatures below 300°C, aging takes a long time and is not economical; at temperatures above 700°C, depending on the composition of Ni5Si, Nl s S t may form a solid solution, reducing the strength and strength that are characteristic of age-hardening alloys. This is because conductivity cannot be obtained. For actual operation, aging treatment at 420 to 480°C is recommended.

150〜800℃の温度で再結晶させないで熱処理を行
う理由は、冷間加工後に再結晶させない熱処理を行うこ
とにより、ばね特性、曲げ加工性を更に向上させるため
であり、150℃未満では熱処理時間が極めて長くなり
、経済的でな(,800℃を超えると、熱処理時間が短
くなり、特性の制御が困難になるためである。又、この
熱処理を350〜700℃の温度で行えば、材料は時効
され、更に高い導電性が得られる。
The reason why heat treatment is performed without recrystallization at a temperature of 150 to 800°C is to further improve spring properties and bending workability by performing heat treatment without recrystallization after cold working. (If the temperature exceeds 800°C, the heat treatment time will be shortened and it will be difficult to control the properties.) is aged to obtain even higher conductivity.

なお、本発明の製造条件の規定は、最終の溶体化処理以
降の工程に関してのものであり、それ以前の工程、製造
条件は任意のものでかまわない。すなわち、最終の溶体
化処理以前に行う溶体化処理、熱間圧延、中間焼鈍、冷
間圧延といった工程について、本発明方法は何ら規定し
ない。
Note that the manufacturing conditions of the present invention are specified for the steps after the final solution treatment, and the steps and manufacturing conditions before that may be arbitrary. That is, the method of the present invention does not specify any steps such as solution treatment, hot rolling, intermediate annealing, and cold rolling that are performed before the final solution treatment.

[実施例] 本発明を実施糾をもって具体的に説明する。[Example] The present invention will be specifically explained with reference to its implementation.

第1表に示した成分の銅合金に、表中の結晶粒度に調整
する最終の溶体化処理、最終溶体化処理後の冷間圧延、
時効処理、最終の冷間圧延、再結晶しない条件での焼鈍
を順次行い、0.20+amの板とした。最終の溶体化
処理後の2回の冷間圧延の加工度は第1表に示すものと
した。
A copper alloy having the components shown in Table 1 is subjected to final solution treatment to adjust the grain size to the grain size shown in the table, cold rolling after the final solution treatment,
Aging treatment, final cold rolling, and annealing under non-recrystallization conditions were performed in sequence to obtain a 0.20+am plate. The working degrees of the two cold rollings after the final solution treatment were as shown in Table 1.

これらの例について引張強さ、伸び、ばね限界値、導電
率、曲げ加工性、耐食性、耐応力腐食割れ性(以下耐S
CC性と称す)、はんだ付は性、はんだ耐熱剥離性を調
査した。引張強さ、伸びはJIS  5号引張試験片を
用い測定した。
Regarding these examples, tensile strength, elongation, spring limit value, electrical conductivity, bending workability, corrosion resistance, stress corrosion cracking resistance (hereinafter referred to as S resistance)
CC properties (referred to as CC properties), soldering properties, and heat solder peeling properties were investigated. Tensile strength and elongation were measured using a JIS No. 5 tensile test piece.

ばね限界値は10mm幅で100o+m長さの短所に加
工し測定した。導電率はlO+u+幅で100a+i長
さの短所に加工し、4端子法により測定した。耐食性は
JIS  H8502に準じ、試料表面を# 1200
工メリー紙にて研摩後、40℃、90%RHにおいて2
5pIIm S O2雰囲気に14日間暴露し、暴露前
後の重量変化を測定した。この単位は腐食減量を示す(
o+dd : mg/ dw ’ /day)。
The spring limit value was measured by machining the spring into a width of 10mm and a length of 100o+m. The electrical conductivity was measured using a four-terminal method after processing a short piece of 100a+i in width and 100a+i in width. Corrosion resistance is based on JIS H8502, and the sample surface is #1200.
After polishing with sandpaper, 2 at 40℃ and 90%RH.
It was exposed to a 5pIIm SO2 atmosphere for 14 days, and the weight change before and after exposure was measured. This unit indicates corrosion loss (
o+dd: mg/dw'/day).

耐SCC性は12.5+am幅で150mm長さの短所
試験片に加工し、第1図に示すようにこの短ff1lを
ループ状にタコ糸2で縛り、2倍に純水で希釈したアン
モニア水3文を含む2051デシケータ内に暴露し、割
れが発生するまでの日数を調査した。はんだ付は性は試
料表面を$ 1200工メリー紙にて研摩した後、10
ma+幅で50III11の長さに加工し、沸騰蒸気に
1時間暴露後ロジン系フラッグスを用い、230℃の8
0Sn/40Pbはんだに5秒間浸漬し、外観を観察し
、95%以上の面積がはんだにより被覆されている場合
を良好とした。又、曲げ加工性は、1011m幅に試料
を加工した後、J I S  Z  224B1:準じ
180’曲げ試験を行い、曲げ部の外観を観察した。曲
げ軸は圧延方向に平行方向(Bad way)とし、内
側曲げ半径は0.2mm (板厚)と同一とした。曲げ
加工性の判定は外観により、良好、肌荒れ、割れ発生と
3段階とした。
The SCC resistance was determined by fabricating a test piece with a width of 12.5+am and a length of 150 mm.As shown in Figure 1, this short ff1l was tied into a loop with octopus thread 2, and ammonia water diluted twice with pure water was used. The sample was exposed to a 2051 desiccator containing three samples, and the number of days until cracking occurred was investigated. For soldering, after polishing the sample surface with $1200 merry paper,
ma+width, processed to length of 50III11, exposed to boiling steam for 1 hour, and heated to 800℃ at 230℃ using rosin flags.
It was immersed in 0Sn/40Pb solder for 5 seconds, and its appearance was observed, and a case where 95% or more of the area was covered with solder was evaluated as good. In addition, bending workability was determined by processing a sample to a width of 1011 m, then conducting a 180' bending test according to JIS Z 224B1: and observing the appearance of the bent part. The bending axis was parallel to the rolling direction (bad way), and the inner bending radius was the same as 0.2 mm (plate thickness). The bending workability was judged based on appearance in three stages: good, rough surface, and cracking.

第1表から、本発明例は、高強度高導電で、曲げ加工性
も良好で、他の特性も良好であることが判る。
From Table 1, it can be seen that the examples of the present invention have high strength and high conductivity, good bending workability, and other properties as well.

比較例No、13は、冷間圧延の加工度が高く、180
°密着曲げ試験において割れが生じる。比較例No、1
4は、結晶粒度が大きく、180@曲げ試験において割
れが生じる。比較例N o、13.14はいずれも製造
条件が不適当であるため、本発明例に比べて曲げ加工性
が劣化した例である。
Comparative example No. 13 has a high degree of cold rolling and has a hardness of 180
°Cracks occur during the close bending test. Comparative example No. 1
No. 4 has a large grain size and cracks occur in the 180@bending test. Comparative Examples No. 13 and 14 were both examples in which the manufacturing conditions were inappropriate, and therefore the bending workability was deteriorated compared to the inventive example.

比較例No、15は、N t s S t SS nの
総濃度が高過ぎるため180”曲げ試験において割れが
生じる。比較例No、18は5iSSn濃度が規定より
低く、時効処理、冷間圧延を行っても高強度とならない
。比較例No、17はSn濃度が規定より低く、強度が
不十分である。比較例No、18は、第1表中で最も高
強度であるが、Ni濃度が規定より高いため半田付は性
が悪い。又、Ni1S 1 s S n総濃度が規定よ
り高いため曲げ加工性も悪い。比較例No、19はJI
S規格のばね用洋白(C7701R−H)である。高強
度で曲げ加工性も良好であるが、本発明例に比べて導電
率が低い。比較例No、20はJIS規格の洋白2種(
C7521R−H)の低温焼鈍品である。高強度で曲げ
加工性も良好であるが導電率が低い。
In Comparative Example No. 15, the total concentration of N t s S t SS n is too high, so cracks occur in the 180" bending test. In Comparative Example No. 18, the 5iSSn concentration is lower than the specified value, and aging treatment and cold rolling are not performed. Comparative example No. 17 has an Sn concentration lower than the specified value and has insufficient strength. Comparative example No. 18 has the highest strength in Table 1, but the Ni concentration Solderability is poor because it is higher than the specification.Also, the bending workability is poor because the Ni1S1sSn total concentration is higher than the specification.Comparative example No. 19 is JI
This is S standard nickel silver for springs (C7701R-H). Although it has high strength and good bending workability, it has a lower electrical conductivity than the examples of the present invention. Comparative example No. 20 is JIS standard nickel silver type 2 (
C7521R-H) is a low temperature annealed product. It has high strength and good bending workability, but low electrical conductivity.

一方、本発明例は、比較例と同等もしくはそれらを上回
る強度を有しており、又、JIS規格の洋白よりも高導
電であり、曲げ加工性をはじめとする他の緒特性も良好
である。
On the other hand, the inventive example has strength equal to or higher than that of the comparative example, has higher conductivity than JIS standard nickel silver, and has good other properties such as bendability. be.

[発明の効果] 本発明の製造方法を採用することにより、曲げ加工性の
良好な高強度高導電銅合金を得ることが可能となり、電
子部品の小型化、材料の薄肉化に対応することができる
[Effects of the Invention] By adopting the manufacturing method of the present invention, it is possible to obtain a high-strength, high-conductivity copper alloy with good bending workability, and it is possible to respond to miniaturization of electronic components and thinning of materials. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐SCC性試験片の斜視図を示す。 ■・・・短ffi、  2・・・タコ糸。 FIG. 1 shows a perspective view of the SCC resistance test piece. ■... Short ffi, 2... Octopus thread.

Claims (4)

【特許請求の範囲】[Claims] (1)Ni0.4〜4.0wt%、Si0.1〜1.0
wt%、Sn0.1〜3.5wt%を含み、かつ[wt
%Ni]+[wt%Si]+[wt%Sn]<5.0で
、残部Cu及び不可避的不純物からなる銅合金の製造に
おいて、 ( I )結晶粒度を1〜10μmに調整する、700℃
以上の温度での最終の溶体化処理 (II)加工度40%未満の最終の冷間圧延 (III)300〜700℃の温度での時効処理からなる
工程を番号順に順次行うことを特徴とする曲げ加工性の
良好な高強度高導電銅合金の製造方法。
(1) Ni0.4-4.0wt%, Si0.1-1.0
wt%, Sn0.1-3.5wt%, and [wt
%Ni] + [wt%Si] + [wt%Sn]<5.0, in the production of a copper alloy consisting of the balance Cu and unavoidable impurities: (I) Adjusting the grain size to 1 to 10 μm at 700 °C
It is characterized by sequentially performing steps in numerical order, including final solution treatment at a temperature above (II), final cold rolling with a working degree of less than 40% (III), and aging treatment at a temperature of 300 to 700°C. A method for manufacturing a high-strength, high-conductivity copper alloy with good bending workability.
(2)Ni0.4〜4.0wt%、Si0.1〜1.0
wt%、Sn0.1〜3.5wt%を含み、かつ、[w
t%Ni]+[wt%Si]+[wt%Sn]<5.0
で、残部Cu及び不可避的不純物からなる銅合金の製造
において、 ( I )結晶粒度を1〜10μmに調整する、700℃
以上の温度での最終の溶体化処理 (II)最終溶体化処理直後の加工度x%(0≦x<40
)の冷間圧延 (III)300〜700℃の温度での時効処理(IV)加
工度Y%(0<{1−(1−X/100)(1−Y/1
00)}×100<40)の最終の冷間圧延 (V)150〜800℃の温度で再結晶しない時間の熱
処理 からなる工程を番号順に順次行うことを特徴とする曲げ
加工性の良好な高強度高導電銅合金の製造方法。
(2) Ni0.4-4.0wt%, Si0.1-1.0
wt%, Sn0.1-3.5wt%, and [w
t%Ni]+[wt%Si]+[wt%Sn]<5.0
In the production of a copper alloy consisting of the remainder Cu and unavoidable impurities, (I) adjusting the crystal grain size to 1 to 10 μm at 700°C;
Final solution treatment at the above temperature (II) Working degree immediately after final solution treatment x% (0≦x<40
) Cold rolling (III) Aging treatment at a temperature of 300 to 700°C (IV) Workability Y% (0<{1-(1-X/100)(1-Y/1
00)} x 100 < 40) final cold rolling (V) with good bending workability, characterized in that the steps consisting of heat treatment at a temperature of 150 to 800°C for a period of time without recrystallization are carried out in numerical order. A method for manufacturing a high-strength, high-conductivity copper alloy.
(3)Ni0.4〜4.0wt%、Si0.1〜1.0
wt%、Sn0.1〜3.5wt%、かつ、[wt%N
i]+[wt%Si]+[wt%Sn]<5.0で、更
に副成分としてFe、Mg、Al、Cr、Mn、Co、
Zn、Ti、Zr、Pb、Cd、In、Ag、Pの中か
ら1種又は2種以上を0.001〜2.0wt%含み、
残部Cu及び不可避的不純物からなる銅合金の製造にお
いて、 ( I )結晶粒度を1〜10μmに調整する、700℃
以上の温度での最終の溶体化処理 (II)加工度40%未満の最終の冷間圧延 (III)300〜700℃の温度での時効処理からなる
工程を番号順に順次行うことを特徴とする曲げ加工性の
良好な高強度高導電銅合金の製造方法。
(3) Ni0.4-4.0wt%, Si0.1-1.0
wt%, Sn0.1-3.5wt%, and [wt%N
i]+[wt%Si]+[wt%Sn]<5.0, and further contains Fe, Mg, Al, Cr, Mn, Co, as subcomponents.
Contains 0.001 to 2.0 wt% of one or more of Zn, Ti, Zr, Pb, Cd, In, Ag, and P,
In the production of a copper alloy consisting of the balance Cu and unavoidable impurities, (I) Adjusting the crystal grain size to 1 to 10 μm at 700 °C
It is characterized by sequentially performing steps in numerical order, including final solution treatment at a temperature above (II), final cold rolling with a working degree of less than 40% (III), and aging treatment at a temperature of 300 to 700°C. A method for manufacturing a high-strength, high-conductivity copper alloy with good bending workability.
(4)Ni0.4〜4.0wt%、Si0.1〜1.0
wt%、Sn0.1〜3.5wt%を含み、かつ、[w
t%Ni]+[wt%Si]+[wt%Sn]<5.0
で、更に副成分としてFe、Mg、Al、 Cr、Mn、Co、Zn、Ti、Zr、Pb、Cd、I
n、Ag、Pの中から1種又は2種以上を0.001〜
2.0wt%含み、残部Cu及び不可避的不純物からな
る銅合金の製造において ( I )結晶粒度を1〜10μmに調整する、700℃
以上の温度での最終の溶体化処理 (II)最終溶体化処理直後の加工度x%(0≦x<40
)の冷間圧延 (III)300〜700℃の温度での時効処理(IV)加
工度Y%(0<{1−(1−X/100)(1−Y/1
00)}×100<40)の最終の冷間圧延 (V)150〜800℃の温度で再結晶しない時間の熱
処理からなる工程を番号順に順次行う ことを特徴とする曲げ加工性の良好な高強 度高導電銅合金の製造方法。
(4) Ni0.4-4.0wt%, Si0.1-1.0
wt%, Sn0.1-3.5wt%, and [w
t%Ni]+[wt%Si]+[wt%Sn]<5.0
In addition, as subcomponents Fe, Mg, Al, Cr, Mn, Co, Zn, Ti, Zr, Pb, Cd, I
One or more of n, Ag, and P from 0.001 to
In the production of a copper alloy containing 2.0 wt% and the balance Cu and unavoidable impurities (I) Adjusting the crystal grain size to 1 to 10 μm at 700 ° C.
Final solution treatment at the above temperature (II) Working degree immediately after final solution treatment x% (0≦x<40
) Cold rolling (III) Aging treatment at a temperature of 300 to 700°C (IV) Workability Y% (0<{1-(1-X/100)(1-Y/1
00)} x 100 < 40) final cold rolling (V) with good bending workability, characterized in that the steps consisting of heat treatment at a temperature of 150 to 800°C for a period of time without recrystallization are carried out in numerical order. A method for manufacturing a high-strength, high-conductivity copper alloy.
JP32270389A 1989-12-14 1989-12-14 Production of high strength and high conductivity copper alloy excellent in bendability Pending JPH03188247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32270389A JPH03188247A (en) 1989-12-14 1989-12-14 Production of high strength and high conductivity copper alloy excellent in bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32270389A JPH03188247A (en) 1989-12-14 1989-12-14 Production of high strength and high conductivity copper alloy excellent in bendability

Publications (1)

Publication Number Publication Date
JPH03188247A true JPH03188247A (en) 1991-08-16

Family

ID=18146678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32270389A Pending JPH03188247A (en) 1989-12-14 1989-12-14 Production of high strength and high conductivity copper alloy excellent in bendability

Country Status (1)

Country Link
JP (1) JPH03188247A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551676A (en) * 1991-08-20 1993-03-02 Yazaki Corp Conductive high strength copper alloy excellent in elongation characteristic
US5846346A (en) * 1995-12-08 1998-12-08 Poongsan Corporation High strength high conductivity Cu-alloy of precipitate growth suppression type and production process
EP1050594A1 (en) * 1999-05-04 2000-11-08 OLIN CORPORATION, Corporation of the Commonwealth of Virginia Copper alloy with improved resistance to cracking
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
US6893514B2 (en) 2000-12-15 2005-05-17 The Furukawa Electric Co., Ltd. High-mechanical strength copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
US7172662B2 (en) 2000-07-25 2007-02-06 The Furukawa Electric Co., Ltd. Copper alloy material for parts of electronic and electric machinery and tools
WO2008099892A1 (en) * 2007-02-16 2008-08-21 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electrical and electronic parts excelling in strength and formability
WO2009099198A1 (en) 2008-02-08 2009-08-13 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
JP2010255042A (en) * 2009-04-24 2010-11-11 Hitachi Cable Ltd Copper alloy and method for producing copper alloy
JP2019507252A (en) * 2015-12-28 2019-03-14 ポーンサン コーポレイションPoongsan Corporation Copper alloy material for automobile and electric / electronic parts and method for producing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551676A (en) * 1991-08-20 1993-03-02 Yazaki Corp Conductive high strength copper alloy excellent in elongation characteristic
US5846346A (en) * 1995-12-08 1998-12-08 Poongsan Corporation High strength high conductivity Cu-alloy of precipitate growth suppression type and production process
EP1050594A1 (en) * 1999-05-04 2000-11-08 OLIN CORPORATION, Corporation of the Commonwealth of Virginia Copper alloy with improved resistance to cracking
WO2000066803A1 (en) * 1999-05-04 2000-11-09 Olin Corporation Copper alloy with improved resistance to cracking
US6251199B1 (en) * 1999-05-04 2001-06-26 Olin Corporation Copper alloy having improved resistance to cracking due to localized stress
KR100709908B1 (en) * 1999-05-04 2007-04-24 올린 코포레이션 Copper alloy with improved resistance to cracking and processes for making the same
US7172662B2 (en) 2000-07-25 2007-02-06 The Furukawa Electric Co., Ltd. Copper alloy material for parts of electronic and electric machinery and tools
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
US6893514B2 (en) 2000-12-15 2005-05-17 The Furukawa Electric Co., Ltd. High-mechanical strength copper alloy
JP4566048B2 (en) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP2006283059A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd High strength copper alloy sheet with excellent bendability, and its manufacturing method
WO2008099892A1 (en) * 2007-02-16 2008-08-21 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electrical and electronic parts excelling in strength and formability
EP2128282A1 (en) * 2007-02-16 2009-12-02 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electrical and electronic parts excelling in strength and formability
EP2128282A4 (en) * 2007-02-16 2011-06-29 Kobe Steel Ltd Copper alloy sheet for electrical and electronic parts excelling in strength and formability
KR101159404B1 (en) * 2007-02-16 2012-06-28 가부시키가이샤 고베 세이코쇼 Copper alloy sheet for electrical and electronic parts excelling in strength and formability
US8784580B2 (en) 2007-02-16 2014-07-22 Kobe Steel, Ltd. Copper alloy sheet excellent in strength and formability for electrical and electronic components
WO2009099198A1 (en) 2008-02-08 2009-08-13 The Furukawa Electric Co., Ltd. Copper alloy material for electric and electronic components
JP2010255042A (en) * 2009-04-24 2010-11-11 Hitachi Cable Ltd Copper alloy and method for producing copper alloy
JP2019507252A (en) * 2015-12-28 2019-03-14 ポーンサン コーポレイションPoongsan Corporation Copper alloy material for automobile and electric / electronic parts and method for producing the same
US11091827B2 (en) 2015-12-28 2021-08-17 Poongsan Corporation Copper alloy material for automobile and electrical and electronic components and method of producing the same

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
KR20040089731A (en) High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
JP5619389B2 (en) Copper alloy material
JP2006009137A (en) Copper alloy
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP2000328158A (en) Copper alloy sheet excellent in press punchability
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JP2000080428A (en) Copper alloy sheet excellent in bendability
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JPH0830234B2 (en) High strength and high conductivity copper alloy
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JPS62182240A (en) Conductive high-tensile copper alloy
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JPS63266053A (en) Production of high tensile copper based alloy
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy