JPS6338543A - Copper alloy for electronic appliance and its manufacture - Google Patents

Copper alloy for electronic appliance and its manufacture

Info

Publication number
JPS6338543A
JPS6338543A JP18359486A JP18359486A JPS6338543A JP S6338543 A JPS6338543 A JP S6338543A JP 18359486 A JP18359486 A JP 18359486A JP 18359486 A JP18359486 A JP 18359486A JP S6338543 A JPS6338543 A JP S6338543A
Authority
JP
Japan
Prior art keywords
less
content
ppm
alloy
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18359486A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Michiaki Terashita
寺下 道明
Yoshimasa Ooyama
大山 好正
Shigeo Shinozaki
篠崎 重雄
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18359486A priority Critical patent/JPS6338543A/en
Publication of JPS6338543A publication Critical patent/JPS6338543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for electrical appliances having superior mechanical strength, electrical conductivity, heat conductivity, solderability, platability and corrosion resistance by subjecting a Cu alloy ingot contg. specified very small amounts of Zr, Cr, Zn and other elements and having relatively high O2, P and S contents to hot working, soln. heat treatment and cold working under specified conditions. CONSTITUTION:A Cu alloy ingot contg., by weight, 0.03-0.3% Zr, 0.05-0.5% Cr, 0.01-0.5% Zn, 0.0005-0.05% at least one among Mg, Ca and a rare earth element, <30ppm O2, <30ppm P and <10ppm S or further contg. <=0.5% in total of two or more among Fe, Ti, Y, In, Si, Ag, Mn, Hf, Ni, Sn, Co, Sb, Bi, Be, Li, B and Ba is hot worked, coldworked and subjected to soln. heat treatment by heating to 900-1,030 deg.C rapid cooling at >=30 deg.C/sec cooling rate. It is further cold worked at <5% working rate, annealed at 300-850 deg.C and cold worked again at >=10% working rate. The finish working rate is regulated to <50% and the diameter of precipitated Cr and Zr is restricted to <=10mu.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気機器用銅合金とその製造法に関し、特に機
械的強度や電気・熱伝導性を向上し、かつ半田付は性、
メツキ性、耐食性等を改善したものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a copper alloy for electrical equipment and a method for producing the same.
It has improved plating properties, corrosion resistance, etc.

(従来の技術〕 電子機器、例えば半導体リードフレーム、コネクター、
接点等に使用されるCLI合金としてはリン青銅(Cu
−3n系合金)、黄銅(Cu−2n系合金)、洋白(C
u−N i −Zn系合金)等が一般に用いられている
。この内黄銅と洋白は応力腐食割れという致命的欠陥を
有するため、機械的ストレスの大きい用途には適さない
。またリン青銅は強度や成型加工性が優れているところ
から広く利用されているが、導電率が低く、かつ高価な
sr+を多厘に使用する。更に半田付けや3n、3n合
金メツキの剥離現象を起し易く、応力腐食割れ感受性も
黄銅や洋白はとではないが保有する。
(Prior art) Electronic equipment, such as semiconductor lead frames, connectors,
Phosphor bronze (Cu
-3n alloy), brass (Cu-2n alloy), nickel silver (C
u-N i -Zn alloy) etc. are generally used. Of these, brass and nickel silver have a fatal defect called stress corrosion cracking, so they are not suitable for applications subject to large mechanical stress. Further, phosphor bronze is widely used due to its excellent strength and moldability, but SR+, which has low conductivity and is expensive, is often used. Furthermore, it is easy to cause peeling of soldering and 3N and 3N alloy plating, and is also susceptible to stress corrosion cracking, although this is not the case with brass and nickel silver.

このため一部の用途ではCLJ−Fe系合金が利用され
ている。例えば0194(Cu−2,3wt%F e 
−0,12wt%Zr1−P合金)(以下wt%を%と
略記〉ヤC195(CLl−1,5%Fe−0,8%C
o−0,6%5rl−P合金)は6%5nリン青銅はど
の強度はないが、その2〜3倍の導電率を有し、応力腐
食割れ感受性はない。しかしながら加工性が劣るばかり
か、半田付は性が不十分である。
For this reason, CLJ-Fe alloys are used in some applications. For example, 0194(Cu-2,3wt%Fe
-0,12wt% Zr1-P alloy) (hereinafter wt% is abbreviated as %) YaC195 (CLl-1,5%Fe-0,8%C
O-0,6%5RL-P alloy) does not have the strength of 6%5N phosphor bronze, but it has 2 to 3 times the conductivity and is not susceptible to stress corrosion cracking. However, not only is the workability inferior, but also the soldering properties are insufficient.

(発明が解決しようとする問題点〕 近年電子機器の小型化、高集積度化、高機能化と共に、
信頼性と経済性の強い要求に応え得る高性能のCU金合
金求められている。このような合金には下記の特性が要
求されている。
(Problems to be solved by the invention) In recent years, as electronic devices have become smaller, more highly integrated, and more sophisticated,
There is a need for high-performance CU gold alloys that can meet strong demands for reliability and economy. Such alloys are required to have the following properties.

(1)強度と導電性(熱伝導性)が共に優れていること
(1) Excellent strength and electrical conductivity (thermal conductivity).

(2)成型加工性が良いこと。(2) Good moldability.

(3)耐食性、即ち応力腐食割れ感受性がないこと。(3) Corrosion resistance, ie, no susceptibility to stress corrosion cracking.

(4)半田付は性やメツキ性、即ち半田接合強度や3n
、3n合金メツキの密着性が長期にわたり高いこと。
(4) Soldering is based on properties and plating properties, that is, solder joint strength and 3N
, 3N alloy plating has high adhesion over a long period of time.

(問題点を解決するための手段〕 本発明はこれに鑑み種々研究の結果、機械的強度と電気
・熱伝導性が優れ、かつ半田付は性、メツキ性及び耐食
性を向上した電子機器用鋼合金とその製造法を開発した
ものである。
(Means for Solving the Problems) In view of this, the present invention is a steel for electronic devices that has excellent mechanical strength, electrical and thermal conductivity, and has improved solderability, plating properties, and corrosion resistance. The alloy and its manufacturing method were developed.

即ち本発明合金の一つは、Zr0.03〜0.3%、0
、 r0.05〜0.5%、Z n0.01〜0.5%
、MQ。
That is, one of the alloys of the present invention contains 0.03 to 0.3% Zr and 0
, r0.05~0.5%, Zn0.01~0.5%
, M.Q.

Ca、レアーアース(RE)の内少なくとも1種以上を
0.0005〜0.05%を含有し、α含有量を30p
pm以下、P含有量を30ppm以下、S含有量をio
ppm以下、析出物粒径を10μ以下に制限し、残部C
uと不可避的不純物からなることを特徴とするものでお
る。
Contains 0.0005 to 0.05% of at least one of Ca and rare earths (RE), and has an α content of 30p.
pm or less, P content 30 ppm or less, S content io
ppm or less, the precipitate particle size is limited to 10 μ or less, and the remaining C
It is characterized by consisting of u and unavoidable impurities.

また本発明合金の他の一つは、Zr0.03〜0.3%
、Cr 0.05〜0.5%、Zn0.01〜0.5%
、Mg、Ca、レアーアース(RE)の内少なくとも1
種以上を0. ooos〜0.05%を含有し、更にF
e、Ti、Y、In、Si、Ag、Mn。
Another alloy of the present invention contains 0.03 to 0.3% Zr.
, Cr 0.05-0.5%, Zn 0.01-0.5%
, Mg, Ca, and at least one of rare earths (RE)
Species or more 0. Contains ~0.05% of F
e, Ti, Y, In, Si, Ag, Mn.

Hf、N i、Sn、C0.sb、B i、Be。Hf, Ni, Sn, C0. sb, B i, Be.

Li、B、Baの内の少なくとも2種以上を0.5%以
下含有し、α含有量を30ppm以下、P含有量を30
ppm以下、S含有量をlhpm以下、析出物粒径を1
0μ以下に制限し、残部Cuと不可避的不純物からなる
ことを特徴とするものである。
Contains at least two of Li, B, and Ba at 0.5% or less, α content is 30 ppm or less, and P content is 30 ppm or less.
ppm or less, S content less than lhpm, precipitate particle size 1
It is characterized in that it is limited to 0μ or less, and the remainder consists of Cu and unavoidable impurities.

また本発明製造法は、Zr0.03〜0.3%、Cr0
.05〜0.5%、Z n0.01〜0.5%、MO。
In addition, the production method of the present invention has Zr0.03 to 0.3%, Cr0
.. 05-0.5%, Z n0.01-0.5%, MO.

Ca、レアーアース(RE)の内の少なくとも1種以上
を0.0005〜0.05%を含有し、又はこれにFe
、Ti、Y、In、Si、AQ、Mn。
Contains 0.0005 to 0.05% of at least one of Ca and rare earths (RE), or contains Fe
, Ti, Y, In, Si, AQ, Mn.

Hf、N i、Sn、G0.Sb、B i、Be。Hf, Ni, Sn, G0. Sb, B i, Be.

Li、B、Baの内の少なくとも2種以上を0.5%以
下を含有せしめ、α含有量を30ppm以下、P含有量
を30ppm以下、S含有量を10ppm以下に制限し
、残部CLJと不可避的不純物からなるCU合金鋳塊に
、熱間加工と冷間加工を施した後、900〜1030℃
の実体温度で5〜1800秒間保持した後、300〜8
50℃で10秒〜12時間の焼鈍と加工率10%以上の
冷間加工を1回以上繰返し、最終的に加工率50%以下
の仕上げ加工を施して析出物粒径を10μ以下、望まし
くは5μ以下とするものである。
Contain 0.5% or less of at least two of Li, B, and Ba, limit the α content to 30 ppm or less, the P content to 30 ppm or less, and the S content to 10 ppm or less, and the remainder is CLJ and unavoidable. After hot working and cold working a CU alloy ingot consisting of impurities, it was heated to 900-1030℃
After holding for 5-1800 seconds at the actual temperature of 300-8
Annealing at 50°C for 10 seconds to 12 hours and cold working at a working rate of 10% or more are repeated one or more times, and finally finish processing is performed at a working rate of 50% or less to reduce the precipitate particle size to 10 μ or less, preferably The thickness shall be 5μ or less.

〔作用〕[Effect]

本発明合金は、Crとzrの成分が均質に析出分散した
合金で、両者の作用を相乗的に併合して所定の特性を発
揮せしめたものである。
The alloy of the present invention is an alloy in which Cr and Zr components are homogeneously precipitated and dispersed, and exhibits predetermined characteristics by synergistically combining the effects of both.

Mg、Ca、REは何れもZrとCrの析出分散の均質
化に有効に作用し、特にCrへの作用が大きい。これ等
の成分の作用は本発明合金の組成範囲内において、実用
上有効であり、その下限未満では効果が得られず、上限
を越えると製造上の欠陥や導電率の低下をきたす。特に
過剰のCrやZrは粗大析出粒となり易く、加工性、メ
ツキ性、半田付は性等に有害に働く。しかしてCr0.
15〜0.35%、Zr0.1〜0.2%、MQ、Ca
、REの白河れか1種以上を0.005〜0.02%と
してときに要求特性を最大とすることができる。
Mg, Ca, and RE all act effectively to homogenize the precipitation and dispersion of Zr and Cr, and have a particularly strong effect on Cr. The effects of these components are practically effective within the composition range of the alloy of the present invention; below the lower limit, no effect can be obtained, and above the upper limit, manufacturing defects and a decrease in electrical conductivity occur. In particular, excessive amounts of Cr and Zr tend to form coarse precipitated grains, which have a detrimental effect on workability, plating performance, soldering properties, etc. However, Cr0.
15-0.35%, Zr0.1-0.2%, MQ, Ca
The required properties can sometimes be maximized by adding at least one type of RE, Shirakawa, in an amount of 0.005 to 0.02%.

znはCrの粗大析出を抑制し、半田付けやメツキの密
着強度の劣化を抑制する効果を示し、特に本発明合金の
組成範囲内において有効に作用し、またZn含有iを0
.05〜0.2%としたときに最も有効に作用する。し
かして含有量が本発明で規定する下限未満では効果が薄
く、上限を越えると成型加工性を劣化する。
Zn has the effect of suppressing the coarse precipitation of Cr and the deterioration of the adhesion strength of soldering and plating, and is particularly effective within the composition range of the present alloy.
.. It works most effectively when it is set at 0.05 to 0.2%. However, if the content is less than the lower limit specified by the present invention, the effect will be weak, and if it exceeds the upper limit, moldability will deteriorate.

Fe、Ti、Y、In、Si、/’l、Mn。Fe, Ti, Y, In, Si, /'l, Mn.

Hf、N i、Sn、G0.sb、B i、Be。Hf, Ni, Sn, G0. sb, B i, Be.

Li、B、Ba(以下これ等を副成分と略記)は溶体化
処理時の結晶粗大化を抑制するものであるが、単体で含
有される場合には導電性、メツキ性、半田付は性等の特
性面や製造面から含有量が制限されて効果が不十分とな
るため、少なくとも2種以上複合添加するものでおる。
Li, B, and Ba (hereinafter abbreviated as subcomponents) suppress crystal coarsening during solution treatment, but when contained alone, they impair conductivity, plating properties, and soldering properties. Since the content is limited due to the characteristics and manufacturing aspects, and the effect is insufficient, at least two or more types are added in combination.

これ等の副成分は複合添加することにより、前記特性を
劣化することなく、結晶粗大化を抑制し、更にはCrや
Zrの析出作用の時間に対する感受性を緩かにする働き
を持っており、特に0、005〜0.3%において最も
有効である。しかして本発明で規定する上限を越えると
導電性、メツキ性、半田付は性等を劣化するばかりか、
製造性を阻害する。
By adding these subcomponents in combination, they have the function of suppressing crystal coarsening without deteriorating the above-mentioned properties, and further reducing the sensitivity of the precipitation action of Cr and Zr to time. In particular, it is most effective at 0,005 to 0.3%. However, if the upper limit specified by the present invention is exceeded, not only the conductivity, plating properties, and soldering properties will deteriorate, but also
hinders manufacturability.

■は本発明合金の成分の均一な析出分散に有害で、粗大
な析出粒を作り易く、強度の向上を阻害するばかりか、
メツキ性、半田付は性を劣化させ、更には成型加工性を
劣化させ、電子機器に要求される精密な加工部品におい
て実用上特に有害なため、その含有量を30ppm以下
、望ましくは5ppm以下に制限した。Pは過剰に含ま
れると本発明合金の特徴である高導電性を著しく損なう
と共に、半田との界面に濃縮し、半田付は性を悪化させ
るため、30ppm以下、望ましくは1101)l)以
下に制限した。またSは粒界や最終凝固部に凝集して熱
間圧延性を大きく悪化させめるため、10ppm以下、
望ましくは5ppm以下に制限した。
(3) is harmful to the uniform precipitation and dispersion of the components of the alloy of the present invention, tends to produce coarse precipitate grains, and not only inhibits the improvement of strength;
Plating and soldering deteriorate the properties and further deteriorate the molding processability, which is particularly harmful in practice for precision processed parts required for electronic devices, so the content should be reduced to 30 ppm or less, preferably 5 ppm or less. restricted. If P is included in excess, it will significantly impair the high conductivity that characterizes the alloy of the present invention, and will also concentrate at the interface with solder, worsening soldering properties. restricted. In addition, since S aggregates at grain boundaries and final solidification areas and greatly deteriorates hot rolling properties,
It is preferably limited to 5 ppm or less.

本発明合金は特に上記製造法によって強度などの特性を
最適化することができる。しかして合金鋳塊を900〜
1030℃に加熱した後、急冷して溶体化処理するのは
、900℃未満でも、1030℃を越える温度に加熱保
持して急冷しても十分に溶体化せず、粗大結晶粒となっ
て成型加工性、特に曲げ成型性を劣化させ、更には粒界
析出を起し、特性面で劣化を生ずるためで、望ましくは
副成分を添加しないものでは930〜980℃、副成分
を添加したものでは930〜1010℃で溶体化処理す
るとよい。また保持時間を5〜1800秒と限定したの
は5秒未満では溶体化せず、1800秒を越えると効果
が見出せないためである。
The properties of the alloy of the present invention, such as strength, can be optimized particularly by the above manufacturing method. However, the alloy ingot is 900 ~
Solution heat treatment by heating to 1030°C and then quenching is not sufficient solution treatment even if it is below 900°C, or even if heated and held at a temperature exceeding 1030°C and then rapidly cooled, it becomes coarse crystal grains and is molded. This is because it deteriorates workability, especially bending formability, and also causes grain boundary precipitation, resulting in deterioration of properties. Therefore, it is preferable that the temperature is 930 to 980 °C for products without added subcomponents, and 930 to 980°C for products with addition of subcomponents. Solution treatment is preferably carried out at 930 to 1010°C. Further, the reason why the holding time was limited to 5 to 1800 seconds is because if it is less than 5 seconds, no solution will be obtained, and if it exceeds 1800 seconds, no effect will be observed.

次に溶体化処理後に5%以上の冷間加工を施してから、
300〜850℃で10秒〜12時間の焼鈍と、10%
以上の冷間加工を少なくとも1回以上行なうのは、均質
な析出を(qるためで、範囲外の条件では析出作用がな
かったり、過時効による粗大析出物を生じたり、最終的
に満足する特性が得られない。また最終仕上加工率を5
0%以下と限定したのは、これを越えて加工すると急激
に曲げ成型性を劣化し、電子機器用銅合金としては不適
当なものとなるためでおる。
Next, after cold working by 5% or more after solution treatment,
Annealing at 300-850℃ for 10 seconds to 12 hours and 10%
The reason why the above cold working is performed at least once is to achieve homogeneous precipitation, and under conditions outside the range, there may be no precipitation, coarse precipitates may occur due to over-aging, or the final result may not be satisfied. characteristics cannot be obtained.Also, the final finishing rate is 5
The reason why the content is limited to 0% or less is that if processed beyond this value, the bending formability will deteriorate rapidly, making the copper alloy unsuitable for use in electronic devices.

尚本発明合金は最終の仕上げ加工後、200〜500℃
で調質焼鈍やテンションレベラー等を組み合せることに
より、更に優れた特性とすることができる。
The alloy of the present invention is heated at 200 to 500°C after the final finishing process.
By combining temper annealing, tension leveler, etc., even better properties can be obtained.

(実施例) 第1表に示す組成の鋳塊(巾40.、厚ざ40m、長さ
300m>を外削してから880℃に加熱して15分保
持した後、熱間圧延を施して厚さ100 Mとした。こ
れを面前してから厚さ1.2#まで冷間圧延し、次に連
続焼入れ炉を用い、非酸化性雰囲気中で実体が950℃
で100秒保持の条件により溶体化処理を行なった。尚
冷却は処理材に水を吹き付けて迅速に行なった。
(Example) An ingot with the composition shown in Table 1 (width: 40 mm, thickness: 40 m, length: 300 m) was externally milled, heated to 880°C, held for 15 minutes, and then hot rolled. The thickness was 100 M. This was then cold rolled to a thickness of 1.2 #, and then heated to 950°C in a non-oxidizing atmosphere using a continuous quenching furnace.
Solution treatment was carried out under conditions of holding for 100 seconds. In addition, cooling was quickly performed by spraying water onto the treated material.

その後0.0B、まで冷間圧延してから時効処理(45
0℃、1時間)し、次に厚さ0.33.に圧延した後、
450℃で1時間時効処理し、しかる後、加工率20%
の最終加工を施して厚さ0.25mmの仮に仕上げた。
After that, it was cold rolled to 0.0B and then aged (45
0°C for 1 hour), then the thickness was 0.33. After rolling into
Aging treatment was performed at 450℃ for 1 hour, and after that, the processing rate was 20%.
The final processing was carried out to create a tentative finish with a thickness of 0.25 mm.

これ等を300 ’Cで30分間調調質鈍した後、サン
プルを切り出して析出粒径、引張り強さ、導電率、曲げ
成型性、耐食性、半田付は性及びメツキ性を調べた。そ
の結果を従来品であるC194 (Cu−2,3%Fe
−0,12%Zn−P合金)及び6%リン青銅(CLI
−6%5n−P合金)と比較して第2表に示す。
After tempering and tempering these at 300'C for 30 minutes, samples were cut out and examined for precipitate particle size, tensile strength, electrical conductivity, bending formability, corrosion resistance, solderability, and plating performance. The results were compared to the conventional product C194 (Cu-2,3%Fe
-0,12% Zn-P alloy) and 6% phosphor bronze (CLI
-6%5n-P alloy) as shown in Table 2.

曲げ成型性は各種先端半径(R)の90’ V曲げ試験
により、曲げ部の割れ状態を検鏡し、マイクロクラック
のない最少半径(R)と板厚(1)との比(R/l)を
求めた。耐食性はJIS C8306に準じて応力腐食
割れ(3vo1%NH3蒸気中定荷重法)により割れの
時間を求めた。荷重は引張強ざの50%とした。半田付
は性は、直径9InInの部分にリード線を共晶半田付
けしてから150℃で600時間エージングしてからプ
ル試験により接合強度を求めた。またメツキ性はホウフ
ッ化物浴を用いて5n−5%Pb合金メツキを7.5μ
の厚さにメツキし、105°Cで2000時間保持して
から180°に折り曲げ、折り曲げ部のメツキ層の剥離
を検鏡した。
Bending formability is determined by performing a 90' V bending test with various tip radii (R), examining the cracking state of the bent part with a microscope, and calculating the ratio of the minimum radius (R) without microcracks to the plate thickness (1) (R/l). ) was sought. Corrosion resistance was determined by stress corrosion cracking (constant load method in 3vol% NH3 steam) according to JIS C8306. The load was 50% of the tensile strength. As for soldering, a lead wire was eutectic soldered to a 9InIn diameter portion, and the joint strength was determined by a pull test after aging at 150° C. for 600 hours. In addition, the plating property was 7.5 μm using a borofluoride bath.
It was plated to a thickness of , held at 105°C for 2000 hours, bent at 180°, and inspected with a microscope to see if the plating layer peeled off at the bent portion.

尚第2表中の比較合金Nα17及びNα18は第1表中
の本発明合金NQ3と同一成分であるが、Nα17は溶
体化処理条件を1050℃、100秒とし、Nα18は
最終加工率を60%としたものである。
The comparative alloys Nα17 and Nα18 in Table 2 have the same composition as the invention alloy NQ3 in Table 1, but the solution treatment conditions for Nα17 were 1050°C and 100 seconds, and the final processing rate for Nα18 was 60%. That is.

7R1表及び第2表から明らかなように、本発明合金N
α1〜10を本発明法により製造したものは何れも従来
品Nα19.Nα20と比較し、各特性がはるかに優れ
ていることが判る。
As is clear from Table 7R1 and Table 2, the alloy N of the present invention
All α1 to α10 produced by the method of the present invention are the conventional product Nα19. It can be seen that each characteristic is far superior compared to Nα20.

これに対し本発明合金で規定する組成範囲より外れる比
較合金及び本発明合金であっても、本発明製造法の条件
より外れる比較量では何れも各特性の一つ以上が劣る。
On the other hand, even if the comparative alloy and the present invention alloy fall outside the composition range specified for the present invention alloy, if the comparative amount falls outside the conditions of the present invention production method, they will all be inferior in one or more of the respective properties.

即ちCLJ含有量の多い比較合金N0. 11及びO2
含有量の多い比較合金N013では析出粒径が大きくな
り、曲げ成型性、半田接合強度及びメツキ性が劣り、Z
nを含まない比較合金Nα12では半田接合強度が劣る
。またP含有量の多い比較合金N0.14では析出粒径
が大きくなり強度、導電率、曲げ成型性及び半田接合強
度が劣り、M(J1′)Caの含有量が多い比較合金N
015では熱間圧延で割れを生じ、それ以後の加工が不
可能であった。また副成分の多い比較合金Nα16では
優れた強度を示すも、導電率及び曲げ成型性が劣る。更
に本発明合金の組成範囲内であっても、製造条件が外れ
る比較量Nα17.Nα18では曲げ成型性及びメツキ
性が劣る。
That is, comparative alloy No. 0 with a high CLJ content. 11 and O2
Comparative alloy N013, which has a high content, has a large precipitate grain size and is inferior in bending formability, solder joint strength, and plating property, and Z
Comparative alloy Nα12, which does not contain n, has poor solder joint strength. Comparative alloy N0.14, which has a high P content, has a large precipitate grain size and is inferior in strength, electrical conductivity, bending formability, and solder joint strength, and comparative alloy N0.14, which has a high M(J1')Ca content
In No. 015, cracks occurred during hot rolling and further processing was impossible. Comparative alloy Nα16, which has many subcomponents, exhibits excellent strength but is inferior in electrical conductivity and bending formability. Furthermore, even if the composition is within the composition range of the alloy of the present invention, the comparative amount Nα17. Nα18 has poor bending formability and plating properties.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、強度、電気・熱伝導性、成
型加工性、耐食性、メツキ性及び半田付は性において、
従来の銅合金よりはるかに優れたものが得られ、電子機
器用、例えば半導体リードフレームやコネクター・スイ
ッチ等のばね材として有用である等工業上顕著な効果を
奏するものである。
As described above, according to the present invention, strength, electrical/thermal conductivity, moldability, corrosion resistance, plating property, and soldering properties are as follows:
It is far superior to conventional copper alloys, and has significant industrial effects, such as being useful as a spring material for electronic devices, such as semiconductor lead frames and connectors/switches.

Claims (3)

【特許請求の範囲】[Claims] (1)Zr0.03〜0.3wt%、Cr0.05〜0
.5wt%、Zn0.01〜0.5wt%、Mg、Ca
、レアーアース(RE)の内の少なくとも1種以上を0
.0005〜0.05wt%を含有し、O_2含有量を
30ppm以下、P含有量を30ppm以下、S含有量
を10ppm以下、析出物粒径を10μ以下に制限し、
残部Cuと不可避的不純物からなる電子機器用銅合金。
(1) Zr0.03-0.3wt%, Cr0.05-0
.. 5wt%, Zn0.01-0.5wt%, Mg, Ca
, at least one of the rare earths (RE).
.. 0005 to 0.05 wt%, limiting the O_2 content to 30 ppm or less, the P content to 30 ppm or less, the S content to 10 ppm or less, and the precipitate particle size to 10 μ or less,
Copper alloy for electronic devices consisting of Cu and unavoidable impurities.
(2)Zr0.03〜0.3wt%、Cr0.05〜0
.5wt%、Zn0.01〜0.5wt%、Mg、Ca
、レアーアース(RE)の内の少なくとも1種以上を0
.0005〜0.05wt%を含有し、更にFe、Ti
、Y、In、Si、Ag、Mn、Hf、Ni、Sn、C
o、Sb、Bi、Be、Li、B、Baの内の少なくと
も2種以上を0.5wt%以下含有し、O_2含有量を
30ppm以下、P含有量を30ppm以下、S含有量
を10ppm以下、析出物粒径を10μ以下に制限し、
残部Cuと不可避的不純物からなる電子機器用銅合金。
(2) Zr0.03-0.3wt%, Cr0.05-0
.. 5wt%, Zn0.01-0.5wt%, Mg, Ca
, at least one of the rare earths (RE).
.. 0005 to 0.05 wt%, and further contains Fe, Ti
, Y, In, Si, Ag, Mn, Hf, Ni, Sn, C
o, contains at least two or more of Sb, Bi, Be, Li, B, and Ba at 0.5 wt% or less, O_2 content is 30 ppm or less, P content is 30 ppm or less, S content is 10 ppm or less, Limiting the precipitate particle size to 10μ or less,
Copper alloy for electronic devices consisting of Cu and unavoidable impurities.
(3)Zr0.03〜0.3wt%、Cr0.05〜0
.5wt%、Zn0.01〜0.5wt%、Mg、Ca
、レアーアース(RE)の内の少なくとも1種以上を0
.0005〜0.5wt%を含有し、又はこれにFe、
Ti、Y、In、Si、Ag、Mn、Hf、Ni、Sn
、Co、Sb、Bi、Be、Li、B、Baの内の少な
くとも2種以上を0.5wt%以下を含有せしめ、O_
2含有量を30ppm以下、P含有量を30ppm以下
、S含有量を10ppm以下に制限し、残部Cuと不可
避的不純物ならなるCu合金鋳塊に、熱間加工と冷間加
工を施した後、900〜1030℃の実態温度で5〜1
800秒保持し、これを30℃/秒以上の冷却速度で急
冷して溶体化処理した後、加工率5%以上の冷間加工を
施し、その後300〜850℃で10秒〜12時間の焼
鈍と加工率10%以上の冷間加工を1回以上繰返し、最
終仕上加工率を50%以下として、析出物粒径を10μ
以下とすることを特徴とする電子機器用銅合金の製造法
(3) Zr0.03-0.3wt%, Cr0.05-0
.. 5wt%, Zn0.01-0.5wt%, Mg, Ca
, at least one of the rare earths (RE).
.. 0005 to 0.5 wt%, or in addition to Fe,
Ti, Y, In, Si, Ag, Mn, Hf, Ni, Sn
, Co, Sb, Bi, Be, Li, B, and Ba in an amount of 0.5 wt% or less, O_
2 content is limited to 30 ppm or less, P content is limited to 30 ppm or less, S content is limited to 10 ppm or less, and after hot working and cold working is performed on a Cu alloy ingot consisting of the remaining Cu and inevitable impurities, 5-1 at actual temperature of 900-1030℃
After holding for 800 seconds and solution treatment by rapidly cooling at a cooling rate of 30°C/second or more, cold working is performed at a processing rate of 5% or more, followed by annealing at 300 to 850°C for 10 seconds to 12 hours. and cold working at a processing rate of 10% or more is repeated one or more times, the final finishing rate is 50% or less, and the precipitate grain size is reduced to 10μ.
A method for producing a copper alloy for electronic devices, characterized by the following:
JP18359486A 1986-08-05 1986-08-05 Copper alloy for electronic appliance and its manufacture Pending JPS6338543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18359486A JPS6338543A (en) 1986-08-05 1986-08-05 Copper alloy for electronic appliance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18359486A JPS6338543A (en) 1986-08-05 1986-08-05 Copper alloy for electronic appliance and its manufacture

Publications (1)

Publication Number Publication Date
JPS6338543A true JPS6338543A (en) 1988-02-19

Family

ID=16138550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18359486A Pending JPS6338543A (en) 1986-08-05 1986-08-05 Copper alloy for electronic appliance and its manufacture

Country Status (1)

Country Link
JP (1) JPS6338543A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285330A (en) * 1988-09-20 1990-03-26 Mitsui Mining & Smelting Co Ltd Copper alloy having good press bendability and its manufacture
WO1995009252A1 (en) * 1993-09-30 1995-04-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy for electric and electronic components
EP0681035A2 (en) * 1994-04-25 1995-11-08 Olin Corporation Process for improving the bend formability of copper alloys
US7416620B2 (en) 1996-08-29 2008-08-26 Luvata Oy Copper alloy and method for its manufacture
JP2012097327A (en) * 2010-11-02 2012-05-24 Hitachi Cable Ltd Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy
CN105088000A (en) * 2015-09-02 2015-11-25 河南科技大学 High-strength and high-conductivity rare earth copper alloy for contact lines and preparation method thereof
US20230054901A1 (en) * 2021-08-20 2023-02-23 Caterpillar Inc. Method and system for supplying fuel gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285330A (en) * 1988-09-20 1990-03-26 Mitsui Mining & Smelting Co Ltd Copper alloy having good press bendability and its manufacture
JPH0469217B2 (en) * 1988-09-20 1992-11-05 Mitsui Mining & Smelting Co
US5601665A (en) * 1992-11-04 1997-02-11 Olin Corporation Process for improving the bend formability of copper alloys
WO1995009252A1 (en) * 1993-09-30 1995-04-06 Kabushiki Kaisha Kobe Seiko Sho Copper alloy for electric and electronic components
EP0681035A2 (en) * 1994-04-25 1995-11-08 Olin Corporation Process for improving the bend formability of copper alloys
EP0681035A3 (en) * 1994-04-25 1996-03-06 Olin Corp Process for improving the bend formability of copper alloys.
US7416620B2 (en) 1996-08-29 2008-08-26 Luvata Oy Copper alloy and method for its manufacture
JP2012097327A (en) * 2010-11-02 2012-05-24 Hitachi Cable Ltd Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy
CN105088000A (en) * 2015-09-02 2015-11-25 河南科技大学 High-strength and high-conductivity rare earth copper alloy for contact lines and preparation method thereof
US20230054901A1 (en) * 2021-08-20 2023-02-23 Caterpillar Inc. Method and system for supplying fuel gas
US11821389B2 (en) * 2021-08-20 2023-11-21 Caterpillar Inc. Method and system for supplying fuel gas

Similar Documents

Publication Publication Date Title
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
EP3158095B1 (en) Copper-nickel-silicon alloys
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
JP2001049369A (en) Copper alloy for electronic material and its production
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPH0830234B2 (en) High strength and high conductivity copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JPH0425339B2 (en)
JPS63274729A (en) Copper alloy for electronic and electrical appliance
JPS63109134A (en) Copper alloy for lead frame and its production
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPS6393837A (en) Copper alloy for electronic equipment and its production
JPH034612B2 (en)
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH09143597A (en) Copper alloy for lead frame and its production
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment