JPS6141751A - Manufacture of copper alloy material for lead frame - Google Patents

Manufacture of copper alloy material for lead frame

Info

Publication number
JPS6141751A
JPS6141751A JP16397984A JP16397984A JPS6141751A JP S6141751 A JPS6141751 A JP S6141751A JP 16397984 A JP16397984 A JP 16397984A JP 16397984 A JP16397984 A JP 16397984A JP S6141751 A JPS6141751 A JP S6141751A
Authority
JP
Japan
Prior art keywords
working
alloy
strength
copper alloy
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16397984A
Other languages
Japanese (ja)
Inventor
Koji Nagata
公二 永田
Masaki Kumagai
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP16397984A priority Critical patent/JPS6141751A/en
Publication of JPS6141751A publication Critical patent/JPS6141751A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled Cu alloy material having superior characteristics such as strength, electric conductivity, bendability and hardness by hot working a Cu-Cr-Zr alloy ingot contg. specified amounts of Zr and Cr and by subjecting the hot worked material to proper cold working, aging and annealing. CONSTITUTION:A Cu-Cr-Zr alloy ingot contg. 0.03-0.14wt% Zr and 0.2-1.5wt% Cr is subjected to prescribed hot working such as rolling, forging or extrusion. The hot rolled material is subjected to primary cold working at 30-80% reduction of area, prescribed aging at 450-500 deg.C for about 2-5hr, and secondary cold working at >=80% reduction of area to form a material of desired about 0.2mm. thickness. This thin material is annealed at about 250-450 deg.C below the aging temp. for about 5min-1hr to obtain a Cu alloy material for a lead frame having superior characteristics such as strength, electric conductivity, bendability and hardness.

Description

【発明の詳細な説明】 技術分野 本発明は、リードフレーム用銅合金材の製造法に係り、
特に強度、電気伝導性等の諸性能に優れたCu(銅)−
Cr(クロム)−Zr(ジルコニウム)系において、そ
の強度を損なうことなく、その導電性、屈曲性、硬度等
の諸性能を更に改善せしめたリードフレーム用材料を製
造する方法に関するものである。
[Detailed Description of the Invention] Technical Field The present invention relates to a method for manufacturing a copper alloy material for lead frames.
Cu (copper) has excellent properties such as strength and electrical conductivity.
The present invention relates to a method for manufacturing a lead frame material that is Cr (chromium)-Zr (zirconium) based and has further improved various properties such as conductivity, flexibility, and hardness without impairing its strength.

従来技術 近年、電子機器部材、特に集積回路の如き半導体回路の
ためのセラミック封止型あるいは樹脂封止型のパッケー
ジ金属材料、所謂リードフレーム用材料として、導電性
、耐熱性、屈曲性、はんだ付は性等の要求特性を兼備す
る銅合金材料が種々検討されてきており、例えば特公昭
58−39901号公報にも、そのような銅合金材料の
一つとして、Cu−Cr−Zr系合金材が明らかにされ
ているが、現在実用されているものは、無酸素銅、燐青
銅、鉄入り銅、錫入り銅等である。而して、これらの材
料にあっては、導電性(501合金。
Prior art In recent years, electronic equipment parts, especially ceramic-sealed or resin-sealed package metal materials for semiconductor circuits such as integrated circuits, so-called lead frame materials, have been developed to have electrical conductivity, heat resistance, flexibility, and solderability. Various copper alloy materials that have required properties such as hardness have been studied, and for example, Japanese Patent Publication No. 58-39901 describes a Cu-Cr-Zr alloy material as one such copper alloy material. However, those currently in practical use include oxygen-free copper, phosphor bronze, iron-containing copper, and tin-containing copper. Therefore, these materials are conductive (501 alloy).

194合金)と耐熱性を同時に満足するものではなかっ
たのである。ところで、半導体回路の集積度の高密度化
につれて、上記特性値の向上がますます強く要求され、
これを満たす目的で、溶体化処理、焼入れ処理、冷間加
工、時効焼純処理を行なう析出硬化型の銅合金材料の実
用化が検討されている。
194 alloy) and heat resistance at the same time. By the way, as the degree of integration of semiconductor circuits increases, there is an increasing demand for improvement in the above-mentioned characteristic values.
In order to meet this requirement, the practical use of precipitation hardening copper alloy materials that undergo solution treatment, quenching treatment, cold working, and aging annealing treatment is being considered.

一方、析出硬化型の銅合金の代表例として、本発明者ら
は、先に、Crの0.3〜1.5%とZrの0.03〜
0.14%とを少なくとも含み、更に必要に応じて、そ
れら成分と共に、0.01〜0.08%のSt(ケイ素
)を含む銅合金を明らかにしく特開昭56−20135
号公報参照)、そしてそのような銅合金が抵抗溶接用電
極材料として有用であることを明らかにした。
On the other hand, as a representative example of a precipitation hardening type copper alloy, the present inventors previously discovered that 0.3 to 1.5% of Cr and 0.03 to 1.5% of Zr were used.
JP-A-56-20135 discloses a copper alloy containing at least 0.14% of St (silicon) and, if necessary, 0.01 to 0.08% of St (silicon) together with these components.
(see Japanese Patent Publication No. 2003-111000), and it was revealed that such a copper alloy is useful as an electrode material for resistance welding.

解決すべき問題点 しかしながら、かくの如き析出硬化型のCu−Cr−Z
r系合金をリードフレーム用として使用する場合におい
て、その冷間加工度が従来用途に比べて著しく大きく、
一般に最終板厚が約0.2鶴〜0.3fiとなって、冷
間加工度が90%以上となるところから、リードフレー
ム材に要求される性能、例えば高電気伝導度、90°繰
り返し曲げ、高軟化温度等の性能が必ずしも満足される
ものでなく、特に延性の低下、導電率の低下等といった
不都合が惹起されることが明らかとなった。
Problems to be solvedHowever, such precipitation hardening type Cu-Cr-Z
When using r-based alloys for lead frames, the degree of cold working is significantly greater than in conventional applications.
In general, the final plate thickness is approximately 0.2 to 0.3 fi, and the degree of cold working is 90% or more, so the performance required for lead frame materials, such as high electrical conductivity, 90° repeated bending, etc. It has become clear that the properties such as high softening temperature are not necessarily satisfied, and disadvantages such as decreased ductility and electrical conductivity occur.

解決手段 そこで、本発明者らは、Cu−Cr−Zr系の析出硬化
型合金から有用なリードフレーム用材料を得るために種
々検討した結果、その製造工程の最適化により、上記し
た如き要求性能の向上が可能となることを見い出し、本
発明に到達したのである。
Solution The inventors conducted various studies to obtain a useful lead frame material from a Cu-Cr-Zr precipitation hardening alloy, and as a result of optimizing the manufacturing process, the required performance as described above was achieved. They have discovered that it is possible to improve this, and have arrived at the present invention.

すなわち、本発明は、重量基準にて、0.03%〜0.
14%のZrと0.2%〜1.5%のCrとを、少なく
とも含むCu−Cr−Zr系鋼合金鋳塊に対して、所定
の熱間加工を行なった後、30〜80%の加工度にて第
一の冷間加工を行ない、次いで所定の時効処理を施した
後、更に80%以上の加工度にて第二の冷間加工を行な
い、そしてその後に前記時効処理温度よりも低い温度に
て焼純処理を施すようにしたのである。
That is, the present invention provides 0.03% to 0.03% on a weight basis.
After performing prescribed hot working on a Cu-Cr-Zr steel alloy ingot containing at least 14% Zr and 0.2% to 1.5% Cr, 30 to 80% After performing a first cold working at a working degree, then performing a predetermined aging treatment, a second cold working is performed at a working degree of 80% or more, and then a temperature lower than the aging treatment temperature. The sintering treatment was performed at a low temperature.

そして、このようにして得られたリードフレーム用銅合
金材にあっては、リードフレーム材に要求される強度を
そのまま保持しつつ、その導電率(を気伝導性)や屈曲
性、更には硬度、延性等が効果的に高められているので
ある。
The copper alloy material for lead frames obtained in this way maintains the strength required for lead frame materials, while maintaining its electrical conductivity (air conductivity), flexibility, and even hardness. , ductility, etc. are effectively increased.

ところで、かかる本発明に用いられる銅合金における合
金成分たるCrは、強度を向上せしめる元素であるが、
それによる強度向上効果には限度があり、それが1.5
%(重量基準、以下同じ)を越えて添加されても、強度
アップにはそれ程寄与せず、かえってコストアップの問
題等を惹起し、一方0.2%未満の添加量では強度向上
効果が不充分となり、リードフレーム用材料として充分
な強度を保持し得なくなるところから、Crの添加量と
しては0.2〜1.5%、好ましくは0.5〜1.0%
の範囲に止める必要がる。
By the way, Cr, which is an alloying component in the copper alloy used in the present invention, is an element that improves strength.
There is a limit to the strength improvement effect caused by this, and that is 1.5
% (based on weight, hereinafter the same), it does not contribute much to increasing the strength, and on the contrary, it causes problems such as increased costs. On the other hand, if the amount added is less than 0.2%, the strength improvement effect is not achieved. The amount of Cr added is 0.2 to 1.5%, preferably 0.5 to 1.0%, since it becomes insufficient and cannot maintain sufficient strength as a lead frame material.
It is necessary to stop within the range of .

また、かかるCrと共に添加される必須成分たるZrは
、合金組織内にCrを微細に分散セし、め、Cuの良好
な電気伝導性を保持すると共に、強度アップにも寄与す
る元素であるが、またその添加量が0.03%未満では
合金の焼入れ感受性、強度、耐熱性を充分に改善せしめ
得す、一方0.14%を越えるようになると、電気伝導
性等の特性を低下せしめ、また強度の向上にも寄与し得
なくなるところから、その添加量は0.03%〜0.1
4%とする必要がある。なお、このZrの望ましい添加
割合としては、0.10%未満、特に0.04〜0.0
8%程度である。また、このZrの添加量を0.10%
未満に止めることによって、得られるリードフレーム用
銅合金材の耐食性、なかでも応力腐食割れ性のを効な改
善を為すことが可能である。
In addition, Zr, which is an essential component added together with Cr, is an element that finely disperses Cr within the alloy structure, maintains good electrical conductivity of Cu, and also contributes to increasing strength. When the amount added is less than 0.03%, the quenching sensitivity, strength, and heat resistance of the alloy can be sufficiently improved, while when it exceeds 0.14%, properties such as electrical conductivity are deteriorated. In addition, since it cannot contribute to the improvement of strength, the amount added is 0.03% to 0.1%.
It needs to be 4%. Note that the desirable addition ratio of Zr is less than 0.10%, particularly 0.04 to 0.0%.
It is about 8%. In addition, the amount of Zr added was 0.10%.
By keeping the corrosion resistance to less than 1, it is possible to effectively improve the corrosion resistance of the resulting copper alloy material for lead frames, especially the stress corrosion cracking resistance.

さらに、本発明にあっては、上記したCr及びZrと共
に、必要に応じてStを加えて、四元の合金系として用
いることも可能であり、そしてそのようなSiの添加に
よって、当該合金の耐熱性の改善を図って、リードフレ
ーム用材料として有利な特性を付与することができる。
Furthermore, in the present invention, in addition to the above-mentioned Cr and Zr, it is also possible to add St as needed to use it as a quaternary alloy system, and by adding such Si, the alloy can be improved. By improving heat resistance, it is possible to impart advantageous properties as a material for lead frames.

而して、Siの添加量が0.01%未満となると、その
耐熱性改善効果は充分に発揮され得す、一方0.08%
を越える過剰のSt添加は、電気伝導性を低下させる等
の問題を生ずるところから、かかるStの添加量は0.
01〜0.08%に止めることが望ましく、一般には0
.’02%〜0.04%の範囲が好適に採用されること
となる。
Therefore, when the amount of Si added is less than 0.01%, the effect of improving heat resistance can be sufficiently exhibited;
Excessive addition of St exceeding 0.05% causes problems such as a decrease in electrical conductivity; therefore, the amount of St added is limited to 0.000%.
It is desirable to keep it at 0.01 to 0.08%, and generally 0.01% to 0.08%.
.. A range of 0.02% to 0.04% is preferably adopted.

そして、このような合金組成を有する本発明に従うCu
−Cr−Zr系の鋼合金は、従来と同様にして、銅地金
、中間合金、及び/又は添加元素単体を適宜用いて溶製
され、所定の銅合金鋳塊(インゴット)とされた後、か
かる銅合金鋳塊に対して、目的とするリードフレーム用
材料と為すべく、所定の熱間加工、例えば圧延、鍛造、
押出し等の加工が行なわれることとなる。なお、この際
、銅合金素材に対する溶体化処理を省略することが可能
である。
And Cu according to the present invention having such an alloy composition
- Cr-Zr steel alloys are produced in the same manner as before, using copper base metal, intermediate alloys, and/or additive elements as appropriate, and are made into specified copper alloy ingots. The copper alloy ingot is subjected to predetermined hot processing such as rolling, forging, etc. in order to make it into the intended lead frame material.
Processing such as extrusion will be performed. Note that at this time, it is possible to omit the solution treatment for the copper alloy material.

また、このような熱間加工によって得られた素材、即ち
熱間加工材は、次いで、本発明に従って圧延、鍛造、抽
伸等の第一段の冷間加工が実施される。そして、この第
一段の冷間加工は、中程度において実施されるものであ
って、その加工度が30〜80%の範囲内となるように
実施さ、れることとなる。
Further, the raw material obtained by such hot working, that is, the hot working material, is then subjected to first stage cold working such as rolling, forging, drawing, etc. according to the present invention. This first stage cold working is carried out at a medium level, and is carried out so that the degree of working is within the range of 30 to 80%.

さらに、かかる第一段の冷間加工の施された素材には、
本発明合金系本来の時効処理、換言すれは時効焼純処理
が実施されるのである。なお、この時効焼純処理は、一
般に450〜500℃の温度で2〜5時間の条件下に実
施される。また、かかる時効焼純処理は、素材の比較的
厚肉段階において行なうものであるところから、機械的
或いは化学的な表面清浄化が技術的に容易に為し得るも
のであり、それ故そのような焼純処理は、空気中におい
ても可能となるのであって、この点においてコストダウ
ンを図ることが可能となる。
Furthermore, the material subjected to such first stage cold working,
The aging treatment inherent to the alloy of the present invention, in other words, the aging annealing treatment is carried out. Note that this aging annealing treatment is generally carried out at a temperature of 450 to 500°C for 2 to 5 hours. In addition, since such aging annealing treatment is carried out at a relatively thick stage of the material, mechanical or chemical surface cleaning can be carried out technically easily, and therefore such treatment is not recommended. The sintering treatment can also be carried out in air, and in this respect it is possible to reduce costs.

次いで、このように時効焼純された素材には、再度の冷
間加工が実施される。この第二段の冷間加工は強度の加
工であって、加工度としては80%以上の値が採用され
、これによって目的とする0、2fi前後の薄肉の製品
とされることとなるのである。
Next, the material thus aged and purified is subjected to cold working again. This second stage of cold working is a strength process, and a working degree of 80% or more is adopted, which results in the desired thin-walled product of around 0.2fi. .

そして、このように、第二段の冷間加工が施された素材
には、更に低温度で、即ち上記時効処理温度よりも低い
温度にて、短時間の焼純処理が施されることとなる。な
お、この焼純処理は、一般に250℃〜450℃の温度
において、5分〜1時間実施されるものである。
Then, the material subjected to the second stage cold working is subjected to a short-time sintering treatment at an even lower temperature, that is, at a temperature lower than the above aging treatment temperature. Become. Note that this sintering treatment is generally carried out at a temperature of 250° C. to 450° C. for 5 minutes to 1 hour.

かくの如き焼純処理が、第二段の強度の冷間加工の後に
行なわれることによって、特に時効焼純処理における処
理温度よりも低い、好適には250〜350℃の熱処理
により、第二段の冷間加工にて得られる強加工材特有の
性能低下、例えば導電率、90°繰り返し曲げ特性の低
下を回復せしめるだけでなく、材料強度も効果的に改善
せしめ得るのである。なお、この強度の向上、延性の回
復の機構については未だ明らかではないが、おそらく低
温焼純に伴うセル構造の形成が進行するためではないか
と推察されている。
By performing such a sintering treatment after the second-stage high-strength cold working, the second-stage heat treatment is performed at a temperature lower than that in the aging sintering treatment, preferably at a temperature of 250 to 350°C. Not only can it recover the performance deterioration peculiar to highly processed materials obtained through cold working, such as deterioration in electrical conductivity and 90° repeated bending properties, but also the material strength can be effectively improved. The mechanism of this improvement in strength and recovery of ductility is not yet clear, but it is speculated that this is probably due to the progress of cell structure formation accompanying low-temperature sintering.

また、かかる低温の焼純処理による金属組織変化は、前
段の時効焼純処理とは異なり、Cr、Zr等の過飽和元
素の析出を伴うものではなく、強度の冷間加工によって
導入された転位等の格子欠陥の再配列に関するものであ
る。このため、焼純時間は、前段の時効焼純処理が通常
2〜4時間程度であるのに対し、前述の如く、5分〜1
時間、通常5〜30分程度で充分であり、焼純設備とし
て、バンチ式炉でも連続焼純炉でも使用することが可能
となるのである。しかも処理温度は、前段の時効焼純処
理が450〜500℃であるのに対し、後段の焼純処理
が250〜450℃程度と低いことから、雰囲気制御1
は厳しくなく、従って製造が容易で、コストアップをそ
れ程伴うものではないのである。
In addition, unlike the previous aging annealing treatment, the metal structure change due to such low-temperature sintering treatment is not accompanied by precipitation of supersaturated elements such as Cr and Zr, but due to dislocations etc. introduced by intense cold working. It concerns the rearrangement of lattice defects. Therefore, as mentioned above, the sintering time is 5 minutes to 1 hour, whereas the pre-stage aging sintering process usually takes about 2 to 4 hours.
Usually, a time of about 5 to 30 minutes is sufficient, and it is possible to use either a bunch type furnace or a continuous sintering furnace as the sintering equipment. Moreover, the treatment temperature is 450 to 500°C for the aging treatment in the first stage, while the treatment temperature in the latter stage is about 250 to 450°C.
It is not difficult to manufacture, therefore, it is easy to manufacture and does not involve much increase in cost.

発明の効果 かくの如き本発明に従って、Cu−Cr−Zr系鋼合金
鋳塊から製造されるリードフレーム用銅材料は、その良
好な強度特性を何等損なうことなく、従来の銅合金製リ
ードフレーム用材料に比して、その電気伝導性が効果的
に向上され、しかも屈曲性、90°繰り返し曲げ特性や
硬度等においても優れたものであって、集積回路の如き
半導体回路等のリードフレーム用材料として好適なもの
であり、また従来からリードフレーム用材料として優れ
た特徴を持つとされている燐青銅、すす入り銅、鉄入り
銅合金等と比較しても、優れた有為性を示すものである
Effects of the Invention According to the present invention, the copper material for lead frames manufactured from the Cu-Cr-Zr steel alloy ingot can be used for conventional copper alloy lead frames without any loss in its good strength properties. It is a material for lead frames of semiconductor circuits such as integrated circuits because its electrical conductivity is effectively improved compared to other materials, and it also has excellent flexibility, 90° repeated bending characteristics, hardness, etc. It is suitable as a material for lead frames, and also shows superior usefulness compared to phosphor bronze, soot-containing copper, iron-containing copper alloy, etc., which have been considered to have excellent characteristics as materials for lead frames. It is.

実施例 以下、本発明を更に具体的に明らかにするために、本発
明の幾つかの実施例を示すが、本発明がそのような実施
例の記載によって何等の制約をも受けるものではないこ
とは、言うまでもないところである。また、ここに例示
の実施例は、あくまでも、本発明者らが行なった多数の
実験の中の一部であることが理解されるべきである。
EXAMPLES In order to clarify the present invention more specifically, some examples of the present invention will be shown below, but the present invention shall not be limited in any way by the description of such examples. It goes without saying that. Furthermore, it should be understood that the examples illustrated here are only a portion of the numerous experiments conducted by the present inventors.

実施例 1 0.7重量%のCrと、0.05重ffi%の7.rと
、残部がCuの合金組成よりなる1100mX150n
X5Qのインゴットを溶製し、そしてこのインゴットを
、約930℃の温度にて、15鶴の厚さになるまで熱間
圧延した9次い〒、この熱間圧延材を板厚が5fiにな
るまで(加工度−67%)第一段の冷間圧延を行なった
後、475℃の温度で4時間の焼純時効処理を施した。
Example 1 0.7% by weight of Cr and 0.05% by weight of 7. 1100m x 150n consisting of an alloy composition of r and the remainder Cu
An ingot of X5Q was melted, and this ingot was hot-rolled at a temperature of about 930°C until it had a thickness of 15mm. After performing the first stage of cold rolling to (working degree -67%), a sintering aging treatment was performed at a temperature of 475° C. for 4 hours.

この後、更に深さが0.25mまで(加工度−95%)
第二段の冷間圧延を行ない、更にその後、下記第1表に
示される如き200〜450℃の温度で10分間各種の
仕上げ焼純処理を施した。
After this, the depth further increases to 0.25m (processing degree -95%)
A second stage of cold rolling was performed, and then various finishing annealing treatments were performed at temperatures of 200 to 450° C. for 10 minutes as shown in Table 1 below.

かくして得られた焼純処理材について、硬さ測定、引張
試験、曲げ試験、電気伝導度測定をそれぞれ行ない、そ
の結果を下記第1表に併せ示した。
The thus obtained sintered material was subjected to hardness measurements, tensile tests, bending tests, and electrical conductivity measurements, and the results are shown in Table 1 below.

なお、曲げ試験は、曲げ部の角を0.2 Rとした治具
の間に供試材を挟み、角度90°の曲げを繰り返し、0
″→90°−09を1回として数え、破断するまでの回
数を示した。
In addition, in the bending test, the sample material was sandwiched between jigs with a bent corner of 0.2 R, and repeated bending at an angle of 90° was performed.
″→90°−09 was counted as one time, and the number of times until breakage was shown.

この第1表の結果から明らかなように、低温の仕上げ焼
純処理を施すことにより、そのような焼純処理の為され
ていない材料に比して、電気伝導度、曲げ、硬さ等が改
善され、特に250℃以上の焼純温度で、なかでも30
0℃以上で各特性値の向上が認められることが理解され
るのである。
As is clear from the results in Table 1, by applying a low-temperature finish sintering treatment, the electrical conductivity, bending, hardness, etc. are improved compared to materials that have not been subjected to such sintering treatment. improved, especially at sintering temperatures of 250°C or higher, especially 30°C.
It is understood that improvements in each characteristic value are observed at temperatures above 0°C.

゛・1、゛え ゝf; 実施例 2 下記第2表に示される種々なる合金組成となるように、
電気銅地金、中間合金、及び/又は添加元素単体を適宜
用いて、高周波電気炉にて所定の銅合金溶湯を溶製し、
そして鋳造を行なうことにより、目的とする各種のリー
ドフレーム用銅合金インゴット(150nX 100n
X 50n)を造塊した。
Example 2 Various alloy compositions shown in Table 2 below were prepared.
Melt a specified copper alloy molten metal in a high-frequency electric furnace using an electrolytic copper ingot, an intermediate alloy, and/or an additive element as appropriate,
Then, by casting, various desired copper alloy ingots for lead frames (150nX 100n
X 50n) was agglomerated.

次いで、この得られた試料阻1〜10の銅合金インゴッ
トを用いて、それぞれ、約930℃の温度にて150の
厚さになるまで熱間圧延し、更にその後、この熱間圧延
材を板厚が5msになるまで(加工度−67%)第一段
の冷間圧延を行ない、そしてその後、475℃の温度で
4時間の焼純時効処理を施した0次いで、更に厚さがQ
、 5 amになるまで(加工度−90%)第二段の冷
間圧延を行ない、更にその後、350℃の温度で10分
間の仕上げ焼純処理を施した。
Next, using the obtained copper alloy ingots of Samples 1 to 10, each was hot rolled at a temperature of about 930°C to a thickness of 150°C, and then the hot rolled material was rolled into a plate. The first stage of cold rolling was performed until the thickness became 5ms (working degree -67%), and then the sintering aging treatment was performed at a temperature of 475°C for 4 hours.
, 5 am (working degree -90%), and then a final sintering treatment was performed at a temperature of 350° C. for 10 minutes.

かくして得られた各種の焼純処理材につし1て、実施例
1と同様にして引張試験、曲げ試験、耐熱性試験、電気
伝導度測定をそれぞれ行ない、その結果を、従来のリー
ドフレーム用材料(11m11〜13)のものと共に、
下記第3表に併ゎせ示した。
The various sintered materials thus obtained were subjected to tensile tests, bending tests, heat resistance tests, and electrical conductivity measurements in the same manner as in Example 1, and the results were compared to those for conventional lead frames. Along with the materials (11m11-13),
It is also shown in Table 3 below.

なお、下記第3表中の耐熱性(軟化温度)及び曲げ性(
回数)の評価記号は、それぞれ、下記の如き意味を有す
るものである。
In addition, the heat resistance (softening temperature) and bendability (
The evaluation symbols (number of times) have the following meanings.

第   2   表 第   3   表 かかる第2表及び第3表の結果から明らかなように、本
発明に従う合金組成からなる嵐1〜磁5の焼純処理材に
あっては、何れも優れた引張強さ、耐熱性、曲げ性と共
に、良好な電気伝導度を有しているのに対して、比較品
或いは従来品である隘6〜13の材料にあっては、何れ
も何等かの欠陥が内在しているのである。
Table 2 Table 3 As is clear from the results in Tables 2 and 3, the sintered materials Arashi 1 to Magne 5, which are made of alloy compositions according to the present invention, all have excellent tensile strength. However, the comparative products and the conventional materials in Nos. 6 to 13 all have some inherent defects. That's what I'm doing.

なお、合金組成中のZrが規定値(上限)を大幅に超え
た場合にあっては、930℃の熱間圧延後の空冷過程に
おいて、焼きが充分に入らないために、最終製品におけ
る機械的性能が不足したり、換言すれば強度不良となっ
たり、電気伝導度が低下したりする等の障害を惹起する
のである。
In addition, if Zr in the alloy composition significantly exceeds the specified value (upper limit), it will not be sufficiently hardened in the air cooling process after hot rolling at 930°C, resulting in mechanical problems in the final product. This causes problems such as insufficient performance, or in other words, poor strength and decreased electrical conductivity.

実施例 3 0.90重量%のCr、0.08重量%のZr、0.0
3重量%のStを含み、残部がCuの合金組成よりなる
100mX100mX150宵鳳のインゴットを溶製し
、そしてこのインゴットを約930℃の温度にて15朋
の厚さになるまで熱間圧延した9次いで、この熱間圧延
材に対して、下記第4表に示される如き各種の条件下に
、それぞれ、第一段の冷間圧延、焼純時効処理、第二段
の冷間圧延、及び仕上げ焼純処理を施し、目的とする各
種の焼純処理材を得た。
Example 3 0.90 wt% Cr, 0.08 wt% Zr, 0.0
A 100 m x 100 m x 150 Yoiho ingot having an alloy composition containing 3% by weight of St and the balance being Cu was melted, and this ingot was hot rolled at a temperature of about 930°C to a thickness of 15 mm. Next, this hot rolled material was subjected to first stage cold rolling, sinter aging treatment, second stage cold rolling, and finishing under various conditions as shown in Table 4 below. A sintering treatment was performed to obtain various desired sintering treatment materials.

かくして得られた種々なる焼純処理材について、その引
張試験、曲げ試験、耐熱性試験、及び電気伝導度測定を
実施例1と同様にしてそれぞれ行ない、その結果を下記
第5表に示した。なお、第5表中の曲げ性及び耐熱性の
評価記号は、実施例2の場合と同様な意味を有するもの
である。
The various sintered materials thus obtained were subjected to tensile tests, bending tests, heat resistance tests, and electrical conductivity measurements in the same manner as in Example 1, and the results are shown in Table 5 below. Note that the evaluation symbols for bendability and heat resistance in Table 5 have the same meanings as in Example 2.

第   5   表 かかる第4表及び第5表の比較から明らかなように、材
料の引張強さに対しては第一段の冷間圧延が、また電気
伝導度、曲げ性及び耐熱性に対しては第二段の冷間圧延
の影響が大きく、本発明に従って第一段の冷間圧延を3
0〜80%の加工度にて行ない、そして第二段の冷間圧
延を80%以上の加工度とすることにより、目的とする
良好な特性、即ち引張強さ、電気伝導度、曲げ性、耐熱
性の何れをも満足する、リードフレーム用材料が得られ
ることが理解される。
Table 5 As is clear from the comparison of Tables 4 and 5, the first cold rolling improves the tensile strength of the material, and the electrical conductivity, bendability and heat resistance of the material. The influence of the second stage cold rolling is large, and according to the present invention, the first stage cold rolling is
By performing the second stage cold rolling with a working degree of 0 to 80% and a working degree of 80% or more, desired properties such as tensile strength, electrical conductivity, bendability, It is understood that a lead frame material that satisfies all heat resistance requirements can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 重量基準にて、0.03%〜0.14%のジルコニウム
と0.2%〜1.5%のクロムとを、少なくとも含むC
u−Cr−Zr系鋼合金鋳塊に対して、所定の熱間加工
を行なった後、30〜80%の加工度にて第一の冷間加
工を行ない、次いで所定の時効処理を施した後、更に8
0%以上の加工度にて第二の冷間加工を行ない、そして
その後に前記時効処理温度よりも低い温度にて焼純処理
を施すことを特徴とするリードフレーム用銅合金材の製
造法。
C containing at least 0.03% to 0.14% zirconium and 0.2% to 1.5% chromium on a weight basis
After performing predetermined hot working on the u-Cr-Zr steel alloy ingot, a first cold working was performed at a working degree of 30 to 80%, and then a predetermined aging treatment was performed. After that, 8 more
A method for manufacturing a copper alloy material for a lead frame, comprising performing a second cold working at a working degree of 0% or more, and then performing a sintering treatment at a temperature lower than the aging treatment temperature.
JP16397984A 1984-08-03 1984-08-03 Manufacture of copper alloy material for lead frame Pending JPS6141751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16397984A JPS6141751A (en) 1984-08-03 1984-08-03 Manufacture of copper alloy material for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16397984A JPS6141751A (en) 1984-08-03 1984-08-03 Manufacture of copper alloy material for lead frame

Publications (1)

Publication Number Publication Date
JPS6141751A true JPS6141751A (en) 1986-02-28

Family

ID=15784445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16397984A Pending JPS6141751A (en) 1984-08-03 1984-08-03 Manufacture of copper alloy material for lead frame

Country Status (1)

Country Link
JP (1) JPS6141751A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102716A1 (en) * 2017-11-21 2019-05-31 三菱マテリアル株式会社 Mold material for casting and copper alloy material
WO2020170956A1 (en) * 2019-02-20 2020-08-27 三菱マテリアル株式会社 Copper alloy material, commutator segment, and electrode material
CN112981170A (en) * 2021-02-05 2021-06-18 宁波金田铜业(集团)股份有限公司 Chromium-zirconium-copper alloy for cold heading and preparation method thereof
CN113439128A (en) * 2019-02-20 2021-09-24 三菱综合材料株式会社 Copper alloy material, commutator segment, and electrode material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102716A1 (en) * 2017-11-21 2019-05-31 三菱マテリアル株式会社 Mold material for casting and copper alloy material
JP2019094530A (en) * 2017-11-21 2019-06-20 三菱マテリアル株式会社 Mold material for casting, and copper alloy material
CN111212923A (en) * 2017-11-21 2020-05-29 三菱综合材料株式会社 Casting die material and copper alloy material
WO2020170956A1 (en) * 2019-02-20 2020-08-27 三菱マテリアル株式会社 Copper alloy material, commutator segment, and electrode material
CN113439128A (en) * 2019-02-20 2021-09-24 三菱综合材料株式会社 Copper alloy material, commutator segment, and electrode material
CN112981170A (en) * 2021-02-05 2021-06-18 宁波金田铜业(集团)股份有限公司 Chromium-zirconium-copper alloy for cold heading and preparation method thereof
CN112981170B (en) * 2021-02-05 2022-04-12 宁波金田铜业(集团)股份有限公司 Chromium-zirconium-copper alloy for cold heading and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JPH0625388B2 (en) High strength, high conductivity copper base alloy
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP2006009137A (en) Copper alloy
JP2011508081A (en) Copper-nickel-silicon alloy
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
US20110005644A1 (en) Copper alloy material for electric/electronic parts
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPS6338543A (en) Copper alloy for electronic appliance and its manufacture
JPS6142772B2 (en)
JPH034612B2 (en)
JPS628491B2 (en)
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0469217B2 (en)
JPH09143597A (en) Copper alloy for lead frame and its production
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability
JPS62227052A (en) Copper-base alloy for terminal and connector and its production
JPS6148545A (en) High strength copper alloy for electrically conductive material