JPS62227052A - Copper-base alloy for terminal and connector and its production - Google Patents

Copper-base alloy for terminal and connector and its production

Info

Publication number
JPS62227052A
JPS62227052A JP7036486A JP7036486A JPS62227052A JP S62227052 A JPS62227052 A JP S62227052A JP 7036486 A JP7036486 A JP 7036486A JP 7036486 A JP7036486 A JP 7036486A JP S62227052 A JPS62227052 A JP S62227052A
Authority
JP
Japan
Prior art keywords
copper
hot
annealing
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7036486A
Other languages
Japanese (ja)
Other versions
JPH0314901B2 (en
Inventor
Akira Sugawara
章 菅原
Naoyuki Kanehara
尚之 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP7036486A priority Critical patent/JPS62227052A/en
Publication of JPS62227052A publication Critical patent/JPS62227052A/en
Publication of JPH0314901B2 publication Critical patent/JPH0314901B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled copper-base alloy excellent in spring characteristic, strength, electric conductivity, and workability, by subjecting a copper- base alloy having a specific composition successively to hot rolling, cold rolling, annealing, cold rolling, and tension annealing under specific conditions. CONSTITUTION:A slab of the copper-base alloy consisting of, by weight, 1.0-3.0% Sn, 0.05-0.40% Ni, 0.16-0.40% Fe, 0.05-0.10% P, and the balance Cu with inevitable impurities is prepared. This slab is hot-rolled at >=700 deg.C finishing temp. of hot rolling at >=60% draft and cooled through the temp. range from the finishing temp. of hot rolling to <=300 deg.C at >=30 deg.C/min cooling rate. Subsequently, after subjected, if necessary, to pickling treatment, etc., this hot-rolled plate is subjected to the first cold rolling at >=about 50% draft, to annealing at 400-600 deg.C for 5-720min, and to cold rolling until the desired thickness is reached. Then this cold-rolled stock is subjected to tension annealing treatment at 300-750 deg.C for 5-180sec.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ばね性1強度、導電率および加工性が共に優
れた端子・コネクター用の銅基合金およびその製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper-based alloy for terminals and connectors that has excellent spring properties, strength, electrical conductivity, and workability, and a method for producing the same.

〔従来の技術〕[Conventional technology]

プラグ側およびソケット側の導電端子を構成する端子・
コネクター用材料は、その形状や大きさを問わず0弾性
9強度、応力緩和特性、耐食性等の様々の緒特性を兼備
したうえ加工が容易で且つ安価な材料であることが要求
される。かような端子・コネクター用材料として、従来
より最も普通に使用されているものに黄銅およびりん青
銅がある。
Terminals that make up the conductive terminals on the plug side and socket side
Materials for connectors are required to have various properties such as elasticity, strength, stress relaxation properties, and corrosion resistance, regardless of their shape or size, and to be easy to process and inexpensive. Brass and phosphor bronze are the most commonly used materials for such terminals and connectors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

黄銅は成形加工性が非常に良好で且つ安価であるという
長所を持つが、耐食性、耐応力腐食割れ性が極端に悪い
ので、急激な進歩を遂げている最近の電気または電子工
業における端子・コネクター材料としては信頼性に欠け
る場合がある。りん青銅は強度、ばね性、耐食性および
耐応力腐食割れ性は良好であるが、Snを3.0%以上
含有するので高価であり、また応力−緩和性が悪いとい
う問題がある。
Brass has the advantages of very good moldability and low cost, but it has extremely poor corrosion resistance and stress corrosion cracking resistance, so it is not suitable for terminals and connectors in the electrical or electronic industry, which is undergoing rapid progress in recent years. The material may be unreliable. Although phosphor bronze has good strength, elasticity, corrosion resistance, and stress corrosion cracking resistance, it is expensive because it contains 3.0% or more of Sn, and it also has problems in that it has poor stress relaxation properties.

〔問題点を解決する手段〕[Means to solve problems]

本発明は上記のような問題点を解決した端子・コネクタ
ー用材料として2重量%において、5nH1,0〜3.
0%、 N i ; 0.05〜0.40%、Fe;0
.16〜0゜40%、  P ;0.05〜0.10%
、残部がCuおよび不可避的不純物からなる銅基合金を
提供するものである。本発明による銅基合金は、Snの
適量の添加によってばね性を発現させると共に強度を高
め且つFe−P系、Fe−N1−P系化合物による析出
硬化によって端子・コネクターにとって好ましい緒特性
を発現した点に基本的な特徴がある。そして。
The present invention is a material for terminals and connectors that solves the above-mentioned problems, and has 5nH1.0 to 3.5nH at 2% by weight.
0%, Ni; 0.05-0.40%, Fe; 0
.. 16~0°40%, P; 0.05~0.10%
, the balance being Cu and unavoidable impurities. The copper-based alloy according to the present invention exhibits spring properties and increases strength by adding an appropriate amount of Sn, and exhibits properties favorable for terminals and connectors by precipitation hardening with Fe-P and Fe-N1-P compounds. Points have basic characteristics. and.

端子・コネクターにとって好ましい緒特性を有利に発現
させるための本発明合金の製造法として。
As a method for producing the alloy of the present invention for advantageously exhibiting properties desirable for terminals and connectors.

S n ; 1.o〜3.0%、  N i ; 0.
05〜0.40%、  Fe: 0.16〜0.40%
、  P 、0.05〜0.10%、残部がCuおよび
不可避的不純物からなる銅基合金の鋳片を製造する工程
Sn; 1. o~3.0%, N i ; 0.
05~0.40%, Fe: 0.16~0.40%
, P, 0.05 to 0.10%, the balance being Cu and inevitable impurities.

この鋳片を圧下率60%以上、熱延仕上温度700℃以
上のもとて熱間圧延したうえ、該熱延仕上温度から30
0℃以下の温度にまで30℃/分以上の冷却速度で冷却
して熱延板を得る工程。
This slab was hot-rolled at a reduction rate of 60% or more and a hot-rolling finishing temperature of 700°C or more, and then
A process of obtaining a hot-rolled sheet by cooling to a temperature of 0°C or lower at a cooling rate of 30°C/min or more.

得られた熱延板を圧下率50%以上のもとて第一回目の
冷間圧延を行い、この第一回目の冷間圧延のあとで40
0〜600℃の温度で5〜720分間の焼鈍を行う工程
The obtained hot-rolled sheet is subjected to the first cold rolling with a reduction ratio of 50% or more, and after this first cold rolling, the
A step of annealing at a temperature of 0 to 600°C for 5 to 720 minutes.

この焼鈍材を、所望板厚にまで冷間圧延によって板厚減
少を行う工程、そして。
A step of reducing the thickness of this annealed material by cold rolling to a desired thickness;

最終冷間圧延後に300〜750℃の温度で5〜180
秒のテンシジンアニールを行う工程。
5-180 at a temperature of 300-750℃ after final cold rolling
Process of performing tensidine annealing for seconds.

を経る端子・コネクター用銅基合金の製造法を提供する
ものである。
The present invention provides a method for producing copper-based alloys for terminals and connectors.

本発明の銅基合金の添加元素の含有量(重量%)につい
て、その範囲を定めた理由の概要を説明すると次の如く
である。
The reason for determining the range of the content (% by weight) of additional elements in the copper-based alloy of the present invention is as follows.

Snは、銅マトリツクス中に固溶して強度とばね限界値
を向上させる。この効果はSn含有量が1.0%未満で
は十分ではなく、他方+  Sn含有量が3.0%を越
えると導電性および熱間加工性が悪くなり、また経済的
にも不利となる。この理由から本発明銅基合金のSn含
有量は1.0〜2.0%の範囲とする。
Sn is dissolved in the copper matrix to improve strength and spring limit. This effect is not sufficient when the Sn content is less than 1.0%, and on the other hand, when the Sn content exceeds 3.0%, the conductivity and hot workability deteriorate, and it is also economically disadvantageous. For this reason, the Sn content of the copper-based alloy of the present invention is in the range of 1.0 to 2.0%.

Niは、銅マトリツクス中に固溶して強度、耐軟化性お
よび耐食性を向上させるが、さらに1本発明合金の特徴
であるFe−N1−P系化合物の形成に寄与する元素で
あり、このためには少なくとも0.05%以上の添加が
必要である。しかし、 0.40%を越えて含有させる
と、R電率の低下が顕著となり、また経済的にも不利と
なる。したがって。
Ni is a solid solution in the copper matrix to improve strength, softening resistance, and corrosion resistance, but it is also an element that contributes to the formation of Fe-N1-P-based compounds, which is a characteristic of the alloy of the present invention. It is necessary to add at least 0.05% or more. However, if the content exceeds 0.40%, the R-electricity will drop significantly and it will also be economically disadvantageous. therefore.

Ni含有量は0.05〜0.40%とする。The Ni content is 0.05 to 0.40%.

Feは、洞マトリックス中に過飽和に固溶させると時効
によりPあるいはNi及びPと化合物を形成して銅マト
リツクス中に析出し1強度、ばね限界値および耐軟化性
を向上させる。Fe含有量が0.16%未満では強度、
ばね限界値および耐軟化性が低く、0.40%を越える
と4電率および成形加工性が低下する。したがって、F
e含有量は0.16〜0.40%の範囲とする。
When Fe is dissolved as a supersaturated solid solution in the cavity matrix, it forms a compound with P or Ni and P by aging and precipitates in the copper matrix, improving the strength, spring limit value, and softening resistance. When the Fe content is less than 0.16%, the strength
The spring limit value and softening resistance are low, and if it exceeds 0.40%, the tetraelectricity and moldability will decrease. Therefore, F
The e content is in the range of 0.16 to 0.40%.

Pは1本発明合金の溶製時において脱酸剤として機能し
、SnおよびFeの酸化防止作用も供して□健全なイン
ゴットを得るうえで重要な役割を果たす。そして、銅マ
トリツクス中に過飽和に固溶したPは、FeあるいはF
e及びNiと共にFe−P系化合物、Fe−Nt−P系
化合物を形成する。P含有量が0.05%未満ではこの
ような効果が十分ではなく、また0、10%を越えて添
加すると導電性および加工性が悪くなる。したがって、
P含有量は0.05〜0.10%の範囲とする。
P functions as a deoxidizing agent during melting of the alloy of the present invention, and also provides an anti-oxidation effect of Sn and Fe, thus playing an important role in obtaining a healthy ingot. The supersaturated solid solution of P in the copper matrix is Fe or F.
Together with e and Ni, it forms a Fe-P compound and a Fe-Nt-P compound. If the P content is less than 0.05%, such effects will not be sufficient, and if it is added in excess of 0.10%, the conductivity and processability will deteriorate. therefore,
The P content is in the range of 0.05 to 0.10%.

このような成分組成をもつ本発明に従う銅基合金は、主
としてSnおよびNiによる固溶強化とFe−P系化合
物、Fe−NL−P系化合物の析出硬化との相乗的な効
果によって、端子・コネクターに必要な強度とばね限界
値を兼備し且つ十分な導電率を具備することができる。
The copper-based alloy according to the present invention having such a component composition has terminal and hardening properties mainly due to the synergistic effect of solid solution strengthening by Sn and Ni and precipitation hardening of Fe-P-based compounds and Fe-NL-P-based compounds. It can have both the strength and spring limit value required for the connector, and also have sufficient electrical conductivity.

このような緒特性は鋳片から熱間圧延工程と冷間圧延工
程を経て所望の板厚にまで加工するさいの製造条件を適
切にコントロールすることによって有利に発揮させるこ
とができる。以下にその製造法の詳細を説明する。
These properties can be advantageously brought out by appropriately controlling the manufacturing conditions when processing a slab to a desired thickness through hot rolling and cold rolling. The details of the manufacturing method will be explained below.

熱間圧延工程 本発明に従う成分組成の鋳片を溶解鋳造によって製造し
、この鋳片(鋳塊)を熱間圧延に供するのであるが、こ
の熱間圧延は鋳片を850 ℃以上に加熱し、熱延圧下
率を60%以上、好ましくは90%以上とじ熱延仕上温
度を700℃以上として実施するのがよい。これによっ
て、鋳造組織を完全につぶすことができ、且つ鋳塊に生
じている偏析の影響をなくすことができる。
Hot rolling process A slab having the composition according to the present invention is produced by melting and casting, and this slab (ingot) is subjected to hot rolling. It is preferable to carry out the hot rolling with a reduction ratio of 60% or more, preferably 90% or more, and a hot rolling finishing temperature of 700° C. or more. As a result, the cast structure can be completely crushed, and the influence of segregation occurring in the ingot can be eliminated.

そして、熱延仕上温度から300℃以下にまでの温度域
を30℃/分以上の冷却速度で冷却する。この冷却は熱
延したあとただちに急水冷を実施することによって行う
のがよい、これよってF e、 N iおよびPが完全
に固溶した熱延材を得ることができる。この熱延後の冷
却を30℃/分より遅い冷却速度で行うとその冷却過程
においてこれらの元素が析出して粗大なFe−P系、F
e−N1−P系化合物が生じてしまう。この温度域を前
記のように急冷したとしてもその急冷開始温度が700
 ’Cより低いと、また急冷開始温度か700 ℃以上
であっても冷却速度が30℃/分より遅いと、この間に
粗大な析出物が析出する。この段階で析出した析出物は
母相と不整合であり、これによるばね限界値並びに応力
緩和特性の向上は期待できない。したがって本発明にお
いてはFe、Ni、Pが完全に固溶した状態の熱延板が
得られるような熱延条件を採用する点に一つの特徴があ
る。なおこの急冷のさいの冷却終点温度については3o
o℃以下であればよい。
Then, cooling is performed in a temperature range from the hot rolling finishing temperature to 300° C. or less at a cooling rate of 30° C./min or more. This cooling is preferably carried out by performing rapid water cooling immediately after hot rolling, thereby making it possible to obtain a hot rolled material in which Fe, Ni and P are completely dissolved in solid solution. If this cooling after hot rolling is performed at a cooling rate slower than 30°C/min, these elements will precipitate during the cooling process, resulting in coarse Fe-P system, F
e-N1-P type compounds are generated. Even if this temperature range is quenched as described above, the quenching start temperature will be 700
If the temperature is lower than 'C, or if the cooling rate is slower than 30°C/min even if the quenching start temperature is 700°C or higher, coarse precipitates will precipitate during this time. The precipitates precipitated at this stage are incompatible with the parent phase, and improvements in the spring limit value and stress relaxation properties cannot be expected from this. Therefore, one feature of the present invention is that hot rolling conditions are adopted such that a hot rolled sheet in which Fe, Ni, and P are completely dissolved in solid solution is obtained. The cooling end point temperature during this rapid cooling is 3o.
It is sufficient if the temperature is below 0°C.

300℃以下−の温度においてはFe−P系化合物およ
びFe−N1−P系化合物の析出は実質上起こらないか
らである。
This is because precipitation of Fe--P compounds and Fe--N1--P compounds does not substantially occur at temperatures below 300.degree.

冷間圧延および焼鈍工程 前工程で得られた熱延板は次いで必要に応じて表面研削
あるいは酸洗を行ったあと、焼鈍を挟んだ冷間圧延を必
要回数行って所望板厚にまで冷延するのであるが、最初
の冷間圧延と焼鈍の条件を適切にして、この段階で微細
なFe−P系、  Fe−N1−P系化合物を均一に析
出させる。
The hot-rolled sheet obtained in the pre-process of cold rolling and annealing is then subjected to surface grinding or pickling as necessary, and then cold-rolled to the desired sheet thickness by performing cold rolling with annealing a necessary number of times. However, by adjusting the initial cold rolling and annealing conditions appropriately, fine Fe-P and Fe-N1-P compounds are precipitated uniformly at this stage.

まず、第一回目の冷間圧延は圧下率50%以上。First, the first cold rolling has a reduction rate of 50% or more.

好ましくは80%以上で行ない、この第一回目の冷間圧
延後の焼鈍を400〜600℃の温度で5〜720分の
条件で実施する。この最初の冷間圧延および焼鈍の条件
は本発明において極めて重要である。
It is preferably carried out at 80% or more, and annealing after this first cold rolling is carried out at a temperature of 400 to 600° C. for 5 to 720 minutes. This initial cold rolling and annealing conditions are extremely important in the present invention.

第一回目の冷間圧延の圧下率が50%未満では圧延組織
が均質化せず、引続く焼鈍においてFe−P系。
If the reduction ratio in the first cold rolling is less than 50%, the rolling structure will not be homogenized, and the Fe-P system will be formed in the subsequent annealing.

F e−N i−P系化合物が均一微細に析出できなく
なる。この最初の焼鈍を600℃を越える温度で実施す
ると、析出物が凝集粗大化し、ばね限界値並びに成形加
工性の一層の向上が期待できな(なるし。
The F e-N i-P compound cannot be precipitated uniformly and finely. If this first annealing is carried out at a temperature exceeding 600°C, the precipitates will aggregate and become coarse, and further improvements in the spring limit value and moldability cannot be expected.

400℃未満の温度では析出させるに要する時間が長く
なりすぎるので、最初の焼鈍は400〜600℃の温度
で行い、焼鈍時間は5〜720分の範囲で行えばよい。
At a temperature below 400°C, the time required for precipitation is too long, so the first annealing may be performed at a temperature of 400 to 600°C, and the annealing time may be in the range of 5 to 720 minutes.

焼鈍時間が5分未満では析出物の形成が不十分であり、
またこの焼鈍による伸びの回復も十分ではない、しかし
、720分を越えるような長時間では微細に析出した析
出物の成長が進行するようになるの+好ましくなく、経
済的にも負担となる。
If the annealing time is less than 5 minutes, the formation of precipitates is insufficient;
Furthermore, recovery of elongation by this annealing is not sufficient, but if the annealing is performed for a long time, such as over 720 minutes, the growth of fine precipitates will proceed, which is not preferable and is also an economic burden.

このようにして第一回目の冷間圧延と焼鈍を適切に行う
ことによって、Fe−P系、Fa−Ni−P系化合物が
微細且つ均一に析出した材料となるが。
By appropriately performing the first cold rolling and annealing in this manner, a material is obtained in which Fe-P and Fa-Ni-P compounds are finely and uniformly precipitated.

以後は所望厚さにまで、冷間圧延を必要に応じて必要回
数実施すればよい。そのさい数回の冷間圧延を行う場合
には中間焼鈍を挟んでもよい。
Thereafter, cold rolling may be performed as many times as necessary until the desired thickness is achieved. If cold rolling is performed several times during this process, intermediate annealing may be performed.

そして、所望板厚にまで冷間圧延したあとの冷延材に、
 300〜750 ’Cの温度で5〜180秒のテンシ
ョンアニール処理を実施する。このテンションアニール
によってばね限界値の向上と伸びの回復が実現でき、均
質且つ平坦度の良好な製品を得ることができる。このテ
ンションアニール処理を実施するにさいし、300を未
満の温度では局部残留応力除去の効果が少なく、他方、
750℃を越える温度では短時間でも材料が軟化してし
まうので、テンションアニールの処理温度は300〜7
50℃の範囲で行うのがよ°い。また、その処理時間に
ついては5秒未満でば均質な材料が得られず、180秒
を越えても効果には差が現れないので、5〜180秒の
範囲とするのがよい。
Then, after cold rolling to the desired thickness,
Perform a tension annealing treatment at a temperature of 300-750'C for 5-180 seconds. By this tension annealing, it is possible to improve the spring limit value and recover the elongation, and it is possible to obtain a product that is homogeneous and has good flatness. When carrying out this tension annealing treatment, if the temperature is less than 300℃, the effect of local residual stress removal is small; on the other hand,
If the temperature exceeds 750℃, the material will soften even for a short time, so the treatment temperature for tension annealing is 300℃ to 750℃.
It is best to do this at a temperature of 50°C. Further, regarding the treatment time, if it is less than 5 seconds, a homogeneous material cannot be obtained, and if it exceeds 180 seconds, no difference will be seen in the effect, so it is preferable to set the treatment time to a range of 5 to 180 seconds.

以下に本発明の実施例を挙げる。Examples of the present invention are listed below.

実施例 第1表にその化学成分値(重量%)を示すNll−7の
銅基合金を高周波真空溶解炉を用いて溶製し、 40m
m X 40mm X 140mmの鋳塊に鋳造した。
Example A copper-based alloy of Nll-7 whose chemical composition values (wt%) are shown in Table 1 was melted using a high frequency vacuum melting furnace, and a 40 m
It was cast into an ingot measuring m x 40 mm x 140 mm.

この鋳塊を40mm X 40mm X 20mmの大
きさに切断し、この鋳片を850℃で均熱したあと、W
−さ51+1mまで熱間圧延を行い、750℃の温度か
ら水中に冷却した。
This ingot was cut into pieces of 40 mm x 40 mm x 20 mm, and after soaking this ingot at 850°C,
- Hot rolling was carried out to a length of 51+1 m, and the sample was cooled in water from a temperature of 750°C.

得られた熱延板を第一回目の冷間圧延によって厚さl 
、 Ommまで冷延し1次いで550℃×60分間の焼
鈍を行った。そして1圧下率50%で冷間圧延し。
The obtained hot-rolled sheet was cold-rolled for the first time to a thickness of 1
It was cold rolled to a thickness of 0.0 mm and then annealed at 550° C. for 60 minutes. Then, it was cold rolled at a rolling reduction of 50%.

厚さ0.5mmの冷延板を得た。得られた冷延板を10
Jf/mm”の張力を付加しながら、400℃X20秒
間のテンションアニール処理を施した。この処理を終え
た材料を試験材とした。なお表中の1lh8は前記の製
造工程を経たものではなく、市販のりん青銅を低温焼鈍
したものである。
A cold-rolled plate with a thickness of 0.5 mm was obtained. 10 of the obtained cold-rolled sheets
Tension annealing was performed at 400°C for 20 seconds while applying a tension of Jf/mm''.The material after this treatment was used as the test material.In addition, 1lh8 in the table did not go through the above manufacturing process. , commercially available phosphor bronze annealed at low temperature.

各試験材の引張強さ、伸び、導電率、ばね限界値、軟化
温度を測定し5また90°−曲げ加工試験に供した。こ
れらの測定結果を第1表に併記した。
The tensile strength, elongation, electrical conductivity, spring limit value, and softening temperature of each test material were measured and subjected to a 90° bending test. These measurement results are also listed in Table 1.

引張強さと伸びの測定はJIS−Z−2241に、導電
率の測定はJIS−H−0505に、そしてばね限界値
の測定はJIS−11−3130に従った。軟化温度は
、試料をその温度で30分加熱したときに加熱後の硬度
が初期硬度の80%となったときの温度である。90°
−曲げ加工試験は(:BS−MOOO2−6の規定に従
ワた。すなわち、R・0 、2mmの冶具で900讐曲
げ加工したときの中央郡山表面の状況を馴べ1割れが発
生したものを×、ややシワが発生したものを△、良好な
ものをOと評価した。
The tensile strength and elongation were measured in accordance with JIS-Z-2241, the electrical conductivity was measured in accordance with JIS-H-0505, and the spring limit value was measured in accordance with JIS-11-3130. The softening temperature is the temperature at which the hardness after heating becomes 80% of the initial hardness when the sample is heated at that temperature for 30 minutes. 90°
- The bending test was conducted in accordance with the regulations of BS-MOOO2-6. In other words, the condition of the Chuo Koriyama surface when bending was performed for 900 degrees with an R・0, 2 mm jig, and one crack occurred. The results were evaluated as ×, those with slight wrinkles were evaluated as △, and those that were good were evaluated as O.

また、第1表の本発明合金患3と比較合金陽8について
、応力緩和特性の測定を行い、その結果を第2表に示し
た。試験は試験片の中央部の応力が耐力の80%となる
ようにU字曲げを行い、150℃の温度で1000時間
保持後の曲げぐせを応力緩和率として次式により算出し
た。
Furthermore, the stress relaxation properties of the present invention alloy No. 3 and comparative alloy No. 8 shown in Table 1 were measured, and the results are shown in Table 2. In the test, U-shaped bending was performed so that the stress at the center of the test piece was 80% of the yield strength, and the bending after holding at a temperature of 150° C. for 1000 hours was calculated as the stress relaxation rate using the following formula.

応力緩和率C1)= ((t、+−t、z)/(t、+
  −L6)) X100ただし、Lo;冶具の長さく
mm) L+;開始時の試料長さくmm) Lzi処理後の試料端間の水平路jil(mm)である
Stress relaxation rate C1) = ((t, + - t, z)/(t, +
-L6))

第2表 第1表の結果から次のことが明らかである。Table 2 The following is clear from the results in Table 1.

本発明によるl1hl〜患4の合金は、いずれも引張強
さ50kgf/mm”以上、ばね限界値45kgf/m
m”以上を示し、導電率3曲げ加工性に優れ且つ軟化温
度も高い。したがって、端子・コネクター用銅基合金と
して非常に優れた合金であることがわかる。
The alloys 11hl to 4 according to the present invention all have a tensile strength of 50 kgf/mm" or more and a spring limit of 45 kgf/m.
m" or higher, has excellent electrical conductivity 3 bending workability, and has a high softening temperature. Therefore, it can be seen that it is an extremely excellent copper-based alloy for terminals and connectors.

これに対し、Snが本発明で規定するより少ない患5の
比較合金は強度およびばね限界値が低い。
On the other hand, Comparative Alloy No. 5, which has a smaller Sn content than specified in the present invention, has low strength and spring limit values.

また、Feが本発明で規定するより多い隘6の比較合金
は曲げ加工性が劣っており、Feを含まない比較合金阻
7は耐熱性が劣っている。
Further, the comparative alloy No. 6 containing more Fe than specified in the present invention has poor bending workability, and the comparative alloy No. 7 containing no Fe has poor heat resistance.

第2表の結果からは1本発明合金は従来の代表的な端子
・コネクター用材料であるりん青銅に比べて応力緩和特
性が優れていることがわかる。
From the results in Table 2, it can be seen that the alloy of the present invention has superior stress relaxation properties compared to phosphor bronze, which is a typical conventional material for terminals and connectors.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%において、Sn;1.0〜3.0%、Ni
;0.05〜0.40%、Fe;0.16〜0.40%
、P;0.05〜0.10%、残部がCuおよび不可避
的不純物からなる端子・コネクター用銅基合金。
(1) In weight%, Sn; 1.0 to 3.0%, Ni
;0.05~0.40%, Fe;0.16~0.40%
, P; 0.05 to 0.10%, the balance being Cu and inevitable impurities. A copper-based alloy for terminals and connectors.
(2)重量%において、Sn;1.0〜3.0%、Ni
;0.05〜0.40%、Fe;0.16〜0.40%
、P;0.05〜0.10%、残部がCuおよび不可避
的不純物からなる銅基合金の鋳片を製造する工程、 この鋳片を圧下率60%以上、熱延仕上温度700℃以
上のもとで熱間圧延したうえ、該熱延仕上温度から30
0℃以下の温度にまで30℃/分以上の冷却速度で冷却
して熱延板を得る工程。 該熱延板を圧下率50%以上のもとで第一回目の冷間圧
延を行い、この第一回目の冷間圧延のあとで400〜6
00℃の温度で5〜720分間の焼鈍を行う工程、 この焼鈍材を、所望板厚にまで冷間圧延によって板厚減
少を行う工程、そして、 最終冷間圧延後に300〜750℃の温度で5〜180
秒のテンションアニールを行う工程、 を経る端子・コネクター用銅基合金の製造法。
(2) In weight%, Sn; 1.0 to 3.0%, Ni
;0.05~0.40%, Fe;0.16~0.40%
, P: 0.05 to 0.10%, the balance being Cu and unavoidable impurities. A step of manufacturing a slab of copper-based alloy, the slab is rolled at a reduction rate of 60% or more and a hot rolling finishing temperature of 700°C or more. After hot rolling at
A process of obtaining a hot-rolled sheet by cooling to a temperature of 0°C or lower at a cooling rate of 30°C/min or more. The hot-rolled sheet is cold-rolled for the first time at a reduction rate of 50% or more, and after this first cold-rolling, the
A process of annealing at a temperature of 00°C for 5 to 720 minutes, a process of reducing the thickness of the annealed material by cold rolling to a desired thickness, and a process of reducing the thickness of the annealed material at a temperature of 300 to 750°C after the final cold rolling. 5-180
A method for producing copper-based alloys for terminals and connectors, which involves the process of performing tension annealing for seconds.
JP7036486A 1986-03-28 1986-03-28 Copper-base alloy for terminal and connector and its production Granted JPS62227052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7036486A JPS62227052A (en) 1986-03-28 1986-03-28 Copper-base alloy for terminal and connector and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7036486A JPS62227052A (en) 1986-03-28 1986-03-28 Copper-base alloy for terminal and connector and its production

Publications (2)

Publication Number Publication Date
JPS62227052A true JPS62227052A (en) 1987-10-06
JPH0314901B2 JPH0314901B2 (en) 1991-02-27

Family

ID=13429304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7036486A Granted JPS62227052A (en) 1986-03-28 1986-03-28 Copper-base alloy for terminal and connector and its production

Country Status (1)

Country Link
JP (1) JPS62227052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294461A (en) * 1990-04-10 1991-12-25 Tatsuta Electric Wire & Cable Co Ltd Production of high-strength and high-conductivity copper alloy thin wire
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
WO2009019990A1 (en) * 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
CN104046836A (en) * 2005-12-22 2014-09-17 株式会社神户制钢所 Copper alloy having excellent stress relaxation property

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113334A (en) * 1981-12-28 1983-07-06 Tamagawa Kikai Kinzoku Kk Phosphor bronze with superior hot workability
JPS60245754A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113334A (en) * 1981-12-28 1983-07-06 Tamagawa Kikai Kinzoku Kk Phosphor bronze with superior hot workability
JPS60245754A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS62156242A (en) * 1985-12-27 1987-07-11 Mitsubishi Electric Corp Copper-base alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294461A (en) * 1990-04-10 1991-12-25 Tatsuta Electric Wire & Cable Co Ltd Production of high-strength and high-conductivity copper alloy thin wire
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
US6132529A (en) * 1995-10-09 2000-10-17 Dowa Mining Co., Ltd. Leadframe made of a high-strength, high-electroconductivity copper alloy
CN104046836A (en) * 2005-12-22 2014-09-17 株式会社神户制钢所 Copper alloy having excellent stress relaxation property
CN104046836B (en) * 2005-12-22 2016-07-27 株式会社神户制钢所 There is the copper alloy of excellent stress relaxation property
WO2009019990A1 (en) * 2007-08-07 2009-02-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
EP2184371A1 (en) * 2007-08-07 2010-05-12 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
KR101227315B1 (en) 2007-08-07 2013-01-28 가부시키가이샤 고베 세이코쇼 Copper alloy sheet
EP2184371A4 (en) * 2007-08-07 2013-05-01 Kobe Steel Ltd Copper alloy sheet
EP2695956A3 (en) * 2007-08-07 2014-06-18 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet

Also Published As

Publication number Publication date
JPH0314901B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP2011508081A (en) Copper-nickel-silicon alloy
WO2013018228A1 (en) Copper alloy
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP4396874B2 (en) Manufacturing method of copper base alloy strip for terminal
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JPS6299430A (en) Copper alloy for terminal or connector and its manufacture
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JPS62227052A (en) Copper-base alloy for terminal and connector and its production
TWI692535B (en) Titanium copper plate, pressed processed product and method for manufacturing pressed processed product
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JPH0617209A (en) Manufacture of copper alloy for electrical and electronic apparatus
JPS6142772B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JP2000273561A (en) Copper base alloy for terminal and its production
JPH01165736A (en) Copper alloy for terminal of wire harness and its manufacture
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPH01149946A (en) Manufacture of copper alloy
KR20210038639A (en) Manufacturing method of titanium copper plate, press-processed product and press-processed product
JPS63103055A (en) Manufacture of thin iron-copper alloy strip for lead frame
JPH02133555A (en) Manufacture of copper alloy bar for electronic apparatus
JPS63250444A (en) Manufacture of high-conductivity terminal and connector material excellent in migration resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term