JP4396874B2 - Manufacturing method of copper base alloy strip for terminal - Google Patents

Manufacturing method of copper base alloy strip for terminal Download PDF

Info

Publication number
JP4396874B2
JP4396874B2 JP2000075480A JP2000075480A JP4396874B2 JP 4396874 B2 JP4396874 B2 JP 4396874B2 JP 2000075480 A JP2000075480 A JP 2000075480A JP 2000075480 A JP2000075480 A JP 2000075480A JP 4396874 B2 JP4396874 B2 JP 4396874B2
Authority
JP
Japan
Prior art keywords
annealing
less
temperature
copper
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000075480A
Other languages
Japanese (ja)
Other versions
JP2001262297A (en
Inventor
一仁 一之瀬
純一 永田
巌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000075480A priority Critical patent/JP4396874B2/en
Publication of JP2001262297A publication Critical patent/JP2001262297A/en
Application granted granted Critical
Publication of JP4396874B2 publication Critical patent/JP4396874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用のコネクタ端子などに用いられる端子用銅基合金条およびその製造方法に関する。
【0002】
【従来の技術】
近年のエレクトロニクスの発展に伴い、自動車のコネクタ端子などの端子は、より一層の高密度化、小型化、軽量化、そして信頼性向上が求められるようになってきている。また、エンジンの高性能化によりエンジンルーム内の温度が上昇するに伴い、エンジンルームに使用される端子も、より高信頼性及び高耐熱性が要求されるようになってきている。
【0003】
自動車のコネクタ端子などの端子の信頼性が向上するには、具体的には、強度、ばね特性、導電性、耐応力緩和性、耐食性に優れることが必要である。例えば、導電性、耐応力緩和性を兼ね備えていないと、端子の自己発熱による酸化、めっき剥離、応力緩和、回路の電圧降下、ハウジングの軟化や変形が生じる可能性がある。
【0004】
従来より、端子用銅基合金として用いられてきた黄銅は安価ではあるが、導電率が低く、例えばC2600で27%IACSであり、耐食性や耐応力緩和性にも問題があった。また、リン青銅は強度は優れているが、導電率は低く、例えばC5210で12%IACS程度であり、耐応力緩和性にも問題があり、さらに価格も高く経済的ではなかった。
【0005】
Cu−Ni−Sn−P系合金は、これらの二種の合金の欠点を補うため開発されたものである。特公平8−9745号公報及び特開平4−154942号公報には、Cu−Ni−Sn−P系合金鋳塊を熱間圧延した後、冷間圧延と熱処理を繰り返して、端子用銅基合金条を製造する方法が記載されている。
【0006】
しかしながら、このようにして製造された、例えばCu−1.0Ni−0.9Sn−0.05P(数値は重量%)の銅基合金条は、強度、耐応力緩和性については優れているものの、導電率は38%IACSと低く、曲げ加工性も十分とはいえない。
【0007】
また、この銅基合金条は、Ni−P化合物を析出させるので、溶体化熱処理を兼ねた熱間圧延が必要であり、そのための設備投資やそれに伴う諸問題の解決が必要であり、これが生産性を著しく低下させコスト高の一因となっている。具体的には、
(1)熱間圧延時に大気中での高温加熱が必要なため、材料表面に酸化スケールが発生しやすく、その除去のため多大な研削が必要となり、材料歩留まりの低下が起きると同時に、添加元素の内部酸化や圧延時の酸化スケールの巻き込み等によって内部欠陥を生じやすい。
【0008】
(2)熱間圧延工程は、その間の温度変化を管理することは困難であり、しかも加工析出工程に相当する。つまり、熱間圧延工程中の温度変化により析出物が生じる可能性があり、しかもその析出物は粗大化しやすくなる。従って、この工程において生じた析出が、以後の工程での析出現象及び最終特性に大きな影響を及ぼしやすい。
【0009】
(3)熱間圧延時に材料を高温に加熱するため、多くのエネルギーとそれに伴う設備投資が必要であり、生産コストの増加を招く。
【0010】
【発明が解決しようとする課題】
本発明は、上記事情に鑑み、上記諸問題の発生源となる熱間圧延を省略した端子用銅基合金条の製造方法を、安価に提供することを目的とする。さらに、本発明は、従来のCu−Ni−Sn−P合金よりも優れた導電性と曲げ加工性、さらに耐応力緩和性を有する端子用銅基合金条を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、前記課題について鋭意検討した結果、Cu−Ni−Sn−P系合金、Cu−Mn−Sn−P系合金あるいはCu−Co−Sn−P系合金において、熱間圧延を省略した最適条件を選ぶことにより、優れた強度、ばね限界値、導電率、耐応力緩和性、及び曲げ加工性が得られることを見いだし、本発明に到達した。
【0012】
本発明の端子用銅基合金条の第1の態様は、重量%で、Ni:0.2〜3.0%、Sn:2.0%以下、P:0.005〜2.0%を含有し、残部がCuと不可避的不純物であり、引張強さが550MPa以上、ばね限界値が450Mpa以上、導電率が40%IACS以上、最小曲げ半径比が1以下、かつ応力緩和率が10%以下である。
【0013】
本発明の端子用銅基合金条の第2の態様は、重量%で、Mn:0.2〜3.0%、Sn:2.0%以下、P:0.005〜2.0%を含有し、残部がCuと不可避的不純物であり、引張強さが550MPa以上、ばね限界値が450Mpa以上、導電率が40%IACS以上、最小曲げ半径比が1以下、かつ応力緩和率が10%以下である。
【0014】
本発明の端子用銅基合金条の第3の態様は、重量%で、Co:0.1〜1.0%、Sn:2.0%以下、P:0.005〜1.0%を含有し、残部がCuと不可避的不純物であり、引張強さが600MPa以上、ばね限界値が500Mpa以上、導電率が50%IACS以上、最小曲げ半径比が1以下、かつ応力緩和率が10%以下である。
【0015】
本発明の端子用銅基合金条の製造方法の第1の態様は、重量%で、Ni:0.2〜3.0%、Sn:2.0%以下、P:0.005〜2.0%を含有し、残部がCuと不可避的不純物である、銅基合金を連続鋳造する第一工程、非酸化性雰囲気中で熱処理温度を500〜950℃として均質化焼鈍する第二工程、冷間圧延した後に非酸化性雰囲気中で焼鈍温度を450〜650℃として中間焼鈍することを1回以上行い、最後の中間焼鈍前の圧延率を85%以上とする第三工程、圧延率を30〜90%として仕上げ冷間圧延する第四工程、及び焼鈍温度を250〜400℃として低温焼鈍する第五工程からなる。
【0016】
第三工程で得られた中間焼鈍物が、5μm以下の再結晶粒径を有し、NiとPの一部が20nm以下のNi−P系金属間化合物となってマトリクス中に均一微細に析出した組織を有する。
【0017】
本発明の端子用銅基合金条の製造方法の第2の態様は、重量%で、Mn:0.2〜3.0%、Sn:2.0%以下、P:0.005〜2.0%を含有し、残部がCuと不可避的不純物である、銅基合金を連続鋳造する第一工程、非酸化性雰囲気中で熱処理温度を500〜950℃として均質化焼鈍する第二工程、冷間圧延した後に非酸化性雰囲気中で焼鈍温度を450〜650℃として中間焼鈍することを1回以上行い、最後の中間焼鈍前の圧延率を85%以上とする第三工程、圧延率を30〜90%として仕上げ冷間圧延する第四工程、及び焼鈍温度を250〜400℃として低温焼鈍する第五工程からなる。
【0018】
第三工程で得られた中間焼鈍物が、5μm以下の再結晶粒径を有し、MnとPの一部が20nm以下のMn−P系金属間化合物となってマトリクス中に均一微細に析出した組織を有する。
【0019】
本発明の端子用銅基合金条の製造方法の第3の態様は、重量%で、Co:0.1〜1.0%、Sn:2.0%以下、P:0.005〜1.0%を含有し、残部がCuと不可避的不純物である、銅基合金を連続鋳造する第一工程、非酸化性雰囲気中で熱処理温度を500〜980℃として均質化焼鈍する第二工程、冷間圧延した後に非酸化性雰囲気中で焼鈍温度を450〜650℃として中間焼鈍することを1回以上行い、最後の中間焼鈍前の圧延率を85%以上とする第三工程、圧延率を30〜90%として仕上げ冷間圧延する第四工程、及び焼鈍温度を300〜450℃として低温焼鈍する第五工程からなる。
【0020】
第三工程で得られた中間焼鈍物が、5μm以下の再結晶粒径を有し、CoとPの一部が20nm以下のCo−P系金属間化合物となってマトリクス中に均一微細に析出した組織を有する。
【0021】
なお、前記第1〜第3の態様の端子用銅基合金条は、各々、前記第1〜第3の態様による製造方法によって製造される。
【0022】
【発明の実施の形態】
(1)合金元素
本発明の銅基合金中の添加元素、及び本発明の銅基合金条の製造方法の第一工程で銅基合金鋳塊を溶製する際の添加元素は、次の作用効果を持つ。
【0023】
(a)Ni、Mn、Co
Ni(またはMn、Co)はCuマトリクス中に固溶して、強度・ばね特性及び耐応力緩和性を向上させる。また、共存するPと形成したNi−P系金属間化合物(Ni3P)(またはMn−P系金属間化合物(Mn3P)、Co−P系金属間化合物(Co2P))は、マトリクス中に均一微細に分散析出して、導電性を向上させ、強度・ばね特性・耐応力緩和性をさらに向上させる。
【0024】
上記Ni(またはMn、Co)の作用効果は、Ni、Mnが0.2重量%未満、Coが0.1重量%未満では十分得ることができず、Ni、Mnが3.0重量%、Coが1.0重量%を超えると飽和してしまう。従って、Ni、Mnは0.2重量%以上、3.0重量%以下が望ましく、Coは、0.1重量%以上、1.0重量%以下が望ましい。
【0025】
(b)Sn
Snは、Cuマトリクス中に固溶して強度・ばね特性を向上させる。
【0026】
上記Snの作用効果は、Sn成分が2.0重量%を超えると飽和してしまう。従って、Sn成分は2.0重量%以下が望ましい。
【0027】
(c)P
Pは、Cuマトリクス中に固溶しているだけでなく、分散析出するNi−P系金属間化合物(Ni3P)(またはMn−P系金属間化合物(Mn3P)、Co−P系金属間化合物(Co2P))を共存させるNi(またはMn、Co)と形成する。これにより、強度・導電性・ばね特性、及び耐応力緩和性を向上させる。
【0028】
上記Pの作用効果は、P成分が0.005重量%未満では十分得ることができず、P成分が、Cu−Ni(Mn)−Sn−P系合金では2.0重量%、Cu−Co−Sn−P系合金では1.0重量%を超えると飽和してしまう。従って、P成分は0.005重量%以上が必要で、Cu−Ni(Mn)−Sn−P系合金では2.0重量%以下、Cu−Co−Sn−P系合金では1.0重量%以下が望ましい。
【0029】
(2)均質化焼鈍
均質化焼鈍は、固溶元素の偏析を無くし、しかもNi(またはMn、Co)とPを十分固溶させるために行う。この固溶状態から、後工程でNi3P化合物(またはMn3P化合物、Co2P化合物)として時効析出させる。熱処理温度が500℃未満では、温度が低く、十分に元素の偏析を取り除けず、しかもNi(またはMn、Co)とPが固溶した単相(過飽和固溶体)とはならない。一方、Cu−Ni(Mn)−Sn−P系合金では950℃、Cu−Co−Sn−P系合金では980℃より高い温度になると、その温度が融点近傍であるとともに、曲げ加工性を十分向上させることが不可能となってしまう。何故なら、結晶粒径が粗大化し、後工程の冷間圧延・中間焼鈍における(仕上げ圧延に供する)再結晶粒径を5μm以下に調整することができなくなるからである。
【0030】
また、上記均質化焼鈍処理を非酸化性雰囲気で行うのは、材料表面の酸化及び内部酸化を抑制するためである。
【0031】
この時、常温で単相(過飽和状態)組織にするために、均質化焼鈍した鋳塊を急冷する。この急冷は、通常行われている水冷・空冷・油冷などにより行えばよい。
【0032】
(3)冷間圧延・中間焼鈍
上記急冷で得たコイルは、冷間圧延した後、焼鈍温度を450〜650℃として中間焼鈍する。この冷間圧延・中間焼鈍は、1回で済ませてもよいが、効率よく冷間圧延を行うために複数回行ってもよい。1回で済ませる場合は、圧延率を85%以上として冷間圧延した後、焼鈍温度を450〜650℃として中間焼鈍する。また、複数回行う場合は、冷間圧延し、次に焼鈍温度を450〜650℃として中間焼鈍した後、該冷間圧延及び該中間焼鈍する一連の操作を繰り返すが、このとき最後の中間焼鈍前の冷間圧延率は必ず85%以上とする。このように冷間圧延率の圧延率を85%以上とするのは、5μm以下の再結晶粒径にするためである。時効析出するNi3P化合物(またはMn3P化合物、Co2P化合物)の粒径は、Ni(またはMn、Co)とPとの組成にもよるが20nm以下で微細である。冷間圧延・中間焼鈍において再結晶が十分進行しないか、再結晶粒径が5μmを超えると、曲げ加工性を十分向上させることが不可能となってしまう。
【0033】
圧延率が85%未満では、後工程の仕上げ圧延に供する再結晶粒径を5μm以下に調整することが難しくなる。また、中間焼鈍温度が450℃未満では再結晶が十分進行せず、一方650℃より高い温度になると再結晶粒径が5μmより粗大になってしまう。
【0034】
(4)仕上げ冷間圧延
仕上げ冷間圧延の圧延率は、30〜90%とする。30%未満では強度及び耐応力緩和性が低下し、一方90%を超えると曲げ加工性が低下する。
【0035】
(5)低温焼鈍
Ni3P化合物(またはMn3P化合物、Co2P化合物)を十分析出させると同時に、再結晶を進行させることなく歪取りを行って、十分な曲げ加工性を与えるために行う。そのために、低温焼鈍温度をCu−Ni(Mn)−Sn−P系合金では250〜400℃、Cu−Co−Sn−P系合金では300〜450℃とする。この最低温度未満では、上記反応が起こらず曲げ加工性が低下する。一方、前記最高温度を超えると、歪取りは行えるが再結晶が進行してしまい、強度及び耐応力緩和性が低下する。
【0036】
(6)特性の測定
引張強さ、導電率、ばね限界値の測定は、JISH2241、JISH0505、JISH3130に準拠した。曲げ加工性については、90°W曲げ加工試験で評価した。試験はCES−M0002−6に準拠し、曲げ半径が0.1〜2.0の治具で90°W曲げ加工し、中央山表面の状況を調べた。なお、曲げ軸は圧延方向に対して平行方向(Bad Way)とした。そして、割れ及びシワが発生しない最小曲げ半径Rを板厚tで割った値、すなわち最小曲げ半径比R/tを求めた。最小曲げ半径比が小さいほど曲げ加工性が良い。応力緩和試験では、試験片の中央部の応力が耐力の80%となるようにアーチ曲げを行い、150℃の温度で1000時間保持した後、試験片の曲げぐせを応力緩和率として次式により算出した。なお、次式において、L0は冶具の長さ(mm)、L1は曲げぐせをつける前の試料端間の水平距離(mm)、L2は曲げぐせをつけた後の試料端間の水平距離(mm)である。
【0037】
応力緩和率(%)=(L1−L2)/(L1−L0)×100
【0038】
(実施例)
以下、実施例1、2、比較例1〜7、従来例1、2により本発明を説明する。なお、これらの実施例、比較例及び従来例における合金組成を表1に記載し、また主な製造条件も示した。
【0039】
(実施例1、2)
(1)合金鋳塊の溶製・連続鋳造
表1の実施例1、2に示される組成の合金を横型連続鋳造法により、各々厚さ17mm、幅600mmに鋳造し、次いでこの鋳塊を厚さ両面1mmずつ面削した。
【0040】
(2)均質化焼鈍
合金鋳塊を非酸化性雰囲気中において850℃で2時間均質化焼鈍を行った後、空冷した。
【0041】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を冷間圧延して厚さ0.63mmの板材となし(圧延率96%)、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの実施例においても3μmであり、しかもNi−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0042】
(4)仕上げ冷間圧延
連続焼鈍した板材に圧延率60%の冷間圧延を施した。
【0043】
(5)低温焼鈍
この連続焼鈍炉にて窒素雰囲気中、350℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0044】
(比較例1、2)
(1)合金鋳塊の溶製・連続鋳造:表1の比較例1、2に示される合金の製造を、実施例1と同様に行った。
【0045】
(2)均質化焼鈍
合金鋳塊を非酸化性雰囲気中において、比較例1は450℃で5時間、比較例2は980℃で2時間均質化焼鈍を行った後、空冷した。
【0046】
(3)冷間圧延・中間焼鈍
実施例1と同様に行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、比較例1においては3μmであり、比較例2においては15μmであった。また、Ni−P金属間化合物は、比較例1においては1μm以下の大きさで不均一に析出しており、比較例2においては20nm以下の大きさで均一微細に析出していた。
【0047】
(4)仕上げ冷間圧延:実施例1と同様に行った。
【0048】
(5)低温焼鈍:実施例1と同様に行った。
【0049】
(比較例3)
(1)合金鋳塊の溶製・連続鋳造:表1の比較例3に示される合金の製造を、実施例1と同様に行った。
【0050】
(2)均質化焼鈍:実施例1と同様に行った。
【0051】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を圧延率78%とし冷間圧延して厚さ3.0mmの板材となし、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。次に、この連続焼鈍物を再び圧延率78%とし冷間圧延して厚さ0.65mmの板材となし、同様な連続焼鈍処理を施した。この連続焼鈍で得られた板材(合金条)の再結晶粒径は10μmであり、しかもNi−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0052】
(4)仕上げ冷間圧延:実施例1と同様に行った。
【0053】
(5)低温焼鈍:実施例1と同様に行った。
【0054】
(比較例4、5)
(1)合金鋳塊の溶製・連続鋳造:表1の比較例4、5に示される合金の製造を、実施例1と同様に行った。
【0055】
(2)均質化焼鈍:実施例1と同様に行った。
【0056】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を冷間圧延して厚さ0.63mmの板材となし(圧延率96%)、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で比較例4は400℃に、比較例5は700℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶組織は、比較例4においては部分再結晶組織であり、比較例5においては結晶粒径10μmの完全再結晶となっていた。また、Ni−P金属間化合物は、比較例4においては析出しておらず、比較例5においては50nm以下の大きさで均一析出していた。
【0057】
(4)仕上げ冷間圧延:実施例1と同様に行った。
【0058】
(5)低温焼鈍:実施例1と同様に行った。
【0059】
(比較例6、7)
(1)合金鋳塊の溶製・連続鋳造:表1の比較例6、7に示される合金の製造を、実施例1と同様に行った。
【0060】
(2)均質化焼鈍:実施例1と同様に行った。
【0061】
(3)冷間圧延・中間焼鈍
実施例1と同様に行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの比較例においても3μmであり、しかもNi−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0062】
(4)仕上げ冷間圧延:実施例1と同様に行った。
【0063】
(5)低温焼鈍
この連続焼鈍炉にて窒素雰囲気中、比較例6は230℃の低温焼鈍処理を、比較例7は430℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0064】
(従来例1、2)
表1の従来例1、2に示される組成からなる合金を大気溶解炉で溶製した。次に、この合金鋳塊を850℃で加熱し、厚さ17mmまで熱間圧延した後、常温の水中に浸漬して急冷した。急冷した熱間圧延物の表面を面削して厚さ15mmとした後、冷間圧延して厚さ0.63mmの板材となし、連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの従来例においても3μmであり、しかもNi−P金属間化合物は50nm以下の大きさで不均一に析出していた。次に、この連続焼鈍した板材に圧延率60%の冷間圧延を施し、連続焼鈍炉にて窒素雰囲気中、350℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0065】
このようにして得られた板材(合金条)について、引張強さ、導電率、ばね限界値を測定値を測定するとともに、曲げ加工性、応力緩和性を調査した。結果を表2に示す。
【0066】
【表1】

Figure 0004396874
【0067】
【表2】
Figure 0004396874
【0068】
以下、実施例3、4、比較例8〜14、従来例3、4により本発明を説明する。なお、これらの実施例、比較例及び従来例における合金組成を表3に記載し、また主な製造条件も示した。
【0069】
(実施例3、4)
(1)合金鋳塊の溶製・連続鋳造
表3の実施例3、4に示される組成の合金を横型連続鋳造法により、各々厚さ15mm、幅600mmに鋳造し、次いでこの鋳塊を厚さ両面1mmずつ面削した。
【0070】
(2)均質化焼鈍
合金鋳塊を非酸化性雰囲気中において850℃で2時間均質化焼鈍を行った後、空冷した。
【0071】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を冷間圧延して厚さ0.63mmの板材となし(圧延率96%)、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの実施例においても3μmであり、しかもMn−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0072】
(4)仕上げ冷間圧延
連続焼鈍した板材に圧延率60%の冷間圧延を施した。
【0073】
(5)低温焼鈍
この連続焼鈍炉にて窒素雰囲気中、350℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0074】
(比較例8、9)
(1)合金鋳塊の溶製・連続鋳造:表3の比較例8、9に示される合金について、実施例3と同様に行った。
【0075】
(2)均質化焼鈍
合金鋳塊を非酸化性雰囲気中において、比較例8は450℃で5時間、比較例9は980℃で2時間均質化焼鈍を行った後、空冷した。
【0076】
(3)冷間圧延・中間焼鈍
実施例3と同様に行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、比較例8においては3μmであり、比較例9においては15μmであった。また、Mn−P金属間化合物は、比較例8においては1μm以下の大きさで不均一に析出しており、比較例9においては20nm以下の大きさで均一微細に析出していた。
【0077】
(4)仕上げ冷間圧延:実施例3と同様に行った。
【0078】
(5)低温焼鈍:実施例3と同様に行った。
【0079】
(比較例10)
(1)合金鋳塊の溶製・連続鋳造:表3の比較例10に示される合金について、実施例3と同様に行った。
【0080】
(2)均質化焼鈍:実施例3と同様に行った。
【0081】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を圧延率78%とし冷間圧延して厚さ3.0mmの板材となし、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。次に、この連続焼鈍した板材を再び圧延率78%とし冷間圧延して厚さ0.65mmの板材となし、同様な連続焼鈍処理を施した。この連続焼鈍で得られた板材(合金条)の再結晶粒径は10μmであり、しかもMn−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0082】
(4)仕上げ冷間圧延:実施例3と同様に行った。
【0083】
(5)低温焼鈍:実施例3と同様に行った。
【0084】
(比較例11、12)
(1)合金鋳塊の溶製・連続鋳造:表3の比較例11、12に示される合金について、実施例3と同様に行った。
【0085】
(2)均質化焼鈍:実施例3と同様に行った。
【0086】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を冷間圧延して厚さ0.63mmの板材となし(圧延率96%)、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で比較例11は400℃に、比較例12は700℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶組織は、比較例11においては部分再結晶組織であり、比較例12においては結晶粒径10μmの完全再結晶となっていた。また、Mn−P金属間化合物は、比較例11においては析出しておらず、比較例12においては50nm以下の大きさで均一析出していた。
【0087】
(4)仕上げ冷間圧延:実施例3と同様に行った。
【0088】
(5)低温焼鈍:実施例3と同様に行った。
【0089】
(比較例13、14)
(1)合金鋳塊の溶製・連続鋳造:表3の比較例13、14に示される合金について、実施例3と同様に行った。
【0090】
(2)均質化焼鈍:実施例3と同様に行った。
【0091】
(3)冷間圧延・中間焼鈍
実施例3と同様に行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの比較例においても3μmであり、しかもMn−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0092】
(4)仕上げ冷間圧延:実施例3と同様に行った。
【0093】
(5)低温焼鈍
この連続焼鈍炉にて窒素雰囲気中、比較例13は230℃の低温焼鈍処理を、比較例14は430℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0094】
(従来例3、4)
表3の従来例3、4に示される組成からなる合金を、各々大気溶解炉で溶製した。次に、この合金鋳塊を850℃で加熱し、厚さ15mmまで熱間圧延した後、常温の水中に浸漬して急冷した。急冷した熱間圧延物の表面を面削して厚さ13mmとした後、冷間圧延して厚さ0.63mmの板材となし、連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの従来例においても3μmであり、しかもMn−P金属間化合物は50nm以下の大きさで不均一に析出していた。次に、この連続焼鈍した板材に圧延率60%の冷間圧延を施し、連続焼鈍炉にて窒素雰囲気中、350℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0095】
このようにして得られた板材(合金条)について、引張強さ、導電率、ばね限界値を測定値を測定するとともに、曲げ加工性、応力緩和性を調査した。結果を表4に示す。
【0096】
【表3】
Figure 0004396874
【0097】
【表4】
Figure 0004396874
【0098】
以下、実施例5、6、比較例15〜21、従来例5、6により本発明を説明する。なお、これらの実施例、比較例及び従来例における合金組成を表5に記載し、また主な製造条件も示した。
【0099】
(実施例5、6)
(1)合金鋳塊の溶製・連続鋳造
表5の実施例5、6に示される組成の合金を横型連続鋳造法により、各々厚さ15mm、幅600mmに鋳造し、次いでこの鋳塊を厚さ両面1mmずつ面削した。
【0100】
(2)均質化焼鈍
合金鋳塊を非酸化性雰囲気中において950℃で2時間均質化焼鈍を行った後、空冷した。
【0101】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を冷間圧延して厚さ0.63mmの板材となし(圧延率96%)、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの実施例においても3μmであり、しかもCo−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0102】
(4)仕上げ冷間圧延
連続焼鈍した板材に圧延率60%の冷間圧延を施した。
【0103】
(5)低温焼鈍
この連続焼鈍炉にて窒素雰囲気中、400℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0104】
(比較例15、16)
(1)合金鋳塊の溶製・連続鋳造:表5の比較例15、16に示される合金について、実施例5と同様に行った。
【0105】
(2)均質化焼鈍
合金鋳塊を非酸化性雰囲気中において、比較例15は450℃で5時間、比較例16は1000℃で2時間均質化焼鈍を行った後、空冷した。
【0106】
(3)冷間圧延・中間焼鈍
実施例5と同様に行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、比較例15においては3μmであり、比較例16においては15μmであった。また、Co−P金属間化合物は、比較例15においては1μm以下の大きさで不均一に析出しており、比較例16においては20nm以下の大きさで均一微細に析出していた。
【0107】
(4)仕上げ冷間圧延:実施例5と同様に行った。
【0108】
(5)低温焼鈍:実施例5と同様に行った。
【0109】
(比較例17)
(1)合金鋳塊の溶製・連続鋳造:表5の比較例17に示される合金について、実施例5と同様に行った。
【0110】
(2)均質化焼鈍:実施例5と同様に行った。
【0111】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を圧延率78%とし冷間圧延して厚さ3.0mmの板材となし、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。次に、この連続焼鈍した板材を再び圧延率78%とし冷間圧延して厚さ0.65mmの板材となし、同様な連続焼鈍処理を施した。この連続焼鈍で得られた板材(合金条)の再結晶粒径は10μmであり、しかもCo−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0112】
(4)仕上げ冷間圧延:実施例5と同様に行った。
【0113】
(5)低温焼鈍:実施例5と同様に行った。
【0114】
(比較例18、19)
(1)合金鋳塊の溶製・連続鋳造:表5の比較例18、19に示される合金について、実施例5と同様に行った。
【0115】
(2)均質化焼鈍:実施例5と同様に行った。
【0116】
(3)冷間圧延・中間焼鈍
空冷した均質化焼鈍物を冷間圧延して厚さ0.63mmの板材となし(圧延率96%)、この板材に連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で比較例18は400℃に、比較例19は700℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶組織は、比較例18においては部分再結晶組織であり、比較例19においては結晶粒径10μmの完全再結晶となっていた。また、Co−P金属間化合物は、比較例18においては析出しておらず、比較例19においては500nm以下の大きさで均一析出していた。
【0117】
(4)仕上げ冷間圧延:実施例5と同様に行った。
【0118】
(5)低温焼鈍:実施例5と同様に行った。
【0119】
(比較例20、21)
(1)合金鋳塊の溶製・連続鋳造:表5の比較例20、21に示される合金について、実施例5と同様に行った。
【0120】
(2)均質化焼鈍:実施例5と同様に行った。
【0121】
(3)冷間圧延・中間焼鈍
実施例5と同様に行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの比較例においても3μmであり、しかもCo−P金属間化合物は20nm以下の大きさで均一微細に析出していた。
【0122】
(4)仕上げ冷間圧延:実施例5と同様に行った。
【0123】
(5)低温焼鈍
この連続焼鈍炉にて窒素雰囲気中、比較例20は280℃の低温焼鈍処理を、比較例21は480℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0124】
(従来例5、6)
表5の従来例5、6に示される組成からなる合金を、各々大気溶解炉で溶製した。次に、この合金鋳塊を950℃で加熱し、厚さ15mmまで熱間圧延した後、常温の水中に浸漬して急冷した。急冷した熱間圧延物の表面を面削して厚さ13mmとした後、冷間圧延して厚さ0.63mmの板材となし、連続焼鈍処理を施した。連続焼鈍処理は、板材を窒素雰囲気中で600℃に保持した加熱炉中を8m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。この連続焼鈍で得られた板材(合金条)の再結晶粒径は、いずれの従来例においても3μmであり、しかもCo−P金属間化合物は50nm以下の大きさで不均一に析出していた。次に、この連続焼鈍した板材に圧延率60%の冷間圧延を施し、連続焼鈍炉にて窒素雰囲気中、400℃の低温焼鈍処理を10m/minで走行させ、炉から出てくる板材に冷却水を噴射して行った。
【0125】
このようにして得られた材料について、引張強さ、導電率、ばね限界値を測定値を測定するとともに、曲げ加工性、応力緩和性を調査した。結果を表6に示す。
【0126】
【表5】
Figure 0004396874
【0127】
【表6】
Figure 0004396874
【0128】
【発明の効果】
本発明の方法は、材料作製中に表面酸化スケールの発生、粗大な金属間化合物の析出等の問題となる熱間圧延工程を省略し、特性の優れた端子用銅基合金条およびその製造方法を提供するもので、熱間圧延時の材料を高温に加熱するためのエネルギーとそれに伴う設備投資を必要とせず、歩留まりを向上し、生産コストを低減できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper-based alloy strip for terminals used for automobile connector terminals and the like, and a method for producing the same.
[0002]
[Prior art]
With the recent development of electronics, terminals such as automobile connector terminals are required to have higher density, smaller size, lighter weight, and improved reliability. Further, as the temperature in the engine room rises due to higher performance of the engine, terminals used in the engine room are required to have higher reliability and higher heat resistance.
[0003]
In order to improve the reliability of terminals such as connector terminals of automobiles, specifically, it is necessary to have excellent strength, spring characteristics, conductivity, stress relaxation resistance, and corrosion resistance. For example, if both conductivity and stress relaxation resistance are not provided, there is a possibility that oxidation due to self-heating of the terminal, plating peeling, stress relaxation, circuit voltage drop, and softening or deformation of the housing may occur.
[0004]
Conventionally, brass that has been used as a copper-based alloy for terminals is inexpensive, but has a low electrical conductivity, for example, 27% IACS at C2600, which also has problems with corrosion resistance and stress relaxation resistance. Phosphor bronze is excellent in strength but low in electrical conductivity. For example, C5210 is about 12% IACS, has a problem in stress relaxation resistance, and is expensive and not economical.
[0005]
Cu-Ni-Sn-P based alloys have been developed to compensate for the disadvantages of these two alloys. Japanese Patent Publication No. 8-9745 and Japanese Patent Application Laid-Open No. 4-154944 disclose a copper-based alloy for terminals after hot rolling a Cu—Ni—Sn—P alloy ingot, followed by cold rolling and heat treatment. A method of manufacturing the strip is described.
[0006]
However, the copper-based alloy strip of, for example, Cu-1.0Ni-0.9Sn-0.05P (numerical value is% by weight) manufactured in this way is excellent in strength and stress relaxation resistance. The electrical conductivity is as low as 38% IACS, and the bending workability is not sufficient.
[0007]
Moreover, since this copper-based alloy strip precipitates a Ni-P compound, it requires hot rolling that also serves as a solution heat treatment, and it is necessary to solve the problems associated with the capital investment and the production. This significantly reduces the performance and contributes to the high cost. In particular,
(1) Since high temperature heating in the atmosphere is required during hot rolling, oxide scale is likely to be generated on the surface of the material, and a large amount of grinding is required to remove it. Internal defects are likely to occur due to internal oxidation of the steel and the involvement of oxide scale during rolling.
[0008]
(2) In the hot rolling process, it is difficult to manage the temperature change during the process, and it corresponds to the work precipitation process. That is, a precipitate may be generated due to a temperature change during the hot rolling process, and the precipitate is easily coarsened. Therefore, the precipitation generated in this step tends to have a great influence on the precipitation phenomenon and the final characteristics in the subsequent steps.
[0009]
(3) Since the material is heated to a high temperature during hot rolling, a large amount of energy and accompanying equipment investment are required, which leads to an increase in production cost.
[0010]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the copper base alloy strip for terminals which abbreviate | omitted the hot rolling used as the generation source of the said various problems in view of the said situation at low cost. Furthermore, an object of the present invention is to provide a copper-based alloy strip for a terminal having conductivity and bending workability superior to those of a conventional Cu-Ni-Sn-P alloy and further having stress relaxation resistance.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have made extensive studies on the above problems, and as a result, Cu-Ni-Sn-P alloys, Cu-Mn-Sn-P alloys or Cu-Co-Sn-P alloys. Thus, the inventors have found that excellent strength, spring limit value, electrical conductivity, stress relaxation resistance, and bending workability can be obtained by selecting the optimum conditions without hot rolling.
[0012]
1st aspect of the copper base alloy strip for terminals of this invention is weight%, Ni: 0.2-3.0%, Sn: 2.0% or less, P: 0.005-2.0% And the balance is Cu and inevitable impurities, the tensile strength is 550 MPa or more, the spring limit value is 450 Mpa or more, the conductivity is 40% IACS or more, the minimum bending radius ratio is 1 or less, and the stress relaxation rate is 10%. It is as follows.
[0013]
The 2nd aspect of the copper-based alloy strip for terminals of this invention is weight%, Mn: 0.2-3.0%, Sn: 2.0% or less, P: 0.005-2.0% And the balance is Cu and inevitable impurities, the tensile strength is 550 MPa or more, the spring limit value is 450 Mpa or more, the conductivity is 40% IACS or more, the minimum bending radius ratio is 1 or less, and the stress relaxation rate is 10%. It is as follows.
[0014]
In the third aspect of the copper-based alloy strip for terminals of the present invention, Co: 0.1 to 1.0%, Sn: 2.0% or less, and P: 0.005 to 1.0% by weight. And the balance is Cu and inevitable impurities, the tensile strength is 600 MPa or more, the spring limit value is 500 Mpa or more, the conductivity is 50% IACS or more, the minimum bending radius ratio is 1 or less, and the stress relaxation rate is 10%. It is as follows.
[0015]
The 1st aspect of the manufacturing method of the copper base alloy strip for terminals of this invention is weight%, Ni: 0.2-3.0%, Sn: 2.0% or less, P: 0.005-2. A first step of continuously casting a copper base alloy containing 0% and the balance being Cu and inevitable impurities, a second step of homogenizing annealing at a heat treatment temperature of 500 to 950 ° C. in a non-oxidizing atmosphere, After the intermediate rolling, the intermediate annealing is performed one or more times at an annealing temperature of 450 to 650 ° C. in a non-oxidizing atmosphere, and the rolling ratio before the final intermediate annealing is 85% or more, and the rolling ratio is 30. It consists of a fourth step of finish cold rolling as ˜90% and a fifth step of low temperature annealing at an annealing temperature of 250 to 400 ° C.
[0016]
The intermediate annealed product obtained in the third step has a recrystallized grain size of 5 μm or less, and a part of Ni and P becomes a Ni-P intermetallic compound of 20 nm or less and precipitates uniformly and finely in the matrix. Have an organization.
[0017]
The 2nd aspect of the manufacturing method of the copper base alloy strip for terminals of this invention is weight%, Mn: 0.2-3.0%, Sn: 2.0% or less, P: 0.005-2. A first step of continuously casting a copper base alloy containing 0% and the balance being Cu and inevitable impurities, a second step of homogenizing annealing at a heat treatment temperature of 500 to 950 ° C. in a non-oxidizing atmosphere, After the intermediate rolling, the intermediate annealing is performed one or more times at an annealing temperature of 450 to 650 ° C. in a non-oxidizing atmosphere, and the rolling ratio before the final intermediate annealing is 85% or more, and the rolling ratio is 30. It consists of a fourth step of finish cold rolling as ˜90% and a fifth step of low temperature annealing at an annealing temperature of 250 to 400 ° C.
[0018]
The intermediate annealed product obtained in the third step has a recrystallized grain size of 5 μm or less, and a part of Mn and P becomes a Mn-P intermetallic compound of 20 nm or less and precipitates uniformly and finely in the matrix. Have an organization.
[0019]
The third aspect of the method for producing a copper-based alloy strip for terminals of the present invention is, by weight, Co: 0.1 to 1.0%, Sn: 2.0% or less, P: 0.005 to 1. A first step of continuously casting a copper base alloy containing 0% and the balance being Cu and inevitable impurities, a second step of homogenizing annealing at a heat treatment temperature of 500 to 980 ° C. in a non-oxidizing atmosphere, After the intermediate rolling, the intermediate annealing is performed one or more times at an annealing temperature of 450 to 650 ° C. in a non-oxidizing atmosphere, and the rolling ratio before the final intermediate annealing is 85% or more, and the rolling ratio is 30. It consists of a fourth step of finish cold rolling as ˜90% and a fifth step of low temperature annealing at an annealing temperature of 300 to 450 ° C.
[0020]
The intermediate annealed product obtained in the third step has a recrystallized grain size of 5 μm or less, and a part of Co and P becomes a Co—P intermetallic compound of 20 nm or less and precipitates uniformly and finely in the matrix. Have an organization.
[0021]
The copper-based alloy strips for terminals according to the first to third aspects are each manufactured by the manufacturing method according to the first to third aspects.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(1) Alloy element The additive element in the copper-based alloy of the present invention and the additive element in melting the copper-based alloy ingot in the first step of the method for producing the copper-based alloy strip of the present invention are Has an effect.
[0023]
(A) Ni, Mn, Co
Ni (or Mn, Co) dissolves in the Cu matrix to improve strength / spring characteristics and stress relaxation resistance. The coexisting P and the formed Ni—P intermetallic compound (Ni 3 P) (or Mn—P intermetallic compound (Mn 3 P), Co—P intermetallic compound (Co 2 P)) It is dispersed and deposited uniformly and finely in the matrix to improve conductivity and further improve strength, spring characteristics and stress relaxation resistance.
[0024]
The effect of Ni (or Mn, Co) cannot be sufficiently obtained when Ni and Mn are less than 0.2% by weight and Co is less than 0.1% by weight, and Ni and Mn are 3.0% by weight, If Co exceeds 1.0% by weight, it will be saturated. Therefore, Ni and Mn are desirably 0.2% by weight or more and 3.0% by weight or less, and Co is desirably 0.1% by weight or more and 1.0% by weight or less.
[0025]
(B) Sn
Sn is dissolved in the Cu matrix to improve strength and spring characteristics.
[0026]
The effect of Sn is saturated when the Sn component exceeds 2.0% by weight. Therefore, the Sn component is desirably 2.0% by weight or less.
[0027]
(C) P
P is not only solid-solved in the Cu matrix but also dispersed and precipitated Ni—P intermetallic compound (Ni 3 P) (or Mn—P intermetallic compound (Mn 3 P), Co—P system It is formed with Ni (or Mn, Co) in which an intermetallic compound (Co 2 P)) coexists. Thereby, strength, conductivity, spring characteristics, and stress relaxation resistance are improved.
[0028]
The effect of the P cannot be sufficiently obtained when the P component is less than 0.005% by weight, and the P component is 2.0% by weight in the case of Cu—Ni (Mn) —Sn—P alloy, Cu—Co. In the case of -Sn-P alloy, when it exceeds 1.0% by weight, it is saturated. Therefore, the P component needs to be 0.005% by weight or more, 2.0% by weight or less for Cu—Ni (Mn) —Sn—P alloy, 1.0% by weight for Cu—Co—Sn—P alloy. The following is desirable.
[0029]
(2) Homogenization annealing Homogenization annealing is performed to eliminate segregation of solid solution elements and to sufficiently dissolve Ni (or Mn, Co) and P. From this solid solution state, aging precipitation is performed as a Ni 3 P compound (or Mn 3 P compound or Co 2 P compound) in a subsequent step. When the heat treatment temperature is less than 500 ° C., the temperature is low, segregation of elements cannot be sufficiently removed, and a single phase (supersaturated solid solution) in which Ni (or Mn, Co) and P are dissolved is not formed. On the other hand, when the temperature is higher than 950 ° C. for the Cu—Ni (Mn) —Sn—P alloy and higher than 980 ° C. for the Cu—Co—Sn—P alloy, the temperature is close to the melting point and the bending workability is sufficiently high It becomes impossible to improve. This is because the crystal grain size becomes coarse and the recrystallized grain size (used for finish rolling) in the subsequent cold rolling and intermediate annealing cannot be adjusted to 5 μm or less.
[0030]
Moreover, the reason why the homogenization annealing treatment is performed in a non-oxidizing atmosphere is to suppress oxidation and internal oxidation of the material surface.
[0031]
At this time, in order to obtain a single-phase (supersaturated) structure at room temperature, the homogenized and annealed ingot is rapidly cooled. This rapid cooling may be performed by water cooling, air cooling, oil cooling or the like that is usually performed.
[0032]
(3) Cold rolling and intermediate annealing The coil obtained by the above rapid cooling is subjected to intermediate annealing at an annealing temperature of 450 to 650 ° C after cold rolling. This cold rolling / intermediate annealing may be performed once, but may be performed a plurality of times in order to perform cold rolling efficiently. In the case of finishing once, after cold rolling with a rolling rate of 85% or more, intermediate annealing is performed at an annealing temperature of 450 to 650 ° C. In the case of performing a plurality of times, cold rolling is performed, and then an annealing temperature is set to 450 to 650 ° C., followed by intermediate annealing, and then a series of operations for cold rolling and intermediate annealing are repeated. The previous cold rolling rate must be 85% or more. The reason why the rolling rate of the cold rolling rate is set to 85% or more is to make the recrystallized grain size 5 μm or less. The particle size of the Ni 3 P compound (or Mn 3 P compound or Co 2 P compound) that is aging-precipitated is as fine as 20 nm or less, although it depends on the composition of Ni (or Mn, Co) and P. If recrystallization does not proceed sufficiently in cold rolling and intermediate annealing, or if the recrystallized grain size exceeds 5 μm, it becomes impossible to sufficiently improve the bending workability.
[0033]
When the rolling rate is less than 85%, it is difficult to adjust the recrystallized grain size to be used for the finish rolling in the subsequent process to 5 μm or less. Further, if the intermediate annealing temperature is less than 450 ° C., the recrystallization does not proceed sufficiently. On the other hand, if the temperature exceeds 650 ° C., the recrystallized grain size becomes coarser than 5 μm.
[0034]
(4) Finish cold rolling The rolling rate of finish cold rolling is 30 to 90%. If it is less than 30%, the strength and stress relaxation resistance are lowered, whereas if it exceeds 90%, bending workability is lowered.
[0035]
(5) To sufficiently precipitate low-temperature annealed Ni 3 P compound (or Mn 3 P compound, Co 2 P compound), and at the same time, remove strain without proceeding recrystallization to give sufficient bending workability To do. Therefore, the low-temperature annealing temperature is set to 250 to 400 ° C. for the Cu—Ni (Mn) —Sn—P based alloy and 300 to 450 ° C. for the Cu—Co—Sn—P based alloy. If it is less than this minimum temperature, the said reaction does not occur and bending workability falls. On the other hand, when the temperature exceeds the maximum temperature, the strain can be removed but the recrystallization proceeds and the strength and stress relaxation resistance are lowered.
[0036]
(6) Measurement of characteristics The tensile strength, conductivity, and spring limit value were measured in accordance with JISH2241, JISH0505, and JISH3130. The bending workability was evaluated by a 90 ° W bending work test. The test was performed according to CES-M0002-6, 90 ° W bending was performed with a jig having a bending radius of 0.1 to 2.0, and the state of the central mountain surface was examined. The bending axis was a direction parallel to the rolling direction (Bad Way). Then, a value obtained by dividing the minimum bending radius R at which cracks and wrinkles do not occur by the thickness t, that is, the minimum bending radius ratio R / t was obtained. The smaller the minimum bending radius ratio, the better the bending workability. In the stress relaxation test, arch bending is performed so that the stress at the center of the test piece becomes 80% of the proof stress, and the specimen is held at a temperature of 150 ° C. for 1000 hours. Calculated. In the following equation, L 0 is the length of the jig (mm), L 1 is the horizontal distance (mm) between the sample ends before bending, and L 2 is between the sample ends after bending. Horizontal distance (mm).
[0037]
Stress relaxation rate (%) = (L 1 −L 2 ) / (L 1 −L 0 ) × 100
[0038]
(Example)
The present invention will be described below with reference to Examples 1 and 2, Comparative Examples 1 to 7, and Conventional Examples 1 and 2. The alloy compositions in these examples, comparative examples, and conventional examples are shown in Table 1, and the main production conditions are also shown.
[0039]
(Examples 1 and 2)
(1) Melting and continuous casting of alloy ingots Alloys having the compositions shown in Examples 1 and 2 in Table 1 were cast to a thickness of 17 mm and a width of 600 mm, respectively, by the horizontal continuous casting method. Both sides were cut by 1 mm.
[0040]
(2) The homogenized annealed alloy ingot was homogenized and annealed at 850 ° C. for 2 hours in a non-oxidizing atmosphere, and then air-cooled.
[0041]
(3) Cold rolling / intermediate annealing The air-cooled homogenized annealing product was cold-rolled to form a 0.63 mm thick plate (rolling rate 96%), and this plate was subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the examples, and the Ni—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less. .
[0042]
(4) Cold rolling with a rolling reduction rate of 60% was performed on the plate material that was subjected to finish cold rolling continuous annealing.
[0043]
(5) Low-temperature annealing Low-temperature annealing treatment at 350 ° C. was run at 10 m / min in a nitrogen atmosphere in this continuous annealing furnace, and cooling water was injected onto the plate material coming out of the furnace.
[0044]
(Comparative Examples 1 and 2)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 1 and 2 in Table 1 were produced in the same manner as in Example 1.
[0045]
(2) The homogenized annealing alloy ingot was subjected to homogenization annealing at 450 ° C. for 5 hours and Comparative Example 2 at 980 ° C. for 2 hours in a non-oxidizing atmosphere, and then air-cooled.
[0046]
(3) Cold rolling / intermediate annealing. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in Comparative Example 1 and 15 μm in Comparative Example 2. Further, the Ni—P intermetallic compound was non-uniformly deposited with a size of 1 μm or less in Comparative Example 1, and was uniformly and finely deposited with a size of 20 nm or less in Comparative Example 2.
[0047]
(4) Finish cold rolling: performed in the same manner as in Example 1.
[0048]
(5) Low temperature annealing: performed in the same manner as in Example 1.
[0049]
(Comparative Example 3)
(1) Melting and continuous casting of alloy ingot: The alloy shown in Comparative Example 3 in Table 1 was produced in the same manner as in Example 1.
[0050]
(2) Homogenization annealing: The same as in Example 1.
[0051]
(3) Cold Rolling / Intermediate Annealing Air-cooled homogenized annealed product was cold rolled to a rolling rate of 78% to form a plate material having a thickness of 3.0 mm, and this plate was subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. Next, this continuous annealed product was cold rolled again at a rolling rate of 78% to form a plate material having a thickness of 0.65 mm, and the same continuous annealing treatment was performed. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 10 μm, and the Ni—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less.
[0052]
(4) Finish cold rolling: performed in the same manner as in Example 1.
[0053]
(5) Low temperature annealing: performed in the same manner as in Example 1.
[0054]
(Comparative Examples 4 and 5)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 4 and 5 in Table 1 were produced in the same manner as in Example 1.
[0055]
(2) Homogenization annealing: The same as in Example 1.
[0056]
(3) Cold rolling / intermediate annealing The air-cooled homogenized annealing product was cold-rolled to form a 0.63 mm thick plate (rolling rate 96%), and this plate was subjected to a continuous annealing treatment. In the continuous annealing treatment, the plate material was run at 8 m / min in a heating furnace maintained at 400 ° C. in Comparative Example 4 at 700 ° C. in Comparative Example 4 at 700 ° C., and cooling water was injected onto the plate material coming out of the furnace I went there. The recrystallized structure of the plate material (alloy strip) obtained by this continuous annealing was a partial recrystallized structure in Comparative Example 4, and was completely recrystallized with a crystal grain size of 10 μm in Comparative Example 5. Further, the Ni—P intermetallic compound was not precipitated in Comparative Example 4, and was uniformly precipitated in a size of 50 nm or less in Comparative Example 5.
[0057]
(4) Finish cold rolling: performed in the same manner as in Example 1.
[0058]
(5) Low temperature annealing: performed in the same manner as in Example 1.
[0059]
(Comparative Examples 6 and 7)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 6 and 7 in Table 1 were produced in the same manner as in Example 1.
[0060]
(2) Homogenization annealing: The same as in Example 1.
[0061]
(3) Cold rolling / intermediate annealing. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the comparative examples, and the Ni—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less. .
[0062]
(4) Finish cold rolling: performed in the same manner as in Example 1.
[0063]
(5) Low-temperature annealing In this continuous annealing furnace, in a nitrogen atmosphere, Comparative Example 6 runs a low-temperature annealing treatment at 230 ° C., and Comparative Example 7 runs a low-temperature annealing treatment at 430 ° C. at 10 m / min. The cooling water was jetted onto the plate material.
[0064]
(Conventional examples 1 and 2)
Alloys having the compositions shown in Conventional Examples 1 and 2 in Table 1 were melted in an atmospheric melting furnace. Next, the alloy ingot was heated at 850 ° C., hot-rolled to a thickness of 17 mm, and then immersed in water at room temperature to be rapidly cooled. The surface of the quenched hot-rolled product was chamfered to a thickness of 15 mm, and then cold-rolled to form a plate material having a thickness of 0.63 mm, and subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the conventional examples, and the Ni—P intermetallic compound was deposited in a non-uniform manner with a size of 50 nm or less. . Next, this continuously annealed plate material is subjected to cold rolling with a rolling rate of 60%, and a low temperature annealing treatment at 350 ° C. is run at 10 m / min in a nitrogen atmosphere in a continuous annealing furnace, and the plate material coming out of the furnace is The cooling water was injected.
[0065]
The plate materials (alloy strips) thus obtained were measured for tensile strength, electrical conductivity, and spring limit values, and examined for bending workability and stress relaxation properties. The results are shown in Table 2.
[0066]
[Table 1]
Figure 0004396874
[0067]
[Table 2]
Figure 0004396874
[0068]
The present invention will be described below with reference to Examples 3 and 4, Comparative Examples 8 to 14, and Conventional Examples 3 and 4. The alloy compositions in these examples, comparative examples, and conventional examples are shown in Table 3, and the main production conditions are also shown.
[0069]
(Examples 3 and 4)
(1) Melting and continuous casting of alloy ingots Alloys having the compositions shown in Examples 3 and 4 of Table 3 were cast to a thickness of 15 mm and a width of 600 mm, respectively, by the horizontal continuous casting method. Both sides were cut by 1 mm.
[0070]
(2) The homogenized annealed alloy ingot was homogenized and annealed at 850 ° C. for 2 hours in a non-oxidizing atmosphere, and then air-cooled.
[0071]
(3) Cold rolling / intermediate annealing The air-cooled homogenized annealing product was cold-rolled to form a 0.63 mm thick plate (rolling rate 96%), and this plate was subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the examples, and the Mn—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less. .
[0072]
(4) Cold rolling with a rolling reduction rate of 60% was performed on the plate material that was subjected to finish cold rolling continuous annealing.
[0073]
(5) Low-temperature annealing Low-temperature annealing treatment at 350 ° C. was run at 10 m / min in a nitrogen atmosphere in this continuous annealing furnace, and cooling water was injected onto the plate material coming out of the furnace.
[0074]
(Comparative Examples 8 and 9)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 8 and 9 in Table 3 were performed in the same manner as in Example 3.
[0075]
(2) In a non-oxidizing atmosphere, the homogenized annealing alloy ingot was subjected to homogenization annealing at 450 ° C. for 5 hours and Comparative Example 9 at 980 ° C. for 2 hours, and then air-cooled.
[0076]
(3) Cold rolling / intermediate annealing. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in Comparative Example 8 and 15 μm in Comparative Example 9. Further, the Mn—P intermetallic compound was non-uniformly deposited with a size of 1 μm or less in Comparative Example 8, and was uniformly and finely deposited with a size of 20 nm or less in Comparative Example 9.
[0077]
(4) Finish cold rolling: performed in the same manner as in Example 3.
[0078]
(5) Low temperature annealing: performed in the same manner as in Example 3.
[0079]
(Comparative Example 10)
(1) Melting and continuous casting of alloy ingot: The alloy shown in Comparative Example 10 in Table 3 was prepared in the same manner as in Example 3.
[0080]
(2) Homogenization annealing: The same as in Example 3.
[0081]
(3) Cold Rolling / Intermediate Annealing Air-cooled homogenized annealed product was cold rolled to a rolling rate of 78% to form a plate material having a thickness of 3.0 mm, and this plate was subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. Next, this continuously annealed plate material was cold rolled again to a rolling rate of 78% to obtain a 0.65 mm thick plate material, and subjected to the same continuous annealing treatment. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 10 μm, and the Mn—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less.
[0082]
(4) Finish cold rolling: performed in the same manner as in Example 3.
[0083]
(5) Low temperature annealing: performed in the same manner as in Example 3.
[0084]
(Comparative Examples 11 and 12)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 11 and 12 in Table 3 were performed in the same manner as in Example 3.
[0085]
(2) Homogenization annealing: The same as in Example 3.
[0086]
(3) Cold rolling / intermediate annealing The air-cooled homogenized annealing product was cold-rolled to form a 0.63 mm thick plate (rolling rate 96%), and this plate was subjected to a continuous annealing treatment. In the continuous annealing treatment, the plate material was run in a heating furnace maintained at 400 ° C. in Comparative Example 11 at 700 ° C. and at 700 ° C. in Comparative Example 12 at 8 m / min, and cooling water was injected onto the plate material coming out of the furnace I went there. The recrystallized structure of the plate material (alloy strip) obtained by this continuous annealing was a partially recrystallized structure in Comparative Example 11, and was completely recrystallized with a crystal grain size of 10 μm in Comparative Example 12. In addition, the Mn—P intermetallic compound was not precipitated in Comparative Example 11, but was uniformly precipitated with a size of 50 nm or less in Comparative Example 12.
[0087]
(4) Finish cold rolling: performed in the same manner as in Example 3.
[0088]
(5) Low temperature annealing: performed in the same manner as in Example 3.
[0089]
(Comparative Examples 13 and 14)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 13 and 14 in Table 3 were performed in the same manner as in Example 3.
[0090]
(2) Homogenization annealing: The same as in Example 3.
[0091]
(3) Cold rolling / intermediate annealing. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the comparative examples, and the Mn—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less. .
[0092]
(4) Finish cold rolling: performed in the same manner as in Example 3.
[0093]
(5) Low-temperature annealing In a nitrogen atmosphere in this continuous annealing furnace, Comparative Example 13 runs a low-temperature annealing treatment at 230 ° C., and Comparative Example 14 runs a low-temperature annealing treatment at 430 ° C. at 10 m / min and comes out of the furnace. The cooling water was jetted onto the plate material.
[0094]
(Conventional examples 3 and 4)
Alloys having the compositions shown in Conventional Examples 3 and 4 in Table 3 were melted in an atmospheric melting furnace. Next, this alloy ingot was heated at 850 ° C., hot-rolled to a thickness of 15 mm, and then immersed in water at room temperature to be rapidly cooled. The surface of the rapidly cooled hot-rolled product was chamfered to a thickness of 13 mm, and then cold-rolled to form a plate material having a thickness of 0.63 mm, followed by continuous annealing. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any conventional example, and the Mn—P intermetallic compound was deposited nonuniformly in a size of 50 nm or less. . Next, this continuously annealed plate material is subjected to cold rolling with a rolling rate of 60%, and a low temperature annealing treatment at 350 ° C. is run at 10 m / min in a nitrogen atmosphere in a continuous annealing furnace, and the plate material coming out of the furnace is The cooling water was injected.
[0095]
The plate materials (alloy strips) thus obtained were measured for tensile strength, electrical conductivity, and spring limit values, and examined for bending workability and stress relaxation properties. The results are shown in Table 4.
[0096]
[Table 3]
Figure 0004396874
[0097]
[Table 4]
Figure 0004396874
[0098]
The present invention will be described below with reference to Examples 5 and 6, Comparative Examples 15 to 21, and Conventional Examples 5 and 6. The alloy compositions in these examples, comparative examples, and conventional examples are shown in Table 5, and the main production conditions are also shown.
[0099]
(Examples 5 and 6)
(1) Melting and continuous casting of alloy ingots Alloys having the compositions shown in Examples 5 and 6 of Table 5 were cast to a thickness of 15 mm and a width of 600 mm, respectively, by the horizontal continuous casting method. Both sides were cut by 1 mm.
[0100]
(2) The homogenized annealing alloy ingot was homogenized and annealed at 950 ° C. for 2 hours in a non-oxidizing atmosphere, and then air-cooled.
[0101]
(3) Cold rolling / intermediate annealing The air-cooled homogenized annealing product was cold-rolled to form a 0.63 mm thick plate (rolling rate 96%), and this plate was subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the examples, and the Co—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less. .
[0102]
(4) Cold rolling with a rolling reduction rate of 60% was performed on the plate material that was subjected to finish cold rolling continuous annealing.
[0103]
(5) Low-temperature annealing A low-temperature annealing treatment at 400 ° C. was run at 10 m / min in a nitrogen atmosphere in this continuous annealing furnace, and cooling water was injected onto the plate material coming out of the furnace.
[0104]
(Comparative Examples 15 and 16)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 15 and 16 in Table 5 were performed in the same manner as in Example 5.
[0105]
(2) The homogenized annealing alloy ingot was subjected to homogenization annealing at 450 ° C. for 5 hours and Comparative Example 16 at 1000 ° C. for 2 hours in a non-oxidizing atmosphere, and then air-cooled.
[0106]
(3) Cold rolling / intermediate annealing. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in Comparative Example 15 and 15 μm in Comparative Example 16. Further, the Co—P intermetallic compound was deposited nonuniformly in a size of 1 μm or less in Comparative Example 15, and was uniformly finely deposited in a size of 20 nm or less in Comparative Example 16.
[0107]
(4) Finish cold rolling: performed in the same manner as in Example 5.
[0108]
(5) Low temperature annealing: performed in the same manner as in Example 5.
[0109]
(Comparative Example 17)
(1) Melting and continuous casting of alloy ingot: The alloy shown in Comparative Example 17 in Table 5 was prepared in the same manner as in Example 5.
[0110]
(2) Homogenization annealing: The same as in Example 5.
[0111]
(3) Cold Rolling / Intermediate Annealing Air-cooled homogenized annealed product was cold rolled to a rolling rate of 78% to form a plate material having a thickness of 3.0 mm, and this plate was subjected to a continuous annealing treatment. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. Next, this continuously annealed plate material was cold rolled again to a rolling rate of 78% to obtain a 0.65 mm thick plate material, and subjected to the same continuous annealing treatment. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 10 μm, and the Co—P intermetallic compound was precipitated in a uniform fine manner with a size of 20 nm or less.
[0112]
(4) Finish cold rolling: performed in the same manner as in Example 5.
[0113]
(5) Low temperature annealing: performed in the same manner as in Example 5.
[0114]
(Comparative Examples 18 and 19)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 18 and 19 in Table 5 were performed in the same manner as in Example 5.
[0115]
(2) Homogenization annealing: The same as in Example 5.
[0116]
(3) Cold rolling / intermediate annealing The air-cooled homogenized annealing product was cold-rolled to form a 0.63 mm thick plate (rolling rate 96%), and this plate was subjected to a continuous annealing treatment. In the continuous annealing treatment, the plate material was run at 8 m / min in a heating furnace maintained at 400 ° C. in Comparative Example 18 and 700 ° C. in Comparative Example 18 in a nitrogen atmosphere, and cooling water was jetted onto the plate material coming out of the furnace. I went there. The recrystallized structure of the plate material (alloy strip) obtained by this continuous annealing was a partial recrystallized structure in Comparative Example 18, and a complete recrystallization with a crystal grain size of 10 μm in Comparative Example 19. In addition, the Co—P intermetallic compound was not precipitated in Comparative Example 18, but was uniformly precipitated with a size of 500 nm or less in Comparative Example 19.
[0117]
(4) Finish cold rolling: performed in the same manner as in Example 5.
[0118]
(5) Low temperature annealing: performed in the same manner as in Example 5.
[0119]
(Comparative Examples 20 and 21)
(1) Melting and continuous casting of alloy ingot: The alloys shown in Comparative Examples 20 and 21 in Table 5 were performed in the same manner as in Example 5.
[0120]
(2) Homogenization annealing: The same as in Example 5.
[0121]
(3) Cold rolling / intermediate annealing. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the comparative examples, and the Co—P intermetallic compound was uniformly and finely precipitated with a size of 20 nm or less. .
[0122]
(4) Finish cold rolling: performed in the same manner as in Example 5.
[0123]
(5) Low-temperature annealing In a nitrogen atmosphere in this continuous annealing furnace, Comparative Example 20 runs a low-temperature annealing treatment at 280 ° C., and Comparative Example 21 runs a low-temperature annealing treatment at 480 ° C. at 10 m / min and comes out of the furnace. The cooling water was jetted onto the plate material.
[0124]
(Conventional examples 5 and 6)
Alloys having the compositions shown in Conventional Examples 5 and 6 in Table 5 were melted in an atmospheric melting furnace. Next, this alloy ingot was heated at 950 ° C., hot-rolled to a thickness of 15 mm, and then immersed in water at room temperature to be rapidly cooled. The surface of the rapidly cooled hot-rolled product was chamfered to a thickness of 13 mm, and then cold-rolled to form a plate material having a thickness of 0.63 mm, followed by continuous annealing. The continuous annealing treatment was performed by running the plate material at 8 m / min in a heating furnace maintained at 600 ° C. in a nitrogen atmosphere, and injecting cooling water onto the plate material coming out of the furnace. The recrystallized grain size of the plate material (alloy strip) obtained by this continuous annealing was 3 μm in any of the conventional examples, and the Co—P intermetallic compound was deposited nonuniformly in a size of 50 nm or less. . Next, this continuously annealed plate material is subjected to cold rolling at a rolling rate of 60%, and a low temperature annealing process at 400 ° C. is run at 10 m / min in a nitrogen atmosphere in a continuous annealing furnace, and the plate material coming out of the furnace is The cooling water was injected.
[0125]
The materials thus obtained were measured for tensile strength, electrical conductivity, and spring limit values, and examined for bending workability and stress relaxation properties. The results are shown in Table 6.
[0126]
[Table 5]
Figure 0004396874
[0127]
[Table 6]
Figure 0004396874
[0128]
【The invention's effect】
The method of the present invention eliminates the hot rolling step that causes problems such as generation of surface oxide scale and precipitation of coarse intermetallic compounds during material production, and has excellent characteristics for a copper-based alloy strip for terminals and a method for producing the same Therefore, it is possible to improve the yield and reduce the production cost without requiring energy for heating the material at the time of hot rolling to a high temperature and the accompanying capital investment.

Claims (9)

重量%で、Ni:0.2〜3.0%、Sn:2.0%以下、P:0.005〜2.0%を含有し、残部がCuと不可避的不純物である、銅基合金を連続鋳造する第一工程、非酸化性雰囲気中で熱処理温度を500〜950℃として均質化焼鈍する第二工程、冷間圧延した後に非酸化性雰囲気中で焼鈍温度を450〜650℃として中間焼鈍することを1回以上行い、最後の中間焼鈍前の圧延率を85%以上とする第三工程、圧延率を30〜90%として仕上げ冷間圧延する第四工程、及び焼鈍温度を250〜400℃として低温焼鈍する第五工程からなる端子用銅基合金条の製造方法。Copper-based alloy containing Ni: 0.2-3.0%, Sn: 2.0% or less, P: 0.005-2.0% with the balance being Cu and inevitable impurities The first step of continuous casting, the second step of homogenizing annealing at a heat treatment temperature of 500 to 950 ° C. in a non-oxidizing atmosphere, and the intermediate annealing temperature of 450 to 650 ° C. in a non-oxidizing atmosphere after cold rolling Annealing is performed at least once, the third step of making the rolling rate before the final intermediate annealing 85% or more, the fourth step of finish cold rolling with the rolling rate of 30 to 90%, and the annealing temperature of 250 to A method for producing a copper-based alloy strip for terminals comprising a fifth step of low-temperature annealing at 400 ° C. 第三工程で得られた中間焼鈍物が、5μm以下の再結晶粒径を有する請求項に記載の端子用銅基合金条の製造方法。The method for producing a copper-based alloy strip for terminals according to claim 1 , wherein the intermediate annealed product obtained in the third step has a recrystallized grain size of 5 µm or less. 第三工程で得られた中間焼鈍物は、NiとPの一部が20nm以下のNi−P系金属間化合物となってマトリクス中に均一微細に析出した組織を有する請求項に記載の端子用銅基合金状の製造方法。The terminal according to claim 1 , wherein the intermediate annealed product obtained in the third step has a structure in which a part of Ni and P becomes a Ni-P intermetallic compound having a thickness of 20 nm or less and is uniformly and finely precipitated in the matrix. Manufacturing method for copper-based alloy. 重量%で、Mn:0.2〜3.0%、Sn:2.0%以下、P:0.005〜2.0%を含有し、残部がCuと不可避的不純物である、銅基合金を連続鋳造する第一工程、非酸化性雰囲気中で熱処理温度を500〜950℃として均質化焼鈍する第二工程、冷間圧延した後に非酸化性雰囲気中で焼鈍温度を450〜650℃として中間焼鈍することを1回以上行い、最後の中間焼鈍前の圧延率を85%以上とする第三工程、圧延率を30〜90%として仕上げ冷間圧延する第四工程、及び焼鈍温度を250〜400℃として低温焼鈍する第五工程からなる端子用銅基合金条の製造方法。Copper based alloy containing, by weight%, Mn: 0.2 to 3.0%, Sn: 2.0% or less, P: 0.005 to 2.0% , the balance being Cu and inevitable impurities The first step of continuous casting, the second step of homogenizing annealing at a heat treatment temperature of 500 to 950 ° C. in a non-oxidizing atmosphere, and the intermediate annealing temperature of 450 to 650 ° C. in a non-oxidizing atmosphere after cold rolling Annealing is performed at least once, the third step of making the rolling rate before the final intermediate annealing 85% or more, the fourth step of finish cold rolling with the rolling rate of 30 to 90%, and the annealing temperature of 250 to A method for producing a copper-based alloy strip for terminals comprising a fifth step of low-temperature annealing at 400 ° C. 第三工程で得られた中間焼鈍物が、5μm以下の再結晶粒径を有する請求項に記載の端子用銅基合金条の製造方法。The method for producing a copper-based alloy strip for a terminal according to claim 4 , wherein the intermediate annealed product obtained in the third step has a recrystallized grain size of 5 µm or less. 第三工程で得られた中間焼鈍物は、MnとPの一部が20nm以下のMn−P系金属間化合物となってマトリクス中に均一微細に析出した組織を有する請求項に記載の端子用銅基合金条の製造方法。The terminal according to claim 4 , wherein the intermediate annealed product obtained in the third step has a structure in which a part of Mn and P becomes a Mn-P intermetallic compound having a size of 20 nm or less and is uniformly and finely precipitated in the matrix. For producing copper-based alloy strips. 重量%で、Co:0.1〜1.0%、Sn:2.0%以下、P:0.005〜1.0%を含有し、残部がCuと不可避的不純物である、銅基合金を連続鋳造する第一工程、非酸化性雰囲気中で熱処理温度を500〜980℃として均質化焼鈍する第二工程、冷間圧延した後に非酸化性雰囲気中で焼鈍温度を450〜650℃として中間焼鈍することを1回以上行い、最後の中間焼鈍前の圧延率を85%以上とする第三工程、圧延率を30〜90%として仕上げ冷間圧延する第四工程、及び焼鈍温度を300〜450℃として低温焼鈍する第五工程からなる端子用銅基合金条の製造方法。Copper-based alloy containing Co: 0.1 to 1.0%, Sn: 2.0% or less, P: 0.005 to 1.0%, the balance being Cu and inevitable impurities The first step of continuous casting, the second step of homogenizing annealing at a heat treatment temperature of 500 to 980 ° C. in a non-oxidizing atmosphere, and the intermediate temperature of 450 to 650 ° C. in the non-oxidizing atmosphere after cold rolling Annealing is performed at least once, the third step for setting the rolling rate before the final intermediate annealing to 85% or more, the fourth step for finish cold rolling at a rolling rate of 30 to 90%, and the annealing temperature for 300 to 300%. The manufacturing method of the copper base alloy strip for terminals which consists of the 5th process annealed at 450 degreeC low temperature. 第三工程で得られた中間焼鈍物が、5μm以下の再結晶粒径を有する請求項に記載の端子用銅基合金条の製造方法。The method for producing a copper-based alloy strip for a terminal according to claim 7 , wherein the intermediate annealed product obtained in the third step has a recrystallized grain size of 5 µm or less. 第三工程で得られた中間焼鈍物は、CoとPの一部が20nm以下のCo−P系金属間化合物となってマトリクス中に均一微細に析出した組織を有する請求項に記載の端子用銅基合金条の製造方法。The terminal according to claim 7 , wherein the intermediate annealed product obtained in the third step has a structure in which a part of Co and P becomes a Co—P intermetallic compound having a thickness of 20 nm or less and is uniformly and finely precipitated in the matrix. For producing copper-based alloy strips.
JP2000075480A 2000-03-17 2000-03-17 Manufacturing method of copper base alloy strip for terminal Expired - Lifetime JP4396874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075480A JP4396874B2 (en) 2000-03-17 2000-03-17 Manufacturing method of copper base alloy strip for terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075480A JP4396874B2 (en) 2000-03-17 2000-03-17 Manufacturing method of copper base alloy strip for terminal

Publications (2)

Publication Number Publication Date
JP2001262297A JP2001262297A (en) 2001-09-26
JP4396874B2 true JP4396874B2 (en) 2010-01-13

Family

ID=18593368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075480A Expired - Lifetime JP4396874B2 (en) 2000-03-17 2000-03-17 Manufacturing method of copper base alloy strip for terminal

Country Status (1)

Country Link
JP (1) JP4396874B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP4524471B2 (en) * 2004-08-30 2010-08-18 Dowaメタルテック株式会社 Copper alloy foil and manufacturing method thereof
JP4630025B2 (en) * 2004-09-03 2011-02-09 Dowaホールディングス株式会社 Method for producing copper alloy material
EP2366807B1 (en) * 2005-06-08 2013-08-21 Kabushiki Kaisha Kobe Seiko Sho Copper alloy and copper alloy plate
JP4680765B2 (en) 2005-12-22 2011-05-11 株式会社神戸製鋼所 Copper alloy with excellent stress relaxation resistance
US20110223056A1 (en) * 2007-08-07 2011-09-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet
JP5466879B2 (en) 2009-05-19 2014-04-09 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
CN107208191B (en) 2015-04-24 2020-03-13 古河电气工业株式会社 Copper alloy material and method for producing same
CN105088006A (en) * 2015-09-02 2015-11-25 宁波兴业盛泰集团有限公司 Low-cost and stress-relaxation-resistant copper alloy lead frame material and preparation method thereof

Also Published As

Publication number Publication date
JP2001262297A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
US10453582B2 (en) Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR20140001821A (en) Copper alloy sheet and manufacturing method for same
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
KR20150116825A (en) HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP5050753B2 (en) Manufacturing method of copper alloy for electrical and electronic parts with excellent plating properties
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
US20110005644A1 (en) Copper alloy material for electric/electronic parts
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
WO2015182777A1 (en) Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP4396874B2 (en) Manufacturing method of copper base alloy strip for terminal
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
TWI692535B (en) Titanium copper plate, pressed processed product and method for manufacturing pressed processed product
JPH0418016B2 (en)
JP2000273561A (en) Copper base alloy for terminal and its production
JP3989161B2 (en) Copper alloy for electronic and electrical equipment with excellent bending workability and stress relaxation resistance

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term