JP3511648B2 - Method for producing high-strength Cu alloy sheet strip - Google Patents

Method for producing high-strength Cu alloy sheet strip

Info

Publication number
JP3511648B2
JP3511648B2 JP26301993A JP26301993A JP3511648B2 JP 3511648 B2 JP3511648 B2 JP 3511648B2 JP 26301993 A JP26301993 A JP 26301993A JP 26301993 A JP26301993 A JP 26301993A JP 3511648 B2 JP3511648 B2 JP 3511648B2
Authority
JP
Japan
Prior art keywords
treatment
rolling
aging treatment
cold rolling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26301993A
Other languages
Japanese (ja)
Other versions
JPH0790520A (en
Inventor
錬成 二塚
淳一 熊谷
俊一 千葉
一徳 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP26301993A priority Critical patent/JP3511648B2/en
Publication of JPH0790520A publication Critical patent/JPH0790520A/en
Application granted granted Critical
Publication of JP3511648B2 publication Critical patent/JP3511648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、従来よりも一層曲げ
加工性に優れた電気電子部品、例えばコネクターやリー
ドフレームなどを形成するための高強度Cu合金薄板条
(板および条)の製造法に関するものである。 【0002】 【従来の技術】Cu−Ni−Si系のCu合金は、強度
と導電率を兼ね備えていることからコネクター、リード
フレーム等の電気電子部品材として古くから使用されて
きた。このCu−Ni−Si系Cu合金薄板条の製造工
程は、一般に鋳塊を熱間圧延後水冷により急冷し、面削
し、引き続いて冷間圧延と焼鈍を繰り返し、仕上げ前冷
間圧延を施したのち仕上げ処理を施す工程からなり、上
記仕上げ処理は、650〜900℃で溶体化処理する工
程、圧延率:15〜75%程度の仕上げ冷間圧延する工
程、および350〜550℃で時効処理する工程からな
ることが知られている(特開平5−59505号公報参
照)。 【0003】 【発明が解決しようとする課題】近年、かかる小型のコ
ネクターやリードフレームなどの電気電子部品を作成す
るには、極端な曲げ加工を必要とする。しかし、上記従
来の製造工程により製造されたCu−Ni−Si系Cu
合金薄板条を用いて極端な曲げ加工を施し、小型のコネ
クターやリードフレームなどの電気電子部品を作成する
と、極端な曲げ加工部分にクラックが発生するなどの課
題があった。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
導電性、引張強さ、伸びなどの特性を損なうことなく、
極端な曲げ加工を行ってもクラックが発生することない
曲げ加工性に優れた高強度Cu合金薄板条を得るべく研
究を行った結果、Cu合金鋳塊を熱間圧延後水冷により
急冷し、面削し、引き続いて冷間圧延と焼鈍を繰り返し
たのち仕上げ圧延前冷間圧延を施した薄板条を溶体化処
理し、一次時効処理を施したのち仕上げ冷間圧延を施
し、ついで一次時効処理温度よりも高い温度で二次時効
処理を施すと、従来よりも曲げ加工性に優れたCu合金
薄板条が得られるという知見を得たのである。 【0005】この発明は、かかる知見にもとづいてなさ
れたものであって、質量でNi:2〜5%、Si:0.
3〜1%、Zn:0.1〜1%、Mg:0.001〜
0.05%、Sn:0.05〜1%を含有し、残りがC
uおよび不可避不純物からなり、かつ不可避不純物とし
ての硫黄(S)および炭素(C)の含有量をそれぞれ
S:20ppm 以下、C:20ppm 以下とした組成を有す
るCu合金鋳塊を熱間圧延後水冷により急冷し、面削
し、引き続いて冷間圧延と焼鈍を繰り返し施したのち、
仕上げ前冷間圧延を施し、ついで仕上げ処理を施す高強
度Cu合金薄板条の製造法において、上記仕上げ処理
は、溶体化処理したのち一次時効処理し、ついで仕上げ
冷間圧延したのち二次時効処理を施し、かつ上記二次時
効処理は一次時効処理よりも相対的に高い温度で行う高
強度Cu合金薄板条の製造法に特徴を有するものであ
る。 【0006】上記仕上げ処理における溶体化処理は、7
00〜900℃で5秒〜60分間保持後急冷の条件で行
うことが好ましく、仕上げ冷間圧延は5〜35%の範囲
で行うことが好ましく、二次時効処理は350〜650
℃で0.01〜600分保持の条件で行うことが好まし
く、これらの条件は従来のCu−Ni−Si系Cu合金
の製造条件の範囲内に含まれるが、この発明の高強度C
u合金薄板条の製造法においては、溶解体化処理と仕上
げ冷間圧延工程の間に300〜600℃で0.5〜12
時間保持の条件の一次時効処理を挿入することおよび上
記一次時効処理は二次時効処理よりも相対的に低温度で
行うことを特徴とするものである。 【0007】この発明の製造法で使用するCu合金の成
分組成を限定した理由は下記の通りである。 【0008】(a) NiおよびSi これら両成分は、結合して素地に微細に分散する、主体
がNi2 Siからなる金属間化合物を形成し、もって強
度を向上させる作用をもつが、その含有量がNi:2%
未満およびSi:0.3%未満では所望の強度向上効果
が得られず、一方、Niの含有量が5%を超えると導電
率が低下するようになり、またSiの含有量が1%を超
えると熱間加工性が低下するようになることから、その
含有量をそれぞれNi:2〜5%、Si:0.3〜1%
と定めた。 【0009】(b) Zn Zn成分には、はんだの耐熱剥離性を向上させる作用が
あるが、その含有量が0.1% 未満では前記作用に所望の効果が得られず、一方その含
有量が2%を超えると導電率が急激に低下するようにな
ることから、その含有量を0.1〜2%と定めた。 【0010】(c) Mg Mg成分には、熱間加工性を向上させる作用があるが、
その含有量が0.001%未満では所望の熱間加工性向
上効果が得られず、一方その含有量が0.05%を超え
てもより一層の向上効果が現れないことから、その含有
量を0.001〜0.05%と定めた。 【0011】(d) Sn Sn成分には、半導体デバイス等の封止材であるエポキ
シ樹脂との密着強度を向上させる作用があるが、その含
有量が0.05%未満では前記作用に所望の向上効果が
得られず、一方その含有量が1%を超えると導電性が低
下するようになることから、その含有量を0.05〜1
%と定めた。 【0012】(e) 不可避不純物としてのSおよびC 一般に、この種のCu合金は不可避不純物としてSおよ
びCをそれぞれ30ppm 以下含有するが、これらのSお
よびCの含有量をそれぞれ20ppm 以下にしないと、上
記のSnによる所望の密着強度向上効果が得られないこ
とから、これらSおよびCの含有量をそれぞれ20ppm
以下に制限しなければならない。 【0013】この発明の製造方法においては、上記成分
組成のCu合金集会を得た後、従来製造方法と同じよう
に、熱間圧延後水冷により急冷し、面削し、冷間圧延と
焼鈍を繰り返し、仕上げ前圧延を行うが、引き続いて以
下の仕上げ処理を施すことに特徴があり、この仕上げ処
理に含まれる各処理の条件限定理由は以下の通りであ
る。 【0014】(f) 溶体化処理 Ni珪化物の析出をできるだけ抑え、再結晶粒の粗大化
を避けるために行う処理であって、処理温度が低い場合
には長時間、処理温度が高い場合には短時間保持するよ
うにして実施するものであるが、700℃未満で60分
を超えて保持しても固溶限以上のNi珪化物が粗大化し
好ましくなく、一方、950℃を超える温度で5秒未満
保持してもNi珪化物の固溶化が不十分なので好ましく
ない。したがって、溶体化処理条件は700〜950℃
に5秒〜60分保持に定めた。 【0015】(g) 一次時効処理 上記溶体化処理を行ってNi珪化物の析出をできるだけ
抑え、再結晶粒の粗大化を防止したのち、仕上げ冷間圧
延前にNi珪化物を微細かつ多量に析出させ、強度を向
上させた状態で仕上げ冷間圧延を行うと、曲げ加工性が
大幅に向上するが、その際に、300℃未満で12時間
を超えて保持しても、また600℃を超えて0.5時間
未満保持しても曲げ加工性向上に十分な効果が得られな
いことから、一次時効処理条件は300〜600℃、
0.5〜12時間保持に定めた。 【0016】(h) 仕上げ冷間圧延 仕上げ冷間圧延は、二次時効処理の効果を一層高めるた
めに実施するが、圧延率が5%未満では強度向上の効果
が少なく、圧延率が35%を超えると曲げ加工時にクラ
ックが発生するようになるところから、その圧延率は5
〜35%に定めた。 【0017】(i) 二次時効処理 Ni珪化物を微細に析出させ、強度を向上させるために
行うが、特に曲げ加工性を向上させるためには一次時効
処理温度よりも相対的に高い温度で処理することが好ま
しいところから、350〜650℃、0.01〜600
分の条件に定めた。 【0018】 【実施例】実施例1 表1に示す成分組成(質量%)を有するCu合金を、通
常の低周波誘電溶解炉を用い、半連続鋳造法にて厚さ:
150mm、幅:500mm、長さ:3000mm、の寸法を
持った鋳塊にした。この鋳塊に950℃の圧延開始温度
で熱間圧延を施して厚さ:11mmの熱延板とし、水冷
後、前記熱延板の上下面を面削して厚さ:10mmとし
た。これを冷間圧延、焼鈍および酸洗を繰り返し、仕上
げ前冷間圧延により表2〜表4に示される厚さの薄板を
製作した。 【0019】上記仕上げ前冷間圧延されて得られた表2
〜表4に示される厚さの薄板を、塩浴炉内にて表2〜表
4に示される温度×時間保持したのち、ただちに水冷の
溶体化処理を施し、酸洗、研磨したのち無酸化炉にて表
2〜表4に示される温度×時間の一次時効処理を施し、
ついで表2〜表4に示される圧延率で仕上げ冷間圧延し
たのち、引き続いて表2〜表4に示される温度×時間保
持の二次時効処理を施すことにより本発明法1〜20お
よび比較法1〜7を実施した。さらに、二次時効処理を
省略した比較法8、および一次時効処理のない従来法1
を実施した。これら本発明法1〜20、比較法1〜8お
よび従来法1により製造したCu合金薄板について、下
記の方法で引張強さ、伸び、曲げ加工性および導電率を
測定し、それらの測定結果を表5〜表8に示した。 【0020】(A) 引張強さおよび伸びの測定 試料を圧延方向に平行(表5〜表8にBWで示す)およ
び直角(表5〜表8にGWで示す)に採取したJIS
13号 B試験片を用いて引張強さおよび伸びを測定し
た。 【0021】(B) 導電率の測定 JIS H0505に準拠して測定した。 【0022】(C) 曲げ加工性の測定 CES M0002−5に準拠し、荷重:9807N、
内側曲げ半径R:0〜0.75mm(0.075mmの倍
数)、曲げ軸を圧延方向に平行および直角にし、W曲げ
の中央曲げ部を75倍の光学顕微鏡で観察し、クラック
が発生したときの内側曲げ半径(R)/板厚(t)の値
を測定した。このようにして測定したR/tの値は小さ
いほど曲げ加工性が優れており、大きいほど曲げ加工性
が悪いことを示すものである。 【0023】 【表1】 【0024】 【表2】【0025】 【表3】 【0026】 【表4】【0027】 【表5】 【0028】 【表6】【0029】 【表7】【0030】 【表8】【0031】表2〜表8に示される内容、結果から、溶
体化処理→一次時効処理→仕上げ冷間圧延→二次時効処
理という工程の仕上げ処理した本発明法1〜20により
得られたCu合金薄板は、溶体化処理→仕上げ冷間圧延
→時効処理という工程の仕上げ処理した従来法1により
得られたCu合金薄板に比べて、いずれも曲げ加工性が
優れていることがわかる。しかし、同じ仕上げ処理を行
ってもこの発明の条件から外れた温度および圧延率で仕
上げ処理した比較法1〜7、並びに二次時効処理を省略
した比較法8は、引張強さ、伸び、曲げ加工性、導電率
のうち少なくとも1つは好ましくない値となることがわ
かる。 【0032】実施例2 表9に示される成分組成の異なるCu合金鋳塊を実施例
1と同じ条件で厚さ:11mmの熱延板を作製し、水冷
後、前記熱延板の上下面を面削して厚さ:10mmとし、
これに冷間圧延、焼鈍および酸洗を繰り返し施し、仕上
げ前圧延により厚さ:1.0mmの仕上げ前圧延板を用意
した。この仕上げ前圧延板に、温度:800℃、10秒
保持後水冷の溶体化処理を施したのち、温度:450
℃、3時間保持の一次時効処理を施し、この一次時効処
理を施したCu合金薄板に、さらに圧延率:15%の仕
上げ冷間圧延を施し、ついで、温度:500℃、0.5
分保持の二次時効処理を施すことにより厚さ:0.15
mmのCu合金薄板を作製し、本発明法21〜23、比較
法10〜21を実施した。 【0033】この発明法21〜23、比較法10〜21
で得られたCu合金薄板を実施例1と同様にして引張強
さ、伸び、曲げ加工性および導電率を測定し、それらの
測定結果を表10および表11に示した。さらにその他
の特性についても表10および表11の備考欄に示し
た。 【0034】 【表9】【0035】 【表10】 【0036】 【表11】【0037】表9〜表11に示される結果から、原料と
して、Ni:2〜5%、Si:0.3〜1%、Zn:
0.1〜2%、Mg:0.001〜0.05%、Sn:
0.05〜1%を含有し、残りがCuおよび不可避不純
物からなり、かつ不可避不純物としての硫黄(S)およ
び炭素(C)の含有量をそれぞれS:20ppm 以下、
C:20ppm 以下とした組成を有するCu−Ni−Si
系Cu合金を用いた本発明法21〜23により得られた
Cu合金薄板は、この発明の条件から外れている比較法
10〜21に比べて、いずれも特性が優れていることが
わかる。 【0038】 【発明の効果】上述のように、この発明によると、強度
および導電性を劣化させることなく曲げ加工性の優れた
Cu合金薄板条を製造することができ、この発明の製造
法により製造されたCu合金薄板条を用いて過酷な曲げ
加工を施すことが可能となり、一層小型のコネクター、
リードフレームなどの電気電子部品を製造することがで
き、産業の発展に大いに貢献しうるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength Cu alloy for forming electrical and electronic parts, such as connectors and lead frames, which are more excellent in bending workability than conventional ones. The present invention relates to a method of manufacturing a thin strip (plate and strip). 2. Description of the Related Art Cu-Ni-Si based Cu alloys have long been used as electrical and electronic component materials such as connectors and lead frames because they have both strength and electrical conductivity. In the production process of the Cu-Ni-Si-based Cu alloy sheet strip, generally, the ingot is quenched by water cooling after hot rolling, face milling is performed, then cold rolling and annealing are repeated, and cold rolling before finishing is performed. And then subjecting to a finishing treatment, wherein the finishing treatment is a step of performing a solution treatment at 650 to 900 ° C., a step of performing finish cold rolling at a rolling reduction of about 15 to 75%, and an aging treatment at 350 to 550 ° C. (See Japanese Patent Application Laid-Open No. 5-59505). In recent years, the fabrication of such small-sized electrical and electronic components such as connectors and lead frames requires extreme bending. However, Cu-Ni-Si-based Cu manufactured by the above-described conventional manufacturing process is used.
When extreme bending is performed using alloy thin strips to produce electrical and electronic components such as small connectors and lead frames, there have been problems such as cracks occurring in the extremely bent portions. [0004] Accordingly, the present inventors have proposed:
Without impairing properties such as conductivity, tensile strength and elongation,
As a result of conducting research to obtain a high-strength Cu alloy thin strip excellent in bending workability that does not crack even after extreme bending work, the Cu alloy ingot was quenched by water cooling after hot rolling, After the cold rolling and annealing are repeated, the thin strip that has been subjected to cold rolling before finish rolling is subjected to solution treatment, subjected to primary aging treatment, subjected to finish cold rolling, and then subjected to primary aging treatment temperature. It has been found that when the secondary aging treatment is performed at a higher temperature, a Cu alloy sheet strip having better bending workability than before can be obtained. [0005] The present invention has been made based on such findings, and is based on the mass of Ni: 2 to 5% and Si: 0.
3 to 1%, Zn: 0.1 to 1%, Mg: 0.001 to
0.05%, Sn: 0.05-1%, the remainder being C
hot-rolling a water-cooled Cu alloy ingot consisting of u and unavoidable impurities, and having a composition in which the contents of sulfur (S) and carbon (C) as unavoidable impurities are S: 20 ppm or less and C: 20 ppm or less, respectively. After quenching, face milling, and then repeated cold rolling and annealing,
In the method for producing a high-strength Cu alloy strip that is subjected to cold rolling before finishing and then subjected to finishing, the finishing is performed by first aging after solution treatment, then cold-rolling after finishing and then secondary aging. And the above-mentioned secondary aging treatment is characterized by a method for producing a high-strength Cu alloy sheet strip performed at a relatively higher temperature than the primary aging treatment. [0006] The solution treatment in the above finishing treatment is carried out by 7
It is preferable to perform quenching under conditions of holding at 00 to 900 ° C. for 5 seconds to 60 minutes, preferably performing finish cold rolling in a range of 5 to 35%, and performing secondary aging in a range of 350 to 650.
C. for 0.01 to 600 minutes. These conditions are included in the range of conventional Cu—Ni—Si based Cu alloy production conditions.
In the production method of the u-alloy sheet strip, 0.5 to 12 at 300 to 600 ° C between the solution treatment and the finish cold rolling step.
It is characterized in that a primary aging process of a condition for keeping time is inserted and that the primary aging process is performed at a relatively lower temperature than the secondary aging process. The reasons for limiting the composition of the Cu alloy used in the production method of the present invention are as follows. (A) Ni and Si These two components combine to form an intermetallic compound composed mainly of Ni 2 Si which is finely dispersed in the base material and has an action of improving the strength. Is Ni: 2%
If the content is less than 5% and the Ni content is more than 5%, the electrical conductivity is reduced, and the Si content is less than 1%. If it exceeds, the hot workability decreases, so the contents are respectively Ni: 2 to 5% and Si: 0.3 to 1%.
It was decided. (B) Zn The Zn component has an effect of improving the heat-peeling resistance of the solder. However, if the content is less than 0.1%, the desired effect cannot be obtained in the above-mentioned effect. Exceeds 2%, the electrical conductivity sharply decreases, so the content was determined to be 0.1 to 2%. (C) Mg The Mg component has an effect of improving hot workability.
If the content is less than 0.001%, the desired effect of improving hot workability cannot be obtained, while if the content exceeds 0.05%, no further improvement effect is exhibited. Was determined to be 0.001 to 0.05%. (D) Sn The Sn component has the effect of improving the adhesion strength to the epoxy resin as a sealing material for semiconductor devices and the like, but if its content is less than 0.05%, the desired effect is obtained. No improvement effect can be obtained, and on the other hand, if the content exceeds 1%, the conductivity will be reduced.
%. (E) S and C as unavoidable impurities Generally, this type of Cu alloy contains 30 ppm or less of S and C as unavoidable impurities, respectively, unless the content of each of these S and C is 20 ppm or less. Since the desired effect of improving the adhesion strength by Sn cannot be obtained, the content of each of S and C is set to 20 ppm.
Must be restricted to: In the manufacturing method of the present invention, after a Cu alloy assembly having the above-mentioned composition is obtained, hot rolling is followed by rapid cooling by water cooling, face milling, cold rolling and annealing as in the conventional manufacturing method. The pre-finishing rolling is repeatedly performed, and is characterized by successively performing the following finishing treatment. The reasons for limiting the conditions of each treatment included in the finishing treatment are as follows. (F) Solution treatment This treatment is carried out to suppress precipitation of Ni silicide as much as possible and to avoid coarsening of recrystallized grains. The treatment is carried out for a long time when the treatment temperature is low, and for a long time when the treatment temperature is high. Is carried out in such a manner as to be held for a short time, but even if it is held at less than 700 ° C. for more than 60 minutes, the Ni silicide exceeding the solid solubility limit coarsens, which is not preferable. On the other hand, at a temperature exceeding 950 ° C. Holding for less than 5 seconds is not preferable because solid solution of Ni silicide is insufficient. Therefore, solution treatment conditions are 700-950 ° C.
For 5 seconds to 60 minutes. (G) Primary aging treatment After performing the solution treatment described above to suppress precipitation of Ni silicide as much as possible and to prevent coarsening of recrystallized grains, fine and large amounts of Ni silicide are formed before finish cold rolling. Precipitating and performing finish cold rolling in a state where the strength is improved, the bending workability is greatly improved. At that time, even if it is held at less than 300 ° C for more than 12 hours, Since the effect of improving the bending workability cannot be sufficiently obtained even if the holding time is longer than 0.5 hour, the primary aging condition is 300 to 600 ° C.
It was set to hold for 0.5 to 12 hours. (H) Finish Cold Rolling Finish cold rolling is carried out to further enhance the effect of the secondary aging treatment. When the rolling reduction is less than 5%, the effect of improving the strength is small, and the rolling reduction is 35%. When the rolling ratio exceeds 5 mm, cracks occur at the time of bending.
It was set to ~ 35%. (I) Secondary aging treatment Ni-silicide is finely precipitated to improve the strength. Particularly, in order to improve the bending workability, the temperature is relatively higher than the primary aging treatment temperature. Since it is preferable to perform the treatment, 350-650 ° C, 0.01-600
Minute conditions. Example 1 A Cu alloy having a composition (% by mass) shown in Table 1 was prepared by a semi-continuous casting method using a conventional low-frequency dielectric melting furnace.
An ingot having dimensions of 150 mm, width: 500 mm, and length: 3000 mm was formed. This ingot was subjected to hot rolling at a rolling start temperature of 950 ° C. to form a hot-rolled sheet having a thickness of 11 mm. After water cooling, the upper and lower surfaces of the hot-rolled sheet were chamfered to a thickness of 10 mm. This was repeatedly cold-rolled, annealed and pickled, and cold-rolled before finishing to produce thin plates having the thicknesses shown in Tables 2 to 4. Table 2 obtained by cold rolling before the above finishing
After holding a thin plate having a thickness shown in Table 4 in a salt bath furnace at a temperature shown in Tables 2 to 4 for an hour, immediately subjected to a water-cooled solution treatment, pickled, polished, and then non-oxidized. In the furnace, subjected to primary aging treatment at the temperature x time shown in Tables 2 to 4,
Then, after finish cold rolling at the rolling ratios shown in Tables 2 to 4, followed by a secondary aging treatment of temperature x time shown in Tables 2 to 4, the method of the present invention 1 to 20 and Comparative Methods 1 to 7 were performed. Furthermore, the comparative method 8 omitting the secondary aging treatment and the conventional method 1 without the primary aging treatment
Was carried out. For the Cu alloy thin plates manufactured according to the methods 1 to 20 of the present invention, the comparative methods 1 to 8 and the conventional method 1, tensile strength, elongation, bending workability and electrical conductivity were measured by the following methods, and the measurement results were obtained. The results are shown in Tables 5 to 8. (A) JIS samples taken of tensile strength and elongation measured parallel to the rolling direction (shown by BW in Tables 5 to 8) and at right angles (shown by GW in Tables 5 to 8)
The tensile strength and elongation were measured using a No. 13 B test piece. (B) Measurement of conductivity Measured according to JIS H0505. (C) Measurement of bending workability According to CES M0002-5, load: 9807N,
Inner bending radius R: 0 to 0.75 mm (multiple of 0.075 mm), the bending axis is parallel and perpendicular to the rolling direction, the central bending part of W bending is observed with a 75-fold optical microscope, and cracks occur Of the inner bending radius (R) / plate thickness (t) was measured. The smaller the value of R / t thus measured, the better the bending workability, and the larger the value, the worse the bending workability. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] [Table 8] From the contents and results shown in Tables 2 to 8, the Cu obtained by the present invention methods 1 to 20 which had been subjected to the finishing treatment of the steps of solution treatment → primary aging treatment → finish cold rolling → secondary aging treatment was used. It can be seen that all of the alloy sheets have excellent bending workability as compared with the Cu alloy sheet obtained by the conventional method 1 which has been subjected to the finishing treatment of solution treatment → finish cold rolling → aging treatment. However, Comparative Methods 1 to 7 in which the same finishing treatment was performed at a temperature and a rolling ratio outside the conditions of the present invention, and Comparative Method 8 in which the secondary aging treatment was omitted, had tensile strength, elongation, and bending. It can be seen that at least one of the processability and the conductivity has an unfavorable value. Example 2 A hot rolled sheet having a thickness of 11 mm was prepared from Cu alloy ingots having different component compositions shown in Table 9 under the same conditions as in Example 1, and after cooling with water, the upper and lower surfaces of the hot rolled sheet were removed. Beveling and thickness: 10mm,
This was repeatedly subjected to cold rolling, annealing and pickling, and a pre-finish rolled sheet having a thickness of 1.0 mm was prepared by pre-finish rolling. The pre-finished rolled sheet is subjected to a solution treatment of cooling at a temperature of 800 ° C. for 10 seconds and then water cooling, and then a temperature of 450 ° C.
Primary aging treatment at 3 ° C. for 3 hours, and then subject the Cu alloy thin plate subjected to the primary aging treatment to finish cold rolling at a rolling reduction of 15%.
Thickness: 0.15 by secondary aging treatment
A Cu alloy thin plate having a thickness of mm was prepared, and the methods 21 to 23 of the present invention and the comparative methods 10 to 21 were performed. Inventive Methods 21 to 23, Comparative Methods 10 to 21
The tensile strength, elongation, bending workability and electrical conductivity were measured on the Cu alloy thin plate obtained in the same manner as in Example 1, and the measurement results are shown in Tables 10 and 11. Other characteristics are also shown in the remarks column of Tables 10 and 11. [Table 9] [Table 10] [Table 11] From the results shown in Tables 9 to 11, Ni: 2 to 5%, Si: 0.3 to 1%, Zn:
0.1-2%, Mg: 0.001-0.05%, Sn:
0.05 to 1%, the balance consisting of Cu and unavoidable impurities, and the content of sulfur (S) and carbon (C) as unavoidable impurities is S: 20 ppm or less, respectively.
C: Cu-Ni-Si having a composition of 20 ppm or less
It can be seen that the Cu alloy thin plates obtained by the methods 21 to 23 of the present invention using a system Cu alloy have superior properties as compared with the comparative methods 10 to 21 which are out of the conditions of the present invention. As described above, according to the present invention, it is possible to manufacture a Cu alloy sheet having excellent bending workability without deteriorating the strength and conductivity. Severe bending can be performed using the manufactured Cu alloy sheet strip, and a more compact connector,
Electric and electronic components such as lead frames can be manufactured, which can greatly contribute to industrial development.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊川 一徳 福島県会津若松市扇町128−7 三菱伸 銅株式会社 若松製作所内 (56)参考文献 特開 平3−56649(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 1/00 - 3/02 C22C 9/06 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazunori Kikukawa 128-7 Ogimachi, Aizuwakamatsu-shi, Fukushima Prefecture Mitsubishi Shindoh Copper Co., Ltd. Wakamatsu Works (56) References JP-A-3-56649 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22F 1/00-3/02 C22C 9/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 量%で、Ni:2〜5%、Si:0.
3〜1%、Zn:0.1〜2%、Mg:0.001〜
0.05%、Sn:0.05〜1%を含有し、残りがC
uおよび不可避不純物からなり、かつ不可避不純物とし
て硫黄(S)および炭素(C)の含有量をそれぞれS:
20ppm 以下、C:20ppm 以下とした組成を有するC
u合金鋳塊を熱間圧延後冷し、面削したのち冷間圧延
と焼鈍を繰り返し施し、仕上げ前冷間圧延を施したの
ち、引き続いて仕上げ処理を施すCu合金薄板条の製造
法において、 上記仕上げ処理は、700〜900℃で5秒〜60分保
持したのち水冷の条件の溶体化処理したのち、300〜
600℃で0.5〜12時間保持の条件の一次時効処理
を施し、ついで圧延率:5〜35%の範囲内で仕上げ冷
間圧延したのち350〜650℃で0.01〜600分
保持の条件の二次時効処理を施す工程からなり、かつ上
記二次時効処理は一次時効処理よりも相対的に高い温度
で行なうことを特徴とする高強度Cu合金薄板条の製造
法。
(57) in [Claims 1. A mass%, Ni: 2~5%, Si : 0.
3 to 1%, Zn: 0.1 to 2%, Mg: 0.001 to
0.05%, Sn: 0.05-1%, the remainder being C
u and inevitable impurities, and the content of sulfur (S) and carbon (C) as inevitable impurities is S:
C having a composition of 20 ppm or less and C: 20 ppm or less
The u alloy ingot cooled water after hot rolling, subjected repeatedly annealing and cold rolling After scalped, then subjected to finish before cold rolling, in the manufacturing method of the Cu alloy thin strip is subjected to finishing process subsequent The above finishing treatment is performed at 700 to 900 ° C for 5 seconds to 60 minutes.
After solution heat treatment of the water-cooling conditions After lifting, 300
A primary aging treatment is performed at 600 ° C. for 0.5 to 12 hours , followed by finish cold rolling at a rolling reduction of 5 to 35% , followed by 0.01 to 600 minutes at 350 to 650 ° C.
A method for producing a high-strength Cu alloy sheet strip, comprising a step of performing a secondary aging treatment under conditions of holding , and performing the secondary aging treatment at a relatively higher temperature than the primary aging treatment.
JP26301993A 1993-09-27 1993-09-27 Method for producing high-strength Cu alloy sheet strip Expired - Lifetime JP3511648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26301993A JP3511648B2 (en) 1993-09-27 1993-09-27 Method for producing high-strength Cu alloy sheet strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26301993A JP3511648B2 (en) 1993-09-27 1993-09-27 Method for producing high-strength Cu alloy sheet strip

Publications (2)

Publication Number Publication Date
JPH0790520A JPH0790520A (en) 1995-04-04
JP3511648B2 true JP3511648B2 (en) 2004-03-29

Family

ID=17383760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26301993A Expired - Lifetime JP3511648B2 (en) 1993-09-27 1993-09-27 Method for producing high-strength Cu alloy sheet strip

Country Status (1)

Country Link
JP (1) JP3511648B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117447B4 (en) 2000-04-10 2016-10-27 The Furukawa Electric Co., Ltd. A stampable copper alloy sheet and a method for producing the same
JP4329967B2 (en) 2000-04-28 2009-09-09 古河電気工業株式会社 Copper alloy wire suitable for IC lead pins for pin grid array provided on plastic substrate
JP3520034B2 (en) 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
US7090732B2 (en) 2000-12-15 2006-08-15 The Furukawa Electric, Co., Ltd. High-mechanical strength copper alloy
JP3520046B2 (en) 2000-12-15 2004-04-19 古河電気工業株式会社 High strength copper alloy
WO2003076672A1 (en) * 2002-03-12 2003-09-18 The Furukawa Electric Co., Ltd. High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP4754930B2 (en) * 2005-10-14 2011-08-24 Jx日鉱日石金属株式会社 Cu-Ni-Si based copper alloy for electronic materials
JP4556841B2 (en) * 2005-10-27 2010-10-06 日立電線株式会社 High strength copper alloy material excellent in bending workability and manufacturing method thereof
JP5028657B2 (en) * 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
CN102859016B (en) 2010-04-07 2015-04-08 古河电气工业株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
WO2014196563A1 (en) * 2013-06-04 2014-12-11 日本碍子株式会社 Copper-alloy production method, and copper alloy
CN114752810B (en) * 2022-03-24 2023-04-11 江苏恒盈电子科技有限公司 High-strength semiconductor lead frame for circuit board and preparation method thereof
CN115044846B (en) * 2022-06-23 2023-06-02 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Also Published As

Publication number Publication date
JPH0790520A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JPH0841612A (en) Copper alloy and its preparation
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2001294957A (en) Copper alloy for connector and its producing method
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
WO2013018228A1 (en) Copper alloy
JP2006009137A (en) Copper alloy
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
WO2012132765A1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
US20110005644A1 (en) Copper alloy material for electric/electronic parts
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4396874B2 (en) Manufacturing method of copper base alloy strip for terminal
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
TWI692535B (en) Titanium copper plate, pressed processed product and method for manufacturing pressed processed product
JP3410125B2 (en) Manufacturing method of high strength copper base alloy

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

EXPY Cancellation because of completion of term