JPS63250444A - Manufacture of high-conductivity terminal and connector material excellent in migration resistance - Google Patents

Manufacture of high-conductivity terminal and connector material excellent in migration resistance

Info

Publication number
JPS63250444A
JPS63250444A JP8360987A JP8360987A JPS63250444A JP S63250444 A JPS63250444 A JP S63250444A JP 8360987 A JP8360987 A JP 8360987A JP 8360987 A JP8360987 A JP 8360987A JP S63250444 A JPS63250444 A JP S63250444A
Authority
JP
Japan
Prior art keywords
rolling
hot
temperature
migration resistance
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8360987A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Takeo Yuji
湯地 建夫
Riichi Tsuno
津野 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8360987A priority Critical patent/JPS63250444A/en
Publication of JPS63250444A publication Critical patent/JPS63250444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To develop a copper alloy excellent in migration resistance, by hot- rolling an ingot of Cu alloy containing An and other specific elements and then by subjecting the hot-rolled plate to cooling, cold working, annealing, temper finish rolling, and final annealing under specific conditions. CONSTITUTION:An ingot of a Cu alloy containing, by weight, 0.35-1.0% Fe, 0.05-0.35% P, 0.05-1.0% Sn, and 1.0-5.0% Zn is subjected to primary hot rolling at <=714 deg.C to prevent the cracking of a rolled stock and successively to secondary hot rolling, which is cooled from >=600 deg.C at <=5 deg.C/sec cooling rate to undergo solution heat treatment. Subsequently, the hot-rolled plate is cold-rolled and the resulting cold-rolled sheet is annealed at 400-600 deg.C for 5min-4hr to precipitate FeP and improve strength and electric conductivity. Successively, the above sheet is subjected to temper finish rolling and then annealing at 250-600 deg.C for 5sec-4hr, so that high-conductivity Cu alloy for terminal and connector materials excellent in migration resistance can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐マイグレーション性に優れた高導電性端子
・コネクター材料の製造方法に関するものであり、さら
に詳しくは導電率が50%I AC3以上の耐マイグレ
ーション性に優れた端子・コネクター用銅合金の製造方
法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for producing highly conductive terminal/connector materials with excellent migration resistance, and more specifically, with conductivity of 50% I AC3 or higher. The present invention relates to a method for manufacturing a copper alloy for terminals and connectors that has excellent migration resistance.

[従来技術] 昨今の電気、電子部品は軽薄短小化のニーズに伴ない小
型化、高密度実装化および大電流容量化が進んでいる。
[Prior Art] Modern electrical and electronic components are becoming smaller, more densely packaged, and have a larger current capacity due to the need to be lighter, thinner, shorter, and smaller.

そのため端子・コネクターには高導電性および高強度の
材料が求められており、性能的にはリン青銅1種の強度
を備え、かつ導電率が50%I AC3以上の強度及び
導電率が要求されている。さらに、端子・コネクターに
おいては小型化とその電極数の増加に伴ない、電極間の
ピッチが1/10インチ(2,54mm)から1/20
インチ(1,27mm)、1/40インチ(0,635
mm)へと小さくなって来た。一般に上記のような端子
材料としては、黄銅が主として使用されており、特に高
級コネクター材料には、リン青銅が使用されできた。
Therefore, materials with high conductivity and high strength are required for terminals and connectors, and in terms of performance, they are required to have the strength of phosphor bronze, and have a conductivity of 50% IAC3 or higher. ing. Furthermore, with the miniaturization and increase in the number of electrodes in terminals and connectors, the pitch between electrodes has decreased from 1/10 inch (2.54 mm) to 1/20 inch.
inch (1,27 mm), 1/40 inch (0,635
mm). In general, brass is mainly used as the terminal material as described above, and phosphor bronze has been used particularly as a high-grade connector material.

[発明が解決しようとする問題点] 端子・コネクター材料として使用されている黄銅は、成
形加工性が良好であるという長所をもっているが、応力
緩和特性及び腐食割れ性がリン青銅より劣る。しかも電
気、電子部品の電極間ピッチが小さくなり、湿気の結露
や水分の侵入によって;電極間に水分が付着すると、純
銅及びリン青銅は銅イオンが溶出して、極間に銅が移行
しくマイグレーション)電気回路に短絡等の不具合を起
こすという問題点がある。また、リン青銅は白木工業規
格(JIS)に示されている様に、3.0wt%以上の
Snが含有されており、導電率は22%IACS以下と
低いばかりか、錫自体が高価であるため、リン青銅も高
価となる。このように軽薄短小化および電流容量の増加
のニーズには、従来のリン青銅は耐熱性あるいは温度上
昇時の応力緩和特性の面で対応できないという欠点があ
る。ここで高い導電率と高い結反とを併せ持つ銅合金と
してはCu−Fe−P系またはCu−Fe−P−3nf
−の合金が知られている。この合金系はFe−Pの化合
物の析出により、マトリックスの有する高い導電性を損
なうことなく高い強度を出現させたものであり、特性的
には1.上記の電導性と強度に関する要求を満足するも
のである。
[Problems to be Solved by the Invention] Brass used as a terminal/connector material has the advantage of good moldability, but is inferior to phosphor bronze in stress relaxation properties and corrosion cracking resistance. Moreover, the pitch between the electrodes of electrical and electronic components is becoming smaller, and moisture condensation and moisture infiltration; when moisture adheres between the electrodes, copper ions from pure copper and phosphor bronze are eluted, causing copper to migrate between the electrodes. ) There is a problem in that it causes problems such as short circuits in electric circuits. In addition, as shown in the Shiraki Industrial Standard (JIS), phosphor bronze contains 3.0 wt% or more of Sn, and not only has the electrical conductivity as low as 22% IACS or less, but tin itself is expensive. Therefore, phosphor bronze is also expensive. Conventional phosphor bronze has the drawback of not being able to meet the needs for lighter, thinner, shorter and more compact materials and increased current capacity in terms of heat resistance or stress relaxation properties at elevated temperatures. Here, Cu-Fe-P type or Cu-Fe-P-3nf is used as a copper alloy that has both high conductivity and high stiffness.
− alloys are known. This alloy system exhibits high strength without impairing the high conductivity of the matrix due to the precipitation of Fe-P compounds, and has the following characteristics: It satisfies the above requirements regarding conductivity and strength.

この合金系に属する合金として、C’19600(Cu
−1wt%Fe−0,3wt%P)があり線材として使
用されているが、しかし、条または板としては一般には
製造されていない。この理由としてはこの合金系の合金
は熱間圧延が困難なためである。熱間押出しによる線材
を除き、商業的に条または板を量産することは極めて困
難である。一方では、熱間圧延以外にこの合金系の条ま
たは板を量産する方法として、水平連続鋳造と冷間圧延
による方法が考えられるが、製造費用が熱間圧延方法に
比較して、極めて高くなることからコストダウンを要求
されている端子・コネクター材にこの方法を適用するこ
とは不適当である。そこで、本発明では熱間圧延が困難
で、条または板が製造ざわでいないCu−Fe−P系又
はCu −Fe−P−3nJs合金の熱間圧延を可能に
することにより、耐マイグレーション性に優れた高導電
性端子・コネクター材を製造する方法を開発することを
目的としたものである。
As an alloy belonging to this alloy system, C'19600 (Cu
-1wt%Fe-0,3wt%P) and are used as wire rods, but are not generally produced as strips or plates. The reason for this is that this alloy type alloy is difficult to hot-roll. It is extremely difficult to mass produce strips or plates commercially, except for hot extruded wire rods. On the other hand, horizontal continuous casting and cold rolling can be considered as a method for mass producing strips or plates of this alloy other than hot rolling, but the manufacturing costs are extremely high compared to the hot rolling method. Therefore, it is inappropriate to apply this method to terminal/connector materials for which cost reduction is required. Therefore, the present invention improves migration resistance by enabling hot rolling of Cu-Fe-P or Cu-Fe-P-3nJs alloys, which are difficult to hot-roll and whose strips or plates are not yet manufactured. The purpose of this project is to develop a method for manufacturing superior highly conductive terminal and connector materials.

[問題点を解決するための手段1 本発明に係る耐マイグレーション性に優れた高導電性端
子・コネクター用銅合金の製造方法の特徴とするところ
は、 Fe : 0.35〜1.0wt%、P:0.05〜0
.35wt%、Sn:0.05〜1.0wt%、Zn 
: 1.O〜5.0wt%を含有し、残部実質的にCu
よりなる銅合金鋳塊を714℃を超えない温度で1回目
の熱間圧延を行い、次いで、2回目の熱間圧延を行った
後、600℃以上の温度から5℃/秒以上の速度で冷却
し、冷間加工後400〜600℃の温度で5分〜4時間
の焼鈍を行った後、調質仕上げ圧延を行ってから、25
0〜600℃の温度で5秒〜4時間の焼鈍を行なうこと
にある。
[Means for Solving the Problems 1] The method for producing a highly conductive copper alloy for terminals and connectors with excellent migration resistance according to the present invention is characterized by: Fe: 0.35 to 1.0 wt%; P:0.05~0
.. 35wt%, Sn: 0.05-1.0wt%, Zn
: 1. O to 5.0 wt%, and the remainder is substantially Cu.
The copper alloy ingot is hot rolled for the first time at a temperature not exceeding 714°C, then hot rolled for the second time, and then rolled at a speed of 5°C/sec or more from a temperature of 600°C or higher. After cooling and annealing at a temperature of 400 to 600°C for 5 minutes to 4 hours after cold working, temper finish rolling is performed, and then 25
The purpose is to perform annealing at a temperature of 0 to 600°C for 5 seconds to 4 hours.

まず本製造方法で使用する銅合金の成分について説明す
る。FeはPと共存して含有されることによりて、リン
化鉄を形成し、強度を向上し高温での優れた応力緩和特
性を保有させる効果がある。しかしFe含有量が0.3
5wt%未満ではPが0.05〜0.35wt%含有さ
れていても強度を向上させる効果は少なく、また、1.
0wt%を越えて含有されるとPが0.05〜0.35
wt%含有されてもFeは母相中に固溶し導電率を低下
する。よってFe含有量は0.35〜1.0wt%とす
る。
First, the components of the copper alloy used in this manufacturing method will be explained. When Fe is contained in coexistence with P, it forms iron phosphide, which has the effect of improving strength and having excellent stress relaxation properties at high temperatures. However, the Fe content is 0.3
If P is less than 5 wt%, even if the P content is 0.05 to 0.35 wt%, the effect of improving strength is small;
If the content exceeds 0 wt%, P is 0.05 to 0.35
Even if it is contained in wt%, Fe is dissolved in solid solution in the matrix and reduces the electrical conductivity. Therefore, the Fe content is set to 0.35 to 1.0 wt%.

Pは含有量が0.05wt%未満ではFeと共存して含
有されていても、強度の向上と、応力緩和の特性の改善
は望めず、また、0.35wt%を越えて含有されると
、Fe含有量の0.35〜1.0wt%とで、リン化鉄
を形成しきれないPが母相中に残存し、導電率を低下さ
せる。よってP含有量は0.05〜0.35wt%とす
る。また、FeとPとの好ましい含有量はwt%の比率
でFe対Pが3対1の比率に近い割合で、それぞれ含有
されていることが望ましい。
If the P content is less than 0.05 wt%, even if it is contained coexisting with Fe, no improvement in strength or stress relaxation properties can be expected, and if it is contained in more than 0.35 wt%, , when the Fe content is 0.35 to 1.0 wt%, P that cannot completely form iron phosphide remains in the matrix, reducing the electrical conductivity. Therefore, the P content is set to 0.05 to 0.35 wt%. Further, it is preferable that Fe and P be contained in a ratio close to 3:1 (wt%) of Fe and P.

SnはCu中に固溶することによって、強度およびばね
限界値を向上させる元素であり、含有mが0.05wt
%未満では、FeとPとが共存して含まれていても強度
とばね限界値の向上が期待できず、また1、0wt%を
越えて含有されると、熱間加工性が低下し、さらに、導
電率が50%I AC5以下に低下する。よフてSn含
有量は0.05〜1.0wt%とする。
Sn is an element that improves strength and spring limit value by solid solution in Cu, and the content m is 0.05wt.
If the content is less than 1.0 wt%, no improvement in strength and spring limit value can be expected even if Fe and P are contained together, and if the content exceeds 1.0 wt%, hot workability will decrease. Furthermore, the conductivity decreases below 50% I AC5. Therefore, the Sn content is set to 0.05 to 1.0 wt%.

Znは本発明の特徴とする耐マイグレーション性の改善
に必須の元素である。Znは電圧が印加されたCu−F
e−P−Sn系合金の電極間に水が結露あるいは侵入し
た場合のCuのマイグレーションの進行を抑え、漏洩電
流を抑制するための必須元素であるとともに、めっきさ
れたSnおよびはんだの耐剥離性を著しく、改善する元
素である。Znの含有量が1.0wt%未満では、マイ
グレーション抑制効果が°少なく、また5、0wt%を
越えて含有されると、マイグレーションの進行を抑え、
漏洩電流を抑制するという効果はあるが、はんだ付は性
が劣化したり、応力腐食割れを生じやすくなり、また導
電率が低下する等好ましくない特性が現れる。よって、
Zn含有量は1.0〜5.0wt%とする。ここで残部
は、上記添加元素以外の元素を示し、不可避的化合物及
びCuから成り立っている。
Zn is an essential element for improving migration resistance, which is a feature of the present invention. Zn is Cu-F with voltage applied
It is an essential element for suppressing the progress of Cu migration and suppressing leakage current when water condenses or enters between the electrodes of e-P-Sn alloys, and also provides peeling resistance of plated Sn and solder. It is an element that significantly improves If the Zn content is less than 1.0 wt%, the migration suppressing effect will be small, and if the Zn content exceeds 5.0 wt%, the progress of migration will be suppressed.
Although it has the effect of suppressing leakage current, unfavorable properties such as deterioration of soldering properties, easy occurrence of stress corrosion cracking, and reduction in electrical conductivity appear. Therefore,
The Zn content is 1.0 to 5.0 wt%. Here, the remainder represents elements other than the above-mentioned additive elements, and consists of inevitable compounds and Cu.

次に製造工程について説明する。Next, the manufacturing process will be explained.

本発明の上記成分を有する銅合金は、通常の熱間圧延条
件、例えば、850℃の温度に加熱して熱間圧延を行う
と、粒界から割わが発生し圧延不能となる。この原因は
、割れは粒界に偏析したPに起因するもので、粒界に偏
析したPが1.75wt%を越えると、第1図に示す銅
とリンの二元状態図から明らかなように714℃におい
て、α+Cu、、P−$L の反応が起こり、粒界に液相が生じることによる。
When the copper alloy of the present invention having the above-mentioned components is hot-rolled under normal hot-rolling conditions, for example, heated to a temperature of 850° C., cracks occur at the grain boundaries and cannot be rolled. The reason for this is that the cracks are caused by P segregated at the grain boundaries, and as is clear from the binary phase diagram of copper and phosphorus shown in Figure 1, when the amount of P segregated at the grain boundaries exceeds 1.75 wt%, At 714° C., a reaction of α+Cu, , P−$L occurs, and a liquid phase is generated at the grain boundaries.

通常の造塊方法によればこのような偏析は避は難く、従
って、714℃を越える温度で熱間圧延を行えば割れが
発生することになる。
Such segregation is unavoidable using normal agglomeration methods, and therefore, cracking will occur if hot rolling is performed at a temperature exceeding 714°C.

このような理由から1回目の熱間圧延は714℃の温度
を越えない温度とする。そして、熱間圧延の下限の温度
は圧延荷重を低くするという観点から650℃以上の温
度で、なるべく714℃に近い温度とすることが好まし
い。
For this reason, the first hot rolling is carried out at a temperature not exceeding 714°C. The lower limit temperature of hot rolling is preferably 650° C. or higher, preferably as close to 714° C., from the viewpoint of lowering the rolling load.

さらに、2回目の熱間圧延を行った後、600℃以上の
温度から5℃/秒以上の速度で冷却するのは、溶体化処
理を行うためであり、600℃未満の温度では5℃/秒
以上の速度で冷却しても既に析出が起こっており、溶体
化処理の効果は不十分であり、また、冷却速度が5℃/
秒未満では600℃以上の温度から冷却しても冷却途中
に析出が起こり、溶体化処理の効果が不十分となる。
Furthermore, after the second hot rolling, cooling is performed at a rate of 5°C/second or more from a temperature of 600°C or higher to perform solution treatment, and at a temperature of less than 600°C, cooling is performed at a rate of 5°C/second or more. Even if the cooling rate is 5°C/second or more, precipitation has already occurred, and the effect of the solution treatment is insufficient.
If the temperature is less than 2 seconds, precipitation will occur during cooling even if the temperature is 600° C. or higher, and the effect of the solution treatment will be insufficient.

上記の冷却を終了する温度は溶体化処理の効果から冷却
時に析出が生じない温度迄とする。
The temperature at which the above-mentioned cooling is completed is set to a temperature at which precipitation does not occur during cooling due to the effect of solution treatment.

しかして、2回目の圧延を行うのは溶体化処理をするた
めであり、従って、2回目の熱間圧延温度は圧延終了後
に上記した条件である600℃以上の温度を下限とし、
上限は省エネルギーの観点から950℃以下とするのが
好ましい。
Therefore, the reason for performing the second rolling is to perform solution treatment, and therefore, the lower limit of the second hot rolling temperature is 600 ° C. or higher, which is the above-mentioned condition after the completion of rolling.
The upper limit is preferably 950°C or less from the viewpoint of energy saving.

第2回目の圧延を第1回目の圧延で割れを生じる714
℃以上の温度で行なっても良い理由は、熱間圧延割れを
生じる要因が第1回目の圧延で除去されているためであ
る。すなわち、熱間圧延時に割れを生じる原因は、前記
のように粒界に生じた液相が拡散した跡に、連続した空
孔、あるいは空隙が生じ、割れの起因となるためである
714 Cracks occur in the first rolling compared to the second rolling.
The reason why it may be carried out at a temperature higher than 0.degree. C. is that the factors that cause hot rolling cracks have been removed in the first rolling. That is, the reason why cracks occur during hot rolling is that continuous pores or voids are generated in the traces of the diffusion of the liquid phase generated at the grain boundaries as described above, which causes cracks.

しかるに、前もって、約700℃以下の温度で圧延を行
なうと、粒界に局数するCu= Pを均一に分散させる
ことにより、粒界での前記のような液相が生じなくなり
、714℃以上に加熱しても、割れ発生の原因となる溶
融および連続空孔が発生しないためである。
However, if rolling is performed in advance at a temperature of about 700°C or lower, Cu = P present at the grain boundaries will be uniformly dispersed, thereby preventing the above-mentioned liquid phase from occurring at the grain boundaries, and rolling at a temperature of about 714°C or higher will prevent the formation of the above-mentioned liquid phase at the grain boundaries. This is because melting and continuous pores, which cause cracks, do not occur even when heated to a certain temperature.

冷間加工後、400〜600℃の温度で5分〜4時間の
焼鈍を行うのはリン化鉄の析出を行うためであり、析出
により導電率が向上し、強度も向上する。しかし400
℃未満の温度では5分〜4時間の焼鈍を行っても析出は
不十分であり、また、600℃の温度を越えると析出物
の再固溶が始まる。よって、温度は400〜600℃と
する。時間は5分未満では400〜600℃の温度で焼
鈍しても析出は不十分であり、4時間を越えると省エネ
ルギーの観点から好ましくない。よって、焼鈍時間は5
分〜4時間とする。
After cold working, annealing is performed at a temperature of 400 to 600° C. for 5 minutes to 4 hours to precipitate iron phosphide, which improves electrical conductivity and strength. But 400
At temperatures below .degree. C., precipitation is insufficient even if annealing is performed for 5 minutes to 4 hours, and when the temperature exceeds 600.degree. C., solid solution of the precipitates begins again. Therefore, the temperature is set at 400 to 600°C. If the time is less than 5 minutes, precipitation will be insufficient even if annealed at a temperature of 400 to 600°C, and if it exceeds 4 hours, it is not preferred from the viewpoint of energy saving. Therefore, the annealing time is 5
Minutes to 4 hours.

調質仕上げ圧延を行った後、250〜600℃の温度で
5秒〜4時間の焼鈍を行うのは、冷間圧延により低下し
た伸びの回復と、圧延による残留応力の除去を行うため
であり、250℃未満の温度ではこの効果は少なく、ま
た、600℃を越える温度では析出物の再固溶が起こる
。よって、温度は250〜600℃とする。時間は5秒
未満では上記した効果は少なく、また、4時間を越える
と省エネルギーの観点から好ましくない。よフて、5秒
〜4時間とする。
After performing temper finish rolling, annealing is performed at a temperature of 250 to 600°C for 5 seconds to 4 hours in order to recover the elongation decreased by cold rolling and remove residual stress caused by rolling. At temperatures below 250°C, this effect is small, and at temperatures above 600°C, solid solution of precipitates occurs again. Therefore, the temperature is set at 250 to 600°C. If the time is less than 5 seconds, the above-mentioned effects will be small, and if it exceeds 4 hours, it is not preferable from the viewpoint of energy saving. Wait for 5 seconds to 4 hours.

[実施例] 本発明に係る耐マイグレーション性に優れた高導電性端
子・コネクター用銅合金の製造方法について実施例を説
明する。
[Example] Examples of the method for producing a highly conductive copper alloy for terminals and connectors with excellent migration resistance according to the present invention will be described.

第1表に示す組成の合金を大気溶解し、半連続鋳造によ
り410wxlSOtx4000ffimmの鋳塊を造
塊した。この鋳塊を第2表に示す条件で熱間圧延を行な
い厚さ15mmにした後、600℃以上の温度から水冷
し、表裏両面を0.5mmずつ面削後、厚さ0.5mm
まで冷間圧延を行った。その後450℃の温度で240
分間焼鈍し、ざらに冷間圧延により厚さ0.25mmに
した後、275℃の温度において、120分間の焼鈍を
行なった。
An alloy having the composition shown in Table 1 was melted in the atmosphere, and an ingot of 410wxlSOtx4000ffim was formed by semi-continuous casting. This ingot was hot-rolled to a thickness of 15 mm under the conditions shown in Table 2, then water-cooled from a temperature of 600°C or higher, and the front and back sides were faceted by 0.5 mm to a thickness of 0.5 mm.
Cold rolling was carried out until then. Then 240℃ at a temperature of 450℃
After annealing for 1 minute and rough cold rolling to a thickness of 0.25 mm, annealing was performed at a temperature of 275° C. for 120 minutes.

こわらの材料を用い引張強さと導電率を試験した結果お
よび熱間圧延結果をi2表に示す。
Table i2 shows the results of tensile strength and conductivity tests using stiff materials and the results of hot rolling.

試験方法は以下の通りである。The test method is as follows.

(1)引張試験は圧延方向に切出したJIS13号B試
験片を用いた。
(1) For the tensile test, a JIS No. 13 B test piece cut in the rolling direction was used.

(2)導電率は10mmw、300mmJZの試片を用
いダブルブリッジにより測定した。
(2) Electrical conductivity was measured using a double bridge using a 10 mmw, 300 mm JZ specimen.

第2表から明らかなようにN001〜6は、本発明の実
施例であり、2回熱間圧延したもので、良好な熱間圧延
結果が得られている。モして引張強さは比較例及び従来
例より高<61.2〜64 、 7 K g f / 
m m ”ある。また50%I ACS以上の高い導電
率が得られることがわかる。
As is clear from Table 2, Nos. 001 to 6 are examples of the present invention, which were hot rolled twice, and good hot rolling results were obtained. The tensile strength is higher than that of the comparative example and the conventional example <61.2~64, 7 K g f /
It is also seen that a high conductivity of 50% I ACS or higher can be obtained.

またN097〜9は比較例を示すものであり、900℃
の温度1回の熱間圧延では激しい割れが発生した。さら
にNo、10〜12もまた比較例を示すものであり75
0℃の温度1回の熱間圧延では、小割れが発生し、溶体
化処理が不十分なため、引張強さ、導電率共に実施例よ
り低い値となっている。この結果から実施例は本発明の
目的であるリン青銅一種の強度と50%IACS以上の
導電率を備えていることが分る。
Moreover, N097-9 shows comparative examples, and 900℃
Severe cracking occurred during one hot rolling at a temperature of . Furthermore, Nos. 10 to 12 also show comparative examples, and 75
When hot rolling was carried out once at a temperature of 0° C., small cracks occurred and the solution treatment was insufficient, so both the tensile strength and the electrical conductivity were lower than those of the examples. From these results, it can be seen that the example has the strength of a type of phosphor bronze, which is the object of the present invention, and a conductivity of 50% IACS or more.

次に第2表に示した実施例の材料を用い、ばね限界値と
耐マイグレイジョン性の実験を行なった。
Next, using the materials of the examples shown in Table 2, experiments were conducted on spring limit values and migration resistance.

第3表に実験結果を示す。耐マイグレイジョン性は最大
漏洩電流で表わした。
Table 3 shows the experimental results. Migration resistance was expressed as maximum leakage current.

試験方法は以下のとうりである。The test method is as follows.

(1)ばね限界値試験は、圧延方向に平行に幅10mm
の試験片を用い、JISH3130に定めるモーメント
式試験にて行なった。
(1) Spring limit value test is conducted with a width of 10 mm parallel to the rolling direction.
The moment test was conducted using a test piece as specified in JISH3130.

(2)耐マイグレイジョン性については、0.3mmt
X3.0mmwX80mmJ2の試験片を2枚1組とし
て、調整して試験片を作製し12vの直流電圧を印加し
た時の最大漏洩電流値を測定して判断基準とした。
(2) Regarding migration resistance, 0.3 mmt
A set of two test pieces measuring 3.0 mm x 80 mm J2 was adjusted to prepare a test piece, and the maximum leakage current value when a DC voltage of 12 V was applied was measured and used as a criterion.

以下にその詳細を述べる。The details are described below.

試験片は、第2図に示すような板状の試験片1を2枚用
いた。2枚の試験片1の間に1mm厚のABS樹脂2を
介在させその両端に押え板3を設け、その上からクリッ
プ4にて試験片1を抑圧固定した。また、試験片1のそ
れぞれに、その端において電線5を電気的に接続した。
As the test pieces, two plate-shaped test pieces 1 as shown in FIG. 2 were used. A 1 mm thick ABS resin 2 was interposed between the two test pieces 1, and press plates 3 were provided at both ends of the ABS resin 2, and the test piece 1 was pressed and fixed with a clip 4 from above. Further, an electric wire 5 was electrically connected to each of the test pieces 1 at its ends.

この電線5は、バッテリー6に接続されている。This electric wire 5 is connected to a battery 6.

上記の状態におかれた試験片1に、12vの直流電圧を
印加しつつ水道水に10分間浸消した後、10分間乾燥
するという乾湿試験を行ない、50サイクルに至るまで
の最大漏洩電流値をハイコーダーメモリー8802(白
画電機性)(図示せず)にて測定した。
A dry-wet test was conducted on the test piece 1 placed in the above condition by applying a DC voltage of 12V while immersing it in tap water for 10 minutes, then drying it for 10 minutes, and the maximum leakage current value was determined up to 50 cycles. was measured using HiCorder Memory 8802 (Hakuga Denkisha) (not shown).

第3表から明らかなように、N011〜3は本発明の実
施例であり、No、4〜8は比較例であるが、ばね限界
値がNo、1〜3では61.4〜62.1にgf/mm
2と比較例の最大値である61.8Kgf/mm2に近
い値または、それよりまさっていることがわかる。
As is clear from Table 3, Nos. 11 to 3 are examples of the present invention, Nos. 4 to 8 are comparative examples, and the spring limit values Nos. 1 to 3 are 61.4 to 62.1. gf/mm
It can be seen that this value is close to or exceeds the maximum value of 61.8 Kgf/mm2 of the comparative example.

また、耐マイグレイジョン性を示す最大漏洩電流は0.
27〜0.3アンペアで比較例のNo、4.5.7より
1桁低い値となり、耐マイグレイジョン性に優れている
ことがわかる。
Furthermore, the maximum leakage current indicating migration resistance is 0.
The value was 27 to 0.3 ampere, which is one digit lower than the comparative example No. 4.5.7, which indicates that the migration resistance is excellent.

比較例のNo、6.8については最大漏洩電流が本実施
例に近い値となり、耐マイグレイジョン性には優れてい
るが、ばね限界値が60.4にgf/mm2,30.I
 Kgf/mm2と実施例より低い値となワている。こ
のことから実施例は本発明の目的である耐マイグレイジ
ョン性に優れ、かっばね限界値も高いことがわかる。
Comparative example No. 6.8 has a maximum leakage current close to that of this example and has excellent migration resistance, but the spring limit value is 60.4 gf/mm2, 30. I
Kgf/mm2, which is a lower value than the example. From this, it can be seen that the examples have excellent migration resistance, which is the object of the present invention, and also have a high cover spring limit value.

[発明の効果] 以上、説明したようにCu−Fe−P系又はCu−Fe
−P−Sn系合金の熱間圧延を可能にすることにより耐
マイグレーション性に優れた高導電性の端子・コネクタ
ー材を製造することが可能となった。
[Effect of the invention] As explained above, Cu-Fe-P system or Cu-Fe
By making it possible to hot-roll -P-Sn alloys, it has become possible to produce highly conductive terminal/connector materials with excellent migration resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は銅とリンの二元状態図を示すグラフであり、第
2図は、耐マイグレーション性を試験するための装置を
示す平面図及び側断面図である。 1・・・試験片、2・−ABS樹脂、3−・押え板、4
・・・クリップ、5・・・電線、6・・・バッテリー、
7・・・放電穴(10mm   ) 第1図
FIG. 1 is a graph showing a binary phase diagram of copper and phosphorus, and FIG. 2 is a plan view and a side sectional view showing an apparatus for testing migration resistance. 1... Test piece, 2--ABS resin, 3-- Pressing plate, 4
...Clip, 5...Wire, 6...Battery,
7...Discharge hole (10mm) Figure 1

Claims (1)

【特許請求の範囲】[Claims] Fe:0.35〜1.0wt%、P:0.05〜0.3
5wt%、Sn:0.05〜1.0wt%、Zn:1.
0〜5.0wt%を含有し、残部は実質的にCuよりな
る銅合金鋳塊を714℃を越えない温度で1回目の熱間
圧延を行い、次いで、2回目の熱間圧延を行った後、6
00℃以上の温度から5℃/秒以上の速度で冷却し、冷
間加工後400〜600℃の温度で5分〜4時間の焼鈍
を行った後、調質仕上げ圧延を行ってから、250〜6
00℃の温度で5秒〜4時間の焼鈍を行なうことを特徴
とする耐マイグレーション性に優れた高導電性端子・コ
ネクター材料の製造方法。
Fe: 0.35-1.0wt%, P: 0.05-0.3
5wt%, Sn: 0.05-1.0wt%, Zn: 1.
A copper alloy ingot containing 0 to 5.0 wt% with the remainder substantially consisting of Cu was hot rolled for the first time at a temperature not exceeding 714°C, and then hot rolled for the second time. After, 6
After cooling at a rate of 5°C/sec or more from a temperature of 00°C or higher, annealing at a temperature of 400 to 600°C for 5 minutes to 4 hours after cold working, and then performing temper finish rolling. ~6
1. A method for producing a highly conductive terminal/connector material with excellent migration resistance, which comprises annealing at a temperature of 00° C. for 5 seconds to 4 hours.
JP8360987A 1987-04-03 1987-04-03 Manufacture of high-conductivity terminal and connector material excellent in migration resistance Pending JPS63250444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8360987A JPS63250444A (en) 1987-04-03 1987-04-03 Manufacture of high-conductivity terminal and connector material excellent in migration resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8360987A JPS63250444A (en) 1987-04-03 1987-04-03 Manufacture of high-conductivity terminal and connector material excellent in migration resistance

Publications (1)

Publication Number Publication Date
JPS63250444A true JPS63250444A (en) 1988-10-18

Family

ID=13807227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8360987A Pending JPS63250444A (en) 1987-04-03 1987-04-03 Manufacture of high-conductivity terminal and connector material excellent in migration resistance

Country Status (1)

Country Link
JP (1) JPS63250444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
JP2020033648A (en) * 2013-03-15 2020-03-05 マテリオン コーポレイション Process for producing hot worked spinodal alloy having uniform grain size

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814168A (en) * 1995-10-06 1998-09-29 Dowa Mining Co., Ltd. Process for producing high-strength, high-electroconductivity copper-base alloys
US6132529A (en) * 1995-10-09 2000-10-17 Dowa Mining Co., Ltd. Leadframe made of a high-strength, high-electroconductivity copper alloy
JP2020033648A (en) * 2013-03-15 2020-03-05 マテリオン コーポレイション Process for producing hot worked spinodal alloy having uniform grain size

Similar Documents

Publication Publication Date Title
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
WO2006101172A1 (en) Copper alloy for electronic material
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
CN109937267B (en) Copper alloy sheet and method for producing same
US20110005644A1 (en) Copper alloy material for electric/electronic parts
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JPH0673474A (en) Copper alloy excellent in strength, electric conductivity and migration resistance
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JPH0570692B2 (en)
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JPS64451B2 (en)
JPS63250444A (en) Manufacture of high-conductivity terminal and connector material excellent in migration resistance
JPH0418016B2 (en)
JPS6142772B2 (en)
JPH0314901B2 (en)
JPH04231433A (en) Electrifying material
JPH04231445A (en) Production of electrifying material
JP2000273561A (en) Copper base alloy for terminal and its production
JPH04231444A (en) Production of electrifying material