JPS63103055A - Manufacture of thin iron-copper alloy strip for lead frame - Google Patents
Manufacture of thin iron-copper alloy strip for lead frameInfo
- Publication number
- JPS63103055A JPS63103055A JP24916586A JP24916586A JPS63103055A JP S63103055 A JPS63103055 A JP S63103055A JP 24916586 A JP24916586 A JP 24916586A JP 24916586 A JP24916586 A JP 24916586A JP S63103055 A JPS63103055 A JP S63103055A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- minutes
- copper
- strength
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 20
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 title claims description 19
- 238000001816 cooling Methods 0.000 claims abstract description 27
- 238000005097 cold rolling Methods 0.000 claims abstract description 21
- 230000032683 aging Effects 0.000 claims abstract description 20
- 229910052802 copper Inorganic materials 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- 238000000137 annealing Methods 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 15
- 238000011282 treatment Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 238000009749 continuous casting Methods 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 abstract description 15
- 239000000956 alloy Substances 0.000 abstract description 15
- 238000005266 casting Methods 0.000 abstract description 10
- 238000005275 alloying Methods 0.000 abstract description 3
- 229910002549 Fe–Cu Inorganic materials 0.000 abstract 4
- 239000000203 mixture Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、熱・電気伝導性および強度、加工性に優れた
低コストの半導体rc、LsI等に用いられるリードフ
レーム用鉄銅合金薄帯の製造方法に関するものである。Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to an iron-copper alloy ribbon for lead frames used in low-cost semiconductor RC, LSI, etc., which has excellent thermal and electrical conductivity, strength, and workability. The present invention relates to a manufacturing method.
(従来の技術)
半導体IC,LSI等用リードフレーム材としては、た
とえば特開昭59−198741号公報に示されている
鉄に26〜30重量%Ni、11〜16重世%Coを含
む合金(コバール合金)、また特開昭60−11144
7号公報に示されているFeに30〜55重景%Niを
含む合金(42%Ni合金が代表的成分)等がガラス封
止剤やSiと熱膨張特性のマツチングが優れている理由
で用いられている。また一方銅、銅合金も高い熱・電気
伝導性を必要とするICに次第に用いられるようになっ
た。(Prior Art) As a lead frame material for semiconductor IC, LSI, etc., an alloy containing 26 to 30% by weight of Ni and 11 to 16% by weight of Co in iron is used, for example, as disclosed in Japanese Unexamined Patent Publication No. 59-198741. (Kovar alloy), also JP-A-60-11144
This is because alloys containing Fe and 30 to 55% Ni (42% Ni alloy is a typical component) shown in Publication No. 7 have excellent matching of thermal expansion characteristics with glass sealants and Si. It is used. On the other hand, copper and copper alloys have also gradually come to be used in ICs that require high thermal and electrical conductivity.
即ち、以上で述べたコバール合金や42Ni合金は強度
、耐熱性は優れているが、熱・電気伝導性が悪く、加工
性が劣りコストが高いため近年ICの高度集積化に伴い
安価で熱・電気伝導性、加工性の良い銅合金へ移行する
傾向にある。That is, the Kovar alloy and 42Ni alloy mentioned above have excellent strength and heat resistance, but have poor thermal and electrical conductivity, poor workability, and high cost. There is a trend toward copper alloys, which have good electrical conductivity and workability.
(発明が解決しようとする問題点)
しかしながら、一般に銅合金は耐熱性ならびに強度が劣
るため、たとえばCA−195合金、特開昭60−21
8442号公報はそれを改善するために錫、鉄、ケイ素
、燐、コバルト等を添加したものであるが、これらを添
加することにより合金コストが上がり、更に熱・電気伝
導性を劣化させるなどの問題点があった。(Problems to be Solved by the Invention) However, copper alloys generally have poor heat resistance and strength;
Publication No. 8442 adds tin, iron, silicon, phosphorus, cobalt, etc. to improve this, but adding these increases the cost of the alloy and also causes problems such as deterioration of thermal and electrical conductivity. There was a problem.
本発明は、鉄−銅二元合金に他の合金元素を添加するこ
となくリードフレームとしての熱・電気伝導性および、
強度・加工性を改善したリードフレーム用鉄銅合金薄帯
を提供することを目的とする。The present invention provides thermal and electrical conductivity as a lead frame without adding other alloying elements to the iron-copper binary alloy.
The purpose of the present invention is to provide an iron-copper alloy ribbon for lead frames with improved strength and workability.
(問題点を解決するための手段)
すなわち本発明の要旨とするところは下記のとおりであ
る。(Means for solving the problems) That is, the gist of the present invention is as follows.
(1) 銅を20重量%以上90重量%以下含み、残
部が主としてFeからなる組成の鉄銅合金薄鋳片を10
0℃/sec以上の冷却速度で連続鋳造し、冷間圧延後
450〜650℃で20分以上500分以下の時効処理
を施すことを特徴とするリードフレーム用鉄銅合金薄帯
の製造方法。(1) Ten iron-copper alloy thin slabs containing 20% by weight or more and 90% by weight or less of copper, with the balance mainly consisting of Fe.
A method for producing an iron-copper alloy ribbon for lead frames, which comprises continuous casting at a cooling rate of 0°C/sec or more, and then subjecting it to an aging treatment at 450 to 650°C for 20 minutes to 500 minutes after cold rolling.
(2)銅を20重量%以上90重量%以下含み、残部が
主として鉄からなる組成の鉄銅合金薄鋳片を100℃/
sec以上の冷却速度で連続鋳造し、冷間圧延後650
〜1050℃で5分以上60分以下の焼鈍を行い、45
0〜650℃で20分以上500分以下の時効処理を施
すことを特徴とするリードフレーム用鉄銅合金薄帯の製
造方法。(2) Iron-copper alloy thin slab containing 20% by weight or more and 90% by weight or less of copper, with the balance mainly consisting of iron at 100℃/
Continuously cast at a cooling rate of sec or more, and after cold rolling 650
Annealing is performed at ~1050℃ for 5 minutes or more and 60 minutes or less, and 45
A method for manufacturing an iron-copper alloy ribbon for lead frames, which comprises subjecting an aging treatment at 0 to 650°C for 20 minutes or more and 500 minutes or less.
(3)銅を20重景%以上90重量%以下含み、残部が
主として鉄からなる組成の鉄銅合金薄鋳片を100℃/
sec以上の冷却速度で連続鋳造し、冷間圧延後650
〜1050℃で5分以上60分以下の焼鈍を行い、45
0〜650”Cで20分以上500分以下の時効処理を
施した後、最終冷間圧延を圧下率15〜80%で行うこ
とを特徴とするリードフレーム用鉄銅合金薄帯の製造方
法。(3) Iron-copper alloy thin slab containing 20 weight percent or more and 90 weight percent or less of copper, with the balance mainly consisting of iron at 100℃/
Continuously cast at a cooling rate of sec or more, and after cold rolling 650
Annealing is performed at ~1050℃ for 5 minutes or more and 60 minutes or less, and 45
A method for manufacturing an iron-copper alloy ribbon for lead frames, which comprises aging at 0 to 650''C for 20 minutes to 500 minutes, followed by final cold rolling at a reduction rate of 15 to 80%.
以下本発明の構成要件の限定理由について詳細に説明す
る。The reasons for limiting the constituent elements of the present invention will be explained in detail below.
この発明においてはまず、化学組成を限定する理由は以
下の通りである。In this invention, first, the reason for limiting the chemical composition is as follows.
銅は、熱・電気伝導性の観点からは含有量が高い程好ま
しいが、用途上から強度の要求が強い場合には、鉄の含
有量を高めることが望ましい、銅含有量が20重量%(
以下−tχと記す)以下ではICリードフレームとして
必要な熱・電気伝4度が得られないので下限を20wt
Xとする。また上限を90imtXとするのは、鉄含有
量が10wtX以下では、組織の微細化に有効に働く鉄
相の分布が不充分になるからである。The higher the content of copper, the better from the viewpoint of thermal and electrical conductivity, but if the application requires strong strength, it is desirable to increase the iron content.
Below (hereinafter referred to as -tχ), the thermal and electrical conductivity necessary for an IC lead frame cannot be obtained, so the lower limit is set to 20w.
Let it be X. The upper limit is set to 90 imtX because if the iron content is less than 10 wtX, the distribution of the iron phase, which effectively works to refine the structure, becomes insufficient.
また、その他の鉄と銅の原料より不可避的に混入する不
純物としての酸素は、熱・電気伝導性の観点からは好ま
しくないが、0.03ht%以下の量については、熱・
電気伝導性への影響は小さく、強度への寄与もあるので
0.03wtX以下であれば許容される。In addition, oxygen as an impurity that is inevitably mixed in from other iron and copper raw materials is not desirable from the viewpoint of thermal and electrical conductivity, but when the amount is less than 0.03 ht%,
Since it has a small effect on electrical conductivity and also contributes to strength, it is acceptable if it is 0.03 wtX or less.
また、それ以外は原料および溶製中に不可避的に混入す
る不純物元素とする。In addition, other elements are impurity elements that are unavoidably mixed into raw materials and during melting.
次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be explained.
本発明では連続鋳造により鉄銅合金の薄鋳片を製造する
が、かかる連続鋳造時の一次冷却速度を100℃/se
c以上に限定する。In the present invention, thin slabs of iron-copper alloy are manufactured by continuous casting, and the primary cooling rate during such continuous casting is set at 100°C/sec.
Limited to c or more.
一般に凝固後の組織サイズは鋳造時の冷却速度に依存し
、冷却速度が大きい程、組織サイズは小さくなり高強度
が得られるが、上記冷却速度かり一ドフレームの所望強
度を得るために必要である。In general, the structure size after solidification depends on the cooling rate during casting, and the faster the cooling rate, the smaller the structure size and the higher the strength obtained, but the above cooling rate is necessary to obtain the desired strength of the frame. be.
以下に、上記冷却速度について説明する。まず最も強度
の得にくい90−tχ銅−鉄合金を鉄鋳型、銅鋳型およ
び双ロール鋳造機を用い鋳込み厚を変化させて約1〜1
ooo℃/secの範囲の冷却速度で鋳造した。これら
の鋳片を研削して厚みを揃え、800℃−30分の熱処
理を施した後に85%の冷間圧延を行った。次に480
℃で500分の時効処理を行い断面174層のビッカー
ス硬度を測定し、冷却速度と硬度の関係を得た。これを
第1図に示す。第1図からビッカース硬度が150以上
になる臨界冷却速度を求めた。ここでビッカース硬度を
150以上としたのは、現在のリードフレーム用材料の
必要強度の指標としてこの値が一般に用いられているの
で、ここでもこの値を採用した。この結果より100℃
/sec以上の冷却速度の時には150以上のビッカー
ス硬度が得られていることが明らかであり、これから冷
却速度は100℃/sec以上が必要とされる。The above cooling rate will be explained below. First, 90-tχ copper-iron alloy, which is the most difficult to obtain, was cast using an iron mold, a copper mold, and a twin-roll casting machine, and the casting thickness was varied to approximately 1 to 1.
Casting was performed at a cooling rate in the range ooo°C/sec. These slabs were ground to have the same thickness, heat treated at 800°C for 30 minutes, and then cold rolled to a rate of 85%. Next 480
Aging treatment was performed at .degree. C. for 500 minutes, and the Vickers hardness of 174 layers in cross section was measured to obtain the relationship between cooling rate and hardness. This is shown in FIG. From FIG. 1, the critical cooling rate at which the Vickers hardness becomes 150 or more was determined. The reason why the Vickers hardness is set to 150 or more is that this value is generally used as an index of the required strength of current lead frame materials, so this value was also adopted here. From this result, 100℃
It is clear that a Vickers hardness of 150 or more is obtained at a cooling rate of 100° C./sec or more, which indicates that a cooling rate of 100° C./sec or more is required.
また、70wt%以下の銅含有の場合、または前段の冷
間圧延圧下率が50%以上の場合には、冷間圧延時の割
れを防止するための対策が必要である。その方法として
は、鋳造後の徐冷と一旦常温まで冷却した後の再加熱が
有効で、その条件としては鋳造後850〜750℃の温
度域を、10〜b
450℃で20分以上で長時間程効果は大きいが粒の粗
大化および急速冷却による鉄、銅の過飽和度の低下を少
くするために60分以下とする。この効果は鋳造後の冷
却途中に生じる残留オーステナイトまたはマルテンサイ
トの発生を防止するか、あるいは焼戻し軟化により鉄、
銅組織間での硬度差を縮めることによるものである。Furthermore, if the copper content is 70 wt% or less, or if the cold rolling reduction in the previous stage is 50% or more, measures are required to prevent cracking during cold rolling. An effective method for this is slow cooling after casting and reheating after once cooling to room temperature. Although the effect is greater as the time increases, the heating time is set to 60 minutes or less in order to reduce coarsening of grains and decrease in the supersaturation degree of iron and copper due to rapid cooling. This effect prevents the formation of residual austenite or martensite that occurs during cooling after casting, or softens iron by tempering.
This is due to reducing the hardness difference between copper structures.
更に、引き続き冷間圧延、時効を行う。冷間圧延はリー
ドフレームに必要な板厚を得るのが主要目的であるが、
前段の冷間圧延の圧下率は化学組成、鋳造厚みと最終冷
間圧延工程の組み合せにより、目的とする板厚強度、加
工性が得られる条件を定める。効果的な圧下率の範囲は
30〜95%である。Furthermore, cold rolling and aging are subsequently performed. The main purpose of cold rolling is to obtain the thickness required for lead frames.
The reduction rate in the first stage of cold rolling determines the conditions under which the desired sheet thickness strength and workability can be obtained, depending on the combination of chemical composition, casting thickness, and final cold rolling process. The effective rolling reduction range is 30-95%.
時効処理は、熱・電気伝導性を高めるために、製造工程
に必須のものであり、化学組成と前工程条件により適性
な温度を選定すべきであるが、一般に低温で行う程良好
な特性が得られ易いが、低温過ぎると析出物が母相との
周辺に歪場を持ってしまい、特性を劣化させてしまうこ
とや、加熱時間が長くなるため設備、製造能率が悪い。Aging treatment is essential to the manufacturing process in order to improve thermal and electrical conductivity, and an appropriate temperature should be selected depending on the chemical composition and pre-process conditions, but in general, the lower the temperature, the better the properties. Although it is easy to obtain, if the temperature is too low, the precipitates will have a strain field around the parent phase, which will deteriorate the properties and increase the heating time, resulting in poor equipment and production efficiency.
また高温過ぎると充分析出しないため良い特性が得られ
ず、更に析出物が粗大化して、強度確保上不利な条件に
なってしまうので、適性条件としては450〜650℃
の温度域で20分以上500分以下が良好な特性を得る
ための条件である。In addition, if the temperature is too high, good properties will not be obtained because sufficient analysis will not occur, and the precipitates will become coarser, creating a disadvantageous condition for ensuring strength, so the suitable conditions are 450-650℃
The conditions for obtaining good characteristics are 20 minutes or more and 500 minutes or less in a temperature range of .
また、リードフレームとして加工性が特に要求される場
合は、時効処理の前に650〜1050℃の温度域で焼
鈍を実用的な時間として、5分以上60分以下行うこと
により、冷間圧延で4入された加工歪の除去と再結晶・
粒成長により加工性を向上させることが可能である。In addition, if workability is particularly required for the lead frame, cold rolling can be achieved by annealing at a temperature range of 650 to 1050°C for a practical time of 5 minutes to 60 minutes before aging treatment. 4. Removal of machining distortion and recrystallization
It is possible to improve processability by grain growth.
更に、リードフレームとして加工性と高強度が要求され
る場合には、上記焼鈍を行った後に冷間圧延を15〜8
0%の圧下率で行い再結晶組織に加工歪を与えることに
より強度を高めるものであり、圧下率15%以下では強
度に対する寄与が小さく、80%以上では、熱・電気伝
導性を大きく低下させるのでこの範囲とする。Furthermore, if workability and high strength are required for the lead frame, after the above annealing, cold rolling is performed for 15 to 8
Strength is increased by applying processing strain to the recrystallized structure at a rolling reduction of 0%.If the rolling reduction is less than 15%, the contribution to strength is small, and if it is more than 80%, the thermal and electrical conductivity will be significantly reduced. Therefore, this range is used.
(実施例) 以下本発明の効果を実施例により説明する。(Example) The effects of the present invention will be explained below using examples.
実施例1
第1表に記載した化学組成を有する合金A−F(A、F
は比較例)を、双ロール鋳造機を用いて3 X 10”
’C/secの冷却速度で連続鋳造し2.0鶴の板厚
の薄鋳片とし、次いで以下の処理を行った。Example 1 Alloy A-F (A, F
(Comparative Example) was made into 3 x 10” using a twin roll casting machine.
Continuous casting was performed at a cooling rate of 'C/sec to obtain a thin slab with a plate thickness of 2.0 mm, and then the following treatments were performed.
電
鋳造後、一旦常温になった薄鋳片を800℃で30分の
保定を冷間圧延時の割れ防止のために行い、冷間圧延の
全圧下率を85%として0.3B板厚の冷延板とした。After electroforming, the thin slab once brought to room temperature was held at 800℃ for 30 minutes to prevent cracking during cold rolling. It was made into a cold rolled sheet.
更に480℃で200分の時効処理を行い空冷した。Furthermore, aging treatment was performed at 480° C. for 200 minutes and air-cooled.
次に得られた試料の電気抵抗を測定し、熱・電気伝導性
の評価を、電気伝導率(%IACS)で表示した。また
強度と伸びはJIS 13号B試験片を用いて常温の引
張試験を行って求めた。Next, the electrical resistance of the obtained sample was measured, and the evaluation of thermal and electrical conductivity was expressed as electrical conductivity (%IACS). Further, the strength and elongation were determined by performing a tensile test at room temperature using a JIS No. 13 B test piece.
その結果を比較例と共に第2表2に示した。この結果よ
り明らかなように本発明合金B−Eでは50kgf/a
m”以上の強度と銅含有量に伴った電気伝導率を示し、
一方AおよびFにおいては、Aでは強度が優れるが電気
伝導率が不足し、またFは電気伝導率は良好であるが強
度が低いことは明らかである。The results are shown in Table 2 along with comparative examples. As is clear from this result, in the alloy B-E of the present invention, 50 kgf/a
It exhibits a strength of more than m” and an electrical conductivity associated with copper content,
On the other hand, regarding A and F, it is clear that A has excellent strength but lacks electrical conductivity, and F has good electrical conductivity but low strength.
実施例2
実施例1の第1表に記載したCの化学組成を有する合金
を2.0鴎厚の銅鋳型で約50℃/secの冷却速度で
鋳造して、実施例1の場合と鋳造後の条件を同一にして
処理を行い、同様の評価を行った。Example 2 An alloy having the chemical composition of C listed in Table 1 of Example 1 was cast in a copper mold with a thickness of 2.0 mm at a cooling rate of about 50°C/sec. Processing was performed under the same subsequent conditions, and the same evaluation was performed.
その結果を第3表に示した。この結果より明らかなよう
に、鋳造時の冷却速度がこのように遅い場合には、強度
が得にくいことは明らかであり、更に電気伝導率も冷却
速度が遅い場合に低い値となっている。The results are shown in Table 3. As is clear from these results, it is clear that it is difficult to obtain strength when the cooling rate during casting is slow as this, and furthermore, the electrical conductivity is also a low value when the cooling rate is slow.
実施例3
実施例1の第1表に記載したCの化学組成を有する合金
を実施例1と同様に鋳造後冷間圧延まで同一条件で行い
、時効処理温度を400 ’Cと700℃で200分行
い、空冷し、実施例1と同様の評価を行って、第4表に
示した。Example 3 An alloy having the chemical composition of C listed in Table 1 of Example 1 was cast and cold rolled under the same conditions as in Example 1, and the aging treatment temperature was 400'C and 700'C at 200°C. The results are shown in Table 4. The results are shown in Table 4.
第4表に示したように、時効温度が低温過ぎると良好な
電気伝導性が得られず、また、高温過ぎても電気伝導性
と強度の劣化が生じることは明らかである。As shown in Table 4, it is clear that if the aging temperature is too low, good electrical conductivity cannot be obtained, and if the aging temperature is too high, the electrical conductivity and strength deteriorate.
実施例4
実施例1の第1表に記載したCの化学組成を有する合金
を実施例1と同様に鋳造後冷間圧延まで同一条件で行い
、時効処理の前に950℃で30分の焼鈍を行い空冷し
、時効処理を480°Cで200分行って空冷し、実施
例1と同様の評価を行い、実施例1のCを比較例として
第5表に示した。Example 4 An alloy having the chemical composition of C listed in Table 1 of Example 1 was cast and cold rolled under the same conditions as in Example 1, and annealed at 950°C for 30 minutes before aging treatment. The samples were aged at 480° C. for 200 minutes, air cooled, and evaluated in the same manner as in Example 1. C of Example 1 is shown in Table 5 as a comparative example.
この結果より、焼鈍を行うことにより強度かいくぶん低
下するが伸びと、電気伝導率が向上することは明らかで
ある。From these results, it is clear that annealing slightly decreases strength but improves elongation and electrical conductivity.
豐
実施例5
実施例4で時効処理まで行った試料に更に冷間圧延を圧
下率50%で行って実施例1と同様の評価を行い、実施
例4の本発明を比較例として第6表に示した。豐 Example 5 The sample subjected to the aging treatment in Example 4 was further subjected to cold rolling at a reduction rate of 50% and evaluated in the same manner as in Example 1. Table 6 shows the present invention of Example 4 as a comparative example. It was shown to.
この結果より、焼鈍、時効後更に50%程度の冷間圧延
を行うことにより、リードフレームに必要な伸びを確保
して、強度を向上させることが可能であることは明らか
であり、またこの時には電気伝導率の低下は微小である
。From this result, it is clear that by further performing cold rolling of about 50% after annealing and aging, it is possible to secure the necessary elongation and improve the strength of the lead frame. The decrease in electrical conductivity is minute.
(発明の効果)
以上詳細に説明したように、本発明は鉄と銅の特定の化
学組成、急速冷却の効果と後工程の組み合せにより他の
合金元素を特別に添加せずに、ICリードフレーム材料
としての必要強度を有し、熱・電気伝導性および加工性
に優れた、低コストのリードフレーム川鉄銅合金薄帯の
製造方法であり、工業的に優れるとともに経済的に優れ
た方法である。(Effects of the Invention) As explained in detail above, the present invention utilizes a combination of the specific chemical composition of iron and copper, the effect of rapid cooling, and post-processing to create an IC lead frame without adding any other alloying elements. This is a method for producing a low-cost lead frame river iron copper alloy ribbon that has the necessary strength as a material and has excellent thermal and electrical conductivity and workability, and is an industrially and economically excellent method. .
第1図は冷却速度とビッカース硬度の関係を示す図であ
る。FIG. 1 is a diagram showing the relationship between cooling rate and Vickers hardness.
Claims (3)
主として鉄からなる組成の鉄銅合金薄鋳片を100℃/
sec以上の冷却速度で連続鋳造し、冷間圧延後450
〜650℃で20分以上500分以下の時効処理を施す
ことを特徴とするリードフレーム用鉄銅合金薄帯の製造
方法。(1) Iron-copper alloy thin slab containing 20% by weight or more and 90% by weight or less of copper, with the balance mainly consisting of iron at 100℃/
Continuous casting at a cooling rate of sec or more, and after cold rolling 450
A method for producing an iron-copper alloy ribbon for lead frames, which comprises subjecting an aging treatment to ~650°C for 20 minutes or more and 500 minutes or less.
主として鉄からなる組成の鉄銅合金薄鋳片を100℃/
sec以上の冷却速度で連続鋳造し、冷間圧延後650
〜1050℃で5分以上60分以下の焼鈍を行い、45
0〜650℃で20分以上500分以下の時効処理を施
すことを特徴とするリードフレーム用鉄銅合金薄帯の製
造方法。(2) Iron-copper alloy thin slab containing 20% by weight or more and 90% by weight or less of copper, with the balance mainly consisting of iron at 100℃/
Continuously cast at a cooling rate of sec or more, and after cold rolling 650
Annealing is performed at ~1050℃ for 5 minutes or more and 60 minutes or less, and 45
A method for manufacturing an iron-copper alloy ribbon for lead frames, which comprises subjecting an aging treatment at 0 to 650°C for 20 minutes or more and 500 minutes or less.
主として鉄からなる組成の鉄銅合金薄鋳片を100℃/
sec以上の冷却速度で連続鋳造し、冷間圧延後650
〜1050℃で5分以上60分以下の焼鈍を行い、45
0〜650℃で20分以上500分以下の時効処理を施
した後、最終冷間圧延を圧下率15〜80%で行うこと
を特徴とするリードフレーム用鉄銅合金薄帯の製造方法
。(3) Iron-copper alloy thin slab containing 20% by weight or more and 90% by weight or less of copper, with the balance mainly consisting of iron at 100℃/
Continuously cast at a cooling rate of sec or more, and after cold rolling 650
Annealing is performed at ~1050℃ for 5 minutes or more and 60 minutes or less, and 45
A method for manufacturing an iron-copper alloy ribbon for lead frames, which comprises aging at 0 to 650°C for 20 minutes to 500 minutes, and then final cold rolling at a reduction rate of 15 to 80%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24916586A JPS63103055A (en) | 1986-10-20 | 1986-10-20 | Manufacture of thin iron-copper alloy strip for lead frame |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24916586A JPS63103055A (en) | 1986-10-20 | 1986-10-20 | Manufacture of thin iron-copper alloy strip for lead frame |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63103055A true JPS63103055A (en) | 1988-05-07 |
JPH0424419B2 JPH0424419B2 (en) | 1992-04-27 |
Family
ID=17188873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24916586A Granted JPS63103055A (en) | 1986-10-20 | 1986-10-20 | Manufacture of thin iron-copper alloy strip for lead frame |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63103055A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100395077C (en) * | 2006-04-05 | 2008-06-18 | 宁波海王机电科技有限公司 | Method for preparing high conductive, high temperature electronic frame material |
JP2009127667A (en) * | 2007-11-20 | 2009-06-11 | Aichi Mach Ind Co Ltd | Power transmission device |
-
1986
- 1986-10-20 JP JP24916586A patent/JPS63103055A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100395077C (en) * | 2006-04-05 | 2008-06-18 | 宁波海王机电科技有限公司 | Method for preparing high conductive, high temperature electronic frame material |
JP2009127667A (en) * | 2007-11-20 | 2009-06-11 | Aichi Mach Ind Co Ltd | Power transmission device |
Also Published As
Publication number | Publication date |
---|---|
JPH0424419B2 (en) | 1992-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0790520A (en) | Production of high-strength cu alloy sheet bar | |
JPS61119660A (en) | Manufacture of copper alloy having high strength and electric conductivity | |
JP4396874B2 (en) | Manufacturing method of copper base alloy strip for terminal | |
JPS5893860A (en) | Manufacture of high strength copper alloy with high electric conductivity | |
US5085712A (en) | Iron/copper/chromium alloy material for high-strength lead frame or pin grid array | |
JPH0617209A (en) | Manufacture of copper alloy for electrical and electronic apparatus | |
JPH0138866B2 (en) | ||
JPS63103055A (en) | Manufacture of thin iron-copper alloy strip for lead frame | |
JP3763234B2 (en) | Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy | |
JPS63293147A (en) | Production of iron-copper-chromium alloy strip for high-strength lead frame | |
JPH05132745A (en) | Production of aluminum alloy excellent in formability | |
JPH06272000A (en) | Production of al alloy sheet excellent in formability and baking hardenability | |
JPS61288036A (en) | Copper alloy for lead frame and its production | |
JPS6299430A (en) | Copper alloy for terminal or connector and its manufacture | |
JP3843021B2 (en) | Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability | |
JPH0428837A (en) | Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture | |
JPH07228957A (en) | Production of aluminum alloy sheet having excellent formability and quench-hardenability | |
JP3871894B2 (en) | Method for producing high-strength, low-thermal-expansion alloy with excellent ductility | |
JPS61143564A (en) | Manufacture of high strength and highly conductive copper base alloy | |
JPS6141751A (en) | Manufacture of copper alloy material for lead frame | |
JPH09176805A (en) | Production of aluminum fin material | |
JPS62227052A (en) | Copper-base alloy for terminal and connector and its production | |
JPS60114557A (en) | Manufacture of copper alloy plate and bar | |
JPH046233A (en) | Continuous casting mold material made of cu alloy having high cooling power and its manufacture | |
JPH0430465B2 (en) |