JPH0430465B2 - - Google Patents

Info

Publication number
JPH0430465B2
JPH0430465B2 JP28383486A JP28383486A JPH0430465B2 JP H0430465 B2 JPH0430465 B2 JP H0430465B2 JP 28383486 A JP28383486 A JP 28383486A JP 28383486 A JP28383486 A JP 28383486A JP H0430465 B2 JPH0430465 B2 JP H0430465B2
Authority
JP
Japan
Prior art keywords
weight
minutes
iron
copper alloy
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28383486A
Other languages
Japanese (ja)
Other versions
JPS63137148A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP28383486A priority Critical patent/JPS63137148A/en
Publication of JPS63137148A publication Critical patent/JPS63137148A/en
Publication of JPH0430465B2 publication Critical patent/JPH0430465B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、熱・電気伝導性に優れた低コストの
半導体IC、LSIなどに用いられる高強度リードフ
レーム用鉄銅合金薄帯の製造方法に関する。 (従来の技術) 半導体IC、LSI等用のリードフレーム材として
は、たとえば特開昭59−198741号公報に示されて
いる鉄に26〜30重量%ニツケル、11〜16重量%コ
バルトを含む合金(コバール合金)、また特開昭
60−111447号公報に示されている鉄に30〜55重量
%ニツケルを含む合金(42%Ni合金が代表的成
分)等がガラス封止材やSiと熱膨張特性がマツチ
ングしている理由で用いられている。一方、銅、
銅合金も高い熱・電気伝導性を必要とするICに
次第に用いられるようになつた。 すなわち、以上で述べたコバール合金や42Ni
合金は強度、耐熱性は優れているが、熱・電気伝
導性が悪く、加工性が劣り、コストが高いために
近年ICの高集積度化に伴う熱放散性に対する要
求から安価で熱・電気伝導性、加工性の良い銅合
金へ移行する傾向にある。 (発明が解決しようとする問題点) しかしながら、一般に銅合金は耐熱性ならびに
強度が劣るために、たとえばCA−195合金、ある
いは特開昭60−218442号公報記載の合金はその欠
点を改善するために錫、鉄、珪素、燐、コバルト
などを添加したものであるが、これらの元素添加
により合金コストが上昇し、さらに熱・電気伝導
性を劣化させるなどの問題があつた。 本発明は鉄銅合金に適量の酸素、珪素、アルミ
ニウム、チタンを添加することにより、リードフ
レームとして充分な熱・電気伝導性および高い強
度と良好な加工性を兼ね備えたリードフレーム用
鉄銅合金薄帯を提供することを目的とする。 (問題点を解決するための手段) 本発明はこれらの先行技術の問題点を克服し、
リードフレーム用材料として優れた特性を有する
鉄銅合金薄帯を製造するため、発明者らは直接鋳
造鉄銅合金の薄鋳片を用いて材質改善に関して多
くの研究を行い、高強度リードフレーム用鉄銅合
金薄帯の製造方法を発明するに至つた。 本発明の要旨とするところは下記のとおりであ
る。 (1) Cuを20重量%以上90重量%以下、Oを0.03重
量%以上0.2重量%以下、Si、Al、Tiの一種又
は二種以上をそれぞれSiを0.012〜0.2重量%、
Alを0.015〜0.25重量%、Tiを0.02〜0.3重量%
の範囲で含みかつ8/7Si+8/9Al+2/3Ti
が0.013重量%以上、(8/7Si+8/9Al+2
/3Ti)/Oが1以下の範囲で含み、残部が主
としてFeからなる組成の鉄銅合金薄鋳片を100
℃/秒以上の冷却速度で連続鋳造し、冷間圧延
後450〜650℃で20分以上500分以下の時効処理
を施すことを特徴とする高強度リードフレーム
用鉄銅合金薄帯の製造方法。 (2) Cuを20重量%以上90重量%以下、Oを0.03重
量%以上0.2重量%以下、Si、Al、Tiの一種又
は二種以上をそれぞれSiを0.012〜0.2重量%、
Alを0.015〜0.25重量%、Tiを0.02〜0.3重量%
の範囲で含みかつ8/7Si+8/9Al+2/3Ti
が0.013重量%以上、(8/7Si+8/9Al+2
/3Ti)/Oが1以下の範囲で含み、残部が主
としてFeからなる組成の鉄銅合金薄鋳片を100
℃/秒以上の冷却速度で連続鋳造し、冷間圧延
後650〜1050℃で5分以上60分以下の焼鈍を行
い、450〜650℃で20分以上500分以下の時効処
理を施すことを特徴とする高強度リードフレー
ム用鉄銅合金薄帯の製造方法。 (3) Cuを20重量%以上90重量%以下、Oを0.03重
量%以上0.2重量%以下、Si、Al、Tiの一種又
は二種以上をそれぞれSiを0.012〜0.2重量%、
Alを0.015〜0.25重量%、Tiを0.02〜0.3重量%
の範囲で含みかつ8/7Si+8/9Al+2/3Ti
が0.013重量%以上、(8/7Si+8/9Al+2
/3Ti)/Oが1以下の範囲で含み、残部が主
としてFeからなる組成の鉄銅合金薄鋳片を100
℃/秒以上の冷却速度で連続鋳造し、冷間圧延
後650〜1050℃で5分以上60分以下の焼鈍を行
い、450〜650℃で20分以上500分以下の時効処
理を施した後、最終冷間圧延を圧下率15〜60%
で行うことを特徴とする高強度リードフレーム
用鉄銅合金薄帯の製造方法。 以下本構成要件の限定理由を説明する。 まず、合金の化学組成の限定理由は以下の通り
である。 銅は熱・電気伝導性を向上にさせるためには含
有量が高いほど好ましいが、用途上強度の要求が
強い場合には鉄の含有量を高めることが望まし
い。銅含有量が20重量%以下ではICリードフレ
ームとして必要な熱・電気伝導性が得られないの
でこれを下限とする。また上限を90重量%とする
のは、鉄含有量が10重量%では組織の微細化に有
効に働く鉄相の分布が不十分になり、またはハン
ダ付け時のヒートシヨツクを緩和するためある程
度上限を定める方が好ましい場合もあるからであ
る。 つぎに、酸素を0.03重量%以上添加するのは下
記の酸化物生成元素との関係で鉄中のSi、Al、
Tiおよび銅あるいは銅中のSi、Al、Tiおよび鉄
などと酸化物を形成して分散強化作用を示すとと
もに、これらの固溶元素量を減ずることにより
熱・電気伝導性を向上させるからである。また上
限を0.2重量%とするのは上記の効果が飽和する
と同時に酸化物量の増加により加工性の劣化が顕
著になるからである。 つぎに、Si、Al、Tiの一種または二種以上を
Siを0.012〜0.2重量%、Alを0.015〜0.25重量%、
Tiを0.02〜0.3重量%の範囲で含みかつ8/7Si+
8/9Al+2/3Tiが0.013重量%以上になるよう
に添加するのは、これらがいずれも強い酸化物生
成元素であつて、鋳片の銅富化相の凝固開始時あ
るいは開始直後に微細な酸化物を形成させるとき
は固溶元素による導電率の低下を防止し、蒲強度
を高めるため極めて有効であるためである。そし
てこれらの元素の添加量は酸化物形成に対する化
学量論的考察から決められる。これらの制限の
中、下限はこれらの酸化物が一種または二種以上
で鉄富化相・銅富化相中に微細に分散して存在す
るのに必要な量であり、上限は酸素量との関係で
決まるが、それは酸化物が粗大化し過ぎて強化に
寄与しないばかりか、延性を著しく低下させるか
らそれぞれの量に決定される。 その他、Cr、Zn、Sn、Nbなどを微量添加する
ことは有用な場合が多いので添加してもよいが、
これについては特に限定しない。それ以外は原料
および溶製その他の工程で不可避的に混入される
不純物元素とする。 つぎに本発明の製造プロセスについて説明す
る。まず、連続鋳造により鉄銅合金薄鋳片を製造
するが、このときの一次冷却速度は100℃/秒以
上に限定する。その理由は一般に凝固時の冷却速
度が大きいほど、凝固組織のサイズは微細化し、
その後に熱処理または冷間圧延−焼鈍を行つても
その効果は保存される。その限界は合金中に銅を
70%以上含む高い強度が比較的得られ難い場合に
も、高強度リードフレーム用材料に要求される値
が得られることによるものである。 さらに、引き続いて冷延・時効処理を行う。冷
間圧延はリードフレームに必要な板厚を得るのが
主要目的であるが、一次の冷間圧延の圧下率は化
学組成、鋳造厚みと最終冷間圧延工程の組合せに
より、目的とする板厚・強度・加工性が得られる
条件となる。その効果的な圧下率の範囲は30〜95
%である。 時効処理は、熱・電気伝導性を向上させるため
に、製造工程上必須のものであり、化学組成と前
工程条件により適正な温度を選定すべきである。
一般に低温過ぎると析出物の周りに歪を生じ、母
材の特性を劣化させることや、加熱時間が長くな
るため設備・製造能率に対する制約になる。また
高温過ぎると析出量が少なくなり良い特性が得ら
れないばかりか、析出物が粗大化して、強度確保
上不利になるので、450〜650℃で20分以上500分
以下の時効処理が適正条件となる。 またリードフレームとして加工性が特に要求さ
れる場合には、時効処理の前に650〜1050℃温度
域で実用的な時間として5分以上60分以下の焼鈍
を行い、冷間圧延時に導入された加工歪の除去と
再結晶・粒成長により加工性を向上させることが
可能である。 本発明はリードフレームとして強度が要求され
る用途に適するが、更に加工性と高強度を必要と
する場合には、上記焼鈍を行つた後に冷間圧延を
圧下率15〜60%行い加工歪の導入により強度を上
昇させる。そしてこの場合の効果が顕著になる下
限は15%であり、加工性、熱・電気伝導性が大き
く低下しない圧下率50%が上限となる。 なお、70重量%以下の銅を含有する場合、また
は一次冷間圧延圧下率が50%を超える場合は冷間
圧延時の割れを防止する対策が必要である。その
方法としては、鋳造後の一定温度域の徐冷および
一旦室温まで冷却後の再加熱が有効である。その
条件としては鋳造後850〜750℃の温度域を10〜
100℃/秒の冷却速度で冷却するか、850〜450℃
の温度域で20分以上60分以下の熱処理を行う。10
℃/未満では充分な割れ防止効果が得られない
し、100℃/秒を超えると粒の粗大化あるいは急
冷で得られた過飽和度の低下などむしろ好ましく
ないので限定される。この効果は鋳造後の冷却途
中に生じる残留オーステナイトまたはマルテンサ
イトの発生を防止するか、あるいは焼戻し軟化に
より鉄・銅組織間の硬度差を減少させることによ
る。 (実施例) 以下本発明の効果を実施例により説明する。 実施例 1 第1表に本発明の成分範囲の合金B〜Eと比較
の成分範囲の比較材A、Fの化学成分を示す。
(Industrial Application Field) The present invention relates to a method for producing an iron-copper alloy ribbon for high-strength lead frames used in low-cost semiconductor ICs, LSIs, etc., which have excellent thermal and electrical conductivity. (Prior art) As a lead frame material for semiconductor ICs, LSIs, etc., an alloy containing 26 to 30% by weight of nickel and 11 to 16% by weight of cobalt in iron is used, for example, as disclosed in Japanese Patent Application Laid-open No. 59-198741. (Kovar alloy), also JP-A-Sho
The reason is that the thermal expansion properties of iron and alloys containing 30 to 55% by weight of nickel (42% Ni alloy is a typical component) shown in Publication No. 60-111447 match those of glass sealants and Si. It is used. On the other hand, copper
Copper alloys are also increasingly being used in ICs that require high thermal and electrical conductivity. In other words, the Kovar alloy mentioned above and 42Ni
Although alloys have excellent strength and heat resistance, they have poor thermal and electrical conductivity, poor workability, and are expensive. There is a trend toward copper alloys with good conductivity and workability. (Problems to be Solved by the Invention) However, since copper alloys generally have poor heat resistance and strength, for example, CA-195 alloy or the alloy described in JP-A-60-218442 aims to improve these drawbacks. However, the addition of these elements increases the cost of the alloy and also causes problems such as deterioration of thermal and electrical conductivity. The present invention has developed an iron-copper alloy thin film for lead frames that has sufficient thermal and electrical conductivity, high strength, and good workability by adding appropriate amounts of oxygen, silicon, aluminum, and titanium to iron-copper alloys. The purpose is to provide belts. (Means for solving the problems) The present invention overcomes these problems of the prior art,
In order to produce an iron-copper alloy thin strip with excellent properties as a material for lead frames, the inventors conducted extensive research on material improvement using directly cast iron-copper alloy thin slabs, and developed a material for high-strength lead frames. A method for producing iron-copper alloy ribbon was invented. The gist of the present invention is as follows. (1) 20% to 90% by weight of Cu, 0.03% to 0.2% by weight of O, 0.012% to 0.2% by weight of one or more of Si, Al, and Ti each;
Al: 0.015-0.25% by weight, Ti: 0.02-0.3% by weight
Includes in the range of 8/7Si+8/9Al+2/3Ti
is 0.013% by weight or more, (8/7Si+8/9Al+2
100 pieces of iron-copper alloy thin slab with composition containing /3Ti)/O in the range of 1 or less and the balance mainly consisting of Fe.
A method for producing a high-strength iron-copper alloy ribbon for lead frames, which comprises continuous casting at a cooling rate of ℃/second or higher, and then subjecting it to an aging treatment at 450 to 650℃ for 20 minutes or more and 500 minutes or less. . (2) 20% to 90% by weight of Cu, 0.03% to 0.2% by weight of O, 0.012% to 0.2% by weight of each of one or more of Si, Al, and Ti;
Al: 0.015-0.25% by weight, Ti: 0.02-0.3% by weight
Includes in the range of 8/7Si+8/9Al+2/3Ti
is 0.013% by weight or more, (8/7Si+8/9Al+2
100 pieces of iron-copper alloy thin slab with composition containing /3Ti)/O in the range of 1 or less and the balance mainly consisting of Fe.
Continuous casting at a cooling rate of ℃/second or higher, annealing at 650 to 1050℃ for 5 minutes to 60 minutes after cold rolling, and aging treatment at 450 to 650℃ for 20 minutes to 500 minutes. A method for producing iron-copper alloy ribbon for high-strength lead frames. (3) 20% to 90% by weight of Cu, 0.03% to 0.2% by weight of O, 0.012% to 0.2% by weight of each of one or more of Si, Al, and Ti;
Al: 0.015-0.25% by weight, Ti: 0.02-0.3% by weight
Includes in the range of 8/7Si+8/9Al+2/3Ti
is 0.013% by weight or more, (8/7Si+8/9Al+2
100 pieces of iron-copper alloy thin slab with composition containing /3Ti)/O in the range of 1 or less and the balance mainly consisting of Fe.
After continuous casting at a cooling rate of ℃/second or more, after cold rolling, annealing at 650 to 1050℃ for 5 minutes to 60 minutes, and aging treatment at 450 to 650℃ for 20 minutes to 500 minutes. , final cold rolling reduction rate 15~60%
1. A method for producing iron-copper alloy ribbon for high-strength lead frames, characterized by carrying out the following steps. The reasons for limiting this configuration requirement will be explained below. First, the reason for limiting the chemical composition of the alloy is as follows. A higher content of copper is preferable in order to improve thermal and electrical conductivity, but if the application requires strong strength, it is desirable to increase the content of iron. If the copper content is less than 20% by weight, the thermal and electrical conductivity necessary for an IC lead frame cannot be obtained, so this is set as the lower limit. The upper limit is set at 90% by weight because if the iron content is 10% by weight, the distribution of the iron phase, which is effective in refining the structure, will be insufficient, or the upper limit is set to a certain extent to alleviate heat shock during soldering. This is because there are cases where it is preferable to define Next, adding 0.03% by weight or more of oxygen is due to the relationship with the following oxide-forming elements: Si, Al,
This is because it forms oxides with Ti and copper, or with Si, Al, Ti, and iron in copper, exhibiting a dispersion strengthening effect, and improves thermal and electrical conductivity by reducing the amount of these elements in solid solution. . Further, the upper limit is set to 0.2% by weight because at the same time as the above effects are saturated, the deterioration of workability becomes noticeable due to an increase in the amount of oxides. Next, add one or more of Si, Al, and Ti.
Si 0.012-0.2% by weight, Al 0.015-0.25% by weight,
Contains Ti in the range of 0.02-0.3% by weight and 8/7Si+
The reason why 8/9Al + 2/3Ti is added at 0.013% by weight or more is that these are strong oxide-forming elements, and they cause fine oxidation to occur at or immediately after the solidification of the copper-rich phase of the slab. This is because when forming a product, it is extremely effective in preventing a decrease in conductivity due to solid solution elements and increasing the strength of the coil. The amounts of these elements to be added are determined from stoichiometric considerations for oxide formation. Among these limits, the lower limit is the amount necessary for one or more of these oxides to exist finely dispersed in the iron-rich phase and copper-rich phase, and the upper limit is the amount of oxygen and However, since the oxide becomes too coarse and does not contribute to strengthening, it also significantly reduces ductility, so the respective amounts are determined. In addition, it is often useful to add trace amounts of Cr, Zn, Sn, Nb, etc., so they may be added.
There is no particular limitation on this. Other elements are impurity elements that are unavoidably mixed in raw materials, melting, and other processes. Next, the manufacturing process of the present invention will be explained. First, a thin iron-copper alloy slab is produced by continuous casting, but the primary cooling rate at this time is limited to 100° C./second or higher. The reason is that the larger the cooling rate during solidification, the finer the solidified structure becomes.
Even if heat treatment or cold rolling-annealing is performed thereafter, the effect is preserved. The limit is copper in the alloy.
This is because even in cases where it is relatively difficult to obtain a high strength of 70% or more, the value required for a high-strength lead frame material can be obtained. Furthermore, cold rolling and aging treatment are subsequently performed. The main purpose of cold rolling is to obtain the required plate thickness for the lead frame, but the reduction rate of the first cold rolling depends on the combination of chemical composition, casting thickness, and final cold rolling process to achieve the desired plate thickness.・Conditions for obtaining strength and workability. Its effective rolling reduction range is 30-95
%. Aging treatment is essential in the manufacturing process in order to improve thermal and electrical conductivity, and an appropriate temperature should be selected depending on the chemical composition and pre-process conditions.
Generally, if the temperature is too low, distortion will occur around the precipitates, deteriorating the properties of the base material, and increasing heating time, which will limit equipment and manufacturing efficiency. Also, if the temperature is too high, not only will the amount of precipitate decrease and good properties will not be obtained, but the precipitates will also become coarse, which is disadvantageous in terms of ensuring strength, so aging treatment at 450 to 650℃ for 20 minutes to 500 minutes is the appropriate condition. becomes. In addition, if workability is particularly required as a lead frame, annealing is performed at a temperature range of 650 to 1050°C for a practical time of 5 minutes to 60 minutes before aging treatment, which is similar to that introduced during cold rolling. It is possible to improve workability by removing processing strain, recrystallization, and grain growth. The present invention is suitable for use as a lead frame that requires strength, but if further workability and high strength are required, cold rolling is performed at a reduction rate of 15 to 60% after the above annealing to reduce processing strain. Increasing strength by introduction. In this case, the lower limit at which the effect becomes noticeable is 15%, and the upper limit is a reduction rate of 50% at which workability, thermal and electrical conductivity do not decrease significantly. Note that if the steel contains 70% by weight or less of copper, or if the primary cold rolling reduction exceeds 50%, measures must be taken to prevent cracking during cold rolling. Effective methods include slow cooling in a constant temperature range after casting and reheating after cooling to room temperature. The conditions are a temperature range of 850 to 750℃ after casting.
Cool at a cooling rate of 100℃/sec or 850-450℃
Heat treatment is performed at a temperature range of 20 minutes to 60 minutes. Ten
If it is less than 100°C/sec, sufficient cracking prevention effect cannot be obtained, and if it exceeds 100°C/sec, the grains will become coarse or the supersaturation degree obtained by rapid cooling may decrease, which is rather undesirable, so it is limited. This effect is due to preventing the generation of residual austenite or martensite that occurs during cooling after casting, or reducing the hardness difference between iron and copper structures through tempering softening. (Example) The effects of the present invention will be explained below with reference to Examples. Example 1 Table 1 shows the chemical compositions of alloys B to E having the composition range of the present invention and comparative materials A and F having the composition range of comparison.

【表】 第2表に以下の条件で処理したときの鉄銅合金
薄帯の材質特性を示す。鋳造は双ロール鋳造機を
用いて、3.5×102/秒の冷却速度で板厚2.0mmに連
続鋳造した。鋳造後は冷却途中で820℃で30分の
保定を冷間圧延時の割れ防止のため行い、ついで
圧下率85%で0.3mmまで圧延した。冷間圧延後は
490℃で180分の時効処理を行い空冷した。試料番
号1はパラメータX(第1表参照)が下限以下で
あり、強度と導電率がともに充分でない例、試料
番号6はパラメータXが酸素量より多く本発明の
範囲を外れている例で延性・導電率が低い。表中
にはFe−NiおよびCu−Fe−Sn合金の特性も比較
に加えた。これからも、本発明材の特性が優れて
いることは明瞭である。
[Table] Table 2 shows the material properties of the iron-copper alloy ribbon when processed under the following conditions. Continuous casting was carried out using a twin roll casting machine at a cooling rate of 3.5×10 2 /sec to a plate thickness of 2.0 mm. After casting, it was held at 820°C for 30 minutes during cooling to prevent cracking during cold rolling, and then rolled to 0.3 mm at a rolling reduction of 85%. After cold rolling
It was aged at 490°C for 180 minutes and cooled in air. Sample number 1 is an example in which parameter X (see Table 1) is below the lower limit, and both strength and conductivity are insufficient. Sample number 6 is an example in which parameter・Low conductivity. In the table, the characteristics of Fe-Ni and Cu-Fe-Sn alloys are also included for comparison. From this, it is clear that the properties of the material of the present invention are excellent.

【表】【table】

【表】 実施例 2 第3表は本発明成分範囲の供試材Bの双ロール
鋳造機で鋳造時の冷却速度が本発明の範囲外の低
い場合を本発明の場合と比較した。ここで鋳造後
の処理条件は実施例1と同じである。これから鋳
造時の冷却速度の効果が大きいことは明らかであ
る。
[Table] Example 2 Table 3 compares the case where sample material B having the composition range of the present invention was cast using a twin roll casting machine and the cooling rate was low outside the range of the present invention, with the case of the present invention. Here, the processing conditions after casting are the same as in Example 1. It is clear from this that the cooling rate during casting has a large effect.

【表】 実施例 3 第4表は本発明成分範囲の供試材Cの冷間圧延
後の時効処理前の焼鈍の効果を行わない本発明の
場合と比較した。これから時効処理前の焼鈍を付
加すると延性・導電率が向上する効果が大きいこ
とは明らかである。
[Table] Example 3 Table 4 compares sample material C having the composition range of the present invention with the case of the present invention in which the effect of annealing before aging treatment after cold rolling is not performed. It is clear from this that adding annealing before aging treatment has a significant effect of improving ductility and electrical conductivity.

【表】 実施例 4 第5表は本発明成分範囲の試供材Dに冷間圧延
後700℃×30分の焼鈍および490℃180分の時効処
理を行い、さらに25%の最終冷間圧延を行つた場
合の材質を示す。これから、最終冷間圧延は導電
率を余り損なわないで強度を上昇させ得る有効な
手段であることが明らかである。
[Table] Example 4 Table 5 shows sample material D having the composition range of the present invention, which was cold rolled and then annealed at 700°C for 30 minutes, aged at 490°C for 180 minutes, and further subjected to final cold rolling of 25%. Indicates the material when used. It is clear from this that final cold rolling is an effective means of increasing strength without significantly impairing electrical conductivity.

【表】 実施例 5 第6表は本発明成分範囲の供試材Eを双ロール
鋳造機を用いて、2.5×103/秒の冷却速度で板厚
0.8mmに連続鋳造し、鋳造後は直接圧下率48%で
0.42mmまで圧延、冷間圧延後は490℃で180分の時
効処理を行い空冷し、さらに30%の最終冷延を行
つたものの材質を、鋳造後冷却途中で820℃で30
分の保定を冷間圧延時の割れ防止のため行い、つ
いで圧下率85%で0.3mmまで圧延し冷間圧延後は
490℃で180分の時効処理を行い空冷した材料と比
較して示す。これから、いずれの方法によつても
優れた特性を有するリードフレーム用鉄銅合金薄
帯が製造できることがわかる。
[Table] Example 5 Table 6 shows the plate thickness of test material E having the composition range of the present invention using a twin roll casting machine at a cooling rate of 2.5×10 3 /sec.
Continuously cast to 0.8mm, with a direct reduction rate of 48% after casting.
After rolling to 0.42mm and cold rolling, aging treatment was performed at 490℃ for 180 minutes, air cooling, and final cold rolling of 30% was performed.
To prevent cracking during cold rolling, the material was held for 30 minutes, then rolled to 0.3 mm at a reduction rate of 85%, and after cold rolling,
A comparison is shown with a material aged at 490℃ for 180 minutes and cooled in air. It can be seen from this that an iron-copper alloy ribbon for lead frames having excellent properties can be produced by either method.

【表】 (発明の効果) 本発明は高強度リードフレーム用鉄銅合金薄帯
の製造に連続鋳造薄鋳片を利用して強度と熱・電
気伝導性ともに優れた材料を得ることを可能にす
る方法であつて、従来のFe−Ni合金および高強
度リードフレーム用銅合金に代替し得る材料を経
済的に製造し得る工業的に価値のある発明であ
る。
[Table] (Effects of the invention) The present invention makes it possible to obtain a material with excellent strength and thermal and electrical conductivity by using continuously cast thin slabs in the production of iron-copper alloy ribbons for high-strength lead frames. It is an industrially valuable invention that can economically produce a material that can replace conventional Fe-Ni alloys and copper alloys for high-strength lead frames.

Claims (1)

【特許請求の範囲】 1 Cuを20重量%以上90重量%以下、Oを0.03重
量%以上0.2重量%以下、Si、Al、Tiの一種又は
二種以上をそれぞれSiを0.012〜0.2重量%、Alを
0.015〜0.25重量%、Tiを0.02〜0.3重量%の範囲
で含みかつ8/7Si+8/9Al+2/3Tiが0.013重
量%以上、(8/7Si+8/9Al+2/3Ti)/O
が1以下の範囲で含み、残部が主としてFeから
なる組成の鉄銅合金薄鋳片を100℃/秒以上の冷
却速度で連続鋳造し、冷間圧延後450〜650℃で20
分以上500分以下の時効処理を施すことを特徴と
する高強度リードフレーム用鉄銅合金薄帯の製造
方法。 2 Cuを20重量%以上90重量%以下、Oを0.03重
量%以上0.2重量%以下、Si、Al、Tiの一種又は
二種以上をそれぞれSiを0.012〜0.2重量%、Alを
0.015〜0.25重量%、Tiを0.02〜0.3重量%の範囲
で含みかつ8/7Si+8/9Al+2/3Tiが0.013重
量%以上、(8/7Si+8/9Al+2/3Ti)/O
が1以下の範囲で含み、残部が主としてFeから
なる組成の鉄銅合金薄鋳片を100℃/秒以上の冷
却速度で連続鋳造し、冷間圧延後650〜1050℃で
5分以上60分以下の焼鈍を行い、450〜650℃で20
分以上500分以下の時効処理を施すことを特徴と
する高強度リードフレーム用鉄銅合金薄帯の製造
方法。 3 Cuを20重量%以上90重量%以下、Oを0.03重
量%以上0.2重量%以下、Si、Al、Tiの一種又は
二種以上をそれぞれSiを0.012〜0.2重量%、Alを
0.015〜0.25重量%、Tiを0.02〜0.3重量%の範囲
で含みかつ8/7Si+8/9Al+2/3Tiが0.013重
量%以上、(8/7Si+8/9Al+2/3Ti)/O
が1以下の範囲で含み、残部が主としてFeから
なる組成の鉄銅合金薄鋳片を100℃/秒以上の冷
却速度で連続鋳造し、冷間圧延後650〜1050℃で
5分以上60分以下の焼鈍を行い、450〜650℃で20
分以上500分以下の時効処理を施した後、最終冷
間圧延を圧下率15〜60%で行うことを特徴とする
高強度リードフレーム用鉄銅合金薄帯の製造方
法。
[Claims] 1 Cu: 20% to 90% by weight, O: 0.03% to 0.2% by weight, one or more of Si, Al, and Ti, each containing 0.012% to 0.2% by weight of Si, Al
0.015 to 0.25% by weight, contains Ti in the range of 0.02 to 0.3% by weight, and contains 0.013% by weight or more of 8/7Si + 8/9Al + 2/3Ti, (8/7Si + 8/9Al + 2/3Ti)/O
An iron-copper alloy thin slab with a composition of 1 or less and the balance mainly consisting of Fe is continuously cast at a cooling rate of 100℃/second or more, and after cold rolling, it is heated at 450 to 650℃ for 20
A method for producing a thin iron-copper alloy ribbon for high-strength lead frames, characterized by subjecting it to aging treatment for a period of not less than 500 minutes. 2 Cu from 20% to 90% by weight, O from 0.03% to 0.2% by weight, one or more of Si, Al, and Ti, each from 0.012 to 0.2% by weight, and Al.
0.015 to 0.25% by weight, contains Ti in the range of 0.02 to 0.3% by weight, and contains 0.013% by weight or more of 8/7Si + 8/9Al + 2/3Ti, (8/7Si + 8/9Al + 2/3Ti)/O
A thin iron-copper alloy slab with a composition of 1 or less and the remainder mainly consisting of Fe is continuously cast at a cooling rate of 100℃/second or more, and after cold rolling at 650 to 1050℃ for 5 minutes or more and 60 minutes. Perform the following annealing at 450-650℃ for 20
A method for producing a thin iron-copper alloy ribbon for high-strength lead frames, characterized by subjecting it to aging treatment for a period of not less than 500 minutes. 3 Cu from 20% to 90% by weight, O from 0.03% to 0.2% by weight, one or more of Si, Al, and Ti, each from 0.012 to 0.2% by weight, and Al.
0.015 to 0.25% by weight, contains Ti in the range of 0.02 to 0.3% by weight, and contains 0.013% by weight or more of 8/7Si + 8/9Al + 2/3Ti, (8/7Si + 8/9Al + 2/3Ti)/O
A thin iron-copper alloy slab with a composition of 1 or less and the remainder mainly consisting of Fe is continuously cast at a cooling rate of 100℃/second or more, and after cold rolling at 650 to 1050℃ for 5 minutes or more and 60 minutes. Perform the following annealing at 450-650℃ for 20
A method for producing a high-strength iron-copper alloy ribbon for lead frames, which comprises performing an aging treatment for at least 500 minutes, followed by final cold rolling at a rolling reduction ratio of 15 to 60%.
JP28383486A 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame Granted JPS63137148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28383486A JPS63137148A (en) 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28383486A JPS63137148A (en) 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame

Publications (2)

Publication Number Publication Date
JPS63137148A JPS63137148A (en) 1988-06-09
JPH0430465B2 true JPH0430465B2 (en) 1992-05-21

Family

ID=17670761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28383486A Granted JPS63137148A (en) 1986-11-28 1986-11-28 Manufacture of high-strength iron-copper alloy foil for lead frame

Country Status (1)

Country Link
JP (1) JPS63137148A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069713A (en) * 2014-10-01 2016-05-09 住友電気工業株式会社 Copper alloy material, connector terminal and manufacturing method of copper alloy material

Also Published As

Publication number Publication date
JPS63137148A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
CN111485132B (en) Copper alloy strip with excellent comprehensive performance and preparation method thereof
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JPH06264202A (en) Production of high strength copper alloy
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
US5085712A (en) Iron/copper/chromium alloy material for high-strength lead frame or pin grid array
JPH0424420B2 (en)
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JPH0430465B2 (en)
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPH05132745A (en) Production of aluminum alloy excellent in formability
JP3766051B2 (en) Copper alloy having excellent heat resistance and method for producing the same
JPH0424419B2 (en)
JPS6141751A (en) Manufacture of copper alloy material for lead frame
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JPS6270542A (en) Cu-alloy lead material for semiconductor device
JPH0314901B2 (en)
JPS6342360A (en) Production of copper-base lead material for semiconductor apparatus
JPH0236669B2 (en)