JPH0236669B2 - - Google Patents
Info
- Publication number
- JPH0236669B2 JPH0236669B2 JP60178288A JP17828885A JPH0236669B2 JP H0236669 B2 JPH0236669 B2 JP H0236669B2 JP 60178288 A JP60178288 A JP 60178288A JP 17828885 A JP17828885 A JP 17828885A JP H0236669 B2 JPH0236669 B2 JP H0236669B2
- Authority
- JP
- Japan
- Prior art keywords
- cold rolling
- rolling
- grain size
- intermediate annealing
- alloy sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 229910017060 Fe Cr Inorganic materials 0.000 claims description 19
- 229910002544 Fe-Cr Inorganic materials 0.000 claims description 19
- 238000005097 cold rolling Methods 0.000 claims description 16
- 238000000137 annealing Methods 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005242 forging Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
〔産業上の利用分野〕
この発明は、冷間成形性のすぐれたNi−Fe−
Cr系合金板材の製造方法に関するものである。
〔従来の技術〕
一般に、航空機用ジエツトエンジンなどには、
耐熱性にすぐれたNi−Fe−Cr系合金板材が用い
られている。
このNi−Fe−Cr系合金板材は、重量%で(以
下%は重量%を示す)、
C:0.01〜0.15%、
Fe:10〜45%、
Cr:10〜25%、
NbおよびTaのうちの1種または2種:2〜6
%、
TiおよびAlのうちの1種または2種:0.05〜
3%、
B:0.001〜0.01%、
を含有して、さらに必要に応じて、
Mo:1〜4%、
を含有し、残りがNiと不可避不純物からなる組
成を有するNi−Fe−Cr系合金を、通常の条件で、
インゴツトに鋳造し、このインゴツトを1000〜
1200℃の加熱温度で分塊鍛造を開始して幅:500
〜600mm×厚さ:150〜200mmの寸法をもつたスラ
ブとし、このスラブに、1000〜1250℃の加熱温度
で熱間圧延を施して板厚:3〜4mmの熱延板と
し、ついでこの熱延板に、60〜80%の圧延率での
冷間圧延と900〜980℃の温度での中間焼鈍を2回
以上繰り返し施し、かつ最終冷間圧延率を65〜80
%として板厚:0.5〜2mmの冷延板とし、この冷
延板に925〜980℃の温度で溶体化処理を行なうこ
とによつて製造されている。
〔発明が解決しようとする問題点〕
しかし、このような従来方法によつて製造され
たNi−Fe−Cr系合金板材においては、冷間成形
性が悪いために、苛酷な条件での曲げや深絞りな
どの冷間成形を行なつた場合に、しばしば割れが
発生するものであつた。
〔問題点を解決するための手段〕
そこで、本発明者等は、上述のような観点か
ら、上記の従来Ni−Fe−Cr系合金板材に着目し、
これの冷間成形性を改善すべく研究を行なつた結
果、従来Ni−Fe−Cr系合金板材の冷間成形性が
悪いのは、最終工程の溶体化処理後においても素
地中に炭化物や金属間化合物などの2次析出物が
存在するばかりでなく、その結晶粒径が非常に細
かく、平均結晶粒径で5〜15μmをもつことに原
因するが、その製造工程における中間焼鈍温度を
従来の中間焼鈍温度である900〜980℃に比して相
対的に高い1000〜1200℃にすると、冷間圧延およ
び溶体化処理後に上記2次析出物が全く存在しな
い組織をもつようになると共に、さらに加えて最
終冷間圧延率を従来の65〜80%に比して相対的に
低い5〜60%にしてやると、溶体化処理後の結晶
粒が平均結晶粒径で20〜100μmの粗大となり、
この結果のNi−Fe−Cr系合金板材はすぐれた冷
間成形性をもつようになるという知見を得たので
ある。
この発明は、上記知見にもとづいてなされたも
のであつて、
C:0.01〜0.15%、
Fe:10〜45%、
Cr:10〜25%、
NbおよびTaのうちの1種または2種:2〜6
%、
TiおよびAlのうちの1種または2種:0.05〜
3%、
B:0.001〜0.01%、
を含有し、さらに必要に応じて、
Mo:0.1〜4%、
を含有し、残りがNiと不可避不純物からなる組
成を有するNi−Fe−Cr系合金を、通常の条件で、
鋳造し、分塊鍛造し、熱間圧延し、ついで冷間圧
延と中間焼鈍とを2回以上繰り返し行ない、最終
冷間圧延後、溶体化処理を施してNi−Fe−Cr系
合金板材を製造するに際して、前記中間焼鈍にお
ける焼鈍温度を1000〜1200℃とし、かつ前記最終
冷間圧延における圧延率を5〜60%とすることに
よつて、20〜100μmの平均結晶粒径、並びに2
次析出物の存在ない溶体化組織を有する冷間成形
性のすぐれたNi−Fe−Cr系合金板材を製造する
ことに特徴を有するものである。
つぎに、この発明のNi−Fe−Cr系合金板材の
製造法において成分組成およびその製造条件を上
記の通りに限定した理由を説明する。
A 成分組成
(a) C
C成分には、高温クリープ伸びを向上させ
る作用があるが、その含有量が0.01%未満で
は所望の高温クリープ伸びを確保することが
できず、一方その含有量が0.15%を越える
と、高温での使用中に結晶粒界に炭化物が析
出し、延性が極端に低下するようになること
から、その含有量を0.01〜0.15%と定めた。
(b) Fe
Fe成分には、Niの代替成分としての作用
があるので、これの含有によつて合金価格を
下げ、かつNi成分と共に素地を形成して、
熱間加工性を改善する作用があるが、その含
有量が10%未満では前記作用に所望の効果が
得られず、一方その含有量が45%を越える
と、耐熱性が劣化するようになることから、
その含有量を10〜45%と定めた。
(c) Cr
Cr成分には耐酸化性を向上させる作用が
あるが、その含有量が10%未満では所望の耐
酸化性を確保することができ、一方その含有
量が25%を越えると、熱間加工性が低下する
ばかりでなく、σ相などの脆化相が析出し易
くなることから、その含有量を10〜25%と定
めた。
(d) NbおよびTa
これらの成分には高温強度を向上させる作
用があるが、その含有量が2%未満では所望
の高温強度を確保することができず、一方そ
の含有量が6%を越えると熱間加工性が劣化
するようになることから、その含有量を2〜
6%と定めた。
(e) TiおよびAl
これらの成分には、NbおよびTaとの共存
において高温強度を一段と向上させる作用が
あるが、その含有量が0.05%未満では前記作
用に所望の向上効果が得られず、一方その含
有量が3%を越えると熱間加工性が低下する
ようになることから、その含有量を0.05〜3
%と定めた。
(f) B
B成分には、粒界を強化してクリープ強度
を向上させる作用があるが、その含有量が
0.001%未満では所望の向上効果が得られず、
一方その含有量が0.01%を越えると、熱間加
工性および溶接性が悪化するようになること
から、その含有量を、0.001〜0.01%と定め
た。
(g) Mo
Mo成分には、高温強度を一段と向上させ
る作用があるので、特にこの特性が要求され
る場合に必要に応じて含有されるが、その含
有量が0.1%未満では所望の向上効果が得ら
れず、一方その含有量が4%を越えると冷間
成形性が低下するようになることから、その
含有量を0.1〜4%と定めた。
B 製造条件
(a) 中間焼鈍温度
その温度が1000℃未満では、炭化物や金属
間化合物などの2次析出物の固溶が不十分
で、最終工程である溶体化処理後においても
前記2次析出物が存在した組織となるばかり
でなく、結晶粒も平均粒径で20μm未満と細
かくなつて、所望のすぐれた冷間成形性を確
保することができず、一方その温度が1200℃
を越えると、溶体化処理後に2次析出物の存
在しない組織が得られるものの、結晶粒が平
均粒径で100μmを越えて粗大になりすぎ、
かえつて冷間成形性が低下するようになるほ
か、表面酸化が著しくなつて実用的でないこ
とから、その温度を1000〜1200℃と定めた。
(b) 最終冷間圧延率
その圧延率が5%未満では、溶体化処理に
おいて低歪による急激な結晶粒の成長が起
り、その平均粒径が100μmを越えて粗大に
なりすぎてしまい、冷間成形性の低下を招く
ほか、疲労特性などの性質が低下するように
なり、一方、その圧延率が60%を越えると、
溶体化処理で再結晶するが、加工歪が大きい
ために結晶粒が平均粒径で20μm未満と非常
に細かくなりすぎてしまうばかりでなく、溶
体化処理中に金属間化合物も析出するように
なつて冷間成形性が悪化するようになること
から、その圧延率を5〜60%と定めた。
なお、上記の通り、上記のNi−Fe−Cr系合金
板材においては、平均結晶粒径が20〜100μmに
して、2次析出物の存在しない溶体化組織を有す
る場合にすぐれた冷間成形性を示すのである。
〔実施例〕
つぎに、この発明のNi−Fe−Cr系合金板材の
製造法を実施例により具体的に説明する。
通常の真空高周波溶解炉を用い、それぞれ第1
表に示される成分組成をもつたNi−Fe−Cr系合
金溶湯を調製し、直径:90mmφ×長さ:350mmの
インゴツトに鋳造し、このインゴツトに1000〜
1200℃の加熱温度で分塊鍛造を施して幅:200mm
×厚さ:25mm×長さ:450mmの寸法をもつたスラ
ブとし、このスラブに1000〜1250℃の加熱温度で
熱間圧延を施して幅:200mm×厚さ:4mmの熱延
板とし、ついで、この熱延板に、冷間圧延と第1
表に示される温度での中間焼鈍(保持時間:20
分)を数回繰り返し施し、かつ同じく第1表に示
される最終冷間圧延率にて幅:200mm×厚さ:1
mmの冷延板とし、最終的にこの冷延板に、温度:
960℃に15分保持の条件で溶体化処理を施すこと
によつて本発明法1〜9および
[Industrial Application Field] The present invention is directed to Ni-Fe-
The present invention relates to a method for manufacturing Cr-based alloy plate material. [Prior art] In general, aircraft jet engines, etc.
Ni-Fe-Cr alloy plate material with excellent heat resistance is used. This Ni-Fe-Cr based alloy plate material contains, in weight% (hereinafter % indicates weight%), C: 0.01 to 0.15%, Fe: 10 to 45%, Cr: 10 to 25%, Nb and Ta. One or two types of: 2 to 6
%, one or two of Ti and Al: 0.05~
3%, B: 0.001 to 0.01%, and further contains Mo: 1 to 4% as necessary, and the remainder is Ni and inevitable impurities. , under normal conditions.
Cast into an ingot and sell this ingot for 1000~
Start blooming forging at a heating temperature of 1200℃ and width: 500
A slab with dimensions of ~600 mm x thickness: 150 to 200 mm is formed, and this slab is hot rolled at a heating temperature of 1000 to 1250°C to form a hot rolled plate with a thickness of 3 to 4 mm. The rolled plate is subjected to cold rolling at a rolling rate of 60 to 80% and intermediate annealing at a temperature of 900 to 980°C twice or more, and the final cold rolling rate is 65 to 80%.
It is manufactured by using a cold-rolled plate having a thickness of 0.5 to 2 mm as %, and subjecting the cold-rolled plate to a solution treatment at a temperature of 925 to 980°C. [Problems to be solved by the invention] However, Ni-Fe-Cr based alloy sheets produced by such conventional methods have poor cold formability and cannot be bent or bent under severe conditions. Cracks often occur when cold forming such as deep drawing is performed. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors focused on the conventional Ni-Fe-Cr alloy plate material, and
As a result of conducting research to improve the cold formability of this material, we found that the reason for the poor cold formability of conventional Ni-Fe-Cr alloy sheets is the presence of carbides in the base material even after the final solution treatment. This is due to not only the presence of secondary precipitates such as intermetallic compounds, but also the extremely fine crystal grain size, with an average grain size of 5 to 15 μm. When the intermediate annealing temperature is 1000 to 1200 °C, which is relatively high compared to the intermediate annealing temperature of 900 to 980 °C, the above-mentioned secondary precipitates will not exist at all after cold rolling and solution treatment, and at the same time, Furthermore, if the final cold rolling rate is set to 5 to 60%, which is relatively low compared to the conventional 65 to 80%, the grains after solution treatment will become coarse with an average grain size of 20 to 100 μm. ,
As a result, we obtained the knowledge that the Ni-Fe-Cr alloy sheet material has excellent cold formability. This invention was made based on the above findings, and includes: C: 0.01 to 0.15%, Fe: 10 to 45%, Cr: 10 to 25%, and one or two of Nb and Ta: 2 ~6
%, one or two of Ti and Al: 0.05~
3%, B: 0.001 to 0.01%, and if necessary, Mo: 0.1 to 4%, and the remainder is Ni and inevitable impurities. , under normal conditions,
Casting, blooming forging, hot rolling, cold rolling and intermediate annealing are repeated two or more times, and after final cold rolling, solution treatment is performed to produce Ni-Fe-Cr alloy sheet material. In doing so, by setting the annealing temperature in the intermediate annealing to 1000 to 1200°C and setting the rolling ratio in the final cold rolling to 5 to 60%, an average grain size of 20 to 100 μm and 2.
The present invention is characterized in that it produces a Ni-Fe-Cr alloy sheet material with excellent cold formability and a solution-treated structure free of secondary precipitates. Next, the reason why the component composition and the manufacturing conditions are limited as described above in the method for manufacturing a Ni-Fe-Cr alloy plate material of the present invention will be explained. A Component composition (a) C The C component has the effect of improving high-temperature creep elongation, but if its content is less than 0.01%, the desired high-temperature creep elongation cannot be secured; %, carbides precipitate at grain boundaries during use at high temperatures, resulting in an extreme decrease in ductility. Therefore, the content was set at 0.01 to 0.15%. (b) Fe Since the Fe component acts as a substitute component for Ni, its inclusion lowers the alloy price and forms the base together with the Ni component.
It has the effect of improving hot workability, but if its content is less than 10%, the desired effect will not be obtained, while if its content exceeds 45%, heat resistance will deteriorate. Therefore,
Its content was set at 10-45%. (c) Cr The Cr component has the effect of improving oxidation resistance, but when the content is less than 10%, the desired oxidation resistance can be secured, but on the other hand, when the content exceeds 25%, The content was set at 10 to 25% because it not only reduces hot workability but also makes it easier for brittle phases such as σ phase to precipitate. (d) Nb and Ta These components have the effect of improving high-temperature strength, but if their content is less than 2%, the desired high-temperature strength cannot be secured, but on the other hand, if their content exceeds 6%. Since the hot workability deteriorates, the content should be reduced to 2~
It was set at 6%. (e) Ti and Al These components have the effect of further improving high-temperature strength when coexisting with Nb and Ta, but if their content is less than 0.05%, the desired effect of improving the above effect cannot be obtained, On the other hand, if the content exceeds 3%, hot workability will decrease, so the content should be increased from 0.05 to 3%.
%. (f) B Component B has the effect of strengthening grain boundaries and improving creep strength, but its content is
If it is less than 0.001%, the desired improvement effect cannot be obtained;
On the other hand, if the content exceeds 0.01%, hot workability and weldability deteriorate, so the content was set at 0.001 to 0.01%. (g) Mo The Mo component has the effect of further improving high-temperature strength, so it is included as necessary when this property is particularly required, but if its content is less than 0.1%, the desired improvement effect will not be achieved. On the other hand, if the content exceeds 4%, cold formability deteriorates, so the content was set at 0.1 to 4%. B Manufacturing conditions (a) Intermediate annealing temperature If the temperature is less than 1000°C, solid solution of secondary precipitates such as carbides and intermetallic compounds is insufficient, and even after the final process of solution treatment, the secondary precipitates will not form. Not only does this result in a structure in which particles exist, but the crystal grains also become fine, with an average grain size of less than 20 μm, making it impossible to secure the desired excellent cold formability.
If it exceeds 100 μm, a structure without secondary precipitates can be obtained after solution treatment, but the average grain size will exceed 100 μm and the grains will become too coarse.
The temperature was set at 1000 to 1200°C because it would not only deteriorate the cold formability but also cause significant surface oxidation, making it impractical. (b) Final cold rolling ratio If the rolling ratio is less than 5%, rapid crystal grain growth occurs due to low strain during solution treatment, and the average grain size exceeds 100 μm, resulting in excessively coarse grain size. In addition to causing a decrease in formability, properties such as fatigue properties also deteriorate; on the other hand, when the rolling reduction exceeds 60%,
Recrystallization occurs during solution treatment, but due to the large processing strain, not only do the crystal grains become extremely fine with an average grain size of less than 20 μm, but also intermetallic compounds begin to precipitate during solution treatment. Since the cold formability deteriorates during rolling, the rolling ratio was set at 5 to 60%. As mentioned above, the Ni-Fe-Cr alloy sheet material has excellent cold formability when the average grain size is 20 to 100 μm and it has a solution-treated structure without secondary precipitates. It shows. [Example] Next, the method for manufacturing the Ni-Fe-Cr alloy plate material of the present invention will be specifically explained with reference to Examples. Using an ordinary vacuum high-frequency melting furnace, the first
A molten Ni-Fe-Cr alloy having the composition shown in the table is prepared and cast into an ingot with a diameter of 90 mmφ and a length of 350 mm.
Blown forged at a heating temperature of 1200℃ Width: 200mm
x Thickness: 25 mm x length: 450 mm. This slab is hot-rolled at a heating temperature of 1000 to 1250°C to form a hot-rolled plate with width: 200 mm x thickness: 4 mm, and then , this hot-rolled sheet is subjected to cold rolling and first
Intermediate annealing at the temperature indicated in the table (holding time: 20
width: 200 mm x thickness: 1 at the final cold rolling rate shown in Table 1.
mm cold-rolled plate and finally into this cold-rolled plate, temperature:
Methods 1 to 9 of the present invention and
第1表に示される結果から明らかなように、本
発明法1〜9によつて製造された板材は、いずれ
も結晶粒が、比較的粗大で、すぐれた冷間成形性
を確保するのに不可欠の20〜100μmの平均結晶
粒径をもち、かつ同じくその組織も2次析出物の
存在しない溶体化組織をもつものであるのに対し
て、従来法1〜7によつて製造された板材は、
20μm未満の平均粒径をもつ結晶粒の細かいもの
であり、しかもその素地中には2次析出物が存在
した組織をもち、これらの結果はエリクセン値に
現われ、本発明法1〜9によつて製造された板材
は、いずれも通常冷間成形性が良好とみなされる
11.5mm以上のエリクセン値をもつのに対して、従
来法1〜7によつて製造された板材はこれより低
いエリクセン値しか示さないものである。
上述のように、この発明の方法によれば、平均
結晶粒径が20〜100μmにして、2次析出物の存
在しない組織を有するNi−Fe−Cr系合金板材を
製造することができ、しかもこの結果のNi−Fe
−Cr系合金板材はすぐれた冷間成形性をもつな
ど工業上有用な効果がもたらされるのである。
As is clear from the results shown in Table 1, the plates manufactured by methods 1 to 9 of the present invention all have relatively coarse crystal grains, and are difficult to ensure excellent cold formability. In contrast to the sheet materials manufactured by conventional methods 1 to 7, which have the essential average grain size of 20 to 100 μm and also have a solution-treated structure with no secondary precipitates. teeth,
It has fine crystal grains with an average grain size of less than 20 μm, and has a structure in which secondary precipitates exist in the matrix, and these results appear in the Erichsen value, and are All plate materials manufactured using this method are generally considered to have good cold formability.
While the plate materials produced by conventional methods 1 to 7 have an Erichsen value of 11.5 mm or more, the Erichsen values are lower than this. As described above, according to the method of the present invention, it is possible to produce a Ni-Fe-Cr alloy sheet material having an average grain size of 20 to 100 μm and a structure free of secondary precipitates. The resulting Ni−Fe
-Cr-based alloy sheet materials have industrially useful effects such as excellent cold formability.
Claims (1)
%、 TiおよびAlのうちの1種または2種:0.05〜
3%、 B:0.001〜0.01%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有するNi−Fe−Cr系合金を、
通常の条件で鋳造し、分塊鍛造し、熱間圧延し、
ついで冷間圧延と中間焼鈍とを2回以上繰り返し
行ない、最終冷間圧延後、溶体化処理を施して
Ni−Fe−Cr系合金板材を製造するに際して、 上記中間焼鈍における焼鈍温度を1000〜1200℃
とし、かつ前記最終冷間圧延における圧延率を5
〜60%とすることにより、20〜100μmの平均粒
径、並びに2次析出物の存在しない溶体化組織を
有するNi−Fe−Cr系合金板材を製造することを
特徴とする冷間成形性のすぐれたNi−Fe−Cr系
合金板材の製造法。 2 C:0.01〜0.15%、Fe:10〜45%、 Cr:10〜25%、 NbおよびTaのうちの1種または2種:2〜6
%、 TiおよびAlのうちの1種または2種:0.05〜
3%、 B:0.001〜0.01%、 を有し、さらに、 Mo:0.1〜4%、 を含有し、残りがNiと不可避不純物からなる組
成(以上重量%)を有するNi−Fe−Cr系合金を、
通常の条件で鋳造し、分塊鍛造し、熱間圧延し、
ついで冷間圧延と中間焼鈍とを2回以上繰り返し
行ない、最終冷間圧延後、溶体化処理を施して
Ni−Fe−Cr系合金板材を製造するに際して、 上記中間焼鈍における焼鈍温度を1000〜1200℃
とし、かつ前記最終冷間圧延における圧延率を5
〜60%とすることにより、20〜100μmの平均粒
径、並びに2次析出物の存在しない溶体化組織を
有するNi−Fe−Cr系合金板材を製造することを
特徴とする冷間成形性のすぐれたNi−Fe−Cr系
合金板材の製造法。[Claims] 1 C: 0.01 to 0.15%, Fe: 10 to 45%, Cr: 10 to 25%, one or two of Nb and Ta: 2 to 6
%, one or two of Ti and Al: 0.05~
3%, B: 0.001 to 0.01%, and the rest is Ni and unavoidable impurities (weight %).
Cast under normal conditions, bloomed forged, hot rolled,
Then, cold rolling and intermediate annealing are repeated two or more times, and after final cold rolling, solution treatment is performed.
When manufacturing Ni-Fe-Cr alloy sheet materials, the annealing temperature in the above intermediate annealing is set at 1000 to 1200℃.
and the rolling ratio in the final cold rolling is 5.
~60%, a cold formable Ni-Fe-Cr alloy plate material having an average grain size of 20 to 100 μm and a solution-treated structure without secondary precipitates is produced. Excellent manufacturing method for Ni-Fe-Cr alloy sheet material. 2 C: 0.01-0.15%, Fe: 10-45%, Cr: 10-25%, one or two of Nb and Ta: 2-6
%, one or two of Ti and Al: 0.05~
3%, B: 0.001 to 0.01%, and further contains Mo: 0.1 to 4%, and the remainder is Ni and unavoidable impurities (weight %). of,
Cast under normal conditions, bloomed forged, hot rolled,
Then, cold rolling and intermediate annealing are repeated two or more times, and after final cold rolling, solution treatment is performed.
When manufacturing Ni-Fe-Cr alloy sheet material, the annealing temperature in the above intermediate annealing is set at 1000 to 1200℃.
and the rolling ratio in the final cold rolling is 5.
~60%, a cold formable Ni-Fe-Cr alloy plate material having an average grain size of 20 to 100 μm and a solution-treated structure without secondary precipitates is produced. Excellent manufacturing method for Ni-Fe-Cr alloy sheet material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17828885A JPS6240336A (en) | 1985-08-13 | 1985-08-13 | Ni-fe-cr alloy sheet material superior in cold formability and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17828885A JPS6240336A (en) | 1985-08-13 | 1985-08-13 | Ni-fe-cr alloy sheet material superior in cold formability and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6240336A JPS6240336A (en) | 1987-02-21 |
JPH0236669B2 true JPH0236669B2 (en) | 1990-08-20 |
Family
ID=16045845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17828885A Granted JPS6240336A (en) | 1985-08-13 | 1985-08-13 | Ni-fe-cr alloy sheet material superior in cold formability and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6240336A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2722628B2 (en) * | 1989-03-20 | 1998-03-04 | 三菱マテリアル株式会社 | Plastic working method for B-containing Ni-base heat-resistant alloy |
JPH02247366A (en) * | 1989-03-20 | 1990-10-03 | Mitsubishi Metal Corp | Plastic working method for b-containing ni-base heat resisting alloy |
US5702543A (en) * | 1992-12-21 | 1997-12-30 | Palumbo; Gino | Thermomechanical processing of metallic materials |
-
1985
- 1985-08-13 JP JP17828885A patent/JPS6240336A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6240336A (en) | 1987-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9797029B2 (en) | Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same | |
TWI789871B (en) | Manufacturing method of Wostian iron-based stainless steel strip | |
CN111118422B (en) | Preparation method of high-tungsten high-cobalt nickel alloy fine-grain plate | |
JP2536673B2 (en) | Heat treatment method for titanium alloy material for cold working | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
KR20020062792A (en) | Process for manufacturing a strip made of an fe-ni alloy | |
JPH0346535B2 (en) | ||
JPS5850299B2 (en) | Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets | |
JPH029647B2 (en) | ||
JPH0551633A (en) | Production of high si-containing austenitic stainless steel | |
JPH0830253B2 (en) | Precipitation hardening type martensitic stainless steel with excellent workability | |
JP3161141B2 (en) | Manufacturing method of aluminum alloy sheet | |
JPH0236669B2 (en) | ||
JPH08296000A (en) | Ferritic stainless steel excellent in workability and corrosion resistance and its production | |
JP3398050B2 (en) | Method for producing hot rolled sheet of high Ni alloy | |
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JP5026686B2 (en) | Ni-base alloy material excellent in workability and high-temperature strength and method for producing the same | |
JP4414588B2 (en) | Ni-based alloy with excellent surface quality and method for producing the same | |
JP4454117B2 (en) | Method for producing Cr-containing thin steel sheet | |
JPS6227519A (en) | Manufacture of ultrafine grain hot rolled high tensile steel plate | |
TWI683908B (en) | Method for manufacturing austenite nickel-based alloy plate | |
JP4993327B2 (en) | Ni-base alloy hot-rolling slab and manufacturing method thereof | |
JP2823220B2 (en) | Manufacturing method of steel plate with good weld joint toughness | |
JP3835707B2 (en) | Method for producing Al-Mg alloy plate for forming | |
JP3923485B2 (en) | Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |