JPS6050864B2 - Aluminum alloy material for forming with excellent bending workability and its manufacturing method - Google Patents

Aluminum alloy material for forming with excellent bending workability and its manufacturing method

Info

Publication number
JPS6050864B2
JPS6050864B2 JP57054375A JP5437582A JPS6050864B2 JP S6050864 B2 JPS6050864 B2 JP S6050864B2 JP 57054375 A JP57054375 A JP 57054375A JP 5437582 A JP5437582 A JP 5437582A JP S6050864 B2 JPS6050864 B2 JP S6050864B2
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
alloy material
ppm
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57054375A
Other languages
Japanese (ja)
Other versions
JPS58171547A (en
Inventor
義雄 馬場
照生 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP57054375A priority Critical patent/JPS6050864B2/en
Publication of JPS58171547A publication Critical patent/JPS58171547A/en
Publication of JPS6050864B2 publication Critical patent/JPS6050864B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、曲げ加工性に優れた成形加工用アルミニウム
合金材料およびその製造法に関するもの’であり、特に
優れた強度、伸び、成形性を具備するとともに、曲け加
工性が著しく向上された自動車車体加工用として好適な
アルミニ・クム合金材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy material for forming that has excellent bending workability and a method for manufacturing the same. The present invention relates to an aluminum-cum alloy material which has significantly improved properties and is suitable for processing automobile bodies.

従来から、自動車車体アルミニウム(Al)合・金とし
ては、5182、X508蒋の非熱処理型合金;AU2
G)203賑2002、600代6010等の熱処理型
合金が開発され、一部実用化されている。
Conventionally, as aluminum (Al) alloys for automobile bodies, 5182, X508 Chiang's non-heat treatment alloy; AU2
G) Heat-treatable alloys such as 203 and 2002 and 600 and 6010 have been developed and some have been put into practical use.

これらの合金の機械的性質を一般に自動車車体として使
用されている冷延鋼板と比較すると、強度、特に引フ張
強さは略同程度であり、それ故強度面ては車体用合金と
して実用上問題はないのてあるが、車体パーツヘのプレ
ス成形性については、上記公知の合金は何れも冷延鋼板
より成形性が劣り、必ずしも満足な成形品が得られない
という欠点があつた。この為、本発明者らは、特公56
−31858号、特公56−31860号として、先に
、マグネシウム(Mg)3.5〜5.5%、亜鉛(Zn
)0.5〜2.0%、銅(Cu)0.3〜1.2%を含
むA1合金、更にはこれに微量のマンガン、クロム、ジ
ルコニウム、バナジウムの少なくとも1種を添加したも
のについて提案し、これによつて高い強度と優れた成形
加工性を具備せしめ得たのである。
Comparing the mechanical properties of these alloys with those of cold-rolled steel sheets commonly used for automobile bodies, the strength, especially the tensile strength, is approximately the same, and therefore, in terms of strength, there are no practical problems as alloys for automobile bodies. However, in terms of press formability into car body parts, all of the above-mentioned known alloys have the disadvantage that the formability is inferior to that of cold-rolled steel sheets, and it is not always possible to obtain a satisfactory molded product. For this reason, the present inventors
-31858 and Japanese Patent Publication No. 56-31860.
) 0.5 to 2.0%, copper (Cu) 0.3 to 1.2%, and a proposal for an A1 alloy containing at least one of manganese, chromium, zirconium, and vanadium in trace amounts. However, this made it possible to provide high strength and excellent moldability.

しかしながら、これらの合金の中でも、先述の如く、前
記従来から公知のN合金は強度的には自動車車体用とし
て使用されている冷延鋼板と同レベルであるものの、ブ
レス成形性に加えて、曲げ性が著しく劣る欠点があつた
のであり、また本発明者らが先に提案したMg−Zn−
Cu系A1合金とても、その曲け性において今一つ改良
の余地が残され、その実際の使用過程の上で一つの問題
となつているのである。
However, among these alloys, as mentioned above, the conventionally known N alloy has the same strength as cold-rolled steel sheets used for automobile bodies, but in addition to its press formability, it has poor bending properties. However, the Mg-Zn-
There is still room for improvement in the bendability of the Cu-based A1 alloy, which is a problem in its actual use.

すなわち、自動車ボディパネルの製造工程においては、
アウターパネルとインナーパネルとを曲げ加工により接
合することが一般に行なわれているが、既存の自動車車
体用アルミニウム合金は前述のように冷延鋼板に比べて
曲げ性が著しく劣るため、ボディパネルのアルミ化を図
る上での技術上の大きな問題点となつているのである。
In other words, in the manufacturing process of automobile body panels,
It is common practice to join the outer panel and the inner panel by bending, but as mentioned above, the bendability of existing aluminum alloys for automobile bodies is significantly inferior to that of cold-rolled steel sheets, so aluminum for body panels is This has become a major technical problem in trying to achieve this goal.

本発明者らは、かかる点に鑑みて種々研究を重ねた結果
、合金成分および製造法を種々工夫することによつて、
Mg−Zn−Cu系に合金の本来の特徴てある強度、伸
び、成形性等を何等阻害することなく、その曲け加工性
を著しく改善したA1合.金並びにその製造法を見い出
し、本発明に到達したのである。すなわち、本発明の目
的とするところは、曲げ加工性に優れた、特に自動車車
体用として好適な強度、伸び、優れた成形性を有する実
用的なA1!合金およびその製造法を提供することにな
り、そのために、重量で、3.6〜5.4%のMgと、
0.6〜2.0%のZnと、0.03〜0.28%のC
uと、0.03〜0.25%の鉄(Fe)と、0.03
〜0.20%のケイ素(Si)と、0.01〜0.15
%のチタン(Ti)と、1〜500ppm(7)くホウ
素(B)と、1〜100ppmのベリリウム(Be)と
を含み(但し、Fe/Siの含量比は0.2〜8の範囲
内にある)、残りがにおよび不純物よりなるように、合
金成分を調整したのである。
In view of this, the present inventors have conducted various studies, and as a result, by devising various alloy components and manufacturing methods,
A1 is a Mg-Zn-Cu alloy with significantly improved bending workability without impairing the original characteristics of the alloy, such as strength, elongation, and formability. They discovered gold and a method for producing it, and arrived at the present invention. That is, the object of the present invention is to produce a practical A1 that has excellent bending workability and has strength, elongation, and excellent formability particularly suitable for use in automobile bodies. To provide an alloy and method for producing the same, 3.6 to 5.4% Mg by weight;
0.6-2.0% Zn and 0.03-0.28% C
u, 0.03-0.25% iron (Fe), 0.03
~0.20% silicon (Si) and 0.01-0.15
% of titanium (Ti), 1 to 500 ppm (7) of boron (B), and 1 to 100 ppm of beryllium (Be) (however, the content ratio of Fe/Si is within the range of 0.2 to 8). The alloy composition was adjusted so that the remainder consisted of aluminum and impurities.

そして、また、本発明にあつては、かかる合金成分から
なるに合金を用い、それより鋳塊を製造し、380〜5
20℃の温度で2〜4時間の1段または多段ソーキング
を行なつた後、380〜500段Cの温度で97〜99
.8%の加工度の熱間圧延を行ない、次いで、必要に応
じて途中軟化と冷間圧延を繰り返しながら、40〜90
%の加工度の最終冷間圧延を施した後、460〜540
℃の温度に1000C/分以上の加熱速度で急速に加熱
し、5〜(4)秒間保持した後、川000℃/秒乃至2
℃/秒の冷却速度で焼入れ操作を施すことによつて、効
果的に、目的とするA1合金材料を製造することが出来
、そしてこれによつて得られたA1合金材料は曲げ加工
性に優れた、実用的な自動車車体材料として好適に使用
さ・れ得ることとなつたのである。ここにおいて、本発
明に従つてA1に配合される主要合金成分の一つとして
のMgは3.6〜5.4%(重量基準。
Further, in the present invention, an alloy consisting of such alloy components is used, an ingot is manufactured from it, and 380-5
After single or multi-stage soaking for 2-4 hours at a temperature of 20°C, 97-99°C at a temperature of 380-500°C.
.. Hot rolling with a working degree of 8% is carried out, and then, as necessary, repeating softening and cold rolling in the middle, the 40 to 90
After final cold rolling with a working degree of 460-540%
After rapidly heating at a heating rate of 1000C/min or more to a temperature of 1000C/min and holding for 5 to (4) seconds,
By performing the quenching operation at a cooling rate of °C/sec, the desired A1 alloy material can be effectively produced, and the A1 alloy material obtained thereby has excellent bending workability. In addition, it became suitable for use as a practical automobile body material. Here, Mg as one of the main alloy components blended into A1 according to the present invention is 3.6 to 5.4% (by weight).

以下同じ)の範囲内で添加する必要があり、これによつ
て目的とするA1合金材料の・強度を著しく高め得、ま
たこれとともに伸び、成形性、曲げ性等の改善にも寄与
するのである。なお、3.6%より少ないMg量ではこ
の効果が十分でなく、またMg量が5.4%を越えるよ
うになると熱間加工性が低下するなどの問題を惹起せし
める。また、他の主要合金成分たるZnは〜.6〜2.
0%の配合量によつて合金に時効性を与え、焼入れ後の
室温時効により強度を向上せしめると共に、Mgと共存
して合金の伸び、成形性、曲げ性等を改良する。なお、
Znの配合量が前記下限未満ではこの効果が十分でなく
、また上限を越えると熱間加工性が低下するとともに、
伸び、成形性、曲げ性等が低下する問題を生じる。更に
、主要合金成分の一つであるCuは0.03〜0.28
%の割合で添加する必要があり、これによつてZnおよ
びMgと同様、合金に時効性を与え、強度を向上させる
とともに、その曲げ性を著しく改良する。そして、Cu
の添加量が下限値の0.03%より少ない場合にはこれ
らの効果が不十分であり、また上限値の0.28%を越
えるCu添加量を採用した場合には、合金の曲げ性や、
成形性が低下するようになる。特に、かかるCu量は焼
入れ後室温時効したときの曲げ性と成形性、特に曲げ加
工性に著しい影響を及ぼすので、かかる上限を越えては
ならず、一方Cu量がかかる上限を越えると粒界割れと
応力腐食割れが起こり易くなるのであり、しかも広幅板
の圧延加工性の点からも、Cuは0.28%以下である
ことが必要である。また、Feは不溶性化合物として晶
出し、曲げ性、伸び、成形性等を低下させるので、0.
25%を越えると好ましくなく、また0.03%未満で
は焼入れ後の結晶粒が粗大化するので問題がある。した
がつて、Feの添加量は0.03〜0.25%に留めな
ければならない。Siは、0.03〜0.20%の割合
で含有せしめられる必要があり、これはMgと共存して
時効硬化性を示すが、この効果は0.03%未満では認
められないのてある。
It is necessary to add it within the range (the same applies hereinafter), and by doing so, it is possible to significantly increase the strength of the target A1 alloy material, and it also contributes to improvements in elongation, formability, bendability, etc. . Note that if the Mg amount is less than 3.6%, this effect is not sufficient, and if the Mg amount exceeds 5.4%, problems such as reduced hot workability will occur. Moreover, Zn, which is another main alloy component, is ~. 6-2.
A blending amount of 0% imparts aging properties to the alloy, and improves strength by aging at room temperature after quenching, and coexists with Mg to improve elongation, formability, bendability, etc. of the alloy. In addition,
If the blending amount of Zn is less than the lower limit, this effect will not be sufficient, and if it exceeds the upper limit, hot workability will decrease,
This causes problems such as deterioration of elongation, formability, bendability, etc. Furthermore, Cu, one of the main alloy components, is 0.03 to 0.28
%, which, like Zn and Mg, imparts aging properties to the alloy, increases its strength, and significantly improves its bendability. And Cu
If the amount of Cu added is less than the lower limit of 0.03%, these effects will be insufficient, and if the amount of Cu added exceeds the upper limit of 0.28%, the bendability of the alloy and ,
Formability begins to deteriorate. In particular, the amount of Cu should not exceed the upper limit because it has a significant effect on the bendability and formability, especially the bending workability, when aged at room temperature after quenching.On the other hand, if the amount of Cu exceeds the upper limit, the grain boundary Cracking and stress corrosion cracking are likely to occur, and in addition, from the viewpoint of rolling workability of wide plates, the Cu content must be 0.28% or less. In addition, since Fe crystallizes as an insoluble compound and reduces bendability, elongation, formability, etc.
If it exceeds 25%, it is undesirable, and if it is less than 0.03%, the crystal grains become coarse after quenching, which is problematic. Therefore, the amount of Fe added must be limited to 0.03 to 0.25%. Si must be contained in a proportion of 0.03 to 0.20%, and it coexists with Mg and exhibits age hardening properties, but this effect is not observed at less than 0.03%. .

また、かかるSlはFeと同じく不溶性化合物として晶
出するが、その土限である0.20%を越えるようにな
ると最終の合金材料の曲げ性、伸び、成形性等の性能を
低下させる問題を生ずる。そして、かかるFe.l5S
lは、Fe/Si含量比においてそれが0.2〜8の範
囲内にあるようにすべきである。
In addition, like Fe, Sl crystallizes as an insoluble compound, but if it exceeds its limit of 0.20%, it causes problems such as deterioration of the bendability, elongation, formability, etc. of the final alloy material. arise. And such Fe. l5S
l should be such that in the Fe/Si content ratio it is in the range 0.2-8.

この含量比が上段を越えるようになると、Fe系の不溶
性化合物量が増加し、最終合金材料の曲げ性、伸び、成
形性等の諸物性が低下する問題があり、またその下限未
満の場合にはFe系の不溶性化合物量が非常に少なくな
つて、焼入れ後の結晶粒が粗大化するなどの問題を生ず
るので、前記範囲内に維持しなければならない。また、
TlとBは、何れも鋳塊組織を微細化する作用があり、
これによつて鋳塊の熱間加工性の改善、最終製品の曲げ
性、成形性等の向上に効果があり、本発明にあつては、
Tlは0.01〜0.15%、そしてBは1〜500p
pmの割合で含有せしめられることとなる。なお、それ
らの添加量が下限未満ては目的とする効果が十分でなく
、また、上限を越えるようになると、巨大な合金間化合
物が晶出して曲け性、成形性等を低下せしめるのて好ま
しくない。更に、Beは、1〜100ppmの割合で添
加せしめられ、これによつて鋳造性、熱間圧延加工性、
広幅熱間圧延時の板面の表面状態の向上等の効果を奏す
る。
When this content ratio exceeds the upper limit, the amount of Fe-based insoluble compounds increases and there is a problem that various physical properties such as bendability, elongation, and formability of the final alloy material decrease. Since the amount of Fe-based insoluble compounds becomes very small and causes problems such as coarsening of crystal grains after quenching, it must be maintained within the above range. Also,
Both Tl and B have the effect of refining the ingot structure,
This is effective in improving the hot workability of the ingot and the bendability and formability of the final product, and in the present invention,
Tl is 0.01-0.15% and B is 1-500p
It will be contained at a ratio of pm. If the amount added is less than the lower limit, the desired effect will not be sufficient, and if it exceeds the upper limit, large interalloy compounds will crystallize and deteriorate bendability, formability, etc. Undesirable. Furthermore, Be is added in a proportion of 1 to 100 ppm, thereby improving castability, hot rolling workability,
This has effects such as improving the surface condition of the plate surface during wide-width hot rolling.

そして、かかるBeが1ppmより少なくなるとその効
果が十分でなく、また上限の100ppmを越える添加
量にすることは毒性の点からも好ましくない。したがつ
て、Beは1〜100ppmの範囲内で合金中に配合さ
れる必要がある。本発明では、これら合金成分、すなわ
ちMglZn.Cu.Fe.Si.Ti.B及び?を前
記配合量の範囲内において、A1(不純物を含む)に添
加してN合金と為すものであつて、これにより、Mg−
Zn−Cu系A1合金の本来の特徴を維持しつつ、曲げ
加工性に著しく優れた良好な特性を有する自動車車体用
材料として好適な実用Al合金材料が得られることとな
つたのである。
If the amount of Be is less than 1 ppm, the effect will not be sufficient, and it is not preferable to add more than the upper limit of 100 ppm from the viewpoint of toxicity. Therefore, Be needs to be incorporated into the alloy in a range of 1 to 100 ppm. In the present invention, these alloy components, namely MglZn. Cu. Fe. Si. Ti. B and? is added to A1 (including impurities) within the range of the above blending amount to form an N alloy.
A practical Al alloy material suitable for use as an automobile body material has been obtained, which maintains the original characteristics of the Zn-Cu-based Al alloy and has excellent bending properties and excellent properties.

そして、かくの如き合金成分並びに組成範囲において、
A1合金溶湯が調製された後、目的とするA1合金材料
を得るために、該溶湯から公知の通常の手法に従つて所
定の合金鋳塊が鋳造され、次いでその得られた鋳塊には
凝固組織(合金成分)を均一化せしめるための熱処理、
所謂ソーキング(均質化処理)等が施されることとなる
が、本発明のA1合金の良好な性能を最大限に発揮せし
めた材料を得るには、以下の如き工程て製造することが
推奨されるのである。
In such alloy components and composition ranges,
After the A1 alloy molten metal is prepared, a predetermined alloy ingot is cast from the molten metal according to a known ordinary method in order to obtain the target A1 alloy material, and then the obtained ingot is solidified. Heat treatment to homogenize the structure (alloy components),
So-called soaking (homogenization treatment) etc. will be performed, but in order to obtain a material that maximizes the good performance of the A1 alloy of the present invention, it is recommended to manufacture it using the following process. It is.

すなわち、先ず、ソーキングは、本発明に従うN合金鋳
塊を、鋳塊の状態で380〜520℃の温度で2〜北時
間の1段または多段の操作にて行なわれ、これによつて
鋳造時に晶出した共晶化合物を可能な限り溶入化させる
ことが望ましい。
That is, first, soaking is performed on the N alloy ingot according to the present invention in a single or multi-stage operation at a temperature of 380 to 520° C. for 2 to 5 hours, thereby making the N alloy ingot during casting. It is desirable to infiltrate as much of the crystallized eutectic compound as possible.

この溶入化が不十分な場合には、最終製品、たとえば板
材に残存する化合物量が多くなつて、最終板材の曲げ性
、伸び、成形性等が低下するととに、鋳塊の熱間加工性
が低下する問題を惹起するのてある。なお、このソーキ
ング温度が380℃よりも低い場合には、前記諸性能の
改善効果が不十分であ・り、また520′Cを越えるソ
ーキング温度を採用した場合には、鋳塊に共晶融解が生
じるので好ましくない。次いで、かかる均質化処理の施
されたAI合金鋳塊に対しては熱間圧延が施されるが、
この熱間・圧延の温度は380〜500′Cの領域にあ
ることか望ましく、またその熱間圧延時の加工度は9.
7〜99.8%とすることが望ましい。
If this infiltration is insufficient, the amount of compounds remaining in the final product, such as plate material, will increase, resulting in decreased bendability, elongation, formability, etc. of the final plate material, and hot processing of the ingot. This can cause problems such as decreased sexual ability. Note that if this soaking temperature is lower than 380°C, the effects of improving the various properties mentioned above will be insufficient, and if a soaking temperature exceeding 520'C is adopted, eutectic melting will occur in the ingot. This is not preferable because it causes Next, the AI alloy ingot subjected to such homogenization treatment is subjected to hot rolling.
It is preferable that the temperature of this hot rolling is in the range of 380 to 500'C, and the working degree during the hot rolling is 9.
It is desirable to set it as 7-99.8%.

かかる熱間圧延温度が380′Cよりも低い場合には、
熱間変形抵抗が高く、熱間圧延が因難となり、またそれ
が500′Cを)越えると熱間圧延時の板端面の耳割れ
が大きくなり問題となる。また、このように、熱間加工
度が大きい場合には、ソーキング終了後に鋳塊中に残存
している共晶化合物が細かく破砕され、そのため最終板
の曲げ性、伸び、成形性等が向上されるのである。なお
、この加工度が下限未満の場合には、上記の効果が小さ
く、またその上限を越えると熱間圧延時における板端面
の耳割れが大きく、問題となるのである。そして、かか
る熱間圧延が終了した後に、必要に応じて中間焼鈍を行
ないながら所定の肉厚まで冷間圧延されることとなるが
、その際、最終冷間圧延加工度としては40〜90%が
望ましい。
When such hot rolling temperature is lower than 380'C,
The hot deformation resistance is high, making hot rolling a problem, and if it exceeds 500'C, the edge cracking of the plate end surface during hot rolling becomes large, which becomes a problem. In addition, when the degree of hot working is large, the eutectic compound remaining in the ingot after soaking is finely crushed, which improves the bendability, elongation, formability, etc. of the final plate. It is. In addition, when this working degree is less than the lower limit, the above-mentioned effect is small, and when it exceeds the upper limit, edge cracking of the plate end surface during hot rolling becomes large, which becomes a problem. After the hot rolling is completed, the material is cold rolled to a predetermined thickness while performing intermediate annealing as necessary. At that time, the final cold rolling degree is 40 to 90%. is desirable.

この冷間圧延加工度が大きいほど、熱間圧延組織が破壊
されるとともに、熱間圧延時に細かく破砕された共晶化
合物とか、FeやSj系の不溶性化合物がさらに微細に
破砕されるため、曲げ性、伸び、成形性等が向上するの
である。なお、この冷間圧延加工度が下限未満の場合に
は、上記の効果が不十分てあるとともに、焼入れ後の結
晶粒が粗大化する問題があり、また、かかる加工度が上
限を越えるようになると、圧延時の板端面の耳割れが大
きくなり、問題となる。そして、かかる冷間圧延が施さ
れて目的とする製品肉厚まで圧延されたA1合金材料に
は、その終了後に更に最終調質(最終熱処理)が施され
ることとなるが、この最終調質は、例えば連続焼入れ炉
を使用して以下の如き条件下に、T4処理することが望
ましい。
The greater the degree of cold rolling, the more the hot rolled structure is destroyed, and the eutectic compounds and Fe and Sj-based insoluble compounds that were finely crushed during hot rolling are crushed even more finely. This improves properties such as elasticity, elongation, and moldability. In addition, if this degree of cold rolling is less than the lower limit, the above effects will not be sufficient, and there will be a problem that the crystal grains will become coarse after quenching. In this case, the edge cracks on the end face of the plate during rolling become large, which becomes a problem. The A1 alloy material that has been subjected to such cold rolling and rolled to the desired product thickness will be further subjected to final tempering (final heat treatment) after the cold rolling process has been completed. It is desirable to perform T4 treatment under the following conditions using, for example, a continuous quenching furnace.

また、この最終製品たるT4処理材を得るための溶体化
処理条件としては、460〜540゜Cの温度で5〜6
@保持することが好適に採用されるのである。そして、
この溶体化処理温度への冷間圧延材の加熱速度は100
℃/分以上とすることが望ましく、またかかる溶体化処
理後の冷却速度は1000゜C/秒〜2℃/秒とするこ
とが.望ましい。なお、これら溶体化処理温度や保持時
間がその下限値未満の場合にはMgNzn..cu等の
添加元素の溶入化が不十分となり、強度、曲げ性、伸び
、成形性等が低下する問題を生じる。そして、かかる加
熱温度や保持時間が上限を越える!と、結晶粒が粗大化
するようになり、好ましくない。また、かかる溶体化処
理後の冷却速度がその下限未満の場合には、冷却途上で
Mg−Zn系の化合物が結晶粒界に析出し、曲げ性、伸
び、成形性、強度等に悪影響をもたらすこととなる。更
・に、冷却速度がその上限値を越えるようになると、焼
入れ後の板の歪が大きく、そのため歪取り矯正加工が必
要となり、曲げ性や伸びが低下する問題を生する。一方
、溶体化処理時の加熱速度が下限未満の場合には、結晶
粒が粗大したり、焼入能率が低下するなどの問題がある
。かくして得られるAl合金材料は、強度、伸び、成形
性に優れるとともに、その曲げ加工性において著しく優
れているため、それを自動車ボディパネル材料として効
果的に使用し得て、そのア・ウターパネルとの曲げ加工
による接合も有効に行なわれ得て、該ボディパネルのア
ルミ化を実現し得ることとなつたのである。
In addition, the solution treatment conditions for obtaining the T4 treated material, which is the final product, are as follows:
It is preferable to hold @. and,
The heating rate of the cold rolled material to this solution treatment temperature is 100
The cooling rate after the solution treatment is preferably 1000°C/sec to 2°C/sec. desirable. Note that if the solution treatment temperature and holding time are below the lower limit values, MgNzn. .. Infiltration of additive elements such as Cu becomes insufficient, resulting in problems such as deterioration of strength, bendability, elongation, formability, etc. And the heating temperature and holding time exceed the upper limit! If this happens, the crystal grains will become coarser, which is undesirable. Furthermore, if the cooling rate after solution treatment is less than the lower limit, Mg-Zn compounds will precipitate at grain boundaries during cooling, which will adversely affect bendability, elongation, formability, strength, etc. That will happen. Furthermore, if the cooling rate exceeds the upper limit, the plate after quenching will be highly distorted, which will require straightening to remove the distortion, resulting in a problem of reduced bendability and elongation. On the other hand, if the heating rate during solution treatment is less than the lower limit, there are problems such as coarse grains and decreased hardening efficiency. The Al alloy material obtained in this way has excellent strength, elongation, and formability, as well as extremely excellent bending workability, so it can be effectively used as an automobile body panel material, and can be used as a material for outer and outer panels. Bonding by bending can also be effectively performed, making it possible to make the body panel made of aluminum.

以下に、本発明を更に具体的に明らかにするために、本
発明の実施例をいくつか挙げるが、本発明がかかる実施
例の記載によつて何等の制約をも受けるものでないこと
は言うまでもないところである。
In order to clarify the present invention more specifically, some examples of the present invention are listed below, but it goes without saying that the present invention is not limited in any way by the description of such examples. By the way.

なお、実施例中、特に断わりのない限り百分率は何れも
重量基準で示すこととする。実施例1 下記第1表に示される化学成分を有する、厚さ300m
fftの各種のAl合金鋳塊を作製し、これに490℃
×24VI!間の均質化処理を施した後に、480℃の
温度で熱間圧延を行ない、厚さ37mの板材に圧延した
(熱間加工度:99%)。
In addition, in the examples, unless otherwise specified, all percentages are expressed on a weight basis. Example 1 300m thick with chemical composition shown in Table 1 below
fft various Al alloy ingots were prepared and heated to 490°C.
×24VI! After homogenization treatment, hot rolling was performed at a temperature of 480° C. to form a plate material with a thickness of 37 m (degree of hot working: 99%).

次いで、かかる3TIu1t板を380℃×2時間の軟
化処理した後、約66%の冷間圧延を施し、板厚1T!
r!nの各種の冷延板とした。次いで、かかる17r0
n厚の冷延板を、連続焼入れ炉を使用して、平均加熱速
度800℃/分で500℃の温度に加熱し、そしてその
温度で258′間保持した後に、20℃/秒の平均冷却
速度で室温まで冷却し、その後30日間の室温時効を施
して、η板とした。
Next, the 3TIult plate was softened at 380°C for 2 hours, and then cold-rolled to a thickness of about 66% to a plate thickness of 1T!
r! Various cold-rolled sheets of n were prepared. Then, such 17r0
A cold rolled sheet of n thickness is heated to a temperature of 500°C using a continuous quenching furnace at an average heating rate of 800°C/min and held at that temperature for 258' followed by an average cooling of 20°C/s. The sample was cooled to room temperature at a high speed, and then aged at room temperature for 30 days to obtain an η plate.

かくして得られた種々なるT倣(1T1rm厚)の諸性
能を測定し、その結果を第2表に示すが、かかる第2表
の結果より明らかなように、本発明に従う合金NO.l
〜7からなる組成を有するA1合金材料は、比較材NO
.8〜14に比べて、曲げ加工性が著しく優れているば
かりでなく、成形性(エリクセン値大なるほど良好)等
も優れていることも、理解されるのである。
The various performances of the various T patterns (1T1rm thickness) thus obtained were measured and the results are shown in Table 2.As is clear from the results in Table 2, alloy No. 1 according to the present invention. l
The A1 alloy material having a composition consisting of ~7 is the comparative material NO.
.. It is understood that the bending workability is not only significantly superior to that of No. 8 to No. 14, but also the formability (the higher the Erichsen value is, the better it is), etc.

実施例2 前記第1表に示した各種N合金鋳塊に対して第3表の如
き種々の均質化処理(ソーキング)を行なつた後に、実
施例1と同様な条件にて、17m厚のT泪反を製造した
Example 2 After performing various homogenization treatments (soaking) as shown in Table 3 on the various N alloy ingots shown in Table 1 above, a 17 m thick ingot was prepared under the same conditions as in Example 1. Manufactured T-rebel.

かくして得られた各種のT徽の諸性能と均質化処理条件
との関係を第3表に併せて示すが、その結果から明らか
なように、所定の均質化条件の採用によつて、得られる
Al合金材料の性能をよソー層向上せしめ得るのである
Table 3 shows the relationship between the various performances of the various T-widths obtained in this way and the homogenization processing conditions.As is clear from the results, by adopting the predetermined homogenization conditions, This makes it possible to improve the performance of the Al alloy material.

実施例3 第1表の各種合金成分からなる300Tr0n厚のN合
金鋳塊を、480℃×24時間の均質化処理の後に、下
記第4表に示される条件下に圧延(熱延十冷延)し、0
.8〜2wm厚の冷延板を得た。
Example 3 An N alloy ingot with a thickness of 300 Tr0n consisting of various alloy components shown in Table 1 was homogenized at 480°C for 24 hours, and then rolled (hot rolled, cold rolled, etc.) under the conditions shown in Table 4 below. ) and 0
.. A cold-rolled plate with a thickness of 8 to 2 wm was obtained.

その後、かかる冷延板を実施例1と同様な条件下にT4
処**理をした。かくして得られた各種T4板の性能を
下記第5表に示すが、かかる表より明らかなように、所
定の圧延条件の採用によつて板材性能のよソー層の向上
が達成されるのである。
Thereafter, the cold rolled sheet was subjected to T4 under the same conditions as in Example 1.
The process was done. The performance of the various T4 plates thus obtained is shown in Table 5 below, and as is clear from this table, by adopting predetermined rolling conditions, improvement in the plate material performance and the saw layer can be achieved.

実施例4 第1表に示された各種合金成分からなる鋳塊を、実施例
1と同様な条件にて、均質化、熱延.し、そして1rw
L厚の板にまで冷延し、その後下記第6表に示す条件下
に種々なT4処理を施した。
Example 4 An ingot made of the various alloy components shown in Table 1 was homogenized and hot rolled under the same conditions as Example 1. And then 1rw
It was cold rolled to a plate having a thickness of L, and then subjected to various T4 treatments under the conditions shown in Table 6 below.

かくして得られた各種T4処理板についての諸性能を第
7表に示したが、かかる表より明らかな如く、所定の条
件下にて処理されたT4処理板が、何れもより良好な性
能を有することが認められた。実施例5 前記第1表に示された各種合金成分からなる300Tm
m厚のAI合金鋳塊を、下記第8表に示される製造条件
下に1T!r:Fn厚のT徽とした。
The various performances of the various T4-treated plates thus obtained are shown in Table 7, and as is clear from the table, the T4-treated plates treated under the specified conditions all have better performance. This was recognized. Example 5 300Tm consisting of various alloy components shown in Table 1 above
m-thick AI alloy ingot was heated to 1T under the manufacturing conditions shown in Table 8 below. r: T-shaped with Fn thickness.

Claims (1)

【特許請求の範囲】 1 重量で、3.6〜5.4%のマグネシウムと、0.
6〜2.0%の亜鉛と、0.03〜0.28%の銅と、
0.03〜0.25%の鉄と、0.03〜0.20%の
ケイ素と、0.01〜0.15%のチタンと、1〜50
0ppmのホウ素と、1〜100ppmのベリリウムと
を含み(但し、鉄/ケイ素の含量比は0.2〜8の範囲
内にある)、残りがアルミニウムおよび不純物よりなる
曲げ加工性に優れた成形加工用アルミニウム合金材料。 2 重量で、3.6〜5.4%のマグネシウムと、0.
6〜2.0%の亜鉛と、0.03〜0.28%の銅と、
0.03〜0.25%の鉄と、0.03〜0.20%の
ケイ素と、0.01〜0.15%のチタンと、1〜50
0ppmのホウ素と、1〜100ppmのベリリウムと
を含み(但し、鉄/ケイ素の含量比は0.2〜8の範囲
内にある)、残りがアルミニウムおよび不純物よりなる
アルミニウム合金鋳塊を製造する工程と、該アルミニウ
ム合金鋳塊に対して、380〜520℃の温度で2〜4
時間の1段または多段ソーキングを施す工程と、該ソー
キング終了後、380〜500℃の温度で97〜99.
8%の加工度の熱間圧延を行なう工程と、かかる熱間圧
延の後に、40〜90%の加工度にて冷間圧延を行なう
工程と、その後、460〜540℃の温度に100℃/
分以上の加熱速度で加熱し、5〜60秒間保持した後、
1000℃/秒乃至2℃/秒の冷却速度で焼入れする工
程とを、含むことを特徴とする曲げ加工性に優れた成形
加工用アルミニウム合金材料の製造法。
[Claims] 1. 3.6 to 5.4% magnesium by weight, 0.
6-2.0% zinc, 0.03-0.28% copper,
0.03-0.25% iron, 0.03-0.20% silicon, 0.01-0.15% titanium, 1-50%
Contains 0 ppm of boron and 1 to 100 ppm of beryllium (however, the content ratio of iron/silicon is within the range of 0.2 to 8), with the remainder being aluminum and impurities. Forming process with excellent bending workability. Aluminum alloy material for. 2 by weight, 3.6-5.4% magnesium and 0.2% by weight.
6-2.0% zinc, 0.03-0.28% copper,
0.03-0.25% iron, 0.03-0.20% silicon, 0.01-0.15% titanium, 1-50%
A process of producing an aluminum alloy ingot containing 0 ppm of boron and 1 to 100 ppm of beryllium (however, the content ratio of iron/silicon is within the range of 0.2 to 8), with the remainder consisting of aluminum and impurities. and the aluminum alloy ingot was heated at a temperature of 380 to 520°C for 2 to 4 hours.
A step of performing one-stage or multi-stage soaking for a time of 97-99.degree.
A step of hot rolling with a working degree of 8%, a step of cold rolling with a working degree of 40 to 90% after such hot rolling, and then a step of rolling at a temperature of 460 to 540° C. at 100° C.
After heating at a heating rate of 1 minute or more and holding for 5 to 60 seconds,
A method for producing an aluminum alloy material for forming with excellent bending workability, the method comprising the step of quenching at a cooling rate of 1000° C./sec to 2° C./sec.
JP57054375A 1982-03-31 1982-03-31 Aluminum alloy material for forming with excellent bending workability and its manufacturing method Expired JPS6050864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57054375A JPS6050864B2 (en) 1982-03-31 1982-03-31 Aluminum alloy material for forming with excellent bending workability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57054375A JPS6050864B2 (en) 1982-03-31 1982-03-31 Aluminum alloy material for forming with excellent bending workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS58171547A JPS58171547A (en) 1983-10-08
JPS6050864B2 true JPS6050864B2 (en) 1985-11-11

Family

ID=12968921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57054375A Expired JPS6050864B2 (en) 1982-03-31 1982-03-31 Aluminum alloy material for forming with excellent bending workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6050864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224315A (en) * 1986-03-25 1987-10-02 株式会社ハッチ Coverlet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713276B2 (en) * 1985-04-24 1995-02-15 スカイアルミニウム株式会社 Heat treatment type aluminum alloy rolled plate Soft material
JPS6227544A (en) * 1985-07-26 1987-02-05 Sky Alum Co Ltd Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JPH0663060B2 (en) * 1986-06-09 1994-08-17 スカイアルミニウム株式会社 Method for manufacturing rolled aluminum alloy plate
JPS6389649A (en) * 1986-10-03 1988-04-20 Kobe Steel Ltd Manufacture of al-mg-zn alloy material having superior formability
JPH02118049A (en) * 1988-10-27 1990-05-02 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its manufacture
JP2706310B2 (en) * 1989-04-25 1998-01-28 古河電気工業株式会社 Aluminum alloy plate for automobile panel and method of manufacturing the same
JPH04268038A (en) * 1991-02-22 1992-09-24 Nkk Corp Surface treated aluminum alloy sheet excellent in press formability
DE69304009T2 (en) * 1992-10-23 1997-02-06 Kawasaki Steel Co Process for the production of sheet metal from Al-Mg alloy for press molds
JP2012143798A (en) * 2011-01-13 2012-08-02 Hikari Keikinzoku Kogyo Kk Plated aluminum alloy casting and method for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798648A (en) * 1980-12-06 1982-06-18 Kobe Steel Ltd Al-mg-zn alloy for forming and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798648A (en) * 1980-12-06 1982-06-18 Kobe Steel Ltd Al-mg-zn alloy for forming and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224315A (en) * 1986-03-25 1987-10-02 株式会社ハッチ Coverlet

Also Published As

Publication number Publication date
JPS58171547A (en) 1983-10-08

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH0447019B2 (en)
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JPH0469220B2 (en)
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPH0480979B2 (en)
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JPH09176805A (en) Production of aluminum fin material
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production