JPH0663060B2 - Method for manufacturing rolled aluminum alloy plate - Google Patents

Method for manufacturing rolled aluminum alloy plate

Info

Publication number
JPH0663060B2
JPH0663060B2 JP61133522A JP13352286A JPH0663060B2 JP H0663060 B2 JPH0663060 B2 JP H0663060B2 JP 61133522 A JP61133522 A JP 61133522A JP 13352286 A JP13352286 A JP 13352286A JP H0663060 B2 JPH0663060 B2 JP H0663060B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy
rolled
range
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61133522A
Other languages
Japanese (ja)
Other versions
JPS62290851A (en
Inventor
和博 深田
政文 溝内
富次夫 田中
毅 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP61133522A priority Critical patent/JPH0663060B2/en
Publication of JPS62290851A publication Critical patent/JPS62290851A/en
Publication of JPH0663060B2 publication Critical patent/JPH0663060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電機制御器筐体、計測器筐体、VTRその他の
弱電機器のシャーシなど、強度と優れた成形加工性特に
曲げ性が要求される成形加工品に使用されるアルミニウ
ム合金圧延板に関するものである。
TECHNICAL FIELD The present invention relates to a molding for which strength and excellent molding workability, particularly bendability, are required for electric machine controller casings, measuring instrument casings, chassis for VTR and other weak electrical equipment, etc. The present invention relates to an aluminum alloy rolled plate used for a processed product.

従来の技術 電機制御器筐体、計測器筐体、あるいはVTRその他の弱
電機器のシャーシなどには、軽量化および電磁波シール
ド性などの点から近年はアルミニウム合金を使用するこ
とが多くなっている。このような用途においては、強度
および成形加工性が優れていることおよび耐食性も良好
なことが要求され、そこで従来このような用途のアルミ
ニウム合金板材としてはJIS5000番系のAl−Mg系合金圧
延板が使用されており、そのうちでも特に5052合金のH3
4テンパー材が最も多用されている。
2. Description of the Related Art In recent years, aluminum alloys have been often used for electric machine controller casings, measuring instrument casings, chassis for VTRs and other weak electrical equipments because of their light weight and electromagnetic shielding properties. In such applications, it is required that the strength and molding processability are excellent and the corrosion resistance is also good. Therefore, as the aluminum alloy sheet material for such applications, JIS 5000 series Al-Mg alloy rolled sheet is conventionally used. Is used, of which 503 alloy H3
4 Temper material is most often used.

発明が解決すべき問題点 5052合金H34材の場合、比較的曲げ性が良好ではある
が、曲げ加工において板厚2mm位が使用限界とされてお
り、そこ前述のような用途には、5052合金H34材よりも
さらに曲げ性が良好でしかも高強度の材料が要望されて
いる。強度の点では5082合金O材などが5052合金H34材
よりも優れているが、曲げ性の点では格段に劣り、前述
のような用途には実用的でない。
Problems to be solved by the invention In the case of the 5052 alloy H34 material, although the bendability is relatively good, the plate thickness of about 2 mm is the limit of use in bending, and the 5052 alloy is used for the above-mentioned applications. There is a demand for a material that has better bendability and higher strength than the H34 material. In terms of strength, the 5082 alloy O material and the like are superior to the 5052 alloy H34 material, but are significantly inferior in bendability and are not practical for the above-mentioned applications.

この発明は以上の事情に鑑みてなされたもので、電機制
御器筐体などの前述のような用途に使用されるアルミニ
ウム合金圧延板として、従来の5052合金H34材と比較し
強度および曲げ成形性の優れたアルミニウム合金圧延板
を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and as an aluminum alloy rolled plate used for the above-mentioned applications such as an electric machine controller housing, the strength and the bendability are higher than those of the conventional 5052 alloy H34 material. It is an object of the present invention to provide an excellent rolled aluminum alloy plate.

問題点を解決するための手段 アルミニウム合金の曲げ成形性は、各種素材特性のうち
でn値が良好なほど、また局部伸びが良好なほど、ある
いは第2相分散粒子が微細なほど、良好であることが判
明しているが、本発明者等が特にAl−Mg系合金の曲げ成
形性について実験・検討を重ねたところ、粒界への析出
物が曲げ成形性を著しく劣化させる要因となっているこ
とを見出した。すなわち、Al−Mg系合金においてはβ相
(AlMg相)が粒界に優先的に析出する傾向が強く、
このようにβ相が粒界に析出すれば粒界強度を著しく低
下させて、曲げ成形性を著しく劣化させることを見出し
た。したがってβ相が粒界に全く析出しないようにすれ
ば、Al−Mg系合金の曲げ成形性を飛躍的に向上させるこ
とが可能となると考えられる。そこで本発明者等はさら
に実験・検討を進めた結果、冷間圧延後の圧延板に、β
相の析出温度領域よりも高く、積極的にMgを固溶させ得
る特定の温度域に加熱して、その加熱後にβ相が析出し
得ないような特定の冷却速度で急速冷却することによ
り、再結晶粒界にβ相の析出の全く認められない板を得
ることができ、かつこのようにして得られたアルミニウ
ム合金圧延板は実際に曲げ成形性が優れかつ高強度であ
ることを見出し、この発明の完成に至ったのである。
Means for Solving Problems The bendability of an aluminum alloy is better as the n value is better, the local elongation is better, or the second phase dispersed particles are finer among the various material properties. Although it has been found that the present inventors have particularly conducted experiments and studies on the bendability of Al-Mg alloys, the precipitates at the grain boundaries cause a significant deterioration of the bendability. I found that. That is, in the Al-Mg alloy, the β phase (Al 3 Mg 2 phase) has a strong tendency to preferentially precipitate at grain boundaries,
As described above, it has been found that if the β phase is precipitated at the grain boundary, the grain boundary strength is significantly reduced, and the bendability is significantly deteriorated. Therefore, if the β phase is prevented from precipitating at the grain boundaries at all, it is possible to dramatically improve the bend formability of the Al-Mg alloy. Therefore, as a result of further experiments and investigations, the present inventors have found that β
Higher than the precipitation temperature range of the phase, by actively heating to a specific temperature range in which Mg can be solid-dissolved, by rapidly cooling at a specific cooling rate such that the β phase cannot precipitate after the heating, It is possible to obtain a plate with no precipitation of β phase at the recrystallized grain boundary, and the aluminum alloy rolled plate thus obtained is actually found to have excellent bend formability and high strength, The invention was completed.

具体的には、第1発明の製造方法は、Mg3.0〜6.0重量%
を含有し、残部がAlおよび不可避的不純物よりなるAl−
Mg基合金を素材として、熱間圧延および/または冷間圧
延により所要の板厚とし、次いで450〜550℃の範囲内の
温度に加熱して、直ちにもしくは120秒以下の保持を行
なってから、20℃/sec以上の冷却速度で冷却し、再結
晶粒界をおおう析出物のない圧延板を得ることを特徴と
するものである。
Specifically, the manufacturing method of the first invention is Mg3.0-6.0% by weight.
Containing Al and the balance being Al and unavoidable impurities
Using Mg-based alloy as a raw material, the required sheet thickness is obtained by hot rolling and / or cold rolling, and then heated to a temperature in the range of 450 to 550 ° C., and immediately or after holding for 120 seconds or less, It is characterized in that it is cooled at a cooling rate of 20 ° C./sec or more to obtain a rolled plate free of precipitates covering recrystallized grain boundaries.

また第2発明の製造方法は、素材として、Mg3.0〜6.0重
量%のほか、Mn0.05〜0.7重量%、Zr0.01〜0.2重量%、
Cr0.05〜0.3重量%、Cu0.10〜1.0重量%のうちの1種ま
たは2種以上を含有するAl−Mg基合金を用い、第1発明
の場合と同様な条件で処理して、再結晶粒界をおおう析
出物のない圧延板を得ることを特徴とするものである。
In addition, the manufacturing method of the second invention, as a raw material, in addition to Mg3.0-6.0 wt%, Mn0.05-0.7 wt%, Zr0.01-0.2 wt%,
Using an Al-Mg based alloy containing one or more of Cr of 0.05 to 0.3% by weight and Cu of 0.10 to 1.0% by weight, the treatment is performed under the same conditions as in the first invention, It is characterized in that a rolled plate having no precipitate covering the grain boundaries is obtained.

作 用 先ずこの発明における素材の合金成分限定理由について
説明する。
Operation First, the reasons for limiting the alloy components of the raw material in the present invention will be explained.

Mg: Mgはこの発明で対象とする系の合金で必須の基本合金元
素であり、強度および成形性に寄与する。Mgが3.0%
(重量%、以下同じ)未満では従来の5052合金H34材以
上の強度を得ることが困難であり、一方6.0%を越えれ
ば高強度は得られるものの、鋳造性、圧延性が悪くなっ
て量産プロセスでの製造に不適当となるから、3.0〜6.0
%の範囲内に限定した。
Mg: Mg is an essential basic alloying element in the system alloy targeted by the present invention, and contributes to strength and formability. 3.0% Mg
If it is less than (% by weight, the same applies hereinafter), it is difficult to obtain strength higher than that of the conventional 5052 alloy H34 material, while if it exceeds 6.0%, high strength can be obtained, but castability and rollability deteriorate, resulting in mass production process. 3.0-6.0 as it is unsuitable for manufacturing in
It was limited to the range of%.

Mn: Mnは強度向上に寄与する元素であり、第2発明の方法に
おいて選択的に添加される。Mnが0.05%未満ではMn添加
の効果が充分に得られず、一方Mnが0.7%を越えればDC
鋳造材の場合成形性が劣化する。したがって第2発明に
おいてMnは0.05〜0.7%の範囲内に限定した。
Mn: Mn is an element that contributes to the improvement of strength and is selectively added in the method of the second invention. If Mn is less than 0.05%, the effect of Mn addition is not sufficient, while if Mn exceeds 0.7%, DC
In the case of a cast material, the formability deteriorates. Therefore, in the second invention, Mn is limited to the range of 0.05 to 0.7%.

Cr: Crも強度向上に寄与する元素であって、第2発明の方法
において選択的に添加される。Crが0.05%未満ではCr添
加の効果が充分に得られず、一方0.3%を越えればDC鋳
造の場合粗大金属間化合物が発生して成形性を劣化させ
る。したがって第2発明においてCrは0.05〜0.3%の範
囲内に限定した。
Cr: Cr is also an element contributing to the improvement of strength and is selectively added in the method of the second invention. If Cr is less than 0.05%, the effect of Cr addition cannot be sufficiently obtained, while if it exceeds 0.3%, coarse intermetallic compounds are generated in DC casting to deteriorate formability. Therefore, in the second invention, Cr is limited to the range of 0.05 to 0.3%.

Zr: Zrも強度向上に寄与する元素であり、第2発明において
選択的に添加される。Zrが0.01%未満ではZr添加の効果
が充分に得られず、一方0.2%を越えれば再結晶が遅れ
るため焼鈍温度範囲が著しく限定され、この発明のプロ
セスの適用が困難となってくるから、第2発明において
Zrは0.01〜0.2%の範囲内に限定した。
Zr: Zr is also an element contributing to the improvement of strength, and is selectively added in the second invention. If Zr is less than 0.01%, the effect of Zr addition cannot be sufficiently obtained, while if it exceeds 0.2%, the recrystallization is delayed and the annealing temperature range is significantly limited, making it difficult to apply the process of the present invention. In the second invention
Zr was limited to the range of 0.01 to 0.2%.

Cu: CuはMgと同時に添加することにより強度上昇に寄与する
元素であって、第2発明において選択的に添加される。
Cuが0.10%以下ではCu添加効果が充分に得られず、一方
1.0%を越えれば鋳造割れが生じ易くなり、また耐食性
も低下するから、第2発明においてCuは0.10〜1.0%の
範囲内に限定した。
Cu: Cu is an element that contributes to the increase in strength when added at the same time as Mg, and is selectively added in the second invention.
If the Cu content is 0.10% or less, the effect of Cu addition cannot be sufficiently obtained.
If it exceeds 1.0%, casting cracks are likely to occur and the corrosion resistance is also deteriorated. Therefore, in the second invention, Cu is limited to the range of 0.10 to 1.0%.

上記各元素のほか、通常のアルミニウム合金と同様にF
e、Siが不可避的不純物として含有される。これらはこ
の発明においても特に重要な元素ではないが、それぞれ
0.5%を越えて含有されれば、鋳塊段階で晶出する晶出
物量が増加して曲げ性を低下させるから、それぞれ0.5
%以下に規制することが好ましい。
In addition to each of the above elements, F
e, Si are contained as unavoidable impurities. Although these are not particularly important elements in the present invention,
If the content exceeds 0.5%, the amount of crystallized substances that crystallize in the ingot stage increases and the bendability decreases.
% Or less is preferable.

さらに、上記各元素のほか、鋳塊組織微細化のため、通
常のアルミニウム合金と同様にTi、またはTiおよびBを
添加しても良い。但し初晶TiAl粒子の晶出を防止する
ためにはTiは0.15%以下とすることが好ましく、またTi
B粒子の生成を防止するためにはBは0.01%以下とす
ることが好ましい。
Further, in addition to the above-mentioned elements, Ti, or Ti and B may be added in the same manner as a normal aluminum alloy in order to refine the ingot structure. However, in order to prevent the crystallization of primary TiAl 3 particles, Ti is preferably 0.15% or less.
In order to prevent the formation of B 2 particles, B is preferably 0.01% or less.

次にこの発明の方法におけるプロセスについて説明す
る。
Next, the process in the method of the present invention will be described.

この発明の方法において、圧延までの工程は従来公知の
方法と同様であれば良い。すなわち、前記成分組成の合
金を例えばDC鋳造により鋳造し、得られた鋳塊に対し必
要に応じて450〜500℃において2〜48時間加熱保持する
均質化処理を行ない、常法にしたがって熱間圧延、また
は熱間圧延および冷間圧延によって所要の板厚とする。
もちろん熱間圧延と冷間圧延との間、あるいは冷間圧延
の中途で必要に応じて中間焼鈍を行なっても良い。
In the method of the present invention, the steps up to rolling may be the same as the conventionally known method. That is, an alloy having the above-described composition is cast by, for example, DC casting, and the obtained ingot is subjected to homogenization treatment by heating and holding at 450 to 500 ° C. for 2 to 48 hours, if necessary, and hot working according to a conventional method. The required plate thickness is obtained by rolling, or hot rolling and cold rolling.
Of course, intermediate annealing may be performed between the hot rolling and the cold rolling, or in the middle of the cold rolling, if necessary.

このようにして所要の板厚に圧延した後、450〜550℃の
範囲内の温度域に加熱し、直ちにまたは120秒以下の時
間保持後、20℃/sec以上の冷却速度で冷却する熱処理
を行なう。この熱処理はこの発明において特徴的な工程
であり、このような熱処理を行なうことによって粒界析
出の認められないアルミニウム合金圧延板が得られる。
すなわち、上記の450〜550℃の温度域は、単に再結晶温
度域であるばかりでなく、β相の析出温度域を越えた、
積極的にMgを固溶させ得る温度域であって、その温度域
での加熱保持によりMgを積極的に固溶させつつ再結晶さ
せた後、その温度域からβ相析出を阻止し得る20℃/se
c以上の冷却速度で冷却することによって、再結晶粒界
にβ相が析出していない材料を得ることができる。そし
て既に述べたようにAl−Mg系合金においてはβ相の粒界
析出が曲げ成形性を劣化させる原因となっていたが、こ
のような熱処理によって得られた圧延板では粒界析出物
が存在しないため曲げ成形性が著しく優れるのである。
After rolling to the required plate thickness in this way, heating to a temperature range within the range of 450 to 550 ℃, immediately or after holding for 120 seconds or less, heat treatment to cool at a cooling rate of 20 ℃ / sec or more To do. This heat treatment is a characteristic step in the present invention, and by performing such heat treatment, an aluminum alloy rolled plate having no grain boundary precipitation is obtained.
That is, the temperature range of 450 to 550 ° C. is not only the recrystallization temperature range but also exceeds the β phase precipitation temperature range,
It is a temperature range in which Mg can be positively solid-dissolved, and after recrystallization while actively solidifying Mg by heating and holding in that temperature range, it is possible to prevent β-phase precipitation from that temperature range 20 ℃ / se
By cooling at a cooling rate of c or higher, it is possible to obtain a material in which the β phase is not precipitated at the recrystallized grain boundary. And, as described above, in Al-Mg alloys, β-phase grain boundary precipitation was a cause of deterioration of bend formability, but grain boundary precipitates were present in the rolled plate obtained by such heat treatment. Therefore, the bending formability is remarkably excellent.

ここで、良好な曲げ成形性を得るためには、加熱温度お
よび冷却速度が重要であって、昇温速度は曲げ成形性に
殆ど影響せず、したがって450〜550℃の温度域への昇温
速度は任意に定めれば良い。
Here, in order to obtain good bend formability, the heating temperature and cooling rate are important, and the heating rate has almost no effect on bend formability, and therefore the temperature rise to a temperature range of 450 to 550 ° C. The speed may be set arbitrarily.

また加熱温度が450℃未満では再結晶が不完全となって
良好な成形性が得られないことがあり、一方加熱温度が
550℃を越える場合、この発明で対象としている合金組
成では結晶粒の粗大成長が発生して、良好な成形性が得
られない。したがって加熱温度は450〜550℃の範囲内と
する必要がある。なおこの範囲内でも特に480〜550℃の
温度域が望ましい。
If the heating temperature is lower than 450 ° C, recrystallization may be incomplete and good moldability may not be obtained.
If the temperature exceeds 550 ° C., the alloy composition targeted by the present invention causes coarse growth of crystal grains, and good formability cannot be obtained. Therefore, the heating temperature must be in the range of 450 to 550 ° C. Even within this range, a temperature range of 480 to 550 ° C is particularly desirable.

一方加熱保持時間の120秒以下の条件は、成形性よりも
むしろ生産性の面から規制したものである。すなわちこ
の発明の上記の熱処理は実際的には連続的にコイルを巻
戻しながら焼鈍する連続焼鈍を適用して行なうのが好適
であり、この場合保持時間は生産性の面から長くとるこ
とは好ましくなく、120秒以下が適当である。なお450〜
550℃の温度域に到達後は、特に保持を行なわず、直ち
に冷却しても良い。
On the other hand, the heating and holding time of 120 seconds or less is regulated from the viewpoint of productivity rather than moldability. That is, it is preferable that the above heat treatment of the present invention is practically performed by applying continuous annealing in which the coil is continuously unwound while the coil is unwound. In this case, it is preferable that the holding time be long from the viewpoint of productivity. No, 120 seconds or less is appropriate. 450 ~
After reaching the temperature range of 550 ° C, cooling may be performed immediately without holding.

加熱後の冷却速度は加熱温度とともに重要であり、20℃
/sec未満の遅い冷却速度では再結晶粒界にβ相が析出
して曲げ成形性を著しく悪化させるから、20℃/sec以
上とすることが必須である。
The cooling rate after heating is important along with the heating temperature,
If the cooling rate is slower than less than 1 sec / sec, the β phase precipitates at the recrystallized grain boundaries and the bending formability is remarkably deteriorated. Therefore, it is essential to set it to 20 ° C./sec or more.

実施例 第1表に示す合金1〜7について常法に従ってDC鋳造し
た後、その鋳塊に対し500℃×4時間の均質化熱処理を
施し、さらに常法に従って熱間圧延および冷間圧延を施
して板厚2.5mmの圧延板を得た。次いで各圧延板に対し
第2表に示す条件A〜Mで熱処理を行なった。
Examples Alloys 1 to 7 shown in Table 1 were DC-cast according to a conventional method, then the ingot was subjected to homogenizing heat treatment at 500 ° C. for 4 hours, and further hot-rolled and cold-rolled according to a conventional method. A rolled plate having a plate thickness of 2.5 mm was obtained. Then, each rolled plate was heat-treated under the conditions A to M shown in Table 2.

熱処理後の各圧延板について、機械的性質(引張強さ、
耐力、伸び)と、成形性評価として局部伸び、n値、最
小曲げ半径(Rmin)を調べ、また粒界析出状況の観察を
行なった。その結果を第3表に示す。なおここで最小曲
げ半径は、90゜曲げによる最小曲げ半径を板厚に対する
倍率で示した。また粒界析出状況は、10%リン酸エッチ
ング液で25℃×30分または50℃×90秒のエッチングを行
なった後、顕微鏡観察で判定した。
For each rolled plate after heat treatment, mechanical properties (tensile strength,
(Proof strength, elongation), local elongation, n value, and minimum bending radius (Rmin) were evaluated for formability evaluation, and grain boundary precipitation was observed. The results are shown in Table 3. Here, the minimum bending radius is the minimum bending radius for 90 ° bending, which is shown as a ratio to the plate thickness. The state of grain boundary precipitation was determined by microscopic observation after etching with a 10% phosphoric acid etching solution at 25 ° C for 30 minutes or 50 ° C for 90 seconds.

第3表から明らかなように、この発明の成分組成範囲内
の合金1〜6に対してこの発明の条件範囲内の熱処理を
施した場合(A〜F)は、いずれも粒界析出がなく、最
小曲げ半径もほとんどが0で優れた曲げ成形性を有し、
しかも強度も充分にあることが確認された。
As is clear from Table 3, when alloys 1 to 6 within the compositional range of the present invention were subjected to heat treatment within the range of the conditions of the present invention (A to F), there was no grain boundary precipitation. , The minimum bend radius is almost 0, and it has excellent bend formability.
Moreover, it was confirmed that the strength was sufficient.

これに対し成分組成はこの発明の範囲内であるが、熱処
理時の冷却速度が遅かった場合(H、I、JおよびL)
には、粒界への析出が認められ、そのため最小曲げ半径
も大きく、曲げ成形性が劣っていることが判明した。な
おここで、最小曲げ半径の値は数値的にはわずかな差で
あるように見受けられるが、数値的にはわずかな差であ
っても実際の曲げ加工における曲げ成形性の差は大き
く、例えば最小曲げ半径(Rmin)が2の板材についてR
=0で90゜曲げ試験を行なえば、著しく大きな亀裂が発
生して、使用不可能となる。
On the other hand, when the composition is within the scope of the present invention, but the cooling rate during the heat treatment is slow (H, I, J and L)
It was found that the precipitation was found in the grain boundaries, and therefore the minimum bending radius was large and the bendability was poor. Here, the value of the minimum bending radius seems to be a numerically slight difference, but even a numerically slight difference causes a large difference in bending formability in actual bending, for example, R for plate materials with minimum bending radius (Rmin) of 2
If a 90 ° bending test is performed at = 0, a remarkably large crack is generated and it becomes unusable.

また条件記号Kは熱処理時の加熱温度が低過ぎた例であ
るが、この場合は再結晶せず、成形性も著しく低くなっ
た。
Further, the condition symbol K is an example in which the heating temperature during the heat treatment was too low, but in this case, recrystallization did not occur and the formability was remarkably lowered.

さらに、Mg含有量が3%に満たない合金番号7の比較合
金を用いた場合には、熱処理条件を本発明範囲内とした
場合(条件記号G)も、本発明範囲外とした場合(条件
記号M)も、いずれも曲げ成形性自体は良好であるが、
強度が不足していた。
Furthermore, when the comparative alloy of alloy No. 7 having an Mg content of less than 3% was used, the heat treatment conditions were set within the scope of the present invention (condition symbol G), and the heat treatment conditions were set outside the scope of the present invention (conditions The symbol M) also has good bending formability,
It lacked strength.

これらの結果から、特定の成分範囲内の合金圧延板につ
いて、比較的高温である450〜550℃の温度域に加熱して
20℃/sec以上で急速冷却する熱処理を施すことによっ
て、曲げ成形性と強度の両者が優れる圧延板が得られる
ことが明らかである。
From these results, the alloy rolling plate within the specific composition range was heated to a relatively high temperature range of 450 to 550 ° C.
It is clear that the heat treatment of rapidly cooling at 20 ° C./sec or more can provide a rolled plate excellent in both bend formability and strength.

発明の効果 この発明の方法によれば、強度と成形性、特に曲げ成形
性が要求される成形加工品に使用されるAl−Mg系のアル
ミニウム合金圧延板として、粒界へのβ相の析出を抑制
することによって、従来の5052合金H34材等よりも格段
に優れた曲げ成形性を有すると同時に、従来の5052合金
H34材等と同等以上の高強度を有するアルミニウム合金
圧延板を得ることができる。
EFFECTS OF THE INVENTION According to the method of the present invention, strength and formability, in particular, as an Al-Mg-based aluminum alloy rolled plate used for a molded product requiring bending formability, β phase precipitation at grain boundaries By suppressing the above, it has significantly better bend formability than the conventional 5052 alloy H34 material, etc.
It is possible to obtain a rolled aluminum alloy plate having high strength equal to or higher than that of H34 material and the like.

フロントページの続き (72)発明者 梶山 毅 東京都中央区日本橋室町4丁目1番地 ス カイアルミニウム株式会社内 (56)参考文献 特開 昭61−6244(JP,A) 特開 昭58−171547(JP,A) 特開 昭57−98648(JP,A) 特開 昭57−131352(JP,A)Front Page Continuation (72) Inventor Takeshi Kajiyama 4-chome, Nihombashi Muromachi, Chuo-ku, Tokyo Inside Sky Aluminum Co., Ltd. (56) References JP 61-6244 (JP, A) JP 58-171547 ( JP, A) JP 57-98648 (JP, A) JP 57-131352 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Mg3.0〜6.0重量%を含有し、残部がAlおよ
び不可避的不純物よりなるAl−Mg基合金を素材として、
熱間圧延および/または冷間圧延により所要の板厚と
し、次いで450〜550℃の範囲内の温度に加熱して、直ち
にもしくは120秒以下の保持を行なってから、20℃/sec
以上の冷却速度で冷却し、再結晶粒界をおおう析出物の
ない圧延板を得ることを特徴とする、曲げ成形性に優れ
たアルミニウム合金圧延板の製造方法。
1. An Al-Mg based alloy containing 3.0 to 6.0% by weight of Mg, the balance being Al and unavoidable impurities.
20 ℃ / sec after making the required plate thickness by hot rolling and / or cold rolling, then heating it to a temperature in the range of 450-550 ℃ and holding it for 120 seconds or less immediately.
A method for producing a rolled aluminum alloy plate having excellent bend formability, which comprises cooling at the above cooling rate to obtain a rolled plate free of precipitates covering recrystallized grain boundaries.
【請求項2】Mg3.0〜6.0重量%を含有し、かつMn0.05〜
0.7重量%、Zr0.01〜0.2重量%、Cr0.05〜0.3重量%、C
u0.10〜1.0重量%のうちの1種または2種以上を含有
し、残部がAlおよび不可避的不純物よりなるAl−Mg基合
金を素材とし、熱間圧延および/または冷間圧延により
所要の板厚とし、次いで450〜550℃の範囲内の温度に加
熱して、直ちにもしくは120秒以下の保持を行なってか
ら、20℃/sec以上の冷却速度で冷却し、再結晶粒界を
おおう析出物のない圧延板を得ることを特徴とする、曲
げ成形性に優れたアルミニウム合金圧延板の製造方法。
2. It contains Mg3.0-6.0% by weight, and Mn0.05-
0.7 wt%, Zr0.01-0.2 wt%, Cr0.05-0.3 wt%, C
u 0.10 to 1.0% by weight of one or more kinds of Al-Mg base alloy containing Al and unavoidable impurities in the balance is used as a raw material, and required by hot rolling and / or cold rolling. Plate thickness, then heat to a temperature in the range of 450 to 550 ℃, hold immediately or for 120 seconds or less, then cool at a cooling rate of 20 ℃ / sec or more to cover the recrystallized grain boundaries. A method for producing a rolled aluminum alloy sheet having excellent bend formability, which comprises obtaining a rolled sheet having no material.
JP61133522A 1986-06-09 1986-06-09 Method for manufacturing rolled aluminum alloy plate Expired - Lifetime JPH0663060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133522A JPH0663060B2 (en) 1986-06-09 1986-06-09 Method for manufacturing rolled aluminum alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133522A JPH0663060B2 (en) 1986-06-09 1986-06-09 Method for manufacturing rolled aluminum alloy plate

Publications (2)

Publication Number Publication Date
JPS62290851A JPS62290851A (en) 1987-12-17
JPH0663060B2 true JPH0663060B2 (en) 1994-08-17

Family

ID=15106754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133522A Expired - Lifetime JPH0663060B2 (en) 1986-06-09 1986-06-09 Method for manufacturing rolled aluminum alloy plate

Country Status (1)

Country Link
JP (1) JPH0663060B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301831A (en) * 1988-05-31 1989-12-06 Kobe Steel Ltd Al alloy plate for stay-on tab and its manufacture
JPH0257655A (en) * 1988-08-24 1990-02-27 Sumitomo Light Metal Ind Ltd Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JP2006291298A (en) * 2005-04-12 2006-10-26 Ykk Corp Aluminum alloy, and slide fastener using the alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) * 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPS5798648A (en) * 1980-12-06 1982-06-18 Kobe Steel Ltd Al-mg-zn alloy for forming and its manufacture
JPS57120648A (en) * 1981-01-16 1982-07-27 Kobe Steel Ltd Baking hardenable al alloy
JPS5939500B2 (en) * 1981-02-03 1984-09-25 株式会社神戸製鋼所 Manufacturing method of Al alloy thin plate for forming processing
JPS6050864B2 (en) * 1982-03-31 1985-11-11 住友軽金属工業株式会社 Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPS6050864A (en) * 1983-08-31 1985-03-20 Pentel Kk Manufacture of carbon body for electrode
JPS616244A (en) * 1984-06-21 1986-01-11 Sumitomo Light Metal Ind Ltd High strength alloy for forming having fine grain and its manufacture
GB8515250D0 (en) * 1985-06-17 1985-07-17 Texas Instruments Ltd Testing of integrated circuits

Also Published As

Publication number Publication date
JPS62290851A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JPH0841612A (en) Copper alloy and its preparation
WO2009122869A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
WO2011036804A1 (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP2623619A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
EP0769563A1 (en) Iron modified phosphor-bronze
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP2006009108A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2001020027A (en) Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JPH0663060B2 (en) Method for manufacturing rolled aluminum alloy plate
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JPH0547616B2 (en)
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
JP2678675B2 (en) Method for producing aluminum alloy sheet for forming having excellent deep drawability
JP4679040B2 (en) Copper alloy for electronic materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term