JPH0547616B2 - - Google Patents
Info
- Publication number
- JPH0547616B2 JPH0547616B2 JP63271758A JP27175888A JPH0547616B2 JP H0547616 B2 JPH0547616 B2 JP H0547616B2 JP 63271758 A JP63271758 A JP 63271758A JP 27175888 A JP27175888 A JP 27175888A JP H0547616 B2 JPH0547616 B2 JP H0547616B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- grain size
- rolling
- bendability
- average grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005096 rolling process Methods 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 239000000956 alloy Substances 0.000 claims description 27
- 238000000137 annealing Methods 0.000 claims description 27
- 238000005097 cold rolling Methods 0.000 claims description 18
- 229910000838 Al alloy Inorganic materials 0.000 claims description 16
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 description 14
- 238000005452 bending Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000000265 homogenisation Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910010039 TiAl3 Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Description
産業上の利用分野
この発明は電気制御器筐体、計測器筐体、
VTRその他の弱電機器のシヤーシ、あるいは自
動車車体、自動車部品など、強度と優れた成形加
工性、特に優れた曲げ性が要求される成形品に使
用されるアルミニウム合金圧延板およびその製造
方法に関するものである。
従来の技術
電気制御器筐体、計測器筐体、VTRその他の
弱電機器のシヤーシ、あるいは自動車車体、自動
車部品などには、軽量性および電磁波シールド性
などの点から、近年はアルミニウム合金を使用す
ることが多くなつている。このような用途におい
ては、強度および成形加工性に優れていること、
さらに耐食性も良好なことが要求され、そこで従
来はこれらの用途のアルミニウム合金としては
Al−Mg系のJIS5000番系の合金が主に使用され
ており、そのうちでも特に5052合金H32材、5182
合金O材が使用されることが多い。
発明が解決しようとする課題
前述のような5052合金H32材や5182合金O材等
の従来材料では、成形加工性が比較的良好である
ものの、厳しい加工条件での成形加工、複雑な成
形加工に供するには末だ成形加工性が充分とは言
えず、特に曲げ性が不充分であつた。特に曲げ性
は、曲げ方向による異方性が存在し、圧延方向に
平行に曲げる場合の曲げ性が劣るという問題があ
り、そのため複雑な形状の成形加工には未だ不充
分と言わざるを得なかつたのが実情である。
この発明は以上の事情を背景としてなされたも
ので、前述のように電気制御器筐体あるいは自動
車部品等に使用されるアルミニウム合金圧延板と
して、従来合金の圧延板と比較して成形性、特に
曲げ性が優れ、曲げ方向による異方性が著しく少
ない圧延板およびその製造方法を提供することを
目的とするものである。
課題を解決するための手段
本発明者等は前述の問題を解決するべく鋭意実
験・検討を重ねた結果、Al−Mg基合金において
Cu、Fe、Siをそれぞれ少量に制御するとともに
Mn、Cr、Zrを極微量に抑制し、かつ最終板にお
ける再結晶粒の粒径とその偏平度を規制すること
によつて、成形加工性、特に曲げ性が優れ、曲げ
方向による異方性の少ない圧延板を得られること
を見出し、この発明をなすに至つた。
具体的には、請求項1の発明は曲げ性に優れた
成形加工用アルミニウム合金圧延板を提供するも
のであつて、この請求項1の発明のアルミニウム
合金圧延板は、Mg2.0〜5.5%を含有し、かつCu、
Fe、Siがそれぞれ0.15%以下に規制され、しかも
Mg、Cr、Zrが合計で0.05%以下に規制され、残
部がAlおよびその他の不可避的不純物よりなり、
圧延方向の結晶粒径が平均150μm以下であり、
かつ圧延方向に平行な断面における圧延方向の平
均結晶粒径Lと板厚方向の平均結晶粒径Tとの比
L/Tが1.3以下であることを特徴とするもので
ある。
また請求項2の発明は曲げ性に優れた成形加工
用アルミニウム合金圧延板の製造方法についての
ものであり、この請求項2の発明の製造方法は、
Mg2.0〜5.5%を含有し、かつCu、Fe、Siがそれ
ぞれ0.15%以下に規制され、しかもMn、Cr、Zr
が合計で0.05%以下に規制され、残部がAlおよび
その他の不可避的不純物よりなる合金を鋳造した
後、その鋳塊に450〜570℃の範囲内の温度で均質
化処理を施し、さらに熱間圧延および冷間圧延を
行なつてから最終焼鈍を施すにあたり、最終焼鈍
直前の冷間圧延の圧下率を20%以上とし、かつ最
終焼鈍を300〜450℃の範囲内の温度で0.5〜24時
間行ない、これによつて圧延方向の平均結晶粒径
が150μm以下でかつ圧延方向に平行な断面にお
ける圧延方向の平均結晶粒径Lと板厚方向の平均
結晶粒径Tとの比L/Tが1.3以下の板を得るこ
とを特徴とするものである。
作 用
先ずこの発明における合金成分限定理由につい
て説明する。
Mg:
Mgはこの発明で対象とする系の合金で必須
の基本合金成分であり、強度および成形加工
性、特に伸び、張出性の向上に寄与する。Mg
が2.0%未満ではこれらの効果が充分に得られ
ず、一方5.5%を越えれば逆に伸びが低下する
とともに圧延性が低下するから、Mgは2.0〜
5.5%の範囲内に限定した。
Cu:
Cuは一般にAl合金の成形加工性、特に曲げ
性を低下させる元素であり、0.15%を越えれば
この発明で目標とする充分な曲げ性が得られな
くなるから、0.15%以下に規制することとし
た。
Fe:
FeはAl−Fe(−Si)系の金属間化合物を生成
して、成形加工性、特に曲げ性を劣化させる原
因となる。Feが0.15%を越えればこの発明で目
標とする充分な曲げ性が得られなくなるから、
Feも0.15%以下に規制することとした。
Si:
SiもFeと共存してAl−Fe−Si系の金属間化
合物を生成し、成形加工性、特に曲げ性を劣化
させる原因となる。Siが0.15%を越えればこの
発明で目標とする充分な曲げ性が得られなくな
るから、Siは0.15%以下に規制することとし
た。
Mn、Cr、Zr:
これらの遷移元素は、再結晶粒の微細化には
有効であるが、再結晶粒を偏平化させる作用が
あり、そのため成形加工性、特に曲げ性、とり
わけ圧延方向に平行な方向の曲げ性を劣化させ
る。これらの元素が合計で、0.05%を越えれば
上述のような曲げ性劣化が著しくなるから、
Mn、Cr、Zrは合計で0.05%以下に規制するこ
ととした。
以上の各元素のほか、鋳塊における結晶粒微細
化のためにTi、またはTiおよびBを添加しても
良い。但し初晶TiAl3粒子の晶出を防止するため
にはTiは0.15%以下とすることが望ましく、また
TiB2粒子の生成を防止するためにはBは500ppm
以下とすることが望ましい。
さらに、Mgが2.0%以上含まれるAl合金溶湯に
おいては、溶湯の酸化防止のためにBeを添加す
ることが従来から行なわれており、この発明にお
いても溶湯酸化防止のためにBeを添加する場合
を除外するものではない。Beの添加量は500ppm
以下が一般的であり、この程度のBe添加量であ
ればこの発明においても他の性能を劣化させるこ
とはない。
さらにこの発明のアルミニウム合金圧延板にお
いては、前述のように各成分元素を規定するほ
か、特に最終板の状態における圧延方向の再結晶
粒径を平均150μm以下とし、しかも再結晶粒の
偏平度、すなわち第1図に示すような圧延方向に
平行な断面における圧延方向の平均結晶粒径Lと
板厚方向の平均結晶粒径Tとの比L/Tを1.3以
下とする必要がある。その理由は次の通りであ
る。
すなわち、先ず最終板における圧延方向の再結
晶粒径が平均で150μmを越えれば、成形加工時
において肌荒れが著しくなり、成形製品の外観を
損なう。
また最終板における再結晶粒の偏平度は、成形
加工性、特に曲げ性の方向による差に影響を与え
る。前述のL/Tの値で定義される偏平度が1.3
を越えれば、圧延方向に曲げた場合と圧延方向に
対し直角に曲げた場合との曲げ性の差が顕著にな
る。すなわち圧延方向に直角に曲げた場合の曲げ
性が良好であつても圧延方向に平行に曲げた場合
の曲げ性が悪くなるから、安定して良好な成形加
工姓を得ることができなくなる。したがつてL/
Tの比で定義される偏平度は1.3以下に規制する
必要がある。
ここで、結晶粒径は、ASTMによる
“Intercept Method”(切断法)によつて測定し
たものとする。
なお曲げ方向による曲げ性の差が少なくするた
めには、本来は圧延方向に直角な断面における板
幅方向の平均結晶粒径Wと板厚方向の平均結晶粒
径Tとの比W/Tの値も1.3以下とする必要があ
るが、一般にWの値はLの値に比較して格段に小
さくなるから、L/Tの値が1.3以下であれば
W/Tの値も1.3以下となるのが通常であり、し
たがつてW/Tの値については特に規定しなかつ
た。
次にこの発明のアルミニウムの合金圧延板の製
造方法について説明する。
先ず前述のような成分組成の合金溶湯をDC鋳
造法(半連続鋳造法)によつて鋳造する。なお連
続鋳造圧延法(薄板連続鋳造法)を適用すること
も可能であるが、請求項2の発明の方法ではDC
鋳造法を適用するものとする。
得られたAl合金鋳塊に対しては、450〜570℃
の範囲内の温度で均質化処理を行なう。このよう
な均質化処理を行なうことによつて、成形加工性
を向上させるとともに再結晶粒を安定化させるこ
とができる。均質化処理の温度が450℃未満では
上述の効果が得られず、一方570℃を越えれば共
晶融解が生じるおそれがある。なお均質化処理の
時間は1〜48時間が望ましい。1時間未満では上
述の効果が充分に得られず、一方48時間を越える
長時間の処理は経済的でない。
均質化処理後には、常法に従つて熱間圧延を施
し、さらに1回または2回以上の冷間圧延を行な
つて所要の板厚とする。なおこの熱間圧延と冷間
圧延との間、もしくは冷間圧延と冷間圧延との間
に中間焼鈍を行なつても良い。
冷間圧延後には後述する最終焼鈍を行なうが、
この最終焼鈍直前の冷間圧延は、冷間圧延率(圧
下率)を20%以上とする必要がある。
このような最終焼鈍前の冷間圧延下率は、最終
焼鈍による再結晶粒の安定化および成形加工性の
向上に大きな影響を与え、その圧下率が20%未満
では再結晶粒が不安定となつて再結晶粒が粗大化
したり、混粒組織となつたり、さらには再結晶粒
の偏平度が大きくなつて曲げ性に異方性が生じて
しまう。そこで最終焼鈍直前の冷間圧延の圧下率
は20%以上とする必要がある。
冷間圧延後の最終焼鈍は、材料を再結晶させて
好ましい成形加工性を与えるために行なうが、こ
の発明で対象としている合金では、本来は再結晶
粒の微細化、安定化のために有効なFe、Mn、
Cr、Zr等の元素を成形加工性向上のために極力
低く抑制しているから、再結晶粒の粗大化等を防
止して再結晶粒を安定化させるためには、前述の
ような最終焼鈍直前の冷間圧延圧下率と最終焼鈍
条件が極めて重要であり、それらの条件をこの発
明で規定する範囲に厳格に抑える必要がある。す
なわち、最終焼鈍は、300〜450℃の範囲内の温度
で0.5〜24時間行なう必要がある。
ここで、最終焼鈍の温度が300℃未満では再結
晶せず、良好な成形加工性が得られない。一方
450℃を越える温度では、再結晶が粗大化して成
形加工時に肌荒れが発生するとともに成形加工性
も低下する。なお再結晶粒径は既に述べたように
圧延方向で平均150μm以下とする必要があり、
そのためには最終焼鈍温度を450℃以下とする必
要がある。また最終焼鈍の焼鈍時間が0.5時間未
満では再結晶による成形加工性向上の効果が充分
に得られず、一方24時間以上の長時間の焼鈍を行
なうことはいたずらに経済的コストの上昇招くだ
けである。したがつて最終焼鈍の条件はそれぞれ
前述のように定めた。
以上のような方法、条件によつて得られたアル
ミニウムは合金圧延板は、従来合金である5052合
金や5182合金と比較して優れた成形加工性、特に
優れた曲げ性を有し、とりわけ方向による曲げ性
の差が少ない均質な圧延板となつている。
実施例
第1表の合金番号1〜5に示す成分組成の合金
をDC鋳造法により鋳造し、その鋳塊に530℃×10
時間の均質化処理を施した後、板厚4mmまで熱間
圧延し、さらに板厚1.0mmまで冷間圧延した。な
お合金番号1の本発明合金のうち一部のものは、
熱間圧延後板厚1.2mmまで冷間圧延した段階で320
℃×5時間の中間焼鈍を施し、さらに板厚1.0mm
まで冷間圧延した(したがつてこの場合の最終焼
鈍直前の冷間圧延圧下率は役17%)。その後、最
終焼鈍として、250℃×5時間、もしくは320℃×
2時間、または480℃×2時間の熱処理を施した。
なお従来合金の5052合金(合金番号4)について
は、板厚4mmまで熱間圧延した後、板厚1.25mmま
で冷間圧延した段階で320℃×2時間中間焼鈍を
施し、さらに板厚1.0mmまで冷間圧延した後、安
定化焼鈍として180℃×2時間の熱処理を行なつ
た。
以上のようにして得られた各最終板の機械的特
性、成形加工性(エリクセン値および各方向の曲
げ性)、各方向の結晶粒径、成形加工後の外観を
調べた結果を第2表に示す。
なお第2表中において、機械的特性を調べるた
めの引張り試験は圧延方向と平行な方向について
行なつた。また曲げ性についての「直角」は圧延
方向と直角に曲げた場合の180°曲げ最小半径を示
し、「平行」は圧延方向と平行に曲げた場合の
180°曲げ最小半径を示す。さらに粒径について
は、Tは板厚方向の平均結晶粒径を、Lは圧延方
向の平均結晶粒径を示す。
Industrial Application Field This invention is applicable to electrical controller housings, measuring instrument housings,
This article relates to aluminum alloy rolled sheets used in chassis of VTRs and other light electrical equipment, automobile bodies, automobile parts, and other molded products that require strength and excellent formability, especially excellent bendability, and their manufacturing method. be. Conventional technology In recent years, aluminum alloys have been used for electrical controller casings, measuring instrument casings, chassis of VTRs and other weak electrical equipment, automobile bodies, and automobile parts due to their light weight and electromagnetic shielding properties. Things are becoming more and more common. In such applications, it must have excellent strength and moldability,
In addition, good corrosion resistance is required, so conventionally aluminum alloys for these applications were
Al-Mg based JIS5000 series alloys are mainly used, especially 5052 alloy H32 material, 5182 alloy
Alloy O material is often used. Problems to be Solved by the Invention Although conventional materials such as the 5052 alloy H32 material and 5182 alloy O material described above have relatively good formability, they cannot be easily formed under severe processing conditions or in complex forming processes. It could not be said that the final molding processability was sufficient for use, and in particular, the bendability was insufficient. In particular, there is a problem with bendability, as there is anisotropy depending on the bending direction, and the bendability is poor when bending parallel to the rolling direction.Therefore, it must be said that it is still insufficient for forming complex shapes. The reality is that This invention was made against the background of the above-mentioned circumstances, and as mentioned above, it is suitable for use as an aluminum alloy rolled sheet for use in electrical controller housings, automobile parts, etc., and has improved formability, especially when compared to conventional rolled alloy sheets. The object of the present invention is to provide a rolled plate having excellent bendability and significantly less anisotropy depending on the bending direction, and a method for manufacturing the same. Means for Solving the Problems As a result of extensive experiments and studies in order to solve the above-mentioned problems, the present inventors found that
In addition to controlling Cu, Fe, and Si to small amounts,
By suppressing Mn, Cr, and Zr to extremely small amounts and controlling the grain size and flatness of recrystallized grains in the final plate, moldability, especially bendability, is excellent, and anisotropy depending on the bending direction is achieved. The inventors have discovered that it is possible to obtain a rolled plate with less . Specifically, the invention of claim 1 provides an aluminum alloy rolled sheet for forming process with excellent bendability, and the aluminum alloy rolled sheet of the invention of claim 1 contains Mg2.0 to 5.5%. Contains Cu,
Fe and Si are each regulated to 0.15% or less, and
Mg, Cr, and Zr are regulated to a total of 0.05% or less, and the remainder consists of Al and other unavoidable impurities.
The average grain size in the rolling direction is 150 μm or less,
Further, the ratio L/T of the average grain size L in the rolling direction to the average grain size T in the plate thickness direction in a cross section parallel to the rolling direction is 1.3 or less. Further, the invention of claim 2 relates to a method of manufacturing a rolled aluminum alloy plate for forming processing with excellent bendability, and the manufacturing method of the invention of claim 2 includes:
Contains Mg2.0-5.5%, Cu, Fe, and Si are each regulated to 0.15% or less, and Mn, Cr, and Zr
After casting an alloy with a total of 0.05% or less and the balance consisting of Al and other unavoidable impurities, the ingot is homogenized at a temperature within the range of 450 to 570°C, and then hot-tempered. When performing final annealing after rolling and cold rolling, the reduction ratio of cold rolling immediately before final annealing is 20% or more, and final annealing is performed at a temperature within the range of 300 to 450°C for 0.5 to 24 hours. As a result, the average grain size in the rolling direction is 150 μm or less, and the ratio L/T of the average grain size L in the rolling direction and the average grain size T in the thickness direction in a cross section parallel to the rolling direction is It is characterized by obtaining a board of 1.3 or less. Function First, the reason for limiting the alloy components in this invention will be explained. Mg: Mg is an essential basic alloy component in the alloys targeted by this invention, and contributes to improving strength and formability, especially elongation and extensibility. Mg
If Mg is less than 2.0%, these effects cannot be sufficiently obtained, whereas if it exceeds 5.5%, elongation and rollability will decrease.
Limited to within 5.5%. Cu: Cu is an element that generally reduces the formability, especially the bendability, of Al alloys, and if it exceeds 0.15%, it will not be possible to obtain the sufficient bendability targeted by this invention, so it should be regulated to 0.15% or less. And so. Fe: Fe generates Al-Fe (-Si) based intermetallic compounds, which causes deterioration in moldability, especially bendability. If Fe exceeds 0.15%, the sufficient bendability targeted by this invention cannot be obtained.
Fe was also regulated to 0.15% or less. Si: Si also coexists with Fe to form an Al-Fe-Si intermetallic compound, which causes deterioration in formability, especially bendability. If Si exceeds 0.15%, the sufficient bendability targeted by this invention cannot be obtained, so it was decided to limit Si to 0.15% or less. Mn, Cr, Zr: These transition elements are effective in refining recrystallized grains, but they also have the effect of flattening the recrystallized grains, resulting in poor formability, especially bendability, especially parallel to the rolling direction. deteriorates bendability in certain directions. If the total content of these elements exceeds 0.05%, the deterioration of bendability as described above will be significant.
It was decided that Mn, Cr, and Zr should be regulated to a total of 0.05% or less. In addition to the above elements, Ti or Ti and B may be added to refine the crystal grains in the ingot. However, in order to prevent the crystallization of primary TiAl3 particles, it is desirable to keep Ti at 0.15% or less, and
To prevent the generation of TiB 2 particles, B is 500ppm.
The following is desirable. Furthermore, in Al alloy molten metal containing 2.0% or more of Mg, Be is added to prevent oxidation of the molten metal, and in this invention, Be is added to prevent oxidation of the molten metal. It does not exclude. The amount of Be added is 500ppm
The following is common, and if this amount of Be is added, other performances will not deteriorate even in this invention. Furthermore, in the aluminum alloy rolled sheet of the present invention, in addition to specifying each component element as described above, in particular, the average recrystallized grain size in the rolling direction in the final sheet state is 150 μm or less, and the flatness of the recrystallized grains is That is, the ratio L/T of the average grain size L in the rolling direction and the average grain size T in the plate thickness direction in a cross section parallel to the rolling direction as shown in FIG. 1 needs to be 1.3 or less. The reason is as follows. That is, first of all, if the average recrystallized grain size in the rolling direction in the final plate exceeds 150 μm, roughness of the surface becomes significant during molding, which impairs the appearance of the molded product. Furthermore, the flatness of the recrystallized grains in the final plate affects the forming processability, especially the difference in bendability depending on the direction. The flatness defined by the above L/T value is 1.3
If it exceeds , the difference in bendability between bending in the rolling direction and bending at right angles to the rolling direction becomes significant. That is, even if the bendability is good when bent perpendicular to the rolling direction, the bendability becomes poor when bent parallel to the rolling direction, making it impossible to stably obtain good molding properties. Therefore L/
The flatness defined by the ratio of T must be regulated to 1.3 or less. Here, the crystal grain size is measured by the "Intercept Method" according to ASTM. Note that in order to reduce the difference in bendability depending on the bending direction, the ratio W/T of the average grain size W in the sheet width direction and the average grain size T in the sheet thickness direction in a cross section perpendicular to the rolling direction should be The value also needs to be 1.3 or less, but generally the W value is much smaller than the L value, so if the L/T value is 1.3 or less, the W/T value will also be 1.3 or less. Therefore, the value of W/T was not particularly specified. Next, a method for manufacturing an aluminum alloy rolled plate of the present invention will be explained. First, a molten alloy having the above-mentioned composition is cast by a DC casting method (semi-continuous casting method). Although it is also possible to apply a continuous casting and rolling method (thin plate continuous casting method), the method of the invention of claim 2
The casting method shall be applied. 450 to 570℃ for the obtained Al alloy ingot
The homogenization process is carried out at a temperature within the range of . By performing such homogenization treatment, it is possible to improve moldability and stabilize recrystallized grains. If the temperature of the homogenization treatment is less than 450°C, the above-mentioned effects cannot be obtained, while if it exceeds 570°C, eutectic melting may occur. Note that the time for the homogenization treatment is preferably 1 to 48 hours. If the treatment time is less than 1 hour, the above-mentioned effects cannot be sufficiently obtained, while treatment for a long time exceeding 48 hours is not economical. After the homogenization treatment, hot rolling is performed in accordance with a conventional method, and cold rolling is further performed once or twice or more to obtain the required thickness. Note that intermediate annealing may be performed between hot rolling and cold rolling or between cold rolling. After cold rolling, final annealing is performed as described below.
In this cold rolling immediately before final annealing, the cold rolling rate (reduction rate) must be 20% or more. The cold rolling reduction before the final annealing has a great effect on stabilizing the recrystallized grains and improving formability due to the final annealing, and if the rolling reduction is less than 20%, the recrystallized grains become unstable. As a result, the recrystallized grains become coarse, become a mixed grain structure, and furthermore, the flatness of the recrystallized grains increases, resulting in anisotropy in bendability. Therefore, the rolling reduction ratio in cold rolling immediately before final annealing must be 20% or more. Final annealing after cold rolling is performed to recrystallize the material and give it favorable formability, but in the alloy targeted by this invention, it is originally effective for refining and stabilizing recrystallized grains. Fe, Mn,
Since elements such as Cr and Zr are kept as low as possible to improve formability, final annealing as described above is necessary to prevent coarsening of recrystallized grains and stabilize recrystallized grains. The immediately preceding cold rolling reduction rate and final annealing conditions are extremely important, and these conditions must be strictly kept within the range specified by this invention. That is, the final annealing needs to be carried out at a temperature within the range of 300 to 450°C for 0.5 to 24 hours. Here, if the final annealing temperature is less than 300°C, recrystallization will not occur and good moldability will not be obtained. on the other hand
At temperatures exceeding 450°C, recrystallization becomes coarse and roughness occurs during molding, and moldability also deteriorates. As already mentioned, the recrystallized grain size needs to be 150 μm or less on average in the rolling direction.
For this purpose, the final annealing temperature must be 450°C or less. Furthermore, if the annealing time of the final annealing is less than 0.5 hours, the effect of improving formability due to recrystallization will not be sufficiently obtained, while if annealing is performed for a long time of 24 hours or more, it will only unnecessarily increase economic costs. be. Therefore, the conditions for final annealing were determined as described above. The aluminum alloy rolled plate obtained by the method and conditions described above has superior formability, especially superior bendability, compared to conventional alloys such as 5052 alloy and 5182 alloy. The result is a homogeneous rolled plate with little difference in bendability. Example Alloys having the compositions shown in alloy numbers 1 to 5 in Table 1 were cast by the DC casting method, and the ingot was heated at 530°C x 10
After homogenizing for a long time, it was hot rolled to a thickness of 4 mm, and further cold rolled to a thickness of 1.0 mm. Some of the alloys of the present invention with alloy number 1 are:
320 after hot rolling and cold rolling to 1.2mm thickness.
After intermediate annealing for 5 hours at ℃, the plate thickness was further reduced to 1.0 mm.
(Therefore, in this case, the cold rolling reduction ratio immediately before final annealing was 17%). After that, final annealing is performed at 250℃×5 hours or 320℃×
Heat treatment was performed for 2 hours or at 480°C for 2 hours.
Regarding the conventional alloy 5052 alloy (alloy number 4), after hot rolling to a plate thickness of 4 mm and cold rolling to a plate thickness of 1.25 mm, intermediate annealing was performed at 320°C for 2 hours, and then a plate thickness of 1.0 mm was applied. After cold rolling to a temperature of 180° C., heat treatment was performed at 180° C. for 2 hours as stabilizing annealing. Table 2 shows the results of examining the mechanical properties, moldability (Erichsen value and bendability in each direction), grain size in each direction, and appearance after molding of each final plate obtained as described above. Shown below. In Table 2, the tensile test for examining mechanical properties was conducted in a direction parallel to the rolling direction. Regarding bendability, "right angle" indicates the minimum radius of 180° bending when bent perpendicular to the rolling direction, and "parallel" indicates the minimum radius when bent parallel to the rolling direction.
Indicates the minimum radius of 180° bending. Furthermore, regarding the grain size, T represents the average grain size in the plate thickness direction, and L represents the average grain size in the rolling direction.
【表】【table】
【表】
第2表から明らかなように、この発明の成分組
成範囲内の合金についてこの発明で規定する条件
で処理して得られた圧延板は、強度は従来合金で
ある5052合金H32材や5182合金O材とほぼ同等で
あるが、成形加工性、特に曲げ性が優れており、
とりわけ再結晶粒の偏平度L/Tが1.3未満であ
るため方向による曲げ性の差が少なく、また圧延
方向の平均結晶粒径が150μm以下であるため成
形加工による肌荒れの発生もない。
発明の効果
以上の説明で明らかなように、この発明によれ
ば、成形加工性、特に曲げ性に優れ、とりわけ方
向による曲げ性の差の少ない均質な成形加工用ア
ルミニウム合金圧延板を得ることができ、したが
つて苛酷な条件の成形加工、複雑な形状の成形加
工が施される電気制御器筐体、計測器筐体、
VTRその他弱電機器のシヤーシ、あるいは自動
車車体、自動車部品等の用途に好適に使用するこ
とができる。[Table] As is clear from Table 2, the strength of the rolled plate obtained by processing the alloy within the composition range of this invention under the conditions specified in this invention is higher than that of the conventional alloy 5052 alloy H32 material. It is almost the same as 5182 alloy O material, but has excellent formability, especially bendability,
In particular, since the flatness L/T of the recrystallized grains is less than 1.3, there is little difference in bendability depending on the direction, and since the average crystal grain size in the rolling direction is 150 μm or less, there is no occurrence of surface roughness due to forming. Effects of the Invention As is clear from the above description, according to the present invention, it is possible to obtain a homogeneous aluminum alloy rolled sheet for forming that has excellent formability, especially bendability, and has little difference in bendability depending on the direction. electrical controller housings, measuring instrument housings, etc., which are processed under harsh conditions and molded into complex shapes.
It can be suitably used for chassis of VTRs and other light electrical equipment, automobile bodies, automobile parts, etc.
第1図は各方向の結晶粒径の定義を示す略解図
である。
FIG. 1 is a schematic diagram showing the definition of crystal grain size in each direction.
Claims (1)
し、かつCu、Fe、Siがそれぞれ0.15%以下に規
制され、しかもMn、Cr、Zrが合計で0.05%以下
に規制され、残部がAlおよびその他の不可避的
不純物よりなり、圧延方向の結晶粒径が平均
150μm以下であり、かつ圧延方向に平行な断面
における圧延方向の平均結晶粒径Lと板厚方向の
平均結晶粒径Tとの比L/Tが1.3以下であるこ
とを特徴とする曲げ性に優れた成形加工用アルミ
ニウム合金圧延板。 2 Mg2.0〜5.5%を含有し、かつCu、Fe、Siが
それぞれ0.15%以下に規制され、しかもMn、Cr、
Zrが合計で0.05%以下に規制され、残部がAlおよ
びその他の不可避的不純物よりなる合金を鋳造し
た後、その鋳塊に450〜570℃の範囲内の温度で均
質化処理を施し、さらに熱間圧延および冷間圧延
を行なつてから最終焼鈍を施すにあたり、最終焼
鈍直前の冷間圧延の圧下率を20%以上とし、かつ
最終焼鈍を300〜450℃の範囲内の温度で0.5〜24
時間行ない、これによつて圧延方向の平均結晶粒
径が150μm以下でかつ圧延方向に平行な断面に
おける圧延方向の平均結晶粒径Lと板厚方向の平
均結晶粒径Tとの比L/Tが1.3以下の板を得る
ことを特徴とする曲げ性に優れたアルミニウム合
金圧延板の製造方法。[Claims] 1 Contains 2.0 to 5.5% Mg (by weight, the same applies hereinafter), and each of Cu, Fe, and Si is regulated to 0.15% or less, and Mn, Cr, and Zr are 0.05% in total. The balance consists of Al and other unavoidable impurities, and the average grain size in the rolling direction is
150 μm or less, and the ratio L/T of the average grain size L in the rolling direction to the average grain size T in the plate thickness direction in a cross section parallel to the rolling direction is 1.3 or less. Aluminum alloy rolled plate for excellent forming processing. 2 Contains Mg2.0-5.5%, Cu, Fe, and Si are each regulated to 0.15% or less, and Mn, Cr,
After casting an alloy with a total Zr content of 0.05% or less and the balance consisting of Al and other unavoidable impurities, the ingot is homogenized at a temperature within the range of 450 to 570°C, and then heated. When performing final annealing after performing inter-rolling and cold rolling, the reduction ratio of the cold rolling immediately before the final annealing should be 20% or more, and the final annealing should be performed at a temperature within the range of 300 to 450°C from 0.5 to 24°C.
The average grain size in the rolling direction is 150 μm or less, and the ratio L/T of the average grain size L in the rolling direction and the average grain size T in the thickness direction in a cross section parallel to the rolling direction. A method for producing an aluminum alloy rolled plate with excellent bendability, characterized by obtaining a plate with a bendability of 1.3 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27175888A JPH02118050A (en) | 1988-10-27 | 1988-10-27 | Aluminum alloy rolled sheet for forming and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27175888A JPH02118050A (en) | 1988-10-27 | 1988-10-27 | Aluminum alloy rolled sheet for forming and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02118050A JPH02118050A (en) | 1990-05-02 |
JPH0547616B2 true JPH0547616B2 (en) | 1993-07-19 |
Family
ID=17504429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27175888A Granted JPH02118050A (en) | 1988-10-27 | 1988-10-27 | Aluminum alloy rolled sheet for forming and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02118050A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3066091B2 (en) * | 1991-01-31 | 2000-07-17 | スカイアルミニウム株式会社 | Aluminum alloy rolled plate for hole enlarging and method for producing the same |
JP2856936B2 (en) * | 1991-03-30 | 1999-02-10 | 日本鋼管株式会社 | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same |
JP2595836B2 (en) * | 1991-03-30 | 1997-04-02 | 日本鋼管株式会社 | Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same |
JPH05230583A (en) * | 1992-02-25 | 1993-09-07 | Mitsubishi Alum Co Ltd | High strength al alloy sheet excellent in formability |
JPH05339668A (en) * | 1992-06-05 | 1993-12-21 | Kobe Steel Ltd | Rolled sheet of al-mg alloy for forming at very low temperature |
JP4637601B2 (en) * | 2005-02-09 | 2011-02-23 | Jx日鉱日石金属株式会社 | Manufacturing method of high strength and high conductivity copper alloy and high strength and high conductivity copper alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55152160A (en) * | 1979-05-02 | 1980-11-27 | Alusuisse | Production and use of aluminum strip or sheet |
JPS5939501A (en) * | 1982-08-30 | 1984-03-03 | 松下電工株式会社 | Manufacture of aggregate decorative wood |
JPS6223973A (en) * | 1985-07-22 | 1987-01-31 | Kobe Steel Ltd | Manufacture of aluminum alloy for automobile wheel |
-
1988
- 1988-10-27 JP JP27175888A patent/JPH02118050A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55152160A (en) * | 1979-05-02 | 1980-11-27 | Alusuisse | Production and use of aluminum strip or sheet |
JPS5939501A (en) * | 1982-08-30 | 1984-03-03 | 松下電工株式会社 | Manufacture of aggregate decorative wood |
JPS6223973A (en) * | 1985-07-22 | 1987-01-31 | Kobe Steel Ltd | Manufacture of aluminum alloy for automobile wheel |
Also Published As
Publication number | Publication date |
---|---|
JPH02118050A (en) | 1990-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
KR20160092028A (en) | Aluminium fin alloy and method of making the same | |
JPS62207851A (en) | Rolled aluminum alloy sheet for forming and its production | |
JPH07252571A (en) | Automobile aluminum alloy sheet and its production | |
WO2021070890A1 (en) | Aluminum alloy material | |
JP4001059B2 (en) | Method for producing aluminum alloy sheet with excellent bake resistance | |
JPH0547616B2 (en) | ||
JPS6050864B2 (en) | Aluminum alloy material for forming with excellent bending workability and its manufacturing method | |
JPH07278716A (en) | Aluminum alloy sheet for forming excellent in mechanical property and its production | |
JPH0547615B2 (en) | ||
JP3066091B2 (en) | Aluminum alloy rolled plate for hole enlarging and method for producing the same | |
JPH0565586A (en) | Aluminum alloy rooled sheet for forming and its production | |
JP3208234B2 (en) | Aluminum alloy sheet for forming process excellent in formability and method for producing the same | |
JPH0565587A (en) | Aluminum alloy rolled sheet for forming and its production | |
JPH0978168A (en) | Aluminum alloy sheet | |
JPH04160131A (en) | Al-mg-si alloy plate excellent in strength and formability, and its manufacture | |
JP2678675B2 (en) | Method for producing aluminum alloy sheet for forming having excellent deep drawability | |
KR102566987B1 (en) | High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same | |
CA3069499A1 (en) | High-strength corrosion-resistant aluminum alloy and method of making the same | |
WO2021070889A1 (en) | Aluminum alloy material | |
JPH09209068A (en) | High strength aluminum alloy excellent in hardenability | |
JPH03170635A (en) | Aluminum alloy for forming excellent in corrosion resistance and its manufacture | |
JP2003301249A (en) | Superplastic forming process of high-strength member made of aluminum alloy | |
JPH04210454A (en) | Manufacture of aluminum alloy rolled sheet for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |