JPS62207851A - Rolled aluminum alloy sheet for forming and its production - Google Patents

Rolled aluminum alloy sheet for forming and its production

Info

Publication number
JPS62207851A
JPS62207851A JP61051695A JP5169586A JPS62207851A JP S62207851 A JPS62207851 A JP S62207851A JP 61051695 A JP61051695 A JP 61051695A JP 5169586 A JP5169586 A JP 5169586A JP S62207851 A JPS62207851 A JP S62207851A
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
alloy
rolled
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61051695A
Other languages
Japanese (ja)
Inventor
Mamoru Matsuo
守 松尾
Toshio Komatsubara
俊雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP61051695A priority Critical patent/JPS62207851A/en
Publication of JPS62207851A publication Critical patent/JPS62207851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a rolled Al alloy sheet for forming which is superior in formability, and above all, elongating, bending and flanging properties to the conventional sheet by incorporating respectively prescribed ratios of Si and Mg therein and specifying the max. size of an intermetallic compd. in the matrix to a specific value or below. CONSTITUTION:The melt of the Al alloy contg. by wt%, 0.4%n2.5% Si and 0.1-1.2% Mg is continuously supplied between a pair of rolls cooled from the inside and the sheet solidified to 3-15mm thickness is continuously cast. The solidifying rate in this casting stage is required to be high and the cooling rate thereof is kept at >=100 deg.C/sec. The casting sheet is the subjected to a homogenization treatment at 450-600 deg.C at need, then to cold rolling down to a required thickness. The cold rolled sheet is subjected to a soln. heat treatment and hardening by the conventional method by which the objective rolled Al alloy sheet for forming having <=5mum max. size of the intermetallic compd. in the matrix is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車用のボディシートやエアクリーナー、
オイルタンクなどの如く、高強度と優れた成形加工性、
特に伸び、張出し性、曲げ性が要求される成形加工品に
使用されるアルミニウム合余圧延板およびその製造方法
に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention is applicable to automobile body seats, air cleaners,
High strength and excellent moldability, such as oil tanks, etc.
In particular, the present invention relates to an aluminum composite rolled plate used for molded products that require elongation, stretchability, and bendability, and a method for manufacturing the same.

従来の技術 従来一般に自動車用ボディシート等の成形加工用の自動
車用板材としては冷延鋼板が多用されていたが、最近で
は自動車車体を軽量化してその燃費を改善すること等を
目的とし、従来の冷延鋼板に代えてアルミニウム合金圧
延板を使用する要望が強まっている。
Conventional technology Conventionally, cold-rolled steel sheets have been widely used as automobile plate materials for forming automobile body sheets, etc., but recently, with the aim of reducing the weight of automobile bodies and improving their fuel efficiency, conventional There is a growing demand for aluminum alloy rolled plates to be used instead of cold rolled steel plates.

このような用途に供されるアルミニウム合金圧延板とし
ては、従来はAl−MCJ系の5052合金0材や51
82合金O材、あるいはAl−Cu系の2036合金T
合金理材、ざらにはAl−Mc+−3i系の6009合
金T合金理材、6010合金T合金理材等が適用されて
いる。
Conventionally, aluminum alloy rolled sheets used for such purposes include Al-MCJ-based 5052 alloy 0 material and 51
82 alloy O material or Al-Cu based 2036 alloy T
Al-Mc+-3i based 6009 alloy T alloy material, 6010 alloy T alloy material, etc. are used for alloy material and roughness.

発明が解決すべき問題点 前述のような従来のアルミニウム合金圧延板は、冷延鋼
板と比し、成形性、特に伸び、曲げ性、張出し性が劣る
Problems to be Solved by the Invention The conventional rolled aluminum alloy sheets as described above are inferior to cold rolled steel sheets in formability, particularly elongation, bendability, and stretchability.

すなわち前述のようなA2合金のうちでは、成形性の点
からは5052合金や5182合金などのAl−Mq系
合金が比較的良好でおり、また耐食性も良好であるが、
これらのAf−MQ系合金のO材は、成形加工時にリュ
ーダースマークが発生して外観不良を招くおそれが必る
とともに、焼付塗装後に強度が低下する欠点がある。こ
れらのAl−MO系合金にあけるリューダースマークの
発生を防止するための方法としては、レベリング等によ
り若干加工歪を与える方法があるが、この場合逆に成形
性が低下してしまうという問題があり、また焼付塗装後
の強度低下の問題は解消しない。ざらに2036合金等
のAi’−CU−Mg系合金は、強度に優れるとともに
成形加工時におけるリューダースマークの発生もないが
、成形性に劣り、また塗装焼付後の強度が不充分であり
、ざらに耐食性も劣る問題がある。一方6010601
0合金2−1’V1g−9i系合金は、強度に優れると
ともに成形加工時におけるリューダースマークの発生も
なく、ざらには耐食性に優れかつ焼付塗装後の強度も充
分にあるが、唯一の欠点としては、成形加工性が若干劣
ることが挙げられる。
That is, among the A2 alloys mentioned above, Al-Mq alloys such as 5052 alloy and 5182 alloy have relatively good formability, and also have good corrosion resistance.
The O materials of these Af-MQ alloys have the disadvantage that Lüders marks are generated during molding, which may lead to poor appearance, and the strength decreases after baking. One way to prevent the occurrence of Lüders marks in these Al-MO alloys is to apply slight processing distortion through leveling, etc., but this has the problem of reducing formability. Yes, and the problem of strength reduction after baking painting is not resolved. Ai'-CU-Mg alloys such as Zara 2036 alloy have excellent strength and do not produce Lüders marks during forming, but they have poor formability and insufficient strength after baking the paint. There is also the problem of poor corrosion resistance. On the other hand 6010601
0 Alloy 2-1'V1g-9i series alloy has excellent strength, does not generate Lüders marks during molding, has excellent corrosion resistance, and has sufficient strength after baking painting, but has the only drawback. The reason for this is that the molding processability is slightly inferior.

以上のように、従来のAl合金のうちでは、6000番
系のAl−Mq−3i系が、最も多くの優れた特性を兼
ね備えている。そこでAl−MCJ−8i系合金の唯一
の欠点である成形加工性、特に伸び、曲げ性、張出し性
が若干劣る点を解決することができれば、自動単車体ボ
ディシート等に使用される材料として極めて優れたAl
合金圧延板を提供することが可能となる。
As described above, among the conventional Al alloys, the 6000 series Al-Mq-3i series has the most excellent properties. Therefore, if the only drawback of Al-MCJ-8i alloy, which is that it has slightly poor formability, especially elongation, bendability, and extrusion properties, could be solved, it would be extremely useful as a material for use in automobile body sheets, etc. Excellent Al
It becomes possible to provide rolled alloy plates.

この発明は以上の事情を背景としてなされたもので、A
l−Mg−8i系合金の成形性、特に伸び、曲げ性、張
出し性の向上を図り、これによって強度、成形性、リュ
ーダースマークのないこと、耐食性焼付塗装後の強度の
いずれもが優れたAl合金圧延板を提供することを目的
とするものである。
This invention was made against the background of the above circumstances, and
We have improved the formability of the l-Mg-8i alloy, especially its elongation, bendability, and stretchability, resulting in excellent strength, formability, no Lüders mark, and corrosion-resistant strength after baking. The purpose is to provide an Al alloy rolled plate.

問題点を解決するための手段 本発明者等はAl−v+g−si系合金圧延板の成形性
、特に伸び、曲げ性、張出し性を向上させる手法につい
て種々実験・検討を重ねた結果、最終圧延板における金
属間化合物の最大サイズを5戸以下とすることが伸び、
曲げ性、張出し性の向上に有効であることを見出した。
Means for Solving the Problems As a result of repeated experiments and studies on methods for improving the formability, especially the elongation, bendability, and stretchability of Al-V+G-Si alloy rolled sheets, the inventors found that the final rolling The maximum size of intermetallic compounds in boards is increasing to 5 units or less,
It has been found that this is effective in improving bendability and stretchability.

そしてそのように最終圧延板における金属間化合物の最
大サイズを5νm以下とするためには、合金溶湯の鋳造
段階において、板厚3〜15mの板に直接連続鋳造して
しまうことが有効であることを見出し、この発明をなす
に至ったのである。
In order to reduce the maximum size of intermetallic compounds in the final rolled sheet to 5 νm or less, it is effective to directly and continuously cast the molten alloy into a sheet with a thickness of 3 to 15 m at the casting stage. They discovered this and came up with this invention.

具体的には、本願の第1発明のアルミニウム合金圧延板
は、3i0.4〜2.5%、Mgo、1〜1.2%を含
有し、かつ残部がAlおよび不可避的不純物よりなり、
しかもマトリックス中の金属間化合物の最大サイズが5
νm以下でおることを特徴とするものである。
Specifically, the aluminum alloy rolled plate of the first invention of the present application contains 0.4 to 2.5% of 3i, 1 to 1.2% of Mgo, and the balance consists of Al and inevitable impurities,
Moreover, the maximum size of intermetallic compounds in the matrix is 5
It is characterized by being less than or equal to νm.

また第2発明のアルミニウム合金圧延板は、Si0.4
〜2.5%、M(Jo、1〜1.2%を含有し、か’)
Cu 1.5%以下、Zn2.5%以下、Cr0.3%
以下、Mn0.6%以下、Zr0.3%以下のうちから
選ばれた1種または2種以上を含有し、残部がAlおよ
び不可避的不純物よりなり、しかもマトリックス中の金
属間化合物の最大サイズが5μm以下でおることを特徴
とするものである。
Further, the aluminum alloy rolled plate of the second invention has Si0.4
~2.5%, M (Jo, containing 1-1.2%, ka')
Cu 1.5% or less, Zn 2.5% or less, Cr 0.3%
The matrix contains one or more selected from 0.6% or less of Mn and 0.3% or less of Zr, and the remainder consists of Al and unavoidable impurities, and the maximum size of the intermetallic compound in the matrix is It is characterized by a thickness of 5 μm or less.

ざらに第3発明のアルミニウム合金圧延板製造方法は、
3i0.4〜2.5%、MC10.1〜1.2%を含有
し、かつ残部がAlおよび不可避的不純物よりなるアル
ミニウム合金の溶湯を、板厚3〜15sの板に連続鋳造
し、その後冷間圧延を施した後、溶体化処理・焼入れす
ることを特徴とするものである。
The method for producing rolled aluminum alloy plate according to the third invention is as follows:
A molten aluminum alloy containing 0.4 to 2.5% of 3i and 10.1 to 1.2% of MC, with the balance consisting of Al and inevitable impurities, is continuously cast into a plate with a thickness of 3 to 15 seconds, and then It is characterized by cold rolling, followed by solution treatment and quenching.

また第4発明のアルミニウム合金圧延板の製造方法は、
3i0.4〜2,5%、MCJo、1〜1.2%を含有
し、かつCu 1.5%以下、Zn2.5%以下、Or
o、3%以下、Mno、6%以下、Zr0.3%以下の
うちから選ばれた1種または2種以上を含有し、残部が
Aj2および不可避的不純物よりなるアルミニウム合金
の溶湯を、板厚3〜15履の板に連続鋳造し、その後冷
間圧延を施した後、溶体化処理・焼入れすることを特徴
とするものである。
Further, the method for manufacturing an aluminum alloy rolled plate according to the fourth invention includes:
Contains 0.4-2.5% of 3i, 1-1.2% of MCJo, and 1.5% or less of Cu, 2.5% or less of Zn, Or
A molten aluminum alloy containing one or more selected from O, 3% or less, Mno, 6% or less, and Zr 0.3% or less, with the remainder consisting of Aj2 and inevitable impurities, is It is characterized by continuous casting into plates of 3 to 15 shoes, followed by cold rolling, followed by solution treatment and quenching.

作   用 先ずこの発明における基本的な合金成分の限定理由につ
いて説明する。
Function First, the reason for limiting the basic alloy components in this invention will be explained.

Mq: MCIはこの発明の系のアルミニウム合金において必須
の合金成分で必って、強度および成形性に寄与する元素
である。MCIが0.1%未満では強度が不充分となっ
て自動車ボディーシート等として不適当となり、−万M
gが1,2%を越えれば延性および成形性が低下するか
ら、0.1〜1.2%の範囲内に限定した。
Mq: MCI is an essential alloy component in the aluminum alloy of the present invention, and is an element that necessarily contributes to strength and formability. If the MCI is less than 0.1%, the strength will be insufficient and it will be unsuitable for use as automobile body sheets, etc.
If g exceeds 1.2%, ductility and formability will decrease, so it is limited to a range of 0.1 to 1.2%.

Si: Siもこの発明の系のアルミニウム合金において必須の
合金成分であって、強度および成形性の向上に寄与する
元素である。3iが0.4%未満では強度が不足し、一
方2.5%を越えれば溶湯の流動性が低下して連続鋳造
が困難となる。したがって3iは0.4〜2.5%の範
囲内に限定した。
Si: Si is also an essential alloy component in the aluminum alloy of the present invention, and is an element that contributes to improving strength and formability. If 3i is less than 0.4%, the strength will be insufficient, while if it exceeds 2.5%, the fluidity of the molten metal will decrease, making continuous casting difficult. Therefore, 3i was limited to a range of 0.4 to 2.5%.

さらに本願の第2発明においては、Cu、Zn、Mn、
Cr、Zrのうちの1種または2種以上を添加したもの
とする。これらの添加理由および限定理由は次の通りで
おる。
Furthermore, in the second invention of the present application, Cu, Zn, Mn,
It is assumed that one or more of Cr and Zr is added. The reasons for these additions and limitations are as follows.

Cu17n: これらを添加することによって強度をより一層向上させ
ることができる。Cuが1.5%、znが2.5%をそ
れぞれ越えれば、耐食性が低下するとともに、連続鋳造
が困難となり、また特にCUが1.5%を越える場合は
成形性が低下する。したがってCUの上限は1.5%、
znの上限は2.5%とした。なおCLJSznの下限
は特に規定しないが、Cuが0.05%未満、znが0
.1%未満ではCu1znの添加効果が充分に得られな
いから、Cuは0、05%以上、znは0.1%以上添
加することが好ましい。
Cu17n: By adding these, the strength can be further improved. When Cu exceeds 1.5% and zn exceeds 2.5%, corrosion resistance decreases and continuous casting becomes difficult, and especially when CU exceeds 1.5%, formability decreases. Therefore, the upper limit of CU is 1.5%,
The upper limit of zn was set to 2.5%. Note that the lower limit of CLJSzn is not particularly specified, but Cu is less than 0.05% and zn is 0.
.. If it is less than 1%, the effect of adding Cu1zn cannot be sufficiently obtained, so it is preferable to add Cu in an amount of 0.05% or more and zn in an amount of 0.1% or more.

Cr、 Mn、zr : これらの元素はいずれも再結晶粒を微細化させて組織を
均一化するとともに強度向上に寄与する元素でおる。M
nが0.6%を越えれば成形性が低下し、またCr、z
rがそれぞれ0.3%を越えれば粗大な金属間化合物が
生じてしまう。したがってMnの上限は0.6%、Cr
1Zrの上限はそれぞれ0.3%とした。なおMn、 
Cr、 Zrの下限は特に規定しないが、Mnが0.0
5%未満、Or、zrがそれぞれ0.03%未満ではそ
れらの添加効果が充分に得られないから、Mnは0.0
5%以上、Cr、zrはそれぞれ0.03%以上添加す
ることが好ましい。
Cr, Mn, zr: These elements all contribute to making the recrystallized grains finer, making the structure more uniform, and improving the strength. M
If n exceeds 0.6%, formability decreases, and Cr, z
If r exceeds 0.3%, coarse intermetallic compounds will be formed. Therefore, the upper limit of Mn is 0.6%, Cr
The upper limit of 1Zr was set at 0.3%. Furthermore, Mn,
The lower limits of Cr and Zr are not particularly specified, but Mn is 0.0
If the content of Or and zr is less than 5%, and if each of Or and zr is less than 0.03%, the effects of these additions cannot be obtained sufficiently, so Mn is 0.0.
It is preferable to add 5% or more, and each of Cr and zr to add 0.03% or more.

上記の各元素のほか、通常のアルミニウム合金には不可
避的不純物としてFeが含有される。
In addition to the above-mentioned elements, ordinary aluminum alloys contain Fe as an inevitable impurity.

Feはこの発明においても特に重要な元素ではないが、
0.5%を越えて含有されれば晶出物量が増して成形性
を劣化させるから、Feは0.5%以下とすることが好
ましい。
Although Fe is not a particularly important element in this invention,
If Fe is contained in an amount exceeding 0.5%, the amount of crystallized substances will increase and the moldability will be deteriorated, so it is preferable that Fe is contained in an amount of 0.5% or less.

ざらに、上記各元素のほか、鋳塊結晶粒微細化のために
、T1、またはTiおよびBを添加しても良い。但し初
晶TiAl3粒子の晶出を防止するためには、Tiは0
.15%以下とすることが望ましく、またT i B2
粒子の生成を防止するためにはBはo、 oi%以下と
することが好ましい。゛本願第1発明および第2発明の
アルミニウム合金圧延板においては、上述のような成分
組成を有するのみならず、最終圧延板の圧延表面金属間
化合物の最大サイズが5μm以下で市ることが重要であ
る。このように金属間化合物の最大サイズを5μm以下
に規制することによって、成形性、特に曲げ性、伸び、
張出し性を向上させることができる。
In addition to the above-mentioned elements, T1 or Ti and B may be added to refine the ingot crystal grains. However, in order to prevent the crystallization of primary TiAl3 particles, Ti should be 0.
.. It is desirable that it be 15% or less, and T i B2
In order to prevent the generation of particles, it is preferable that B be at most 0.0% or less.゛It is important that the rolled aluminum alloy sheets of the first and second inventions of the present application not only have the above-mentioned composition, but also that the maximum size of intermetallic compounds on the rolled surface of the final rolled sheet is 5 μm or less. It is. By regulating the maximum size of intermetallic compounds to 5 μm or less, it is possible to improve formability, especially bendability, elongation,
The overhang property can be improved.

金属間化合物の最大サイズが5戸を越えれば、上)ホの
ような効果を得ることができない。このように最終圧延
板における金属間化合物のサイズを小ざくするためには
、後述するように、鋳造段階で連続鋳造により板厚3〜
15mの板に直接鋳造して、凝固速度を大きくすること
が好適である。
If the maximum size of the intermetallic compound exceeds 5 units, the effects described in (a) above cannot be obtained. In order to reduce the size of intermetallic compounds in the final rolled sheet, as described below, the sheet thickness is 3 to 30% by continuous casting at the casting stage.
It is preferred to cast directly into a 15 m plate to increase the solidification rate.

次に上述のようなアルミニウム合金圧延板の製造方法、
すなわち本願第3発明および第4発明について説明する
Next, a method for manufacturing an aluminum alloy rolled plate as described above,
That is, the third invention and the fourth invention of the present application will be explained.

この製造方法においては、先ず第1に、前述のような成
分組成のアルミニウム合金溶湯を鋳造するに必たって、
板厚3〜15mの板に連続鋳造することが重要である。
In this manufacturing method, first of all, in order to cast a molten aluminum alloy having the above-mentioned composition,
It is important to continuously cast plates with a thickness of 3 to 15 m.

その具体的方法としては、合金溶湯を内部から冷却され
た一対のロール間に連続的に供給するとともにそのロー
ルを連続的に回転させて板厚3〜15mに凝固した板を
連続的に引出す方法を適用することが好ましい。このよ
うに薄い板に直接連続鋳造することにより、高い凝固速
度を得ることができる。
The specific method is to continuously feed the molten alloy between a pair of rolls that are cooled from the inside, and then continuously rotate the rolls to continuously draw out the solidified plate to a thickness of 3 to 15 m. It is preferable to apply A high solidification rate can be obtained by direct continuous casting into thin plates in this manner.

既に述べたように最終圧延板の圧延表面にあける金属間
化合物の最大サイズを5μm以下とするためには、鋳造
時の凝固速度が高いことが必要であり、水系の合金では
冷却速度で100’C/ Sec以上、鋳造時のデンド
ライトアーム間隔で平均10μm以下が必要であること
が本発明者等の実験により判明しているが、板厚3〜1
5間の板に直接連続鋳造することによって、このような
条件を満たすことが可能となるのである。ここで、鋳造
板厚が3IrI!ri未満では鋳造自体が困難となり、
一方15mを越える場合はデンドライトアーム間隔を平
均10νm以下とすることが困難となり、最終圧延板に
おける金属間化合物最大サイズを5μm以下に抑制する
ことが困難となって、目的とする成形性、特に充分な伸
び、曲げ性、張出し性が得られなくなる。
As already mentioned, in order to keep the maximum size of the intermetallic compound formed on the rolled surface of the final rolled sheet to 5 μm or less, it is necessary to have a high solidification rate during casting. It has been found through experiments by the present inventors that it is necessary to have a dendrite arm spacing of 10 μm or less on average during casting, and a plate thickness of 3 to 1
It is possible to satisfy these conditions by directly continuous casting on the 5-piece plate. Here, the thickness of the cast plate is 3IrI! If it is less than ri, casting itself becomes difficult,
On the other hand, if the length exceeds 15 m, it becomes difficult to keep the dendrite arm spacing to 10 νm or less on average, and it becomes difficult to suppress the maximum size of intermetallic compounds in the final rolled sheet to 5 μm or less, making it difficult to achieve the desired formability, especially It becomes impossible to obtain proper elongation, bendability, and stretchability.

上述のように連続鋳造された板に対しては、必要に応じ
て450〜600℃で均質化処理を施した後、所要の厚
みまで冷間圧延を施す。この冷間圧延にあける圧延率は
、鋳造板厚および製品板厚に応じて定めれば良いが、通
常は20%程度以上とすることが好ましい。
The plate continuously cast as described above is subjected to homogenization treatment at 450 to 600° C. if necessary, and then cold rolled to a required thickness. The rolling rate for this cold rolling may be determined depending on the thickness of the cast plate and the thickness of the product plate, but it is usually preferably about 20% or more.

冷間圧延後には、溶体化処理・焼入れを行なう。After cold rolling, solution treatment and quenching are performed.

この溶体化処理および焼入れは常法に従って行なえば良
い。すなわち溶体化処理は、Al−VIQ−81系合金
における通常の溶体化処理温度(470〜600℃程度
)に加熱して行なえば良く、また焼入れは冷却速度にし
て5℃/ Sec程度以上あれば、強制空冷、ミスト焼
入れ、水焼入れ等のいずれでも良い。また溶体化処理温
度までの加熱は、結晶粒微細化のためには急速加熱が有
効であり、したがって連続加熱焼入炉もしくはソルトバ
ス炉を用いることが好ましい。
This solution treatment and quenching may be carried out according to conventional methods. In other words, solution treatment can be carried out by heating to the usual solution treatment temperature for Al-VIQ-81 alloys (about 470 to 600°C), and quenching can be performed at a cooling rate of about 5°C/Sec or more. , forced air cooling, mist quenching, water quenching, etc. may be used. In addition, rapid heating is effective in heating to the solution treatment temperature for grain refinement, and therefore it is preferable to use a continuous heating quenching furnace or a salt bath furnace.

なおこの発明の系の合金は熱処理型アルミニウム合金で
あるから、焼入れ後至温に放置することにより徐々に強
度を増し、3〜7日後に強度が飽和する。
Since the alloy of the present invention is a heat-treated aluminum alloy, the strength gradually increases by being left at a very high temperature after quenching, and the strength is saturated after 3 to 7 days.

実施例 第1表の合金番号1〜6に示す合金について、冷却され
た一対の回転ロール間に合金溶湯を連続的に供給する連
続鋳造法により、厚さ6mの板を連続鋳造した。得られ
た連続鋳造板を1繭まで冷間圧延した。
Examples Alloys shown in alloy numbers 1 to 6 in Table 1 were continuously cast into plates with a thickness of 6 m by a continuous casting method in which molten alloy was continuously supplied between a pair of cooled rotating rolls. The obtained continuous cast plate was cold rolled to one cocoon.

また同じく第1表の合金番号1〜6に示す合金について
、比較法としてのDC鋳造法によって400m厚のスラ
ブに鋳造し、これらに530〜560℃で10時間の均
質化処理を施した後、500℃で熱間圧延を開始して6
#EIllの熱延板とした。その熱延板を冷間圧延して
isの板とした。
Similarly, the alloys shown in alloy numbers 1 to 6 in Table 1 were cast into 400 m thick slabs by the DC casting method as a comparative method, and after being homogenized at 530 to 560°C for 10 hours, After starting hot rolling at 500℃ 6
A hot rolled sheet of #EIll was used. The hot-rolled sheet was cold-rolled to obtain an IS sheet.

以上のようにして得られた合金番号1〜6についての各
冷延板に対し、第2表に示すような条件の溶体化処理お
よび焼入れを施した。なお同一の成分組成の合金に関し
ては、連続鋳造を適用した冷延板(本発明材)、DC鋳
造を適用した冷延板(比較材)ともに同じ条件の溶体化
処理・焼入れを施した。
Each of the cold-rolled sheets of Alloy Nos. 1 to 6 obtained as described above was subjected to solution treatment and quenching under the conditions shown in Table 2. Regarding alloys having the same composition, both cold-rolled sheets subjected to continuous casting (present invention material) and cold-rolled sheets applied DC casting (comparison material) were subjected to solution treatment and quenching under the same conditions.

以上のような熱処理を施した後の本発明材(連続鋳造に
よるもの>、f3よび比較材(DC鋳造によるもの)の
板の圧延表面における金属間化合物の最大サイズを調べ
た結果を第3表に示す。
Table 3 shows the results of investigating the maximum size of intermetallic compounds on the rolled surface of the plates of the present invention material (continuous casting), f3, and comparative material (DC casting) after the heat treatment as described above. Shown below.

また前記熱処理を施した後、さらに少なくとも1週間以
上放置して常温時効させた後の各板の機械的強度(引張
強ざ、0.2%耐力)、伸び、エリクセン値、180°
曲げにおける最小曲げ半径を調べた結果と、常温時効後
に塗装焼付工程を想定した200’CX 30分加熱を
施した後の耐力を調べた結果とを第3表に併せて示す。
In addition, after the heat treatment, each plate was further left for at least one week to age at room temperature, and the mechanical strength (tensile strength, 0.2% proof stress), elongation, Erichsen value, and 180°
Table 3 also shows the results of examining the minimum bending radius in bending and the yield strength after heating at 200'CX for 30 minutes, assuming a paint baking process after aging at room temperature.

第   1   表 第 2 表 : 溶体化処理・焼入れ条件第   3 
  表 第3表から明らかなように、連続鋳造により6mの板に
直接鋳造して得られた本発明材の場合はいずれも最終板
における金属間化合物の最大サイズが5μm以下となっ
ており、この場合は、DC鋳造法によって400履厚の
スラブを鋳造して得られた比較材(最終板における金属
間化合物最大サイズ12〜16μm)と比べて、成形性
が向上している。
Table 1 Table 2: Solution treatment/quenching conditions No. 3
As is clear from Table 3, in the case of the present invention materials obtained by direct casting into 6 m plates by continuous casting, the maximum size of intermetallic compounds in the final plate was 5 μm or less; In this case, the formability was improved compared to a comparative material (maximum intermetallic compound size in the final plate of 12 to 16 μm) obtained by casting a 400 mm thick slab using the DC casting method.

なおいずれの場合も塗装焼付けを規定した200’CX
30分の加熱によって耐力が向上しており、このことか
ら焼付硬化能を有することが判る。また、いずれの場合
も成形加工時におけるリューダースマークの発生は認め
られなかった。したがって従来のAt1−Mg−5i系
合金の長所で必るリューダースマークの発生がない点、
および焼付硬化能を有する点は、本発明材の場合も失わ
れていなことが判る。
In both cases, 200'CX stipulates paint baking.
The yield strength was improved by heating for 30 minutes, which indicates that it has bake hardening ability. In addition, no Lüders mark was observed during the molding process in any case. Therefore, the advantage of the conventional At1-Mg-5i alloy is that it does not generate the Luders marks,
It can be seen that the properties of bake hardening ability are not lost even in the case of the material of the present invention.

発明の効果 前述の実施例からも明らかなようにこの発明のAl−M
9−s を系成形加工用アルミニウム合金圧延板は従来
の通常の6010合金等のAl−MCl−81系合金(
6000番系合金)圧延板と比較し、成形性、特に伸び
、曲げ性、張出し性が優れている。
Effects of the Invention As is clear from the above examples, the Al-M of this invention
9-s type aluminum alloy rolled plate for forming process is made of conventional Al-MCl-81 type alloy such as 6010 alloy (
6000 series alloy) has excellent formability, especially elongation, bendability, and extensibility, compared to rolled sheets.

すなわちこの発明によるアルミニウム合金板は、従来の
6000番系合金の長所である強度および耐食性に優れ
かつリューダースマークの発生がないとともに焼付塗装
後の温度が高いという点に加えて、従来の6000番系
合金の唯一の欠点でおる成形性が若干劣る点を解決して
、前記の従来からの各種の長所と優れた成形性、特に伸
び、曲げ性、張出し性とを兼ね備えたものである。
In other words, the aluminum alloy plate according to the present invention has the advantages of conventional No. 6000 series alloys, such as excellent strength and corrosion resistance, no Lüders marks, and a high temperature after baking coating. This alloy solves the only drawback of the alloys, which is that the formability is slightly inferior, and combines the above-mentioned various advantages with excellent formability, especially elongation, bendability, and extensibility.

したがってこの発明のアルミニウム合金圧延板は、上記
緒特性が要求される自動車車体ボディシートの用途に好
適に使用することができ、またそればかりでなく、その
他の成形加工品の用途、例えばホイールやオイルタンク
、エアクリーナ等の自動車部品、あるいは各種キャップ
やブラインド、アルミ化、家庭用器物、計器カバー、電
気機器のシャーシー等に用いても優れた性能を発揮し得
ることはもちろんでおる。
Therefore, the aluminum alloy rolled sheet of the present invention can be suitably used for automobile body sheets which require the above-mentioned characteristics, and can also be used for other formed products, such as wheels and oil. It goes without saying that it can exhibit excellent performance when used in automobile parts such as tanks and air cleaners, various caps and blinds, aluminium, household appliances, instrument covers, chassis of electrical equipment, etc.

Claims (4)

【特許請求の範囲】[Claims] (1)Si0.4〜2.5%(重量%、以下同じ)、M
g0.1〜1.2%を含有し、かつ残部がAlおよび不
可避的不純物よりなり、しかもマトリックス中の金属間
化合物の最大サイズが5μm以下であることを特徴とす
る成形加工用アルミニウム合金圧延板。
(1) Si0.4-2.5% (weight%, same below), M
An aluminum alloy rolled sheet for forming processing, characterized in that the aluminum alloy contains 0.1 to 1.2% of g, the remainder consists of Al and unavoidable impurities, and the maximum size of intermetallic compounds in the matrix is 5 μm or less. .
(2)Si0.4〜2.5%、Mg0.1〜1.2%を
含有し、かつCu1.5%以下、Zn2.5%以下、C
r0.3%以下、Mn0.6%以下、Zr0.3%以下
のうちから選ばれた1種または2種以上を含有し、残部
がAlおよび不可避的不純物よりなり、しかもマトリッ
クス中の金属間化合物の最大サイズが5μm以下である
ことを特徴とする成形加工用アルミニウム合金圧延板。
(2) Contains 0.4-2.5% Si, 0.1-1.2% Mg, and 1.5% or less Cu, 2.5% or less Zn, C
Contains one or more selected from r0.3% or less, Mn0.6% or less, and Zr0.3% or less, with the remainder consisting of Al and inevitable impurities, and furthermore, an intermetallic compound in the matrix. An aluminum alloy rolled sheet for forming processing, characterized in that the maximum size of the aluminum alloy is 5 μm or less.
(3)Si0.4〜2.5%、Mg0.1〜1.2%を
含有し、かつ残部がAlおよび不可避的不純物よりなる
アルミニウム合金の溶湯を、板厚3〜15mmの板に連
続鋳造し、その後冷間圧延を施した後、溶体化処理・焼
入れすることを特徴とするアルミニウム合金圧延板の製
造方法。
(3) Continuous casting of molten aluminum alloy containing 0.4 to 2.5% Si and 0.1 to 1.2% Mg, with the balance consisting of Al and unavoidable impurities, into a plate with a thickness of 3 to 15 mm. A method for manufacturing an aluminum alloy rolled sheet, which comprises cold rolling, followed by solution treatment and quenching.
(4)Si0.4〜2.5%、Mg0.1〜1.2%を
含有し、かつCu1.5%以下、Zn2.5%以下、C
r0.3%以下、Mn0.6%以下、Zr0.3%以下
のうちから選ばれた1種または2種以上を含有し、残部
がAlおよび不可避的不純物よりなるアルミニウム合金
の溶湯を、板厚3〜15mmの板に連続鋳造し、その後
冷間圧延を施した後、溶体化処理・焼入れすることを特
徴とするアルミニウム合金圧延板の製造方法。
(4) Contains 0.4-2.5% Si, 0.1-1.2% Mg, and 1.5% or less Cu, 2.5% or less Zn, C
A molten aluminum alloy containing one or more selected from r0.3% or less, Mn0.6% or less, and Zr0.3% or less, with the balance consisting of Al and unavoidable impurities, is A method for producing a rolled aluminum alloy plate, which comprises continuous casting into a plate of 3 to 15 mm, followed by cold rolling, followed by solution treatment and quenching.
JP61051695A 1986-03-10 1986-03-10 Rolled aluminum alloy sheet for forming and its production Pending JPS62207851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051695A JPS62207851A (en) 1986-03-10 1986-03-10 Rolled aluminum alloy sheet for forming and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051695A JPS62207851A (en) 1986-03-10 1986-03-10 Rolled aluminum alloy sheet for forming and its production

Publications (1)

Publication Number Publication Date
JPS62207851A true JPS62207851A (en) 1987-09-12

Family

ID=12894034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051695A Pending JPS62207851A (en) 1986-03-10 1986-03-10 Rolled aluminum alloy sheet for forming and its production

Country Status (1)

Country Link
JP (1) JPS62207851A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278245A (en) * 1986-02-21 1987-12-03 Sky Alum Co Ltd Aluminum-alloy rolled plate for forming and its production
JPH036348A (en) * 1989-06-03 1991-01-11 Kobe Steel Ltd Aluminum alloy for automobile panel excellent in chemical conversion treating property and its production
JPH0387328A (en) * 1989-08-29 1991-04-12 Nippon Light Metal Co Ltd Aluminum alloy sheet for forming having excellent corrosion resistance and its manufacture
JPH03188245A (en) * 1989-12-18 1991-08-16 Nippon Light Metal Co Ltd Manufacture of aluminum alloy sheet excellent in formability
JPH0432532A (en) * 1990-05-29 1992-02-04 Sky Alum Co Ltd Aluminum alloy sheet for zinc phosphate treatment and its manufacture
JPH0559477A (en) * 1991-08-28 1993-03-09 Nippon Light Metal Co Ltd Aluminum alloy for forging
CH685707A5 (en) * 1991-12-16 1995-09-15 Alusuisse Lonza Services Ag Body panel.
FR2742165A1 (en) * 1995-12-12 1997-06-13 Pechiney Rhenalu PROCESS FOR PRODUCING HIGH STRENGTH AND FORMABILITY ALUMINUM ALLOY THIN STRIPS
JP2000144294A (en) * 1998-11-12 2000-05-26 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and hem workability
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
WO2005056859A1 (en) * 2003-12-11 2005-06-23 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
WO2005064025A1 (en) * 2003-12-26 2005-07-14 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN BAKE-HARDENABILITY
CN100415917C (en) * 2001-03-28 2008-09-03 住友轻金属工业株式会社 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
JP2010222710A (en) * 2000-03-27 2010-10-07 Nippon Steel Corp Aluminum alloy for automotive body having excellent formability and method for producing the same
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677371A (en) * 1979-11-27 1981-06-25 Mitsubishi Keikinzoku Kogyo Kk Manufacture of aluminum sheet with high strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677371A (en) * 1979-11-27 1981-06-25 Mitsubishi Keikinzoku Kogyo Kk Manufacture of aluminum sheet with high strength

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278245A (en) * 1986-02-21 1987-12-03 Sky Alum Co Ltd Aluminum-alloy rolled plate for forming and its production
JPH036348A (en) * 1989-06-03 1991-01-11 Kobe Steel Ltd Aluminum alloy for automobile panel excellent in chemical conversion treating property and its production
JPH0387328A (en) * 1989-08-29 1991-04-12 Nippon Light Metal Co Ltd Aluminum alloy sheet for forming having excellent corrosion resistance and its manufacture
JPH03188245A (en) * 1989-12-18 1991-08-16 Nippon Light Metal Co Ltd Manufacture of aluminum alloy sheet excellent in formability
JPH0432532A (en) * 1990-05-29 1992-02-04 Sky Alum Co Ltd Aluminum alloy sheet for zinc phosphate treatment and its manufacture
JPH0559477A (en) * 1991-08-28 1993-03-09 Nippon Light Metal Co Ltd Aluminum alloy for forging
CH685707A5 (en) * 1991-12-16 1995-09-15 Alusuisse Lonza Services Ag Body panel.
US6193818B1 (en) * 1995-12-12 2001-02-27 Pechiney Rhenalu Method for making thin, high-strength, highly formable aluminium alloy strips
WO1997021508A1 (en) * 1995-12-12 1997-06-19 Pechiney Rhenalu Method for making thin, high-strength, highly formable aluminium alloy strips
FR2742165A1 (en) * 1995-12-12 1997-06-13 Pechiney Rhenalu PROCESS FOR PRODUCING HIGH STRENGTH AND FORMABILITY ALUMINUM ALLOY THIN STRIPS
JP2000144294A (en) * 1998-11-12 2000-05-26 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and hem workability
JP2010222710A (en) * 2000-03-27 2010-10-07 Nippon Steel Corp Aluminum alloy for automotive body having excellent formability and method for producing the same
CN100415917C (en) * 2001-03-28 2008-09-03 住友轻金属工业株式会社 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JPWO2005056859A1 (en) * 2003-12-11 2008-04-17 日本軽金属株式会社 Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
WO2005056859A1 (en) * 2003-12-11 2005-06-23 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
JP4577218B2 (en) * 2003-12-11 2010-11-10 日本軽金属株式会社 Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
EP1715067A4 (en) * 2003-12-26 2007-10-31 Nippon Light Metal Co METHOD FOR PRODUCING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN BAKE-HARDENABILITY
JPWO2005064025A1 (en) * 2003-12-26 2008-04-17 日本軽金属株式会社 Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness
EP1715067A1 (en) * 2003-12-26 2006-10-25 Nippon Light Metal, Co., Ltd. METHOD FOR PRODUCING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN BAKE-HARDENABILITY
WO2005064025A1 (en) * 2003-12-26 2005-07-14 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN BAKE-HARDENABILITY
JP2015208748A (en) * 2014-04-23 2015-11-24 日本軽金属株式会社 Manufacturing method of aluminum alloy billet and aluminum alloy billet

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
JPS58224141A (en) Cold roller aluminum alloy plate for forming and its manufacture
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JPH07252571A (en) Automobile aluminum alloy sheet and its production
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP2671121B2 (en) Rolled aluminum alloy sheet for forming, which has excellent elongation, bendability, and overhanging property, and method for producing the same
CA2540409C (en) Aluminum alloy sheet excellent in resistance to softening by baking
JPH09249950A (en) Production of aluminum alloy sheet excellent in formability and hardenability in coating/baking
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH0547615B2 (en)
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JPH0547616B2 (en)
JPH0480979B2 (en)
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production