JPWO2005064025A1 - Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness - Google Patents

Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness Download PDF

Info

Publication number
JPWO2005064025A1
JPWO2005064025A1 JP2005516601A JP2005516601A JPWO2005064025A1 JP WO2005064025 A1 JPWO2005064025 A1 JP WO2005064025A1 JP 2005516601 A JP2005516601 A JP 2005516601A JP 2005516601 A JP2005516601 A JP 2005516601A JP WO2005064025 A1 JPWO2005064025 A1 JP WO2005064025A1
Authority
JP
Japan
Prior art keywords
casting
aluminum alloy
less
ingot
based aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005516601A
Other languages
Japanese (ja)
Inventor
敏也 穴見
敏也 穴見
趙 丕植
丕植 趙
達由樹 小林
達由樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Publication of JPWO2005064025A1 publication Critical patent/JPWO2005064025A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

【課題】 アルミニウム合金板の高強度化、低コスト化およびプレス成形性、ベークハード性の向上。
【解決手段】 Mg:0.3〜1.0wt%、Si:0.3〜1.5wt%、Cu:1.0wt%以下(0%を含む)、Fe:1.2wt%以下(0%を含む)を含有すると共に、必要に応じてMn:0.1〜0.7wt%および/またはCr:0.1〜0.3%を含み、残部AlからなるAl-Mg-Si系アルミニウム合金溶湯を、凝固時の平均冷却速度を20℃/s以上として双ベルト鋳造し、その際、鋳造機から出てくる鋳塊温度を250℃以下とし、その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延し、連続焼鈍炉にて溶体化処理することを特徴とするベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法。
【選択図】 なし
PROBLEM TO BE SOLVED: To increase the strength and cost of an aluminum alloy plate and to improve press formability and bake hardenability.
SOLUTION: In addition to containing Mg: 0.3 to 1.0 wt%, Si: 0.3 to 1.5 wt%, Cu: 1.0 wt% or less (including 0%), Fe: 1.2 wt% or less (including 0%), The average cooling rate during solidification of an Al-Mg-Si based aluminum alloy melt containing Mn: 0.1 to 0.7 wt% and/or Cr: 0.1 to 0.3%, and the balance Al, if necessary, at 20°C/s or more As a twin belt casting, the temperature of the ingot coming out of the casting machine was set to 250°C or less, and then the sheet was rolled to the final plate thickness only by cold rolling without homogenizing treatment or hot rolling. A method for producing an Al-Mg-Si-based aluminum alloy sheet having excellent bake hardness, which is characterized by performing solution treatment at.
[Selection diagram] None

Description

本発明は、Al-Mg-Si系合金板の製造方法に関する。本発明は、Alの他に必須の成分として所定量のMg、Siを含み、さらに場合によっては所定量のFe、Cu、MnおよびCrを含むAl合金溶湯を使用し、これを連続鋳造する際、凝固時の平均冷却速度を20℃/s以上として鋳造し、鋳造機から出てくる際の鋳塊温度を250℃以下とするか、あるいは、鋳造機への溶湯注入から2分以内に鋳塊温度が250℃以下となるように鋳塊を冷却し、さらに、その後均質化処理や熱間圧延をせずに冷間圧延のみで最終板厚まで圧延した後、連続焼鈍炉に於いて溶体化処理を行うことを特徴とするAl-Mg-Si系アルミニウム合金板の製造方法に関するものである。本発明によって得られるAl-Mg-Si系合金板は、ベークハード性に優れるので、その特性を生かして、自動車等の車両用、家庭電化製品用等の外板材あるいは建築材料等として幅広く活用することができる。   The present invention relates to a method for manufacturing an Al-Mg-Si alloy plate. The present invention contains a predetermined amount of Mg, Si as an essential component in addition to Al, and optionally uses a predetermined amount of Fe, Cu, Mn and Cr Al alloy molten metal, when continuously casting this , Casting with an average cooling rate during solidification of 20°C/s or more, and the ingot temperature when coming out of the casting machine is 250°C or less, or casting within 2 minutes after pouring the molten metal into the casting machine The ingot is cooled so that the ingot temperature becomes 250°C or less, and then it is rolled to the final plate thickness only by cold rolling without homogenizing treatment or hot rolling, and then the solution is melted in a continuous annealing furnace. The present invention relates to a method for manufacturing an Al-Mg-Si-based aluminum alloy plate, which is characterized by performing a chemical treatment. The Al-Mg-Si alloy plate obtained by the present invention is excellent in bake hardness, so by taking advantage of its characteristics, it can be widely used as an outer plate material for automobiles, household appliances, etc., a building material, etc. be able to.

たとえば自動車用パネル材としては従来から冷延鋼板が使用されてきた。しかし、最近、燃費節減、排ガス低減などを目的とする車体の軽量化対策として、軽量で比強度が高く且つ成形加工性にも優れたAl合金材を使用する傾向が急速に高まっている。中でも、美観向上のために塗装処理して用いられることの多い自動車用Al系合金板としては、ベークハード性に優れたAl-Mg-Si系合金が注目され、一部で実用化が進められている。   For example, cold-rolled steel sheets have been conventionally used as automotive panel materials. However, recently, as a measure to reduce the weight of a vehicle body for the purpose of saving fuel consumption, reducing exhaust gas, etc., there is a rapidly increasing tendency to use an Al alloy material which is lightweight and has high specific strength and excellent formability. Among them, Al-Mg-Si alloys, which have excellent bake hardness, have attracted attention as Al-based alloy plates for automobiles that are often used after being coated for the purpose of improving the appearance. ing.

ところで、Al合金板の製造方法として従来から一般的に実施されているのは、半連続鋳造法等によって製造した鋳塊に面削処理や均質化熱処理を施した後、熱間圧延、冷間圧延、焼鈍等を順次行なう方法である。この様な工程を経て製造される従来のAl合金板は、プレス成形性が良好であると共に、ベークハード性も良好であるために、需要者の要求を一応満足するものであった。   By the way, as a method for producing an Al alloy sheet, conventionally, it is generally practiced that after subjecting an ingot produced by a semicontinuous casting method or the like to chamfering treatment or homogenizing heat treatment, hot rolling, cold rolling This is a method of sequentially performing rolling, annealing, and the like. The conventional Al alloy sheet manufactured through such steps has a good press formability and a good bake hardness, so that it has met the demands of consumers.

ところが近年における需要者の要求は一段と厳しくなっており、軽量化を増進するために更に高い強度を求める傾向があるばかりでなく、成形性やベークハード性においても一層の向上が望まれており、更には生産性向上によるコストダウンの要求もさらに高まっている。   However, in recent years, the demands of consumers have become more severe, and not only has there been a tendency to require even higher strength in order to improve weight reduction, but further improvement in moldability and bake hardness is also desired, Furthermore, there is an increasing demand for cost reduction by improving productivity.

こうした要求に沿う比較的新しいAl合金板の製造技術として、連続鋳造により移動帯板とした後、直ちに圧延工程に送って熱間圧延および冷間圧延を行なう手法(以下、連鋳・直送圧延法ということがある)を採用し、面削や均質化熱処理を省略する方法が検討されている(特開昭55−27497号、特公昭62−54182号等)。この方法によれば、面削や均質化熱処理の省略によるコストダウンを図ることができると共に、鋳造工程で過飽和に固溶した固溶元素が均質化熱処理時に析出するといったことも起こらないので、固溶強化による高強度化も増進されるといった利点がある。
特開昭55−27497号公報 特公昭62−54182号公報
As a relatively new Al alloy sheet manufacturing technology that meets these demands, a method of performing hot casting and cold rolling immediately after rolling into a moving strip by continuous casting (hereinafter, continuous casting/direct rolling method) However, a method of omitting chamfering and homogenizing heat treatment has been studied (JP-A-55-27497, JP-B-62-54182, etc.). According to this method, it is possible to reduce the cost by omitting the chamfering and homogenization heat treatment, and since the solid solution element that is solid-soluted to supersaturation in the casting step does not precipitate during the homogenization heat treatment, There is an advantage that the strengthening by melt strengthening is also promoted.
JP-A-55-27497 Japanese Patent Publication No. 62-54182

Al合金溶湯を用いて連続鋳造した後熱間圧延し、更に冷間圧延を行なってAl合金板を製造する際において、特に連続鋳造、熱間圧延、冷間圧延および中間焼鈍の一連の工程における過飽和固溶元素の析出を可及的に抑制し、最終冷間圧延製品の強度を高めると共に、ベークハード性やプレス成形性を一層改善することのできる方法も提唱されている(特開平7−252616)。この方法は、特にMg、Mn、Siの様な合金元素の含有量が特定されたAl合金溶湯を使用し、これを連続鋳造した後熱間圧延し、更に冷間圧延を行ってAl-Mg-Si系合金板を製造するものであるが、その際、連続鋳造時および熱間圧延後の冷却速度を規定すると共に、その後に行なわれる冷間圧延後の熱処理条件を工夫することによって、プレス成形性やベークハード性等の改善されたAl-Mg-Si系合金板を得るものである。
特開平7−252616号公報
After continuously casting using an Al alloy molten metal, hot rolling, when further cold rolling to produce an Al alloy sheet, especially in a series of steps of continuous casting, hot rolling, cold rolling and intermediate annealing A method has also been proposed in which the precipitation of supersaturated solid solution elements is suppressed as much as possible, the strength of the final cold rolled product is increased, and the bake hardness and press formability are further improved (JP-A-7- 252616). This method uses, in particular, a molten Al alloy in which the content of alloying elements such as Mg, Mn, and Si is specified, and continuously hot-rolls this, and then cold-rolls the Al-Mg. -Si-based alloy sheet is manufactured.At that time, the cooling rate during continuous casting and after hot rolling is regulated, and the heat treatment condition after cold rolling that is performed thereafter is devised. It is intended to obtain an Al-Mg-Si based alloy sheet with improved formability and bake hardenability.
JP-A-7-252616

こうした連鋳・直送圧延法において採用される連続鋳造法として現在実用化されているのは、水冷式連続鋳造法(固定式の水冷式連鋳鋳型から板状に成形されて出てくる連鋳片を冷却水で直接冷却固化し、連続的に鋳造する方法)、ハンターエンジニアリング社で開発された双ロール鋳造法(回転する一対の冷却ロール間に溶湯を供給し、該ロール間で冷却固化することにより連続的に鋳造する方法)、ハザレー社で開発されたベルト式連続鋳造法(可動式の2つのベルト状冷却部材の間に溶湯を供給し、該ベルト間で冷却固化させながら連続的に板状に鋳造する方法)、スイス・アルミニウム社で開発されたブロック式連続鋳造法(可動式の2つのブロック状冷却部材の間に溶湯を供給し、該ブロック間で冷却固化させながら連続的に板状に鋳造する方法)などである。   The continuous casting method adopted in such continuous casting/direct rolling method is currently in practical use as a water-cooled continuous casting method (continuous casting that is formed into a plate shape from a fixed water-cooled continuous casting mold). A piece is directly cooled and solidified with cooling water and continuously cast), a twin roll casting method developed by Hunter Engineering Co., Ltd. (a molten metal is supplied between a pair of rotating cooling rolls, and solidified by cooling between the rolls). Continuous casting method), a belt-type continuous casting method developed by Hatherley Co. (supplying molten metal between two movable belt-like cooling members, continuously cooling and solidifying between the belts). Plate-shaped casting method), a block-type continuous casting method developed by Swiss Aluminum Co., Ltd. (molten metal is supplied between two movable block-shaped cooling members and continuously solidified while cooling and solidifying between the blocks). Plate-shaped casting method) and the like.

ところが、現在実用化されている連鋳・直送圧延法では、連続鋳造および熱間圧延後に行なわれる冷間圧延工程で、加工割れなどを防止するために350〜500℃程度の比較的低温で中間焼鈍が行なわれるが、この中間焼鈍工程で、過飽和固溶元素の析出が起こり、最終冷間圧延製品の高強度化を阻害するという問題が生じている。また、上述のような方法すなわち、特にMg、Mn、Siの様な合金元素の含有量が特定されたAl合金溶湯を使用し、これを連続鋳造した後に熱間圧延し、更に冷間圧延をなってAl-Mg-Si系合金板を製造する際に、連続鋳造時および熱間圧延後の冷却速度を規定すると共に、その後に行なわれる冷間圧延後の熱処理条件を工夫することによって、プレス成形性やベークハード性等の改善されたAl-Mg-Si系合金板を得る方法では、連続鋳造後の熱間圧延、冷間圧延後の熱処理が必要となるため、コスト高となり連続鋳造の利点を生かすことができないという問題がある。しかも、得られるAl合金板には、プレス成形性やベークハード性においても、尚改善の余地が残されている。   However, in the continuous casting/direct rolling method currently in practical use, in the cold rolling process performed after continuous casting and hot rolling, in order to prevent processing cracks, etc. Although annealing is performed, precipitation of supersaturated solid solution elements occurs in this intermediate annealing step, and there is a problem in that the strength of the final cold rolled product is hindered. Further, the method as described above, specifically, Mg, Mn, using the Al alloy molten metal content of the alloying elements such as Si is specified, hot-rolled after continuously casting this, further cold rolling When producing an Al-Mg-Si alloy sheet, the cooling rate during continuous casting and after hot rolling is regulated, and by devising the heat treatment conditions after cold rolling that is performed thereafter, the press In the method of obtaining an Al-Mg-Si alloy plate with improved formability and bake hardness, hot rolling after continuous casting and heat treatment after cold rolling are required, resulting in high cost and continuous casting. There is a problem that the advantage cannot be utilized. Moreover, the obtained Al alloy sheet still has room for improvement in press formability and bake hardenability.

本発明は、従来技術が有する上記の課題に着目してなされたものであって、Al-Mg-Si系アルミニウムを双ベルト鋳造する際、凝固時の平均冷却速度を20℃/s以上として鋳造して鋳造機から出てくる鋳塊温度を250℃以下とし、または、鋳造機への溶湯注入から2分以内に鋳塊温度が250℃以下となるように鋳塊を冷却し、さらに、その後均質化処理や熱間圧延せずに冷間圧延のみで最終板厚まで圧延した後、連続焼鈍炉にて溶体化処理することを特徴とする、ベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法に関するものである。   The present invention has been made by paying attention to the above problems of the prior art, and when twin-belt casting Al-Mg-Si-based aluminum, the average cooling rate during solidification is 20° C./s or more and casting is performed. Then the ingot temperature coming out of the casting machine is 250°C or lower, or the ingot is cooled so that the ingot temperature becomes 250°C or lower within 2 minutes after the molten metal is injected into the casting machine, and then, An Al-Mg-Si system with excellent bake hardness, characterized in that it is subjected to solution treatment in a continuous annealing furnace after rolling to the final plate thickness only by cold rolling without homogenization treatment or hot rolling. The present invention relates to a method for manufacturing an aluminum alloy plate.

上記課題を解決する第1の発明は、Mg:0.3〜1.0wt%、Si:0.3〜1.5wt%、Cu:1.0wt%以下(0%を含む)、Fe:1.2wt%以下(0%を含む)を含有すると共に、必要に応じてMn:0.1〜0.7wt%および/またはCr:0.1〜0.3%を含み、残部AlからなるAl-Mg-Si系アルミニウム合金溶湯を、凝固時の平均冷却速度を20℃/s以上として双ベルト鋳造し、その際、鋳造機から出てくる鋳塊温度を250℃以下とし、その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延し、連続焼鈍炉にて溶体化処理することを要旨とするベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法である。   The first invention for solving the above-mentioned problems is Mg: 0.3 to 1.0 wt%, Si: 0.3 to 1.5 wt%, Cu: 1.0 wt% or less (including 0%), Fe: 1.2 wt% or less (0% Average) during solidification of an Al-Mg-Si-based aluminum alloy melt containing the balance Al) and Mn: 0.1 to 0.7 wt% and/or Cr: 0.1 to 0.3%, and the balance Al. Twin belt casting is performed at a speed of 20°C/s or more, and the ingot temperature coming out of the casting machine is set to 250°C or less, and then the final plate thickness is obtained only by cold rolling without homogenizing treatment or hot rolling. It is a method for producing an Al-Mg-Si-based aluminum alloy sheet having excellent bake hardness, which is characterized by rolling to a continuous annealing furnace and solution treatment in a continuous annealing furnace.

上記課題を解決する第2の発明は、Mg:0.3〜1.0wt%、Si:0.3〜1.5wt%、Cu:1.0wt%以下(0%を含む)、Fe:1.2wt%以下(0%を含む)を含有すると共に、必要に応じてMn:0.1〜0.7wt%および/またはCr:0.1〜0.3%を含み、残部AlからなるAl-Mg-Si系アルミニウム合金溶湯を、凝固時の平均冷却速度を20℃/s以上として双ベルト鋳造し、その際、鋳造機への溶湯注入から2分以内に鋳塊温度が250℃以下となるよう鋳塊を冷却し、その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延し、連続焼鈍炉にて溶体化処理することを要旨とするベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法である。   The second invention for solving the above-mentioned problems is Mg: 0.3 to 1.0 wt%, Si: 0.3 to 1.5 wt%, Cu: 1.0 wt% or less (including 0%), Fe: 1.2 wt% or less (0% Average) during solidification of an Al-Mg-Si-based aluminum alloy melt containing the balance Al and containing Mn: 0.1 to 0.7 wt% and/or Cr: 0.1 to 0.3% and the balance Al. Twin-belt casting is performed at a speed of 20°C/s or more, at which time the ingot is cooled so that the ingot temperature becomes 250°C or less within 2 minutes after pouring the molten metal into the casting machine, and then homogenized or hot-worked. It is a method for producing an Al-Mg-Si-based aluminum alloy plate with excellent bake hardness, which is characterized by rolling to the final plate thickness only by cold rolling without rolling and performing solution treatment in a continuous annealing furnace. ..

平均冷却速度を20℃/s以上とした理由は、平均冷却速度が20℃/s未満では、凝固時に粗大なMg2Siが晶出しやすく、この粗大なMg2Siは連続焼鈍炉による溶体化処理で十分溶け込ませることが難しいために、結果としてベークハード性が劣るからである。The reason for setting the average cooling rate to 20°C/s or more is that when the average cooling rate is less than 20°C/s, coarse Mg 2 Si is likely to crystallize during solidification, and this coarse Mg 2 Si is solution-treated by a continuous annealing furnace. This is because it is difficult to sufficiently dissolve in the treatment, and as a result, the bake hardness is poor.

鋳造機から出てくる際の鋳塊温度を250℃以下とした理由は、当該温度が250℃よりも高温の場合、鋳塊の冷却過程でMg2Siが析出するため、連続焼鈍炉による最終板の溶体化処理に必要な温度・時間が増大すると共に、結果としてベークハード性が劣るためである。The reason the ingot temperature when coming out of the casting machine is 250°C or lower is that when the temperature is higher than 250°C, Mg 2 Si precipitates in the cooling process of the ingot, so that the final temperature in the continuous annealing furnace This is because the temperature and time required for solution treatment of the plate increase and, as a result, the bake hardenability deteriorates.

均質化処理もしくは熱間圧延しないこととした理由は、鋳造および冷却過程でMg2Siの晶出、析出を抑えても、均質化処理もしくは熱間圧延するとMg2Siが再析出するため、溶体化処理で十分溶け込ませることが難しくなり、結果としてベークハード性が劣るためである。The reason for the not-rolled homogenization or heat, casting and crystallization in the cooling process Mg 2 Si, be suppressed precipitation, for homogenization or when hot rolling Mg 2 Si is re-precipitated, the solution This is because it becomes difficult to sufficiently dissolve it in the chemical treatment, and as a result, the baking hardness is poor.

溶湯注入から2分以内で250℃以下となるよう鋳塊を冷却することとした理由は、2分を過ぎるとMg2Siの析出が起こるため、連続焼鈍炉による最終板の溶体化処理でこのMg2Siをマトリックス中に十分に固溶させることが困難となり、結果としてベークハード性が劣るためである。The reason why we decided to cool the ingot so that the temperature would be 250°C or less within 2 minutes from the injection of the molten metal is that the precipitation of Mg 2 Si occurs after 2 minutes, so the solution annealing of the final plate in the continuous annealing furnace This is because it becomes difficult to form a solid solution of Mg 2 Si in the matrix, and as a result, the bake hardness is poor.

鋳造機から出てくる際の鋳塊温度を250℃以下にするためには、鋳造機内で鋳塊体積1m3当たり約2200MJ以上の熱量を鋳塊から奪い去ることが必要である。これは、長さ1mの有効冷却長を持つ鋳造機で幅1m、板厚1cmの鋳塊を鋳造速度8m/分で鋳造する場合、鋳造機内での平均抜熱流密度3.0MW/m2以上で鋳造することに相当する。In order to keep the ingot temperature at the time of coming out of the casting machine at 250° C. or lower, it is necessary to remove from the ingot a heat amount of about 2200 MJ or more per 1 m 3 of the ingot volume in the casting machine. This means that when casting an ingot with a width of 1 m and a plate thickness of 1 cm at a casting speed of 8 m/min with a casting machine with an effective cooling length of 1 m, the average heat removal flow density in the casting machine is 3.0 MW/m 2 or more. It is equivalent to casting.

このように鋳造後の鋳塊温度を250℃以下とするか、または溶湯注入から2分以内に250℃以下となるよう鋳塊を冷却し、さらに、その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延することで、粗大なMg2Siの析出を抑制することが可能となり、その後の連続焼鈍炉による溶体化処理の際に容易にMg2Siがマトリックス中に固溶する。このことによって、Al-Mg-Si系合金の成分組成を適正に調整したこととも相まって、冷間圧延製品の高強度化が達成されると共に、その後に行なわれるベーキング処理後の耐力が上昇し、更にはプレス成形性についても一段と優れたAl-Mg-Si系合金板が実現されるのである。In this way, the ingot temperature after casting should be 250°C or lower, or the ingot should be cooled to 250°C or lower within 2 minutes from the pouring of the molten metal, and then without homogenization treatment or hot rolling. By rolling to the final plate thickness only by cold rolling, it is possible to suppress the precipitation of coarse Mg 2 Si, and Mg 2 Si is easily incorporated into the matrix during the subsequent solution treatment by the continuous annealing furnace. Solid solution. With this, in combination with properly adjusting the component composition of the Al-Mg-Si alloy, a high strength of the cold rolled product is achieved, and the yield strength after the baking treatment performed thereafter is increased, Furthermore, an Al-Mg-Si-based alloy sheet with even better press formability is realized.

以下、本発明で定めるAl-Mg-Si系合金の成分組成および連続鋳造時や熱間圧延後の冷却条件などを含めた製造条件について詳細に説明する。まず、本発明で使用するAl-Mg-Si系合金の成分組成を定めた理由を説明する。   Hereinafter, the component composition of the Al-Mg-Si alloy defined in the present invention and the manufacturing conditions including the cooling conditions during continuous casting and after hot rolling will be described in detail. First, the reason for defining the component composition of the Al-Mg-Si alloy used in the present invention will be described.

Mg(0.3〜1.0wt%)は、Mg2Siを形成して高強度化に寄与する元素であり、前述の様な外板材等として必要な強度を確保するには0.3wt%以上含有させることが必要である。しかし、含有量が多過ぎると、成形性を悪化させるので、1.0wt%以下に抑えることもまた必要である。Mgのより好ましい下限値は0.4wt%、より好ましい上限値は0.8wt%である。Mg (0.3-1.0 wt%) is an element that forms Mg 2 Si and contributes to strengthening. To ensure the required strength as the outer plate material as described above, Mg (0.3 to 1.0 wt%) should be contained in an amount of 0.3 wt% or more. is necessary. However, if the content is too large, the formability is deteriorated, so it is also necessary to suppress the content to 1.0 wt% or less. The more preferable lower limit of Mg is 0.4 wt% and the more preferable upper limit thereof is 0.8 wt%.

Si(0.3〜1.5wt%)は、上記MgとMg2 Siを形成して高強度化に寄与する元素であり、その添加効果を有効に発揮させるには0.3%以上含有させることが必要である。しかし含有量が多くなり過ぎると、プレス成形性に悪影響が表われるので、1.5wt%以下に抑えることもまた必要である。Siのより好ましい下限値は0.6%、より好ましい上限値は1.2wt%である。上述の様に、本発明においてMgとSiは、Al合金中にG.Pゾーンと称されるMg2Si組成の集合体(クラスター)若しくは中間層を形成し、ベーキング処理による硬化に寄与する重要な元素である。Si (0.3 to 1.5 wt%) is an element that forms the above Mg and Mg 2 Si and contributes to strengthening, and it is necessary to contain 0.3% or more in order to effectively exert its addition effect. .. However, if the content is too large, the press formability is adversely affected, so it is also necessary to suppress the content to 1.5 wt% or less. The more preferable lower limit value of Si is 0.6%, and the more preferable upper limit value thereof is 1.2 wt%. As described above, in the present invention, Mg and Si are added to G. It is an important element that forms an aggregate (cluster) of Mg 2 Si composition called P zone or an intermediate layer and contributes to hardening by baking treatment.

Cu(1.0wt%以下)は、必ずしも必須というわけではないが、析出強化作用を有しているので、強度に対する要求が高い場合には積極的に含有させることが望ましい。しかし、多過ぎると成形性に悪影響が現れるので1.0wt%以下に抑えなければならない。強度と成形性のバランスを考えると、より好ましいCuの含有率は0.4〜0.9wt%の範囲である。   Cu (1.0 wt% or less) is not always essential, but since it has a precipitation strengthening effect, it is desirable to positively contain it when the demand for strength is high. However, if it is too large, the formability is adversely affected, so it must be kept to 1.0 wt% or less. Considering the balance between strength and formability, a more preferable Cu content is in the range of 0.4 to 0.9 wt %.

Fe(1.2%wt以下)も、必ずしも必須というわけではないが、強度を高める作用を有しているので、強度に対する要求が高い場合には積極的に含有させることが望ましい。しかし、多過ぎると成形性に悪影響が現れるので1.2wt%以下に抑えなければならない。強度と成形性のバランスを考えると、より好ましいFeの含有率は0.1〜0.5wt%の範囲である。   Although Fe (1.2% wt or less) is not always essential, it also has the effect of increasing the strength, so it is desirable to positively contain it when the demand for strength is high. However, if it is too large, the formability is adversely affected, so it must be kept to 1.2 wt% or less. Considering the balance between strength and formability, the more preferable Fe content is in the range of 0.1 to 0.5 wt %.

Mn(0.1〜0.7wt%)は、固溶強化元素および結晶粒微細化元素として有効な元素であり、これらの作用を有効に発揮させるには少なくとも0.1wt%以上含有させなければならない。しかしながら多くなり過ぎると、固溶しきれないMn量の増大により成形性を悪化させる傾向が現れてくるので、0.7wt%以下に抑えなければならない。   Mn (0.1 to 0.7 wt%) is an element effective as a solid solution strengthening element and a crystal grain refining element, and it must be contained at least 0.1 wt% or more in order to exert these effects effectively. However, if the amount becomes too large, the moldability tends to deteriorate due to an increase in the amount of Mn that cannot be completely dissolved, so it must be suppressed to 0.7 wt% or less.

Cr(0.1〜0.3wt%)は、何れも結晶粒微細化元素としての作用を有しており、その効果を有効に発揮させるには、下限値以上含有させなけらばならない。しかし、この含有量が上記上限値を超えると、金属間化合物が生成して成形性に悪影響が表われてくる。これらの点を考慮すると、Crの好ましい含有量は0.1〜0.3wt%の範囲である。   Cr (0.1 to 0.3 wt%) has an action as a grain refinement element, and in order to exert its effect effectively, it must be contained at a lower limit or more. However, if this content exceeds the above upper limit, an intermetallic compound is generated, and the formability is adversely affected. Considering these points, the preferable Cr content is in the range of 0.1 to 0.3 wt %.

本発明におけるAl合金の残部成分はAlと不可避不純物からなるものであり、不可避不純物としてはNi、Zn、Zr、V、Ti、Li等が例示されるが、それらは不可避的不純物量である限り、本発明で意図する性能を確保する上で格別の障害になることはない。次に、上記Al-Mg-Si系合金を用いた連続鋳造、冷間圧延などの各条件について説明する。   The balance component of the Al alloy in the present invention is composed of Al and unavoidable impurities, examples of the unavoidable impurities include Ni, Zn, Zr, V, Ti, Li and the like, but as long as they are inevitable impurities amount. However, there is no particular obstacle to securing the performance intended by the present invention. Next, conditions such as continuous casting and cold rolling using the above Al-Mg-Si alloy will be described.

連続鋳造における凝固時の平均冷却速度を上記の様に規定すると、強制固溶によって連続鋳造組織中のFeやSiに由来する晶出物量が減少すると共に、該晶出物サイズは平均サイズで2μm程度以下に微細化され、プレス成形性およびベークハード性が著しく高められる。しかし、連続鋳造時における凝固時の平均冷却速度が上記速度未満になると、金属間化合物の晶出量が増大すると共にそのサイズも粗大となって満足の行くプレス成形性が得られなくなるばかりでなく、ベークハード性も劣る。   When the average cooling rate during solidification in continuous casting is specified as described above, the amount of crystallized substances derived from Fe and Si in the continuous cast structure is reduced by forced solid solution, and the crystallized substance size is 2 μm in average size. The size is reduced to below a certain level, and the press moldability and the bake hardenability are remarkably enhanced. However, if the average cooling rate during solidification during continuous casting is less than the above rate, not only the amount of crystallization of the intermetallic compound increases but also its size becomes coarse and satisfactory press formability cannot be obtained. , Bake hardness is also inferior.

また、上記連続鋳造後、その後鋳造機から出てくる際の鋳塊温度を250℃以下とし、または、鋳造機への溶湯注入から2分以内に鋳塊温度が250℃以下となるように鋳塊を冷却し、さらに、その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延するという急速冷却を採用することによって、鋳塊冷却中の過飽和固溶成分の析出が抑えられて過飽和固溶量が保たれ、ベークハード性に優れた板を製造することができる。ちなみに鋳造後の鋳塊温度が250℃を超えると、過飽和固溶成分の析出が起こってベークハード性に劣る板が製造される。   Further, after the above continuous casting, the ingot temperature when coming out of the casting machine is 250° C. or less, or casting is performed so that the ingot temperature becomes 250° C. or less within 2 minutes after pouring the molten metal into the casting machine. By adopting the rapid cooling in which the ingot is cooled and then rolled to the final plate thickness only by cold rolling without homogenizing treatment or hot rolling, precipitation of supersaturated solid solution components during ingot cooling can be prevented. The amount of supersaturated solid solution is suppressed, and a plate excellent in bake hardness can be manufactured. By the way, when the ingot temperature after casting exceeds 250°C, precipitation of supersaturated solid solution components occurs, and a plate having poor bake hardness is produced.

冷間圧延により最終板厚とした後、連続焼鈍炉にて530〜570℃の範囲の温度で溶体化処理を行ない、次いで温水もしくは水で焼入を行なってから予備時効処理が行なわれる。このときの溶体化処理温度を上記の様に定めたのは、溶体化処理時における固溶元素の析出を抑えて十分な過飽和固溶量を保ち、強度を高めると共に、固溶元素量の増大によってベークハード性を高めるためである。ちなみに溶体化処理温度が530℃未満では、ベークハード性の向上効果が不十分となる。一方、570℃を超える高温になると、結晶粒が粗大化すると共に共晶溶融によるバーニングを起こし、プレス成形性が悪化する。   After the final sheet thickness is obtained by cold rolling, solution annealing is performed in a continuous annealing furnace at a temperature in the range of 530 to 570° C., followed by quenching with warm water or water and then preliminary aging treatment. The solution treatment temperature at this time is determined as described above because the precipitation of the solid solution element during the solution treatment is suppressed to maintain a sufficient supersaturated solid solution amount, the strength is increased, and the solid solution element amount is increased. This is to improve the bake hardness. By the way, if the solution treatment temperature is lower than 530° C., the effect of improving the bake hard property becomes insufficient. On the other hand, when the temperature exceeds 570° C., the crystal grains become coarse and eutectic melting causes burning, which deteriorates the press formability.

なお、上記溶体化処理後は、温水あるいは冷水を用いた焼入れの後、引き続き予備時効処理を行なうことにより、プレス成形性およびベークハード性の非常に優れたAl-Mg-Si系合金板を得ることができる。このときの焼入条件や時効熱処理条件は特に限定されないが、好ましい条件としては、焼入れ条件としては温水焼入を、また時効熱処理条件は60〜200℃で10分〜8時間程度である。   After the solution treatment, after quenching with hot water or cold water, by performing preliminary aging treatment, to obtain an Al-Mg-Si alloy plate having excellent press formability and bake hardness. be able to. Quenching conditions and aging heat treatment conditions at this time are not particularly limited, but preferable conditions are warm water quenching as quenching conditions, and aging heat treatment conditions at 60 to 200° C. for about 10 minutes to 8 hours.

本発明では、上記の様にAl-Mg-Si系合金の成分組成を特定すると共に、該合金溶湯を用いた連続鋳造の際、凝固時の平均冷却速度を20℃/s以上として鋳造し、その後鋳造機から出てくる際の鋳塊温度を250℃以下とし、または、鋳造機への溶湯注入から2分以内に鋳塊温度が250℃以下となるように鋳塊を冷却し、その後均質化処理もしくは熱間圧延を行わずに冷間圧延のみで最終厚板まで圧延し、連続焼鈍炉による溶体化処理条件を設定したところに特徴を有するものであり、その他の条件には格別の制限はないが、その他の好ましい条件等について説明すると下記の通りである。   In the present invention, while specifying the component composition of the Al-Mg-Si alloy as described above, during continuous casting using the molten alloy, the average cooling rate during solidification is cast at 20°C/s or more, After that, the ingot temperature when coming out of the casting machine is 250 °C or less, or the ingot is cooled so that the ingot temperature becomes 250 °C or less within 2 minutes after pouring the molten metal into the casting machine, and then homogeneous It is characterized by rolling to the final thick plate only by cold rolling without heat treatment or hot rolling, and setting solution treatment conditions in a continuous annealing furnace. However, other preferable conditions will be described below.

本発明は、鋳塊の温度が250℃以下となるように連続鋳造し、或は連続鋳造された鋳片を、250℃以下に冷却して、一旦巻き取り、その後均質化処理もしくは熱間圧延を行わずに冷間圧延のみで最終厚板まで圧延し、連続焼鈍炉による溶体化処理条件を設定したところに特徴を有するものであり、それにより、連続鋳造後に一旦巻き取った後、冷却してから更に均質化処理若しくは熱間圧延を行なう方法に比べて熱ロスが少なく、且つ生産性を高める上でも効果的である。   The present invention continuously casts the ingot to a temperature of 250° C. or lower, or cools the continuously cast slab to 250° C. or lower, winds it once, and then homogenizes or hot-rolls it. It is characterized in that it is rolled to the final thick plate only by cold rolling without performing, and the solution heat treatment conditions in the continuous annealing furnace are set, whereby it is temporarily wound after continuous casting and then cooled. Compared with the method in which homogenization treatment or hot rolling is further performed after that, heat loss is small, and it is also effective in improving productivity.

また本発明を実施するに当たっては、連続鋳造によって通常4〜15mm程度の肉厚の板状鋳片を連続的に製造し、これを巻き取った後、冷間圧延することにより肉厚を0.1〜1mmとし、更に連続焼鈍炉による溶体化処理、予備時効されたAl合金製品板が製造される。尚、ここで採用される連続鋳造法としては、前記した様な水冷式連続鋳造法、双ロール式連続鋳造法、ベルト式連続鋳造法、ブロック式連続鋳造法などを適宜選択して採用することができる。   Further, in carrying out the present invention, a plate-shaped slab with a wall thickness of usually about 4 to 15 mm is continuously produced by continuous casting, and after winding this, the wall thickness is 0.1 to by cold rolling. The aluminum alloy product sheet is preliminarily aged after solution heat treatment in a continuous annealing furnace to 1 mm. As the continuous casting method adopted here, a water-cooled continuous casting method, a twin roll type continuous casting method, a belt type continuous casting method, a block type continuous casting method or the like as described above may be appropriately selected and employed. You can

次に本発明の実施例を示すが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合する範囲で適宜変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Next, examples of the present invention will be shown, but the present invention is not limited by the following examples as well as the following examples, and it is of course possible to carry out appropriate modifications within the scope of the gist of the present invention. Both are included in the technical scope of the present invention.

実施例1
双ベルト鋳造機で厚み1cmの鋳塊を下記の条件にて鋳造した。

鋳造機の有効冷却長:1m
鋳造速度: 8m/分
注湯温度: 700℃
組成:Al、Mg:0.6wt%、Si:0.8wt%、Fe:0.2wt%、Mn:0.2wt%、Ti:0.01wt%
Example 1
A twin-belt casting machine was used to cast a 1 cm thick ingot under the following conditions.

Effective cooling length of casting machine: 1m
Casting speed: 8m/Dispensing temperature: 700℃
Composition: Al, Mg: 0.6 wt%, Si: 0.8 wt%, Fe: 0.2 wt%, Mn: 0.2 wt%, Ti: 0.01 wt%

鋳造機内での平均抜熱流密度を変えることで、鋳造直後の鋳塊温度が異なる鋳塊を得た。
その後、冷間圧延により1mmの板としたのち、545℃×15秒→温水焼入れの溶体化処理を行い、85℃×8時間の予備時効を施して、T4材とした。またT6材はT4材を1週間自然時効した後、170℃×30分の人工時効を行った。ベークハード性を評価するため、T4材およびT6材の耐力を測定し、その差をベークハード性とした。なお、目標ベークハード性は100MPa以上である。さらに、均質化処理もしくは熱間圧延有無の影響を見るため、比較例として鋳塊を均質化処理もしくは熱間圧延した板のベークハード性も測定した。
By changing the average heat removal flow density in the casting machine, ingots having different ingot temperatures immediately after casting were obtained.
Then, after cold rolling to a 1 mm plate, solution treatment of 545° C.×15 seconds→hot water quenching was performed, and preliminary aging at 85° C.×8 hours was performed to obtain a T4 material. For T6 material, natural aging was performed on T4 material for 1 week, and then artificial aging was performed at 170°C for 30 minutes. In order to evaluate the bake hardness, the proof stress of the T4 and T6 materials was measured, and the difference was defined as the bake hardness. The target bake hardness is 100 MPa or more. Furthermore, in order to see the effect of the presence or absence of homogenization treatment or hot rolling, as a comparative example, the bake hard property of a plate obtained by homogenizing the ingot or performing hot rolling was also measured.

Figure 2005064025
*均質化処理: 560℃×6時間保持→炉冷
*熱間圧延: 560℃まで昇温した後、圧延開始温度を550℃として4mmまで熱間圧延。その後冷間にて1mmまで圧延した。
Figure 2005064025
* Homogenization treatment: 560℃ x 6 hours hold → furnace cooling
* Hot rolling: After the temperature is raised to 560°C, the rolling start temperature is 550°C and hot rolling is performed to 4 mm. Then, it was cold rolled to 1 mm.

実施例2
双ベルト鋳造機で厚み1cmの鋳塊を下記の条件にて鋳造した。
鋳造機の有効冷却長:1m
鋳造速度: 8m/分
注湯温度: 700℃
組成:Al、Mg:0.6wt%、Si:0.8wt%、Fe:0.2wt%、Mn:0.2wt%、Ti:0.01wt%
Example 2
A twin-belt casting machine was used to cast a 1 cm thick ingot under the following conditions.
Effective cooling length of casting machine: 1m
Casting speed: 8m/Dispensing temperature: 700℃
Composition: Al, Mg:0.6wt%, Si:0.8wt%, Fe:0.2wt%, Mn:0.2wt%, Ti:0.01wt%

鋳造機出口に冷却装置をつけ、鋳造直後に鋳塊を冷却できるようにした。冷却装置を稼動した場合、鋳造直後には357℃であった鋳塊温度は、冷却装置を通ることで鋳造機へ溶湯注入してから2分後に鋳塊温度は230℃まで低下した。これに対し、冷却速度を稼動しなかった場合、鋳造機へ溶湯注入してから2分後の鋳塊温度は依然330℃と高温であった。その後、冷間圧延により1mmの板としたのち、545℃×15秒→温水焼入れの溶体化処理を行い、85℃×8時間の予備時効を施して、T4材とした。またT6材はT4材を1週間自然時効した後、170℃×30分の人工時効を行った。ベークハード性を評価するため、T4材およびT6材の耐力を測定し、その差をベークハード性とした。なお、目標ベークハード性は100MPa以上である。

Figure 2005064025
A cooling device was attached to the outlet of the casting machine so that the ingot could be cooled immediately after casting. When the cooling device was operated, the ingot temperature, which was 357° C. immediately after casting, decreased to 230° C. two minutes after the molten metal was injected into the casting machine by passing through the cooling device. On the other hand, when the cooling rate was not operated, the ingot temperature 2 minutes after pouring the molten metal into the casting machine was still high at 330°C. Then, after cold rolling to a 1 mm plate, solution treatment of 545° C.×15 seconds→hot water quenching was performed and preliminary aging at 85° C.×8 hours was performed to obtain a T4 material. For T6 material, natural aging was performed on T4 material for 1 week, and then artificial aging was performed at 170°C for 30 minutes. In order to evaluate the bake hardness, the proof stress of the T4 and T6 materials was measured, and the difference was defined as the bake hardness. The target bake hardness is 100 MPa or more.
Figure 2005064025

Claims (2)

(a)Mg:0.3〜1.0wt%、Si:0.3〜1.5wt%、Cu:1.0wt%以下(0%を含む)、Fe:1.2wt%以下(0%を含む)を含有すると共に、必要に応じてMn:0.1〜0.7wt%および/またはCr:0.1〜0.3%を含み、残部AlからなるAl-Mg-Si系アルミニウム合金溶湯を、凝固時の平均冷却速度を20℃/s以上として双ベルト鋳造し、
(b)その際、鋳造機から出てくる鋳塊温度を250℃以下とし、
(c)その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延し、
(d)連続焼鈍炉にて溶体化処理することを特徴とする、
ベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法。
(A) Mg: 0.3 to 1.0 wt%, Si: 0.3 to 1.5 wt%, Cu: 1.0 wt% or less (including 0%), Fe: 1.2 wt% or less (including 0%) and necessary. Depending on the, Mn: 0.1-0.7 wt% and / or Cr: 0.1-0.3%, Al-Mg-Si-based aluminum alloy molten metal consisting of the balance Al, the average cooling rate during solidification as 20 ℃ / s or more Twin belt casting,
(B) At that time, the ingot temperature coming out of the casting machine is set to 250° C. or lower,
(C) After that, the steel sheet is rolled to the final plate thickness only by cold rolling without homogenizing treatment or hot rolling,
(D) characterized by performing solution treatment in a continuous annealing furnace,
A method for producing an Al-Mg-Si-based aluminum alloy sheet having excellent bake hardness.
(a)Mg:0.3〜1.0wt%、Si:0.3〜1.5wt%、Cu:1.0wt%以下(0%を含む)、Fe:1.2wt%以下(0%を含む)を含有すると共に、必要に応じてMn:0.1〜0.7wt%および/またはCr:0.1〜0.3%を含み、残部AlからなるAl-Mg-Si系アルミニウム合金溶湯を、凝固時の平均冷却速度を20℃/s以上として双ベルト鋳造し、
(b)その際、鋳造機への溶湯注入から2分以内に鋳塊温度が250℃以下となるよう鋳塊を冷却し、
(c)その後均質化処理もしくは熱間圧延せずに冷間圧延のみで最終板厚まで圧延し、
(d)連続焼鈍炉にて溶体化処理することを特徴とする、
ベークハード性に優れたAl-Mg-Si系アルミニウム合金板の製造方法。
(A) Mg: 0.3 to 1.0 wt%, Si: 0.3 to 1.5 wt%, Cu: 1.0 wt% or less (including 0%), Fe: 1.2 wt% or less (including 0%) and necessary. Depending on the, Mn: 0.1-0.7 wt% and / or Cr: 0.1-0.3%, Al-Mg-Si-based aluminum alloy molten metal consisting of the balance Al, the average cooling rate during solidification as 20 ℃ / s or more Twin belt casting,
(B) At that time, the ingot is cooled so that the ingot temperature becomes 250° C. or lower within 2 minutes after the molten metal is injected into the casting machine,
(C) After that, the steel sheet is rolled to the final plate thickness only by cold rolling without homogenizing treatment or hot rolling,
(D) characterized by performing solution treatment in a continuous annealing furnace,
A method for producing an Al-Mg-Si-based aluminum alloy sheet having excellent bake hardness.
JP2005516601A 2003-12-26 2004-12-22 Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness Pending JPWO2005064025A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003432073 2003-12-26
JP2003432073 2003-12-26
PCT/JP2004/019210 WO2005064025A1 (en) 2003-12-26 2004-12-22 METHOD FOR PRODUCING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN BAKE-HARDENABILITY

Publications (1)

Publication Number Publication Date
JPWO2005064025A1 true JPWO2005064025A1 (en) 2008-04-17

Family

ID=34736460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516601A Pending JPWO2005064025A1 (en) 2003-12-26 2004-12-22 Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness

Country Status (8)

Country Link
US (1) US20070144630A1 (en)
EP (1) EP1715067A4 (en)
JP (1) JPWO2005064025A1 (en)
KR (1) KR20060135711A (en)
CN (1) CN1922336A (en)
CA (1) CA2551599A1 (en)
TW (1) TW200530406A (en)
WO (1) WO2005064025A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757586B1 (en) 2006-04-29 2007-09-10 현대자동차주식회사 Continuous casting method for alloy board of aluminium-magnesium
WO2008078399A1 (en) * 2006-12-22 2008-07-03 Nippon Light Metal Company, Ltd. Method of producing aluminum alloy sheet
DE102008008326A1 (en) * 2008-02-07 2011-03-03 Audi Ag aluminum alloy
JP5321960B2 (en) * 2009-01-06 2013-10-23 日本軽金属株式会社 Method for producing aluminum alloy
CN102686763B (en) * 2009-10-16 2014-03-12 昭和电工株式会社 Process for producing brake piston
WO2011122958A1 (en) 2010-03-30 2011-10-06 Norsk Hydro Asa High temperature stable aluminium alloy
KR101233772B1 (en) * 2010-10-15 2013-02-15 지케이 주식회사 Aluminum alloy for die casting
KR101340292B1 (en) * 2011-05-20 2013-12-11 한국생산기술연구원 Aluminium alloy and manufacturing method thereof
EP2822717A4 (en) * 2012-03-07 2016-03-09 Alcoa Inc Improved 6xxx aluminum alloys, and methods for producing the same
WO2013133978A1 (en) * 2012-03-07 2013-09-12 Alcoa Inc. Improved aluminum alloys containing magnesium, silicon, manganese, iron, and copper, and methods for producing the same
JP6340170B2 (en) * 2013-06-28 2018-06-06 国立大学法人横浜国立大学 Aluminum alloy plate and aluminum alloy member
CN103805922B (en) * 2014-01-26 2016-06-29 柳州豪祥特科技有限公司 A kind of processing technique of heat-insulating alloy foil
JP6719219B2 (en) * 2016-01-26 2020-07-08 日本軽金属株式会社 High strength aluminum alloy sheet excellent in formability and method for producing the same
CN105671376B (en) * 2016-01-26 2017-04-26 北京航空航天大学 High-strength and high-plasticity hypoeutectic aluminium-silicon alloy material manufactured through gravity casting and room-temperature cold rolling, and manufacturing method thereof
KR101950595B1 (en) * 2017-08-22 2019-02-20 현대제철 주식회사 Aluminium alloy and methods of fabricating the same
CN108085545A (en) * 2017-12-28 2018-05-29 河南中孚铝合金有限公司 Computer hard disc actuating arm aluminium alloy round cast ingot and its production method
KR102417740B1 (en) 2018-01-12 2022-07-08 애큐라이드코포레이션 Aluminum alloys and manufacturing methods for applications such as wheels
DE102018100842B3 (en) 2018-01-16 2019-05-09 Ebner Industrieofenbau Gmbh Continuous furnace for aluminum strips
CN112195424A (en) * 2020-10-29 2021-01-08 天津忠旺铝业有限公司 Preparation process for improving r value and uniformity of 6016 aluminum alloy plate
CA3195746A1 (en) * 2020-11-06 2022-02-17 Willard Mark Truman Gallerneault Casting process for aluminium alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207851A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
JPH06346205A (en) * 1993-06-04 1994-12-20 Kobe Steel Ltd Production of aluminum alloy sheet for drawing
JPH10259464A (en) * 1997-03-19 1998-09-29 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for forming

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886129B2 (en) * 2000-12-13 2012-02-29 古河スカイ株式会社 Method for producing aluminum alloy fin material for brazing
JP4379149B2 (en) * 2003-04-15 2009-12-09 日本軽金属株式会社 Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for producing the same
US7267158B2 (en) * 2003-07-02 2007-09-11 Alcoa Inc. Control of oxide growth on molten aluminum during casting using a high moisture atmosphere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207851A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
JPH06346205A (en) * 1993-06-04 1994-12-20 Kobe Steel Ltd Production of aluminum alloy sheet for drawing
JPH10259464A (en) * 1997-03-19 1998-09-29 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for forming

Also Published As

Publication number Publication date
KR20060135711A (en) 2006-12-29
EP1715067A4 (en) 2007-10-31
EP1715067A1 (en) 2006-10-25
CN1922336A (en) 2007-02-28
US20070144630A1 (en) 2007-06-28
TW200530406A (en) 2005-09-16
CA2551599A1 (en) 2005-07-14
WO2005064025A1 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JPWO2005064025A1 (en) Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake hardness
US20070209739A1 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake-hardenability and hemmability
US20070217943A1 (en) Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
CN105586516A (en) Aluminum Alloy Sheet Having Excellent Press Formability And Shape Fixability, And Method For Manufacturing Same
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
KR20150047246A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
CN103255323A (en) Al-Mg-Zn-Cu alloy and preparation method thereof
JP4701998B2 (en) Aluminum alloy foil excellent in strength and rough skin resistance and method for producing the same
EP1864723B1 (en) Process for producing continuous magnesium material
JP2004332106A (en) Aluminum alloy sheet with excellent press formability and continuous resistance spot weldability, and its manufacturing method
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP3685973B2 (en) Al-Mg-based Al alloy plate with excellent formability
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
JP5233568B2 (en) Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof
JP3351087B2 (en) Manufacturing method of Al-Mg-Si alloy plate
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP5412714B2 (en) Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP3703919B2 (en) Method for producing directly cast and rolled sheet of Al-Mg-Si alloy
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH07256416A (en) Production of al alloy sheet for deep drawing
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP6809363B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and shape freezing property and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130