KR101950595B1 - Aluminium alloy and methods of fabricating the same - Google Patents

Aluminium alloy and methods of fabricating the same Download PDF

Info

Publication number
KR101950595B1
KR101950595B1 KR1020170105887A KR20170105887A KR101950595B1 KR 101950595 B1 KR101950595 B1 KR 101950595B1 KR 1020170105887 A KR1020170105887 A KR 1020170105887A KR 20170105887 A KR20170105887 A KR 20170105887A KR 101950595 B1 KR101950595 B1 KR 101950595B1
Authority
KR
South Korea
Prior art keywords
aluminum alloy
present
phase
weight
cast material
Prior art date
Application number
KR1020170105887A
Other languages
Korean (ko)
Inventor
강헌
구남훈
김성녕
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020170105887A priority Critical patent/KR101950595B1/en
Application granted granted Critical
Publication of KR101950595B1 publication Critical patent/KR101950595B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/003Rolling non-ferrous metals immediately subsequent to continuous casting, i.e. in-line rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention relates to an aluminum alloy applicable to an aluminum plate for a vehicle and a manufacturing method thereof. According to one embodiment of the present invention, the manufacturing method of the aluminum alloy comprises: (a) a step of providing a strip casting process with a casting material including 0.16 to 0.24 wt% of Cr, 0.5 to 0.95 wt% of Cu, 0.1 to 0.2 wt% of Mn, 0.2 to 1.0 wt% of Mg, 0.25 to 0.45 wt% of Zn, 0.7 to 0.85 wt% of Si, 0.25 to 0.3 wt% of Ti, and the balance of Al and inevitable impurities; (b) a step of hot-rolling the casting material at 480 to 540°C by a reduction rate of 20 to 40% without a homogenization process; (c) a step of cold-rolling the hot-rolled casting material by a reduction rate of 20 to 40%; and (d) a step of performing recrystallization heat treatment for the cold-rolled casting material at 480 to 540°C for 20 to 60 min.

Description

알루미늄 합금 및 그 제조방법{Aluminium alloy and methods of fabricating the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy,

본 발명은 알루미늄 합금 및 그 제조방법에 관한 것으로, 보다 상세하게는 고강도 및 고성형성의 알루미늄 합금 및 그 제조방법에 관한 것이다. The present invention relates to an aluminum alloy and a manufacturing method thereof, and more particularly, to an aluminum alloy having high strength and solidity formation and a method of manufacturing the same.

최근, 자동차 차체의 경량화의 사회적 요구는 점점 증대되고 있다. 이러한 요구에 응답하기 위해, 자동차 차체 중 패널이나 도어 빔 등의 보강재 등을 부분적으로 강판 등의 철강 재료 대신에 알루미늄 합금 재료를 적용하는 시도가 진행되고 있다. 나아가, 자동차 차체의 보다 경량화를 위해서는 자동차 부재 중에서도 특히 경량화에 기여하는 프레임, 필러 등의 자동차 구조 부재에도 알루미늄 합금 재료의 적용을 확대하는 것이 요구되고 있다. BACKGROUND ART [0002] In recent years, the social demands for lightening the weight of automobiles have been increasing. In order to respond to such demands, attempts have been made to apply aluminum alloy materials instead of steel materials such as steel plates partially in automobile body panels or reinforcing materials such as door beams. Further, in order to make the automobile body lighter, it is required to expand the application of aluminum alloy materials to automobile structural members such as frames and pillars, which contribute to weight reduction, among automobile members.

관련 선행기술로는 한국공개특허 제2010-0049722호(공개일: 2010.05.13, 발명의 명칭: 고강도 알루미늄합금 주물)가 있다. Related Prior Art Korean Patent Publication No. 2010-0049722 (published on May 13, 2010, entitled "High Strength Aluminum Alloy Casting") is available.

본 발명의 목적은 균일한 기계적 특성을 구비하는 고성형성이 필요한 자동차용 알루미늄 판재에 적용할 수 있는 알루미늄 합금 및 그 제조방법을 제공하는 것이다. An object of the present invention is to provide an aluminum alloy which can be applied to an automotive aluminum plate which is required to form a solid having uniform mechanical characteristics, and a method for producing the same.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법은 (a) 스트립 캐스팅 공정으로 Cr : 0.16 ~ 0.24중량%, Cu : 0.5 ~ 0.95중량%, Mn : 0.1 ~ 0.2중량%, Mg : 0.2 ~ 1.0중량%, Zn : 0.25 ~ 0.45중량%, Si : 0.7 ~ 0.85중량%, Ti : 0.25 ~ 0.3중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진 주물재를 제공하는 단계; (b) 상기 주물재에 대하여 균질화 열처리 없이 20 ~ 40%의 압하율로 480 ~ 540℃에서 열간 압연하는 단계; (c) 열간 압연된 상기 주물재에 대하여 20 ~ 40%의 압하율로 냉간 압연하는 단계; 및 (d) 냉간 압연된 상기 주물재에 대하여 480 ~ 540℃에서 20 ~ 60 분 동안 재결정 열처리하는 단계;를 포함한다. In order to accomplish the above object, the present invention provides a method of manufacturing an aluminum alloy, comprising the steps of: (a) providing 0.16 to 0.24 wt% of Cr, 0.5 to 0.95 wt% of Cu, 0.1 to 0.2 wt% of Mn, 0.2 to 1.0% by weight of Mg, 0.25 to 0.45% by weight of Zn, 0.7 to 0.85% by weight of Si and 0.25 to 0.3% by weight of Ti and the balance of Al and inevitable impurities step; (b) hot-rolling the cast material at 480 to 540 占 폚 at a reduction ratio of 20 to 40% without homogenizing heat treatment; (c) cold rolling the hot-rolled cast material at a reduction ratio of 20 to 40%; And (d) subjecting the cold-rolled cast material to recrystallization heat treatment at 480 to 540 占 폚 for 20 to 60 minutes.

상기 알루미늄 합금의 제조방법의 상기 (a) 단계에서 Mn, Cr 또는 Cu가 결합된 Mg2Si 강화상이 덴드라이트 형태로 정출되며, 상기 (b) 단계 및 (c) 단계에서 상기 Mg2Si 강화상은 구형 형태로 변형되며, 상기 (d) 단계는 상기 Mg2Si 강화상 주변부에 재결정이 진행되어 이방성 집합조직이 생성되어 성형성이 더욱 향상되는 단계를 포함할 수 있다. In the step (a) of the method for producing an aluminum alloy, a Mg 2 Si-enhanced phase to which Mn, Cr or Cu is bound is dendritically formed. In the step (b) and the step (c), the Mg 2 Si- And the step (d) may include a step of recrystallization at the periphery of the Mg 2 Si strengthened phase to produce an anisotropic texture, thereby further improving the moldability.

상기 알루미늄 합금의 제조방법의 상기 (a) 단계에서 정출되는 상기 Mg2Si 강화상은 20 ㎛ 이하의 크기를 가지고, 상기 (b) 단계 및 (c) 단계에서 상기 Mg2Si 강화상은 5 ㎛ 이하의 크기를 가질 수 있다. The Mg 2 Si-enriched phase formed in the step (a) of the aluminum alloy production method has a size of 20 μm or less, and the Mg 2 Si-enriched phase in the step (b) and the step (c) Size.

상기 알루미늄 합금의 제조방법의 상기 (a) 단계는 700℃ 이상의 합금화된 용탕을 100 ~ 150℃/s의 냉각속도로 300℃까지 냉각하여 3 ~ 6mm의 두께를 가지는 주물재를 형성하는 단계를 포함할 수 있다. The step (a) of the aluminum alloy manufacturing method includes a step of forming a casting material having a thickness of 3 to 6 mm by cooling the alloyed melt at 700 ° C or higher to 300 ° C at a cooling rate of 100 to 150 ° C / s can do.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 알루미늄 합금은 Cr : 0.16 ~ 0.24중량%, Cu : 0.5 ~ 0.95중량%, Mn : 0.1 ~ 0.2중량%, Mg : 0.2 ~ 1.0중량%, Zn : 0.25 ~ 0.45중량%, Si : 0.7 ~ 0.85중량%, Ti : 0.25 ~ 0.3중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진다. According to an embodiment of the present invention, there is provided an aluminum alloy including 0.16 to 0.24 wt% of Cr, 0.5 to 0.95 wt% of Cu, 0.1 to 0.2 wt% of Mn, 0.2 to 1.0 wt% of Mg, Zn : 0.25 to 0.45 wt%, Si: 0.7 to 0.85 wt%, and Ti: 0.25 to 0.3 wt%, the balance being Al and inevitable impurities.

상기 알루미늄 합금에서, Mn, Cr 또는 Cu가 결합된 Mg2Si 강화상이 5 ㎛ 이하의 크기를 가지며, 상기 Mg2Si 강화상 주변부에 재결정이 진행되어 이방성 집합조직이 생성된 것을 특징으로 할 수 있다. In the above aluminum alloy, Mn, Cr or Mg 2 Si strengthen the Cu is bonded phase having a size of less than 5 ㎛, the recrystallization to the Mg 2 Si strengthening the periphery proceeds may be characterized in that the anisotropic texture produced .

본 발명의 실시예에 따르면, 균일한 기계적 특성을 구비하는 고성형성이 필요한 자동차용 알루미늄 판재에 적용할 수 있는 알루미늄 합금 및 그 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the embodiment of the present invention, an aluminum alloy which can be applied to an automotive aluminum plate which requires uniform formation of mechanical properties, and a method of manufacturing the same can be realized. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법을 도해하는 순서도이다.
도 2는 본 발명의 실시예 및 비교예에 따른 알루미늄 합금의 제조방법에서 주물재의 응고 조건을 비교하여 도해한 그래프이다.
도 3은 본 발명의 실시예에 따른 알루미늄 합금의 미세구조를 촬영한 사진들이다.
도 4는 본 발명의 비교예에 따른 알루미늄 합금의 미세구조를 촬영한 사진들이다.
도 5는 본 발명의 실시예에 따른 알루미늄 합금의 강화상에 의한 강도 향상을 설명하기 위하여 촬영한 사진들이다.
도 6은 본 발명의 실시예에 따른 알루미늄 합금의 강화상에 의한 집합조직 제어를 설명하기 위하여 촬영한 사진들이다.
도 7 내지 도 10은 본 발명의 실험예에 따른 알루미늄 합금의 인장 특성을 비교하여 도해한 그래프들이다.
1 is a flow chart illustrating a method of manufacturing an aluminum alloy according to an embodiment of the present invention.
FIG. 2 is a graph illustrating the solidification conditions of castings in an aluminum alloy production method according to Examples and Comparative Examples of the present invention.
3 is a photograph of a microstructure of an aluminum alloy according to an embodiment of the present invention.
4 is a photograph of the microstructure of the aluminum alloy according to the comparative example of the present invention.
FIG. 5 is photographs taken to illustrate the strength enhancement by the strengthened phase of the aluminum alloy according to the embodiment of the present invention.
6 is photographs taken to explain the texture control by the strengthened phase of the aluminum alloy according to the embodiment of the present invention.
FIGS. 7 to 10 are graphs illustrating the tensile properties of an aluminum alloy according to an experimental example of the present invention.

이하에서는 본 발명의 일 실시예에 따른 알루미늄 합금 및 그 제조방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, an aluminum alloy according to an embodiment of the present invention and a method of manufacturing the aluminum alloy will be described in detail. The terms used below are appropriately selected terms in consideration of functions in the present invention, and definitions of these terms should be made based on the contents throughout this specification.

박물주조재를 사용하여 알루미늄 판재를 제조하는 경우 불균일한 미세구조 형성으로 인한 기계적 물성이 하락하는 현상이 발생한다. 한편, 저원가 주조공정인 스트립 캐스팅(strip casting) 공정을 통하여 판재를 제조 시 압연공정 단순화로 인한 원가절감이 가능하지만, 압연공정 단순화로 인한 표면부와 중심부 간의 미세구조 제어가 어렵다. 미세구조 제어를 위한 박물주조재의 균질화 열처리 및 후처리 공정 추가로 인한 원가 절감 효과가 미비해진다. 따라서, 원가절감형 공정인 스트립 캐스팅 공정은 불균일한 미세구조로 인하여 사용이 제한적이다. 즉, 일반 판재제조공정인 다이렉트 칠 캐스팅(Direct chill casting) 공법에 비해 공정이 단순한 스트립 캐스팅 공법이 원가면에서 유리하지만, 물성달성 측면에서는 급속응고제어가 어렵기 때문에 자동차용 판재로 사용되고 있지 않다. When an aluminum plate material is manufactured using a cast material, mechanical properties due to uneven microstructure formation are reduced. On the other hand, it is possible to reduce costs by simplifying the rolling process when manufacturing the plate through the strip casting process, which is a low cost casting process, but it is difficult to control the fine structure between the surface portion and the center portion due to the simplification of the rolling process. The cost reduction effect due to the homogenization heat treatment and the post-treatment process of the natural casting material for the microstructure control becomes insufficient. Therefore, the strip casting process, a cost-saving process, is limited in its use due to uneven microstructure. That is, a strip casting method that is simpler than a direct chill casting method, which is a general plate material manufacturing process, is advantageous in a raw material, but in terms of achieving physical properties, rapid solidification control is difficult.

본 발명은 고성형성이 필요한 자동차용 알루미늄 판재의 경우 균일한 기계적 특성이 필요하다는 점을 고려하면서도 원가를 절감할 수 있는 스트립 캐스팅 공정으로 알루미늄 합금을 구현할 수 있는 알루미늄 합금의 제조방법을 제공한다. The present invention provides a method of manufacturing an aluminum alloy which can realize an aluminum alloy by a strip casting process which can reduce costs while considering the need for uniform mechanical properties in an automotive aluminum plate requiring high performance.

도 1은 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법을 도해하는 순서도이다. 1 is a flow chart illustrating a method of manufacturing an aluminum alloy according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 알루미늄 합금의 제조방법은 (a) 스트립 캐스팅 공정으로 Cr : 0.16 ~ 0.24중량%, Cu : 0.5 ~ 0.95중량%, Mn : 0.1 ~ 0.2중량%, Mg : 0.2 ~ 1.0중량%, Zn : 0.25 ~ 0.45중량%, Si : 0.7 ~ 0.85중량%, Ti : 0.25 ~ 0.3중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진 주물재를 제공하는 단계(S100); (b) 상기 주물재에 대하여 균질화 열처리 없이 20 ~ 40%의 압하율로 480 ~ 540℃에서 열간 압연하는 단계(S200); (c) 열간 압연된 상기 주물재에 대하여 20 ~ 40%의 압하율로 냉간 압연하는 단계(S300); 및 (d) 냉간 압연된 상기 주물재에 대하여 480 ~ 540℃에서 20 ~ 60 분 동안 재결정 열처리하는 단계(S400);를 포함한다. 1, a method of manufacturing an aluminum alloy according to an embodiment of the present invention includes: (a) 0.16 to 0.24 wt% of Cr, 0.5 to 0.95 wt% of Cu, 0.1 to 0.2 wt% of Mn, 0.2 to 1.0% by weight of Mg, 0.25 to 0.45% by weight of Zn, 0.7 to 0.85% by weight of Si and 0.25 to 0.3% by weight of Ti and the balance of Al and inevitable impurities Step SlOO; (b) hot rolling the cast material at 480 to 540 占 폚 at a reduction ratio of 20 to 40% without homogenizing heat treatment (S200); (c) cold-rolling the hot-rolled cast material at a reduction ratio of 20 to 40% (S300); And (d) performing a recrystallization heat treatment (S400) on the cold-rolled cast material at 480 to 540 占 폚 for 20 to 60 minutes.

상기 알루미늄 합금의 제조방법의 상기 (a) 단계에서 Mn, Cr 또는 Cu가 결합된 Mg2Si 강화상이 덴드라이트 형태로 정출되며, 상기 (b) 단계 및 (c) 단계에서 상기 Mg2Si 강화상은 구형 형태로 변형되며, 상기 (d) 단계는 상기 Mg2Si 강화상 주변부에 재결정이 진행되어 이방성 집합조직이 생성되어 성형성이 더욱 향상되는 단계를 포함할 수 있다. In the step (a) of the method for producing an aluminum alloy, a Mg 2 Si-enhanced phase to which Mn, Cr or Cu is bound is dendritically formed. In the step (b) and the step (c), the Mg 2 Si- And the step (d) may include a step of recrystallization at the periphery of the Mg 2 Si strengthened phase to produce an anisotropic texture, thereby further improving the moldability.

상기 알루미늄 합금의 제조방법의 상기 (a) 단계에서 정출되는 상기 Mg2Si 강화상은 20 ㎛ 이하의 크기를 가지고, 상기 (b) 단계 및 (c) 단계에서 상기 Mg2Si 강화상은 5 ㎛ 이하의 크기를 가질 수 있다. The Mg 2 Si-enriched phase formed in the step (a) of the aluminum alloy production method has a size of 20 μm or less, and the Mg 2 Si-enriched phase in the step (b) and the step (c) Size.

상기 알루미늄 합금의 제조방법의 상기 (a) 단계는 700℃ 이상의 합금화된 용탕을 100 ~ 150℃/s의 냉각속도로 300℃까지 냉각하여 3 ~ 6mm의 두께를 가지는 주물재를 형성하는 단계를 포함할 수 있다. The step (a) of the aluminum alloy manufacturing method includes a step of forming a casting material having a thickness of 3 to 6 mm by cooling the alloyed melt at 700 ° C or higher to 300 ° C at a cooling rate of 100 to 150 ° C / s can do.

상기 (a) 단계에서 개시된 주물재의 조성 범위에 대하여 설명한다. The composition range of the cast material disclosed in the step (a) will be described.

Cr : 0.16 ~ 0.24중량%Cr: 0.16 to 0.24 wt%

Cr은 결정립을 미세화하는 원소이다. Cr이 0.16중량% 미만인 경우 결정립 미세화의 효과가 미미하며, 0.24중량%을 초과하는 경우 조대한 화합물을 생성하여 가공성이 열화될 수 있으므로, 크롬(Cr)의 함량을 0.16 ~ 0.24중량% 범위로 제한하였다.Cr is an element for refining the crystal grains. If the Cr content is less than 0.16% by weight, the effect of grain refinement is insignificant. If the Cr content exceeds 0.24% by weight, a coarse compound may be produced and the workability may be deteriorated. Therefore, the Cr content is limited to 0.16-0.44% Respectively.

Cu : 0.5 ~ 0.95중량%Cu: 0.5 to 0.95 wt%

구리(Cu)는 대부분 고용 강화에 의해 알루미늄 합금의 기계적 특성을 향상시키며 인성을 증가시킨다. 다만, 함량이 0.5중량%에 미달할 경우 인장강도의 향상효과가 크지 않으며, 함량이 0.95중량%를 초과할 경우 금속간 화합물의 석출에 의해 성형성이 감소하게 되므로 따라서 구리(Cu)의 함량을 0.5 ~ 0.95중량% 범위로 제한하였다.Copper (Cu) improves the mechanical properties of the aluminum alloy and increases the toughness by hardening most of the solid solution. However, when the content is less than 0.5 wt%, the effect of improving tensile strength is not significant. When the content exceeds 0.95 wt%, the formability decreases due to the precipitation of an intermetallic compound. Therefore, 0.5 to 0.95 wt%.

Mn : 0.1 ~ 0.2중량%Mn: 0.1 to 0.2 wt%

망간(Mn)은 고용 강화로써 강도를 향상시키는 원소이다. 상기 망간(Mn)의 함량이 0.1중량% 미만인 경우 결정립 성장 억제 효과가 불충분하여 상기 알루미늄 합금의 강도가 저하될 수 있는 반면, 0.2중량% 초과인 경우 강도 및 가공성 향상 효과는 더 이상 증가하지 않고 수렴하는 반면 압출성이 오히려 저하될 수 있다. Manganese (Mn) is an element that improves strength by solid solution strengthening. If the content of manganese (Mn) is less than 0.1% by weight, the effect of suppressing grain growth may be insufficient and the strength of the aluminum alloy may be lowered. On the other hand, when the content is more than 0.2% by weight, The extrudability can be lowered.

Mg : 0.2 ~ 1.0중량%Mg: 0.2 to 1.0 wt%

마그네슘(Mg)은 실리콘(Si)과 Mg2Si 화합물을 형성해 강도를 향상시키는 원소이다. 함량이 0.2중량%에 미달할 경우 강도 향상효과가 크지 않지만, 함량이 1.0중량%를 초과할 경우 알루미늄 합금의 압출성, 표면조도, 치수정밀도 등이 크게 저하될 수 있으며, 나아가, 주조 시 용탕의 산화 경향이 증대하게 된다. 따라서 마그네슘(Mg)의 함량을 0.2 ~ 1.0중량% 범위로 제한하였다.Magnesium (Mg) is an element that improves the strength by forming silicon (Si) and Mg2Si compounds. When the content is less than 0.2% by weight, the effect of improving the strength is not significant. However, when the content exceeds 1.0% by weight, the extrudability, surface roughness, dimensional accuracy, etc. of the aluminum alloy may be greatly deteriorated. The oxidation tendency increases. Therefore, the content of magnesium (Mg) is limited within the range of 0.2 to 1.0 wt%.

Zn : 0.25 ~ 0.45중량%Zn: 0.25 to 0.45 wt%

Zn은, 알루미늄 합금 중에서 Mg과 공존함으로써 η'상 및/또는 T'상을 석출시키는 원소이다. Mg과 함께 Zn을 함유시킴으로써, 석출 강화에 의한 강도 향상 효과를 얻을 수 있다. Zn의 함유량이 0.25중량% 미만인 경우에는, η'상 및 T'상의 석출량이 적어지기 때문에, 강도 향상 효과가 낮아진다. 따라서, Zn의 함유량은 0.25 중량% 이상으로 한다. 한편, Zn의 함유량이 0.45중량%을 초과하는 경우5.0% 이상인 경우에는, 연성이 저하될 우려가 있다. 따라서, Zn의 함유량은 0.25 ~ 0.45중량%로 한다. Zn is an element that precipitates the? 'Phase and / or the T' phase by coexisting with Mg in the aluminum alloy. By containing Zn together with Mg, an effect of improving the strength by precipitation strengthening can be obtained. When the content of Zn is less than 0.25% by weight, the precipitation amount of the? 'Phase and the T' phase is decreased, so that the effect of improving the strength is lowered. Therefore, the content of Zn should be 0.25 wt% or more. On the other hand, when the content of Zn is more than 0.45% by weight, when the content is 5.0% or more, the ductility may be lowered. Therefore, the content of Zn is set to 0.25 to 0.45% by weight.

Si : 0.7 ~ 0.85중량%Si: 0.7 to 0.85 wt%

실리콘(Si)은 주조성 및 강도에 영향을 주는 주요 원소이다. 다만, 함량이 0.7중량%에 미달할 경우 주조성 및 강도 향상의 효과가 크지 않다. 반면, 함량이 0.85중량%를 초과할 경우 알루미늄 합금의 압출 가공시 동일 압출 속도에서표면 결함이 발생할 수 있다.Silicon (Si) is a major element affecting casting and strength. However, when the content is less than 0.7 wt%, the effect of casting and strength improvement is not significant. On the other hand, when the content exceeds 0.85% by weight, surface defects may occur at the same extrusion rate during the extrusion processing of the aluminum alloy.

Ti : 0.25 ~ 0.3중량%Ti: 0.25 to 0.3 wt%

티타늄(Ti)은 주조성을 향상시키며 알루미늄 합금에 첨가됨으로써 주괴 조직을 미세화하여 강도 향상에 기여하는 원소이다. 티타늄(Ti) 함량이 0.25% 미만일 경우 용해 주조시 주물 조직이 조대하여 합금의 균열이 발생할 수 있으며, 티타늄(Ti) 함량이 0.3중량%을 초과하는 경우 Al과의 사이에 형성되는 AlTi계 금속간화합물 등이 원인이 되어, 점상 및 줄무늬 모양이 발생하기 쉬워지므로, 외관 특성이 불충분해질 우려가 있다. 따라서, Ti의 함유량은 0.25 ~ 0.3중량%로 한다. Titanium (Ti) is an element which improves casting and is added to an aluminum alloy, thereby contributing to the improvement of strength by refining the ingot texture. When the content of titanium (Ti) is less than 0.25%, cracking of the coarse alloy may occur in the cast structure at the time of melt casting. When the content of titanium (Ti) exceeds 0.3 wt%, the AlTi alloy A compound or the like is likely to cause point and streak patterns, which may result in insufficient appearance characteristics. Therefore, the content of Ti is set to 0.25 to 0.3% by weight.

도 2는 본 발명의 실시예 및 비교예에 따른 알루미늄 합금의 제조방법에서 주물재의 응고 조건을 비교하여 도해한 그래프이다. FIG. 2 is a graph illustrating the solidification conditions of castings in an aluminum alloy manufacturing method according to Examples and Comparative Examples of the present invention.

도 2를 참조하면, 본 발명의 실시예에 따른 알루미늄 합금의 제조방법에서 주물재의 응고 조건(①)은 720℃에서 합금화된 용탕을 114℃/s의 냉각속도로 300℃까지 제어냉각하는 스트립 캐스팅 조건이며, 형성된 주조재의 두께는 6mm 이다. 나아가, 720℃에서 합금화된 용탕을 100 ~ 150℃/s의 냉각속도로 300℃까지 제어냉각하는 조건에서 형성된 주조재의 두께는 3 ~ 6mm 임을 확인하였다. 2, in the method of manufacturing an aluminum alloy according to an embodiment of the present invention, the solidification condition (1) of the casting material is such that the molten alloy at 720 deg. C is cooled to 300 deg. C at a cooling rate of 114 deg. And the thickness of the formed cast material is 6 mm. Further, it was confirmed that the thickness of the cast material formed under the condition of controlled cooling of the molten alloy at 720 ° C. to 300 ° C. at a cooling rate of 100 to 150 ° C./s was 3 to 6 mm.

이에 반하여, 본 발명의 비교예에 따른 알루미늄 합금의 제조방법에서 주물재의 응고 조건(②)은 720℃에서 합금화된 용탕을 40℃/s의 냉각속도로 300℃까지 제어냉각하는 조건이며, 형성된 주조재의 두께는 20mm 이다. On the contrary, in the process for producing an aluminum alloy according to the comparative example of the present invention, the coagulation condition (2) of the casting material is a condition for controlling and cooling the molten alloy at 720 ° C. at a cooling rate of 40 ° C./s to 300 ° C., The thickness of the ash is 20 mm.

도 3은 본 발명의 실시예에 따른 알루미늄 합금의 미세구조를 촬영한 사진들이고, 도 4는 본 발명의 비교예에 따른 알루미늄 합금의 미세구조를 촬영한 사진들이다. FIG. 3 is a photograph of a microstructure of an aluminum alloy according to an embodiment of the present invention, and FIG. 4 is a photograph of a microstructure of an aluminum alloy according to a comparative example of the present invention.

본 발명의 비교예에 따른 알루미늄 합금은 Cr : 0.3중량% 이하(단, 0중량% 초과), Cu : 0.3중량% 이하(단, 0중량% 초과), Mn : 0.3중량% 이하(단, 0중량% 초과), Mg : 0.2 ~ 1.0중량%, Zn : 0.3중량% 이하(단, 0중량% 초과), Si : 0.2 ~ 1.0중량%, Ti : 0.2중량% 미만(단, 0중량% 초과)을 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어지며 15mm 두께를 가지는 주물재를 제공하는 단계; (b) 상기 주물재에 대하여 530℃에서 4시간 동안 균질화 열처리하는 단계; (c) 상기 주물재에 대하여 20 ~ 40%의 압하율로 480 ~ 540℃에서 열간 압연하는 단계; (d) 열간 압연된 상기 주물재에 대하여 20 ~ 40%의 압하율로 냉간 압연하는 단계; 및 (d) 냉간 압연된 상기 주물재에 대하여 480 ~ 540℃에서 20 ~ 60 분 동안 재결정 열처리하는 단계;를 수행하여 구현한다. The aluminum alloy according to the comparative example of the present invention contains 0.3 wt% or less of Cr (more than 0 wt%), 0.3 wt% or less of Cu (but more than 0 wt%), 0.3 wt% (More than 0 wt%), Si: 0.2 to 1.0 wt%, Ti: less than 0.2 wt% (however, more than 0 wt%), Mg: 0.2 to 1.0 wt% And the balance consisting of Al and inevitable impurities and having a thickness of 15 mm; (b) homogenizing the cast material at 530 ° C for 4 hours; (c) hot rolling the cast material at a reduction rate of 20 to 40% at 480 to 540 占 폚; (d) cold-rolling the hot-rolled cast material at a reduction ratio of 20 to 40%; And (d) performing a recrystallization heat treatment on the cold-rolled cast material at 480 to 540 ° C for 20 to 60 minutes.

본 발명의 실시예 및 비교예에 따른 알루미늄 합금의 미세구조에서 재결정크기는 각각 30㎛ 및 43㎛이며, 재결정 비율은 85% 및 62%으로 나타났다. In the microstructure of the aluminum alloy according to the examples and comparative examples of the present invention, the recrystallization sizes were 30 탆 and 43 탆, respectively, and the recrystallization ratios were 85% and 62%, respectively.

도 5는 본 발명의 실시예에 따른 알루미늄 합금의 강화상에 의한 강도 향상을 설명하기 위하여 촬영한 사진들이고, 도 6은 본 발명의 실시예에 따른 알루미늄 합금의 강화상에 의한 집합조직 제어를 설명하기 위하여 촬영한 사진들이다. FIG. 5 is a photograph taken to explain the strength enhancement by the strengthened phase of the aluminum alloy according to the embodiment of the present invention, and FIG. 6 is a view illustrating the texture control by the strengthened phase of the aluminum alloy according to the embodiment of the present invention These are the photographs taken for the purpose.

도 5를 참조하면, 박물의 주조재는 두께가 6 mm이며, 최종 판재의 두께는 1 mm이다. 박물의 주조재에서는 합금 설계를 통하여 20 ㎛ 이하의 새로운 정출상이 생성된다. 새로운 정출상은 Mn, Cr 또는 Cu가 결합된 Mg2Si이며, 열간 압연, 냉간 압연, 재결정 열처리 과정을 통해 구형의 정출상으로 변형되되 5 ㎛ 이하의 크기로 제어되어 알루미늄 합금의 강도가 향상된다. 이러한 강도의 향상은 소성 변형 시 분산된 상에 의한 전위 진행 방해를 통해 이루어진다. Referring to FIG. 5, the casting material of the article has a thickness of 6 mm and the thickness of the final plate is 1 mm. In the cast material of the present invention, a new crystallized phase of less than 20 μm is produced through the alloy design. The new crystallization phase is Mg 2 Si combined with Mn, Cr or Cu. It is transformed into a spherical crystallization phase through hot rolling, cold rolling and recrystallization heat treatment, and is controlled to a size of 5 μm or less to improve the strength of the aluminum alloy. This enhancement of strength is achieved through disruption of dislocation progression by dispersed phases during plastic deformation.

도 6을 참조하면, 냉간 압연 공정에서 정출상 주변으로 집중된 응력이 재결정 열처리 과정을 거쳐 정출상 주변부에 램덤한 재결정 발달로 인한 성형성이 향상된다. Referring to FIG. 6, the stress concentrated around the crystallization phase in the cold rolling process is subjected to a recrystallization heat treatment process, thereby improving the formability due to the random recrystallization development in the periphery of the crystallization phase.

이하 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다. Hereinafter, preferred examples of the present invention will be described in order to facilitate understanding of the present invention. It should be understood, however, that the following examples are intended to aid in the understanding of the present invention and are not intended to limit the scope of the present invention.

실험예Experimental Example

실험예들 중 일부는 본 발명의 실시예로서 표 1의 성분계를 갖는 알루미늄 합금을 형성한다. 예를 들어, 실시예1에 의한 알루미늄 합금은 Cr : 0.184중량%, Cu : 0.524중량%, Mn : 0.119중량%, Mg : 0.654중량%, Zn : 0.372중량%, Si : 0.836중량%, Ti : 0.29중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진다. 실시예2에 의한 알루미늄 합금은 Cr : 0.167중량%, Cu : 0.502중량%, Mn : 0.197중량%, Mg : 0.230중량%, Zn : 0.269중량%, Si : 0.735중량%, Ti : 0.258중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진다. 실시예3에 의한 알루미늄 합금은 Cr : 0.235중량%, Cu : 0.949중량%, Mn : 0.102중량%, Mg : 0.952중량%, Zn : 0.440중량%, Si : 0.759중량%, Ti : 0.266중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진다. Some of the experimental examples form an aluminum alloy having the component system of Table 1 as an embodiment of the present invention. For example, the aluminum alloy according to Example 1 contains 0.184 wt% of Cr, 0.524 wt% of Cu, 0.119 wt% of Mn, 0.654 wt% of Mg, 0.372 wt% of Zn, 0.836 wt% of Si, 0.29% by weight, and the balance of Al and inevitable impurities. The aluminum alloy according to Example 2 is composed of 0.167 wt% of Cr, 0.502 wt% of Cu, 0.197 wt% of Mn, 0.230 wt% of Mg, 0.269 wt% of Zn, 0.735 wt% of Si, 0.258 wt% of Ti, And the balance of Al and inevitable impurities. The aluminum alloy according to Example 3 contains 0.235 wt% of Cr, 0.949 wt% of Cu, 0.102 wt% of Mn, 0.952 wt% of Mg, 0.440 wt% of Zn, 0.759 wt% of Si, 0.266 wt% of Ti, And the balance of Al and inevitable impurities.

CrCr CuCu MnMn MgMg ZnZn SiSi TiTi 실시예1Example 1 0.1840.184 0.5240.524 0.1190.119 0.6540.654 0.3720.372 0.8360.836 0.290.29 실시예2Example 2 0.1670.167 0.5020.502 0.1970.197 0.230.23 0.2690.269 0.7350.735 0.2580.258 실시예3Example 3 0.2350.235 0.9490.949 0.1020.102 0.9520.952 0.440.44 0.7590.759 0.2660.266

실시예1 내지 실시예3의 조성을 가지는 합금화된 용탕을 720℃에서 120℃/s의 냉각속도로 300℃까지 제어냉각하여 두께가 6 mm인 주물재를 형성한 후, 균질화 열처리 없이 520℃에서 압하율 30%로 열간 압연하고, 압하율 30%로 냉간 압연한 후, 520℃에서 20분 동안 재결정 열처리한 시편에 대하여 각각 인장물성 평가를 수행한 결과를 도 7 내지 도 9에 도시하였다. The alloyed molten alloy having the compositions of Examples 1 to 3 was controlled and cooled at a cooling rate of 120 DEG C / s from 720 DEG C to 300 DEG C to form a casting material having a thickness of 6 mm. Then, the casting material was rolled at 520 DEG C without homogenizing heat treatment Rolled at a rate of 30%, cold-rolled at a reduction ratio of 30%, and subjected to recrystallization heat treatment at 520 DEG C for 20 minutes, respectively. The tensile properties of the specimens are shown in FIGS.

도 7과 표 2를 참조하면, 실시예1에 따른 알루미늄 합금은 항복강도 : 107 MPa, 인장강도 : 243 MPa, 연신율 : 29.2%의 물성값을 가지며, 도 8과 표 2를 참조하면, 실시예2에 따른 알루미늄 합금은 항복강도 : 73 MPa, 인장강도 : 195 MPa, 연신율 : 27.2%의 물성값을 가지며, 도 9와 표 2를 참조하면, 실시예3에 따른 알루미늄 합금은 항복강도 : 127 MPa, 인장강도 : 275 MPa, 연신율 : 30.4%의 물성값을 가진다. 7 and Table 2, the aluminum alloy according to Example 1 has a property value of a yield strength of 107 MPa, a tensile strength of 243 MPa, and an elongation of 29.2%. Referring to FIGS. 8 and 2, The aluminum alloy according to Example 3 had a yield strength of 73 MPa, a tensile strength of 195 MPa, and an elongation of 27.2%. Referring to FIG. 9 and Table 2, the aluminum alloy according to Example 3 had a yield strength of 127 MPa, A strength of 275 MPa, and an elongation of 30.4%.

실시예1Example 1 실시예2Example 2 실시예3Example 3 Y.S. (MPa)Y.S. (MPa) 107107 7373 127127 T.S. (MPa)T.S. (MPa) 243243 195195 275275 E (%)E (%) 29.229.2 27.227.2 30.430.4

도 10은 실험예들 중 비교예로서, 중량%로, Cr: 0.3%, Cu: 0.3%, Mn: 0.3%, Mg: 0.23%, Zn: 0.26%, Si: 0.73%, Ti: 0.15%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진 500mm 두께의 슬라브를 먼저 형성한 후에 균질화 열처리(530℃ 4시간), 열간 압연(530 ℃, 압하율 30%), 냉간 압연(압하율 30%) 및 열처리(530℃, 20분)를 순차적으로 수행하여 제조한 알루미늄 합금에 대하여 인장물성 평가를 수행한 결과를 나타낸 것이다. 상기 비교예에 의한 알루미늄 합금의 인장물성 평가 결과는 표 3에서 요약하였다. 표 3에서 RD, TD, 45°는 압연 공정에서 압연 방향을 기준으로 한 특정 방위를 나타낸다. Fig. 10 is a graph showing the results of a comparative example of experimental examples in which 0.3% of Cr, 0.3% of Cu, 0.3% of Mn, 0.23% of Mg, 0.26% of Zn, 0.73% of Si and 0.15% (530 占 폚 for 4 hours), hot rolling (530 占 폚, 30% reduction), cold rolling (30% reduction), and a 500 mm thick slab composed of Al and inevitable impurities, And annealing (530 占 폚, 20 minutes) were successively carried out to evaluate the tensile properties of the aluminum alloy. The evaluation results of the tensile properties of the aluminum alloy according to the comparative example are summarized in Table 3. In Table 3, RD, TD, and 45 ° represent specific orientations relative to the rolling direction in the rolling process.

RDRD TDTD 45°45 ° 항복강도 (MPa)Yield strength (MPa) 125125 125125 125125 인장강도
(MPa)
The tensile strength
(MPa)
248248 242242 239239
연신율
(%)
Elongation
(%)
26.526.5 2727 28.328.3

표 2에 나타난 본 발명의 실시예의 결과를 표 3에 나타난 본 발명의 비교예의 결과와 비교하면, 본 발명의 실시예에 의한 제조 방법으로 구현한 알루미늄 합금의 재질 특성은 종래의 제조 방법(비교예)으로 구현한 합금의 재질 특성과 동등함을 확인할 수 있다. 하지만, 본 발명의 실시예에 따르면, 저원가 주조공정인 스트립 캐스팅을 적용할 수 있고, 두께운 반제품을 적용할 때 요청되는 균질화 열처리를 생략할 수 있다는 유리한 효과를 기대할 수 있다.Comparing the results of the embodiments of the present invention shown in Table 2 with those of the comparative example of the present invention shown in Table 3, the material properties of the aluminum alloy realized by the manufacturing method according to the embodiment of the present invention were compared with those of the conventional manufacturing method ) Is equivalent to the material properties of the alloy implemented with the alloy. However, according to the embodiment of the present invention, it is possible to apply strip casting, which is a low-cost casting process, and it is possible to omit the homogenization heat treatment that is required when a thick-walled product is applied.

본 발명은 개시된 실시예뿐만 아니라, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자가 개시된 실시예로부터 도출할 수 있는 다양한 변형 및 균등한 타 실시예를 포함한다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.It is to be understood that the invention includes various modifications and equivalent embodiments that can be derived from the disclosed embodiments as well as those of ordinary skill in the art to which the present invention pertains. Accordingly, the technical scope of the present invention should be defined by the following claims.

Claims (6)

(a) 스트립 캐스팅 공정으로 Cr : 0.16 ~ 0.24중량%, Cu : 0.5 ~ 0.95중량%, Mn : 0.1 ~ 0.2중량%, Mg : 0.2 ~ 1.0중량%, Zn : 0.25 ~ 0.45중량%, Si : 0.7 ~ 0.85중량%, Ti : 0.25 ~ 0.3중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어진 주물재를 제공하는 단계;
(b) 상기 주물재에 대하여 균질화 열처리 없이 20 ~ 40%의 압하율로 480 ~ 540℃에서 열간 압연하는 단계;
(c) 열간 압연된 상기 주물재에 대하여 20 ~ 40%의 압하율로 냉간 압연하는 단계; 및
(d) 냉간 압연된 상기 주물재에 대하여 480 ~ 540℃에서 20 ~ 60 분 동안 재결정 열처리하는 단계;
를 포함하는, 알루미늄 합금의 제조방법.
(a) 0.16 to 0.24 wt% of Cr, 0.5 to 0.95 wt% of Cu, 0.1 to 0.2 wt% of Mn, 0.2 to 1.0 wt% of Mg, 0.25 to 0.45 wt% of Zn and 0.7 to 0.7 wt% of Si in a strip casting process To 0.85% by weight, Ti: 0.25 to 0.3% by weight, the balance being Al and inevitable impurities;
(b) hot-rolling the cast material at 480 to 540 占 폚 at a reduction ratio of 20 to 40% without homogenizing heat treatment;
(c) cold rolling the hot-rolled cast material at a reduction ratio of 20 to 40%; And
(d) subjecting the cold-rolled cast material to recrystallization heat treatment at 480 to 540 占 폚 for 20 to 60 minutes;
≪ / RTI >
제 1 항에 있어서,
상기 (a) 단계에서 Mn, Cr 또는 Cu가 결합된 Mg2Si 강화상이 덴드라이트 형태로 정출되며, 상기 (b) 단계 및 (c) 단계에서 상기 Mg2Si 강화상은 구형 형태로 변형되며, 상기 (d) 단계는 상기 Mg2Si 강화상 주변부에 재결정이 진행되어 이방성 집합조직이 생성되어 성형성이 더욱 향상되는 단계를 포함하는, 알루미늄 합금의 제조방법.
The method according to claim 1,
In the step (a), the Mg 2 Si-strengthened phase to which Mn, Cr or Cu is bound is crystallized in the form of dendrites. In the step (b) and the step (c), the Mg 2 Si- wherein the step (d) includes recrystallization of the Mg 2 Si-strengthened phase peripheral portion to produce an anisotropic aggregate structure, thereby further improving the moldability.
제 2 항에 있어서,
상기 (a) 단계에서 정출되는 상기 Mg2Si 강화상은 20 ㎛ 이하의 크기를 가지고, 상기 (b) 단계 및 (c) 단계에서 상기 Mg2Si 강화상은 5 ㎛ 이하의 크기를 가지는 것을 특징으로 하는, 알루미늄 합금의 제조방법.
3. The method of claim 2,
The Mg 2 Si-enriched phase formed in the step (a) has a size of 20 탆 or less, and the Mg 2 Si-enriched phase in the steps (b) and (c) has a size of 5 탆 or less , A method for producing an aluminum alloy.
제 1 항에 있어서,
상기 (a) 단계는 700℃ 이상의 합금화된 용탕을 100 ~ 150℃/s의 냉각속도로 300℃까지 냉각하여 3 ~ 6mm의 두께를 가지는 주물재를 형성하는 단계를 포함하는, 알루미늄 합금의 제조방법.
The method according to claim 1,
Wherein the step (a) comprises cooling a molten alloy having a temperature of 700 ° C or higher to 300 ° C at a cooling rate of 100 to 150 ° C / s to form a cast material having a thickness of 3 to 6 mm .
Cr : 0.16 ~ 0.24중량%, Cu : 0.5 ~ 0.95중량%, Mn : 0.1 ~ 0.2중량%, Mg : 0.2 ~ 1.0중량%, Zn : 0.25 ~ 0.45중량%, Si : 0.7 ~ 0.85중량%, Ti : 0.25 ~ 0.3중량%를 함유하고, 잔부가 Al 및 불가피적 불순물로 이루어지고
Mn, Cr 또는 Cu가 결합된 Mg2Si 강화상이 5 ㎛ 이하의 크기를 가지며, 상기 Mg2Si 강화상 주변부에 재결정이 진행되어 이방성 집합조직이 생성된 것을 특징으로 하는
알루미늄 합금.
0.1 to 0.2 wt% of Cr, 0.1 to 0.24 wt% of Cr, 0.5 to 0.95 wt% of Cu, 0.1 to 0.2 wt% of Mn, 0.2 to 1.0 wt% of Mg, 0.25 to 0.45 wt% of Zn, 0.7 to 0.85 wt% 0.25 to 0.3% by weight, the balance being Al and inevitable impurities
The Mg 2 Si-strengthened phase to which Mn, Cr or Cu is bonded has a size of 5 탆 or less and recrystallization proceeds in the periphery of the Mg 2 Si strengthened phase to form an anisotropic aggregate structure
Aluminum alloy.
삭제delete
KR1020170105887A 2017-08-22 2017-08-22 Aluminium alloy and methods of fabricating the same KR101950595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170105887A KR101950595B1 (en) 2017-08-22 2017-08-22 Aluminium alloy and methods of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170105887A KR101950595B1 (en) 2017-08-22 2017-08-22 Aluminium alloy and methods of fabricating the same

Publications (1)

Publication Number Publication Date
KR101950595B1 true KR101950595B1 (en) 2019-02-20

Family

ID=65561768

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170105887A KR101950595B1 (en) 2017-08-22 2017-08-22 Aluminium alloy and methods of fabricating the same

Country Status (1)

Country Link
KR (1) KR101950595B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143920A (en) * 2020-09-08 2020-12-29 新疆众和股份有限公司 Production method of 5087 aluminum alloy welding wire blank
KR20220011289A (en) 2020-07-21 2022-01-28 현대제철 주식회사 Aluminum alloy sheet and method of manufacturing the same
KR20220041505A (en) 2020-09-25 2022-04-01 현대제철 주식회사 Aluminum alloy sheet and method of manufacturing the same
KR20230045419A (en) 2021-09-28 2023-04-04 현대제철 주식회사 Aluminum alloy material and method of manufacturing the same
KR20230045415A (en) 2021-09-28 2023-04-04 현대제철 주식회사 Aluminum alloy wrought material and method of manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252570A (en) * 1994-03-17 1995-10-03 Kobe Steel Ltd Al-mg-si alloy sheet for automobile panel
JPH07278716A (en) * 1994-02-21 1995-10-24 Nippon Steel Corp Aluminum alloy sheet for forming excellent in mechanical property and its production
KR960001157B1 (en) * 1993-09-13 1996-01-19 이상진 Speaker cabinet with double walls
JPH10102178A (en) * 1996-09-25 1998-04-21 Furukawa Electric Co Ltd:The Directly cast and rolled sheet of al-mg-si alloy, and its production
JP2000239810A (en) * 1999-02-23 2000-09-05 Nippon Light Metal Co Ltd Production of thin extruded shape, extruder and aluminum extruded shape
JP2001020027A (en) * 1999-05-06 2001-01-23 Nippon Steel Corp Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JP2001262265A (en) * 2000-03-22 2001-09-26 Kobe Steel Ltd Hot rolling stock of high formability aluminum alloy sheet
JP2003105472A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
US20040094249A1 (en) * 2001-03-28 2004-05-20 Hidetoshi Uchida Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
KR20060135711A (en) * 2003-12-26 2006-12-29 니폰게이긴조쿠가부시키가이샤 Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake-hardenability
US20140000768A1 (en) * 2012-06-15 2014-01-02 Alcoa Inc. Aluminum alloys and methods for producing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960001157B1 (en) * 1993-09-13 1996-01-19 이상진 Speaker cabinet with double walls
JPH07278716A (en) * 1994-02-21 1995-10-24 Nippon Steel Corp Aluminum alloy sheet for forming excellent in mechanical property and its production
JPH07252570A (en) * 1994-03-17 1995-10-03 Kobe Steel Ltd Al-mg-si alloy sheet for automobile panel
JPH10102178A (en) * 1996-09-25 1998-04-21 Furukawa Electric Co Ltd:The Directly cast and rolled sheet of al-mg-si alloy, and its production
JP2000239810A (en) * 1999-02-23 2000-09-05 Nippon Light Metal Co Ltd Production of thin extruded shape, extruder and aluminum extruded shape
JP2001020027A (en) * 1999-05-06 2001-01-23 Nippon Steel Corp Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JP2001262265A (en) * 2000-03-22 2001-09-26 Kobe Steel Ltd Hot rolling stock of high formability aluminum alloy sheet
US20040094249A1 (en) * 2001-03-28 2004-05-20 Hidetoshi Uchida Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
JP2003105472A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
KR20060135711A (en) * 2003-12-26 2006-12-29 니폰게이긴조쿠가부시키가이샤 Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake-hardenability
US20140000768A1 (en) * 2012-06-15 2014-01-02 Alcoa Inc. Aluminum alloys and methods for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011289A (en) 2020-07-21 2022-01-28 현대제철 주식회사 Aluminum alloy sheet and method of manufacturing the same
CN112143920A (en) * 2020-09-08 2020-12-29 新疆众和股份有限公司 Production method of 5087 aluminum alloy welding wire blank
KR20220041505A (en) 2020-09-25 2022-04-01 현대제철 주식회사 Aluminum alloy sheet and method of manufacturing the same
KR20230045419A (en) 2021-09-28 2023-04-04 현대제철 주식회사 Aluminum alloy material and method of manufacturing the same
KR20230045415A (en) 2021-09-28 2023-04-04 현대제철 주식회사 Aluminum alloy wrought material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101950595B1 (en) Aluminium alloy and methods of fabricating the same
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP3194742B2 (en) Improved lithium aluminum alloy system
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2014132925A1 (en) Aluminum alloy having excellent characteristic after room temperature aging
US20200216938A1 (en) 6xxxx-series rolled sheet product with improved formability
CN104451285A (en) Al-Mg alloy sheet for car body and manufacturing method of Al-Mg alloy sheet
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
WO2019189521A1 (en) High-strength aluminum alloy, and aluminum alloy sheet and aluminum alloy member using said aluminum alloy
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
KR20210037108A (en) Aluminum alloy and method of manufacturing the same
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant