JPH07256416A - Production of al alloy sheet for deep drawing - Google Patents

Production of al alloy sheet for deep drawing

Info

Publication number
JPH07256416A
JPH07256416A JP4726194A JP4726194A JPH07256416A JP H07256416 A JPH07256416 A JP H07256416A JP 4726194 A JP4726194 A JP 4726194A JP 4726194 A JP4726194 A JP 4726194A JP H07256416 A JPH07256416 A JP H07256416A
Authority
JP
Japan
Prior art keywords
rolling
hot rolling
temperature
hot
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4726194A
Other languages
Japanese (ja)
Inventor
Katsushi Matsumoto
克史 松本
Masahiro Yanagawa
政洋 柳川
Hiroyuki Morimoto
啓之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4726194A priority Critical patent/JPH07256416A/en
Publication of JPH07256416A publication Critical patent/JPH07256416A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To improve the strength and the formability by solidifying molten Al alloy containing specific contents of Mn, Mg, Cu, Zn, Fe, Si at a specific cooling velocity, hot-rolling in a specific condition and cold-rolling. CONSTITUTION:The Al alloy containing by wt%, 0.4-1.5 Mn, 0.8-2.5 Mg, <=0.25 Cu, <=0.25 Zn, 0.1-1.0 Fe and 0.1-1.0 Si is used. After continuously casting in the conditions satisfying R>=5 and R>=7.5(Fe+Si)+2 (wherein, R: the cooling velocity at the time of solidifying ( deg.C/sec), Fe, Si: alloying ratio of Fe and Si in the Al alloy (%)), the cast slab temp. is kept to the hot-rolling temp. or higher and the hot-rolling is executed and the finishing temp. of the hot rolling is made to be 150-280 deg.C. After hot-rolling, the rolled slab is cooled at >=100 deg.C/min and successively, the cold-rolling is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絞り成形用Al合金板
の製造方法に関し、特にMnおよびMgを合金元素とし
て含有するAl合金を用いて連続鋳造された移動帯板
を、熱間圧延温度以上に保持して直ちに熱間圧延工程へ
送り、或は連鋳鋳片を熱間圧延温度に調整してから熱間
圧延工程へ送って熱間圧延を行ない、更に冷間圧延を行
なってAl合金板を製造する際において、連続鋳造時の
冷却速度や熱間圧延時の終了温度、更には熱間圧延後の
冷却速度を適正に制御することにより、優れた絞り成形
性と強度を兼備したAl合金板を製造する方法に関する
ものである。そして本発明によって得られるAl合金板
は、その優れた絞り成形性と強度を生かして、飲・食用
の缶材を初めとして様々の成形加工用途に利用すること
ができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al alloy sheet for draw forming, and more particularly, to a hot rolling temperature of a moving strip obtained by continuously casting an Al alloy containing Mn and Mg as alloy elements. After holding the above, it is immediately sent to the hot rolling process, or the continuous cast slab is adjusted to the hot rolling temperature and then sent to the hot rolling process to carry out hot rolling, and further cold rolling is carried out to obtain Al. When manufacturing alloy sheets, by controlling the cooling rate during continuous casting, the end temperature during hot rolling, and the cooling rate after hot rolling appropriately, it has excellent drawability and strength. The present invention relates to a method for manufacturing an Al alloy plate. The Al alloy sheet obtained according to the present invention can be utilized for various forming applications including can materials for drinking and eating by taking advantage of its excellent draw formability and strength.

【0002】[0002]

【従来の技術】たとえば食料用缶や飲料用缶などとして
使用される成形用Al合金板の製法として従来から一般
的に実施されているのは、半連続鋳造法等によって製造
した鋳塊に面削処理や均質化熱処理を施した後、熱間圧
延、冷間圧延、焼鈍等を順次行なう方法であり、この様
な工程を経て製造される従来の成形用Al合金板は絞り
成形性が良好であると共に、ある程度の強度も備えてお
り、需要者の要求を一応満足している。
2. Description of the Related Art A conventional method for producing an Al alloy sheet for forming, which is used as, for example, food cans and beverage cans, has been generally practiced so far since it is used for ingots produced by a semi-continuous casting method or the like. This is a method of sequentially performing hot rolling, cold rolling, annealing, etc. after subjecting to cutting treatment and homogenizing heat treatment, and the conventional forming Al alloy plate manufactured through such steps has good draw formability. In addition, it also has a certain level of strength, and satisfies the demands of consumers for the time being.

【0003】ところが近年における需要者の要求は一段
と厳しくなってきており、軽量化を増進するため更に高
い強度を求める傾向があるばかりでなく、成形性におい
ても一層の向上が望まれており、更には生産性向上によ
るコストダウンの要求も次第に高まってきている。
However, in recent years, the demands of consumers have become more severe, and there is a tendency not only to demand higher strength in order to promote weight reduction, but further improvement in moldability is also desired. The demand for cost reduction by improving productivity is gradually increasing.

【0004】こうした要望に沿う比較的新しいAl合金
板製造技術として、連続鋳造により移動帯板とした後直
ちに圧延工程へ送って熱間圧延および冷間圧延を行なう
手法(以下、連鋳・直送圧延法ということがある)を採
用し、面削や均質化熱処理を省略する方法が検討されて
いる(特開昭55−27497号、特公昭62−541
82号等)。この方法によれば、面削や均質化熱処理の
省略によるコストダウンが図れると共に、鋳造工程で過
飽和に固溶した固溶元素が均質化熱処理時に析出すると
いったことも起こらなくなるため、固溶強化による高強
度化も増進されるといった利点を得ることができる。
As a relatively new Al alloy sheet manufacturing technique that meets such demands, a method of performing hot rolling and cold rolling by immediately transferring to a rolling process after forming a moving strip by continuous casting (hereinafter, continuous casting / direct rolling) Method) and omitting chamfering and homogenizing heat treatment (Japanese Patent Laid-Open No. 55-27497, Japanese Patent Publication No. 62-541).
82). According to this method, it is possible to reduce costs by omitting chamfering and homogenization heat treatment, and to prevent solid-solution elements that are solid-soluted in supersaturation during the casting process from precipitating during homogenization heat treatment. It is possible to obtain an advantage that the strength is enhanced.

【0005】こうした連鋳・直送圧延法を行なうときに
採用される連続鋳造法として現在実用化されているの
は、水冷式連続鋳造法(固定式の水冷式連鋳鋳型から板
状に成形されて出てくる連鋳片を冷却水で直接冷却固化
し、連続的に鋳造する方法)、ハンターエンジニアリン
グ社で開発された双ロール鋳造法(回転する一対の冷却
ロール間に溶湯を供給し、該ロール間で冷却固化するこ
とにより連続的に鋳造する方法)、ハザレー社で開発さ
れたベルト式連続鋳造法(可動式の2つのベルト状冷却
部材の間に溶湯を供給し、該ベルト間で冷却固化させな
がら連続的に板状に鋳造する方法)、スイス・アルミニ
ウム社で開発されたブロック式連続鋳造法(可動式の2
つのブロック状冷却部材の間に溶湯を供給し、該ブロッ
ク間で冷却固化させながら連続的に板状に鋳造する方
法)などである。
The continuous casting method adopted at the time of performing such continuous casting / direct rolling method is currently put into practical use is a water-cooled continuous casting method (formed from a fixed water-cooled continuous casting mold into a plate shape). The continuous cast piece that comes out is directly cooled and solidified with cooling water and continuously cast), a twin roll casting method developed by Hunter Engineering Co., Ltd. (the molten metal is supplied between a pair of rotating cooling rolls, Continuous casting method by cooling and solidifying between rolls), belt-type continuous casting method developed by Hatherley Co., Ltd. (supplying molten metal between two movable belt-shaped cooling members and cooling between the belts) Continuous solid plate casting while solidifying), Block type continuous casting method (movable type 2) developed by Swiss Aluminum Co.
A method of supplying a molten metal between two block-shaped cooling members and continuously casting in a plate shape while cooling and solidifying between the blocks).

【0006】[0006]

【発明が解決しようとする課題】ところが現在実用化さ
れている連鋳・直送圧延法では、連続鋳造後の熱間圧延
における仕上げ温度が高く(通常300℃程度以上)、
使用されるAl合金素材の成分組成が必ずしも適正でな
いこととも相まって、連鋳および熱間圧延工程で過飽和
に固溶したMg等の合金元素が熱間圧延後に再結晶を起
こして加工歪み量が減少し、その後に行なわれる連続焼
鈍(Continuous Annealing li
ne)時における立方体方位(圧延面と(100) 面が平行
で、圧延方向と〈100 〉方位が平行な結晶方位を意味す
る)の増加の障害となり、ひいては冷間圧延製品の成形
性、特にその評価基準として重要視されている耳率(板
の異方性のために深絞りの際に対称に生じる波形状の突
起の程度をいい、耳率=[(山の平均高さ)−(谷の平
均高さ)]/(谷の平均高さ)×100(%)で表され
る。圧延方向に対して0°及び90°方向に出る耳
(山)を0−90°耳といい、圧延方向に対して45°
方向に出る耳(山)を45°耳という)が悪くなるとい
う問題が生じてくる。
However, in the continuous casting / direct feed rolling method currently in practical use, the finishing temperature in the hot rolling after the continuous casting is high (usually about 300 ° C. or higher),
Coupled with the fact that the component composition of the Al alloy material used is not always appropriate, the alloying elements such as supersaturated Mg and other solid solutions in the continuous casting and hot rolling processes cause recrystallization after hot rolling and the amount of work strain decreases. Continuous annealing (Continuous Annealing Li)
ne), which is an obstacle to an increase in cubic orientation (meaning a crystal orientation in which the rolling surface is parallel to the (100) plane and the rolling direction is parallel to the <100> orientation), and eventually the formability of cold rolled products, especially Ear ratio, which is regarded as important as the evaluation criteria (means the degree of corrugated protrusions that are symmetrically generated during deep drawing due to plate anisotropy, ear ratio = [(average height of peak)-( The average height of the valley)] / (average height of the valley) × 100 (%) The ears (mountains) appearing in the 0 ° and 90 ° directions with respect to the rolling direction are called 0-90 ° ears. , 45 ° to the rolling direction
The problem arises that the ears (mountains) appearing in the direction are called 45 ° ears.

【0007】本発明は、上記の様な従来技術の問題点に
着目してなされたものであって、その目的は、Al合金
を連続鋳造された移動帯板を熱間圧延温度以上に保持し
て直ちに熱間圧延工程へ送り、或は連鋳鋳片を熱間圧延
温度に調整してから熱間圧延工程へ送って熱間圧延し、
更に冷間圧延を行なってAl合金板を製造する際におい
て、特に熱間圧延仕上がり状態での歪み量を増大し、冷
間圧延後の連続焼鈍時に生じる立方体方位を増大させる
ことによって、高強度を維持しつつ、最終冷間圧延後の
成形性、特に耳率を最少限に抑えることのできる方法を
確立しようとするものである。
The present invention has been made by paying attention to the problems of the prior art as described above, and an object thereof is to keep a moving strip formed by continuously casting an Al alloy at a hot rolling temperature or higher. Immediately to the hot rolling process, or the continuous cast slab is adjusted to the hot rolling temperature and then sent to the hot rolling process for hot rolling,
Further, when cold rolling is performed to produce an Al alloy sheet, the strain amount is increased particularly in the finished state of hot rolling, and the cubic orientation generated during continuous annealing after cold rolling is increased, thereby improving high strength. It is intended to establish a method capable of keeping the formability after the final cold rolling, particularly the earring rate, to a minimum while maintaining the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る成形性Al合金板の製造方法の構
成は、 Mn:0.4〜1.5% Mg:0.8〜2.5% Cu:0.25%以下(0%を含む) Zn:0.25%以下(0%を含む) Fe:0.1〜1.0% Si:0.1〜1.0% の要件を満たすAl合金を、凝固時の冷却速度が R≧5で、且つR≧7.5([Fe]+[Si])+2 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造された移動帯板を熱間圧延温
度以上に保持して直ちに熱間圧延工程へ送り、或は連鋳
鋳片を熱間圧延温度以上に調整してから熱間圧延工程へ
送って熱間圧延し、該熱間圧延の仕上げ温度を150〜
280℃とすると共に熱間圧延後100℃/分以上の速
度で冷却し、次いで冷間圧延を行なうところに要旨を有
するものである。
[Means for Solving the Problems] The structure of the method for producing a formable Al alloy sheet according to the present invention, which was able to solve the above problems, is as follows: Mn: 0.4 to 1.5% Mg: 0.8 to 2 0.5% Cu: 0.25% or less (including 0%) Zn: 0.25% or less (including 0%) Fe: 0.1 to 1.0% Si: 0.1 to 1.0% For an Al alloy satisfying the requirements, the cooling rate during solidification is R ≧ 5 and R ≧ 7.5 ([Fe] + [Si]) + 2, where R is the cooling rate during solidification (° C./sec) [Fe ], [Si]: The moving strip continuously cast under the condition that the content ratio (%) of Fe and Si in the Al alloy is satisfied is maintained at the hot rolling temperature or higher and immediately sent to the hot rolling step, or Adjusts the continuous cast slab to a temperature equal to or higher than the hot rolling temperature, then sends it to the hot rolling step for hot rolling, and the finishing temperature of the hot rolling is 150 to
The main point is that the temperature is set to 280 ° C., hot rolling is performed, and then cooling is performed at a rate of 100 ° C./min or more, and then cold rolling is performed.

【0009】本発明は、上記構成を基本思想とするが、
この発明の実施における好ましい態様あるいは変形態様
を更に具体化して示すと、下記の通りである。 1.連続鋳造法としては、水冷式連続鋳造法式連続鋳造
法、ベルト式連続鋳造法、ブロック式連続鋳造法などを
採用することができるが、連続鋳造から熱間圧延工程へ
の移行時期は、鋳片内部が固相線温度以下にまで低下し
て完全に凝固した後にタイミングを合わせるのが好まし
い。 2.連続鋳造後に行なわれる熱間圧延の開始温度は35
0〜550℃の範囲が好ましい。 3.連続鋳造では、通常4〜30mm程度の肉厚の板状
鋳片が連続的に製造され、これを熱間圧延により1〜5
mm程度に圧延した後、更に冷間圧延によって0.1〜
1mm程度の肉厚のAl合金板に圧延される。 4.熱間圧延後に行なわれる冷間圧延工程では、少なく
とも1回の連続中間焼鈍を行なうことが望ましく、該連
続中間焼鈍時の好ましい温度は470〜固相線温度の範
囲である。 5.本発明は、連続鋳造して得られる移動帯板の温度を
熱間圧延温度以上に保持して直ちに熱間圧延し、引き続
いて、若しくは一旦巻き取ってから冷間圧延工程へ送る
所謂連鋳・直送圧延方法に有利に適用されるが、この他
連続鋳造の後、一旦保持し、鋳片温度が実質的に降下し
ないうちに熱間圧延へ送って熱間圧延を行ない、更に冷
間圧延を行なう方法にも適用することができる。 6.本発明は、連続鋳造・熱間圧延・冷間圧延を順次行
ない、最終的に仕上げ冷延板の状態で製品化するのが最
も一般的であるが、場合によっては熱間圧延のままの状
態で製品化することも可能である。
Although the present invention has the above-mentioned configuration as a basic idea,
The preferred embodiment or modified embodiment of the present invention will be described in more detail below. 1. As the continuous casting method, a water-cooled continuous casting method continuous casting method, a belt type continuous casting method, a block type continuous casting method, etc. can be adopted, but the transition time from the continuous casting to the hot rolling step is a slab. It is preferable to adjust the timing after the inside temperature has dropped to below the solidus temperature and completely solidified. 2. The starting temperature of hot rolling performed after continuous casting is 35
The range of 0-550 degreeC is preferable. 3. In continuous casting, plate-like slabs having a wall thickness of about 4 to 30 mm are usually continuously produced, and hot rolled to obtain 1 to 5 slabs.
After rolling to about 0.1 mm, 0.1 to 0.1 mm by cold rolling.
It is rolled into an Al alloy plate having a wall thickness of about 1 mm. 4. In the cold rolling step performed after hot rolling, it is desirable to perform at least one continuous intermediate annealing, and the preferable temperature during the continuous intermediate annealing is in the range of 470 to solidus temperature. 5. The present invention is a so-called continuous casting in which the temperature of the moving strip obtained by continuous casting is maintained at a hot rolling temperature or higher and immediately hot rolled, and subsequently or once wound and then sent to the cold rolling step. Although it is advantageously applied to the direct-feed rolling method, after continuous casting, it is held once and sent to hot rolling before the slab temperature is substantially lowered to perform hot rolling, and further cold rolling is performed. It can also be applied to the method of doing. 6. In the present invention, it is most common to perform continuous casting, hot rolling, and cold rolling in order, and finally to produce a product in the state of a finished cold rolled sheet, but in some cases, the state of hot rolling as it is It is also possible to commercialize with.

【0010】[0010]

【作用】上記の様に本発明では、使用するAl合金の成
分組成を規定すると共に、連続鋳造時の冷却速度やその
後引き続いて行なわれる熱間圧延における終了温度およ
び冷却速度を適正な範囲に規定することによって再結晶
を抑制し、加工歪量の増大によって立方体方位を十分に
増大させ、更には当該冷却時における過飽和固溶元素の
析出を抑え、もしくはたとえ析出したとしても微細均一
に析出させることによって、冷間圧延製品の高強度化を
達成すると共に、その後に行なわれる焼き付け塗装熱処
理後の耐力を高め、成形性と強度を共に満足するAl合
金板を得ることに成功したものである。以下、本発明で
定めるAl合金の成分組成および熱間圧延終了温度など
を含めた製造条件について詳細に説明する。まず、本発
明で使用するAl合金の成分組成を定めた理由を説明す
る。
As described above, in the present invention, the component composition of the Al alloy to be used is specified, and the cooling rate during continuous casting and the end temperature and cooling rate in the hot rolling that is subsequently performed are specified within appropriate ranges. To suppress recrystallization, to sufficiently increase the cubic orientation by increasing the amount of processing strain, and to suppress the precipitation of supersaturated solid solution elements during the cooling, or even if it precipitates finely and uniformly. In this way, the strength of the cold-rolled product can be increased, and the yield strength after the subsequent baking / coating heat treatment can be increased to obtain an Al alloy sheet satisfying both formability and strength. Hereinafter, the manufacturing conditions including the component composition of the Al alloy defined in the present invention and the hot rolling finish temperature will be described in detail. First, the reason for defining the component composition of the Al alloy used in the present invention will be described.

【0011】Mn:0.4〜1.5% Mnは固溶強化元素としてAl合金板の強度を高めるの
に欠くことのできない元素であるばかりでなく、Al−
Fe−Mn系晶出物の生成によってしごき加工性を高め
る作用も有しており、これらの作用を有効に発揮させる
には少なくとも0.4%以上含有させなければならな
い。しかしながら多くなり過ぎると、固溶しきれないM
n量の増大により成形性(絞り、しごき、張り出し性、
フランジ性等)を却って悪化させる傾向が現れてくるの
で、1.5%以下に抑えなければならない。Mn含有率
の好ましい下限値は0.8%、より好ましくは1.0
%、好ましい上限値は1.4%である。
Mn: 0.4-1.5% Mn is not only an element which is indispensable for enhancing the strength of the Al alloy plate as a solid solution strengthening element, but also Al-
It also has an action of enhancing ironing workability by forming Fe-Mn-based crystallized substances, and at least 0.4% or more must be contained in order to effectively exhibit these actions. However, if the amount becomes too large, M will not be dissolved completely.
Formability (drawing, ironing, overhanging,
Since there is a tendency for the flanging property) to worsen, it must be kept to 1.5% or less. The lower limit of the Mn content is preferably 0.8%, more preferably 1.0.
%, And the preferable upper limit value is 1.4%.

【0012】Mg:0.8〜2.5% Mgも、固溶強化元素として作用すると共に、Al−M
g系もしくはAl−Mg−Cu系晶出物の生成によって
強度を高める作用を有しており、本発明で意図するレベ
ルの強度を確保するには0.8%以上含有させなければ
ならない。しかしながら含有量が多過ぎると、Mnの場
合と同様に固溶しきれないMg量の増大によって成形性
を悪化させるので、2.5%以下に抑えなければならな
い。Mg含有率の好ましい下限値は1.3%、より好ま
しくは1.6%、好ましい上限値は2.4%である。
Mg: 0.8 to 2.5% Mg also acts as a solid solution strengthening element, and Al-M
It has the effect of increasing the strength by forming g-type or Al-Mg-Cu-type crystallized substances, and must be contained in an amount of 0.8% or more in order to secure the level of strength intended in the present invention. However, if the content is too large, the formability deteriorates due to an increase in the amount of Mg that is not completely dissolved, as in the case of Mn, so it must be suppressed to 2.5% or less. The preferable lower limit of the Mg content is 1.3%, more preferably 1.6%, and the preferable upper limit thereof is 2.4%.

【0013】Cu:0.25%以下 Cuは必ずしも必須というわけではないが、Al−Mg
−Cu系晶出物の生成によって強度を高める作用を有し
ているので、強度に対する要求度が高い場合には積極的
に含有させることが望ましい。しかし、多過ぎると成形
性に悪影響が現れてくるので0.25%以下に抑えなけ
ればならない。強度と成形性のバランスを考えてより好
ましいCuの含有率は0.15〜0.2%の範囲であ
る。
Cu: 0.25% or less Cu is not always essential, but Al-Mg
Since it has the effect of increasing the strength by the formation of the Cu-based crystallized substance, it is desirable to positively add it when the demand for the strength is high. However, if it is too large, the formability is adversely affected, so it must be suppressed to 0.25% or less. Considering the balance between strength and formability, the more preferable Cu content is in the range of 0.15 to 0.2%.

【0014】Zn:0.25%以下 Znも必須の成分ではないが、適量含有させることによ
って絞りやしごき等の成形性を高める作用を有してお
り、特に過酷な成形条件が加えられる用途に使用する場
合は少量含有させることが好ましい。しかし、多過ぎる
と成形性が悪くなる傾向が現れてくるばかりでなくコス
ト的にも不利であるので、含有させる場合でも0.25
%以下に抑えなければならない。Znのより好ましい含
有率は0.16〜0.22%の範囲である。
Zn: 0.25% or less Zn is not an essential component, but it has an effect of enhancing the formability such as drawing and ironing by containing an appropriate amount, and is particularly suitable for applications where severe molding conditions are added. When used, it is preferably contained in a small amount. However, if the amount is too large, not only the moldability tends to deteriorate, but it is also disadvantageous in terms of cost.
% Must be kept below. The more preferable content rate of Zn is 0.16 to 0.22%.

【0015】 Fe:0.1〜1.0%、Si:0.1〜1.0% これらの元素は成形性や強度を一段と高める元素として
有効である。即ちFeは、Al−Mn−Fe系晶出物を
生成して成形時の肌荒れ防止作用を発揮すると共にしご
き加工性を高める作用があり、0.1%以上含有させる
必要がある。しかし多過ぎると、鋳造時に粗大晶出物が
生成して成形性を悪化させるので1.0%を上限とす
る。またSiは、Mg2 Si系の微細な析出物を生成し
て高強度化に寄与するもので、少なくとも0.1%以上
含有させなければならないが、多過ぎると、Siが単体
として析出して成形性に悪影響が現れてくるので1.0
%を上限とする。これらの利害得失を考慮して、Feの
より好ましい含有率は0.1〜0.8%、Siのより好
ましい含有率は0.1〜0.6%の範囲である。
Fe: 0.1 to 1.0%, Si: 0.1 to 1.0% These elements are effective as elements that further enhance the formability and strength. That is, Fe has an effect of forming an Al—Mn—Fe-based crystallized substance to prevent rough skin during molding and also has an effect of enhancing ironing workability, and it is necessary to contain 0.1% or more. However, if it is too large, coarse crystallized substances are formed during casting to deteriorate the formability, so 1.0% is made the upper limit. Further, Si forms fine Mg 2 Si-based precipitates and contributes to strengthening, and it must be contained at least 0.1% or more, but if it is too much, Si precipitates as a simple substance. 1.0 because the formability is adversely affected
% Is the upper limit. Considering these advantages and disadvantages, the more preferable Fe content is 0.1 to 0.8%, and the more preferable Si content is 0.1 to 0.6%.

【0016】本発明におけるAl合金の残部成分はAl
と不可避不純物からなるものであり、不可避不純物とし
てはNi,Cr,V,Ti,Zr,Li等が例示される
が、それらは不可避不純物量である限り、本発明で意図
する性能を確保する上で格別の障害になることはない。
次に、上記Al合金を用いた連続鋳造、熱間圧延、冷間
圧延などの各条件について説明する。
The balance component of the Al alloy in the present invention is Al
And unavoidable impurities such as Ni, Cr, V, Ti, Zr, Li, etc., but as long as the amount is an unavoidable impurity, it is necessary to ensure the performance intended in the present invention. It doesn't hinder you.
Next, each condition such as continuous casting using the above Al alloy, hot rolling, cold rolling will be described.

【0017】本発明では、上記成分組成の要件を満足す
るAl合金を使用し、凝固時の冷却速度が下記(1),
(2)式 R≧7.5([Fe]+[Si])+2……(1) R≧5……(2) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を同時に満足する条件で連続鋳造した後行なわれる熱間
圧延の仕上げ温度を150〜280℃、冷却速度を10
0℃/分に規定し、その後冷間圧延を行なうところに製
法として最大の特徴を有している。以下、それらの条件
を定めた理由について詳述する。
In the present invention, an Al alloy satisfying the above-mentioned compositional requirements is used, and the cooling rate at the time of solidification is (1)
(2) Formula R ≧ 7.5 ([Fe] + [Si]) + 2 (1) R ≧ 5 (2) where R: cooling rate during solidification (° C./sec) [Fe], [Si]: Finishing temperature of hot rolling performed after continuous casting under the condition that the content ratios (%) of Fe and Si in the Al alloy are simultaneously satisfied is 150 to 280 ° C., and the cooling rate is 10
The most characteristic feature of the manufacturing method is that it is regulated to 0 ° C./min and then cold rolling is performed. Hereinafter, the reasons for defining those conditions will be described in detail.

【0018】まず本発明者等が確認したところによる
と、最終圧延製品の強度や絞り加工性は、Al合金中に
含まれるFeおよびSiの含有率をパラメータとして連
続鋳造時の冷却速度をうまくコントロールすることによ
って著しく高められ、該凝固時の冷却速度が前記(1)
式と(2)式を同時に満たす様に設定することが重要で
あることを知った。しかして最終圧延製品の前記特性に
は、連続鋳造工程とその後の圧延並びに中間焼鈍条件が
影響するが、特にAl合金中のFeおよびSiは連続鋳
造時に粗大晶出物を生じる原因となり、それらは最終圧
延製品の前述の様な特性に悪影響を及ぼす。ところが、
連続鋳造時の冷却速度を前記(1)式と(2)式の条件
を同時に満たす様に設定してやれば、FeやSiに由来
する粗大晶出物の生成が阻止され、その後の熱間圧延時
の仕上げ温度やその後の冷却速度の設定とも相まって、
最終圧延製品の前記特性を著しく高めることができるの
である。
First, the inventors of the present invention have confirmed that the strength and drawability of the final rolled product are well controlled by controlling the cooling rate during continuous casting with the content ratio of Fe and Si contained in the Al alloy as a parameter. The cooling rate during solidification is significantly increased by the above (1)
I learned that it is important to set so that the formula and the formula (2) are satisfied at the same time. However, the above properties of the final rolled product are affected by the continuous casting step and the subsequent rolling and intermediate annealing conditions. Especially, Fe and Si in the Al alloy cause coarse crystallized substances during continuous casting, and they are The above-mentioned properties of the final rolled product are adversely affected. However,
If the cooling rate during continuous casting is set so that the conditions of the above formulas (1) and (2) are simultaneously satisfied, the formation of coarse crystallized substances derived from Fe and Si is prevented, and the subsequent hot rolling is performed. Combined with the finishing temperature of and the setting of the cooling rate after that,
The properties of the final rolled product can be significantly enhanced.

【0019】尚、上記条件式(1),(2)で示される
推奨範囲は、図1に示される如く、[Fe]+[Si]
の値が0.4%超のときは式(1)によって、また[F
e]+[Si]の値が0.4%以下のときは式(2)に
よって規定されることを意味する。ちなみに、凝固時の
冷却速度が前記要件を外れる場合は、連続鋳造組織中に
FeやSiに由来する粗大な晶出物が生成し、それらが
その後の圧延および連続中間焼鈍工程でも残存して強度
や加工性に悪影響を及ぼすことになる。
The recommended range represented by the conditional expressions (1) and (2) is [Fe] + [Si] as shown in FIG.
When the value of is more than 0.4%, it is calculated by the formula (1), and [F
When the value of e] + [Si] is 0.4% or less, it means that it is defined by the equation (2). By the way, if the cooling rate during solidification deviates from the above requirements, coarse crystallized substances derived from Fe and Si are generated in the continuous casting structure, and they remain in the subsequent rolling and continuous intermediate annealing steps to improve the strength. And workability will be adversely affected.

【0020】また、上記連続鋳造により移動帯板とした
後は、熱間圧延温度以上に保持した状態で直ちに、ある
いは該鋳片を一旦保持し熱間圧延温度以上に調整してか
ら熱間圧延を行ない、この熱間圧延に当たっては仕上げ
温度を150〜280℃、より好ましくは210〜26
0℃に設定すると共に、その後100℃/分以上、より
好ましくは200℃/分以上の速度で冷却することが必
要となる。しかして、熱間圧延後の冷却速度が100℃
/分未満の低速になると、熱間圧延後の冷却過程で過飽
和固溶体の析出が起こり、固溶強化による高強度化の目
的が達成できなくなるからである。
Further, after the continuous strip is formed into a moving strip, immediately after it is kept at a temperature equal to or higher than the hot rolling temperature, or after the slab is temporarily held and adjusted to a temperature equal to or higher than the hot rolling temperature, hot rolling is performed. In this hot rolling, the finishing temperature is 150 to 280 ° C., more preferably 210 to 26.
It is necessary to set the temperature to 0 ° C. and then cool at a rate of 100 ° C./min or more, more preferably 200 ° C./min or more. Then, the cooling rate after hot rolling is 100 ° C.
This is because when the speed is lower than less than 1 minute, precipitation of a supersaturated solid solution occurs in the cooling process after hot rolling, and the purpose of strengthening by solid solution strengthening cannot be achieved.

【0021】ところで従来例では、先に記載した様に熱
間圧延の仕上げ温度を280℃以上の高温に設定してい
るため、熱間圧延後に再結晶を起こして加工歪み量が減
少し、その後の冷間圧延工程で実施される連続中間焼鈍
時における立方体方位の増加が不十分となり、冷間圧延
製品の成形性、特に耳率の改善が不十分となる。ところ
が、熱間圧延の仕上げ温度を150〜280℃の範囲に
設定してやれば、その後の冷却速度を100℃/分以上
に定めたこととも相まって、熱間圧延後の再結晶が可及
的に防止され、加工歪み量の増大によって立方体方位も
十分に増加し、耳率を含めた成形性を著しく高めること
が可能となる。
By the way, in the conventional example, since the finishing temperature of hot rolling is set to a high temperature of 280 ° C. or higher as described above, recrystallization occurs after hot rolling to reduce the amount of work strain, and In the continuous intermediate annealing carried out in the cold rolling step, the increase of the cubic orientation becomes insufficient, and the formability of the cold rolled product, especially the improvement of the earring becomes insufficient. However, if the finishing temperature of the hot rolling is set in the range of 150 to 280 ° C, the recrystallization after the hot rolling is prevented as much as possible, together with the subsequent cooling rate being set to 100 ° C / min or more. Therefore, the cube orientation is sufficiently increased by the increase of the processing strain amount, and the formability including the ear ratio can be remarkably enhanced.

【0022】ここで熱間圧延の仕上げ温度を150〜2
80℃に定めた理由は、150℃未満の低温になると強
度が増大し過ぎて圧延割れを生じ易くなり、一方280
℃を超える高温になると、従来の熱間圧延との有意差が
認められなくなるからである。こうした観点にたってよ
り好ましい仕上げ温度範囲は160〜270℃、更に好
ましくは200〜250℃である。
Here, the finishing temperature of hot rolling is 150 to 2
The reason why the temperature is set to 80 ° C. is that when the temperature is lower than 150 ° C., the strength increases too much and rolling cracks easily occur.
This is because at a high temperature exceeding 0 ° C, no significant difference from the conventional hot rolling can be observed. From this viewpoint, a more preferable finishing temperature range is 160 to 270 ° C, and more preferably 200 to 250 ° C.

【0023】本発明では、上記の様に連続鋳造における
凝固時の冷却速度を規定すると共に、熱間圧延の仕上げ
温度(即ち終了温度)およびその後の冷却速度を規定し
たところに最大の特徴を有するものであり、その他の条
件には格別の制限はないが、その他の好ましい条件等に
ついて説明すると下記の通りである。
The present invention has the greatest feature in that the cooling rate at the time of solidification in continuous casting is specified as described above, and the finishing temperature (that is, the end temperature) of hot rolling and the subsequent cooling rate are specified. The other conditions are not particularly limited, but other preferable conditions and the like will be described below.

【0024】本発明は、連続鋳造された移動帯板を熱間
圧延温度以上に保持して直ちに熱間圧延工程へ送り、或
は連鋳鋳片を熱間圧延温度に調整してから熱間圧延工程
へ送って熱間圧延し、その後引き続いて、あるいは一旦
巻き取ってから冷間圧延工程へ送る方法(連鋳・直送圧
延法)に適用されるものであり、それにより、連続鋳造
後一旦巻き取り、冷却してから熱間圧延を行なう方法に
比べて熱ロスが少なく、且つ生産性を高める上でも効果
的である。尚、ここで採用される連続鋳造法としては、
前記した様な水冷式連続鋳造法、双ロール式連続鋳造
法、ベルト式連続鋳造法、ブロック式連続鋳造法などを
適宜選択して採用することができる。
According to the present invention, the continuously cast moving strip is kept at a temperature equal to or higher than the hot rolling temperature and immediately sent to the hot rolling step, or the continuous cast slab is adjusted to the hot rolling temperature and then hot rolled. It is applied to the method of sending to the rolling process and hot rolling and then continuously, or once winding and sending to the cold rolling process (continuous casting / direct feed rolling method). Compared with the method in which hot rolling is carried out after winding and cooling, the heat loss is small, and it is effective in improving productivity. The continuous casting method adopted here is as follows:
The water-cooled continuous casting method, twin roll continuous casting method, belt continuous casting method, block continuous casting method and the like as described above can be appropriately selected and employed.

【0025】連続鋳造後に行なわれる熱間圧延の開始温
度は350〜550℃、より好ましくは400〜500
℃の範囲である。また本発明を実施するに当たっては、
連続鋳造によって通常4〜30mm程度の肉厚の板状鋳
片を連続的に製造し、これを直ちに熱間圧延することに
より肉厚を1〜5mmとし、更に冷間圧延することによ
って0.1〜1mm程度の肉厚のAl合金製品板が製造
される。
The starting temperature of hot rolling performed after continuous casting is 350 to 550 ° C., more preferably 400 to 500.
It is in the range of ° C. In carrying out the present invention,
Usually, a plate-shaped slab having a wall thickness of about 4 to 30 mm is continuously manufactured by continuous casting, and immediately hot-rolled to a wall thickness of 1 to 5 mm, and further cold-rolled to 0.1 mm. An Al alloy product plate having a wall thickness of about 1 mm is manufactured.

【0026】上記の様に本発明では、連続鋳造における
凝固時の冷却速度、熱間圧延時の仕上げ温度(終了温
度)および冷却速度を規定したところに最大の特徴を有
するものであり、その特徴は、殊に冷却工程での再結晶
防止効果は、前記従来技術の項でも詳述した様に連鋳・
直送圧延法を適用したときにより効果的に発揮される
が、この方法の他にも、連続鋳造の後、一旦保持して熱
間圧延温度以上に調整してから熱間圧延および冷間圧延
工程へ送る方法に適用した場合においても享受できる。
As described above, the present invention has the greatest feature in that the cooling rate during solidification in continuous casting, the finishing temperature (end temperature) during hot rolling, and the cooling rate are specified. In particular, the effect of preventing recrystallization in the cooling process is as described in detail in the section of the prior art described above in continuous casting.
Although it is more effective when the direct rolling method is applied, in addition to this method, after continuous casting, it is temporarily held and adjusted to a temperature equal to or higher than the hot rolling temperature before the hot rolling and cold rolling steps. It can be enjoyed even when applied to the method of sending to.

【0027】[0027]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0028】実施例 表1に示す化学組成の合金を溶解した後、凝固時の冷却
速度が12℃/secの速度で20mmの板厚に連続鋳
造して移動帯板とし、これを直ちに圧延開始温度を45
0℃、終了温度を250℃として直送熱間圧延を行な
い、圧延後200℃/分の速度で冷却して3mm厚の熱
延板を作製した。尚、熱間圧延後の冷却には水ミスト噴
霧を採用した。その後、1mmまで冷間圧延し、急速加
熱により480℃まで昇温してから1分間の連続中間焼
鈍を行なった後急速冷却し、更に冷間圧延を行なって厚
さ0.3mmのAl板材を得た。
Example After melting an alloy having the chemical composition shown in Table 1, a casting strip having a thickness of 20 mm was continuously cast at a cooling rate of 12 ° C./sec during solidification to form a moving strip, which was immediately rolled. Temperature 45
Direct hot rolling was performed at 0 ° C. and an end temperature of 250 ° C., and after rolling, it was cooled at a rate of 200 ° C./min to produce a hot-rolled sheet having a thickness of 3 mm. Water mist spray was used for cooling after hot rolling. After that, cold rolling is performed to 1 mm, the temperature is raised to 480 ° C. by rapid heating, continuous intermediate annealing is performed for 1 minute, rapid cooling is performed, and further cold rolling is performed to obtain an Al plate material having a thickness of 0.3 mm. Obtained.

【0029】得られた各Al合金板について、深絞り試
験(絞り率:40%)を行なって耳率を測定すると共
に、引張試験によって0.2%耐力(As耐力)を測定
した。また、この板材に200℃×20分の焼き付け塗
装熱処理を施し、引張試験を行なって0.2%耐力(A
B耐力)を測定した。 0.2%耐力測定法:JIS Z 2241に準拠 結果は表1に併記する通りであり、Al合金の成分組成
が本発明の規定要件に合致する実施例(No.1〜3)
は、いずれも耳率が小さく且つAs耐力およびAB耐力
のいずれも高い値を示している。
A deep drawing test (drawing ratio: 40%) was performed on each of the obtained Al alloy plates to measure the ear ratio, and 0.2% proof stress (As proof stress) was measured by the tensile test. In addition, this plate material was subjected to a baking coating heat treatment at 200 ° C. for 20 minutes, and a tensile test was conducted to obtain 0.2% proof stress (A
B proof stress) was measured. 0.2% proof stress measurement method: based on JIS Z 2241 The results are as shown in Table 1, and examples (No. 1 to 3) in which the component composition of the Al alloy meets the specified requirements of the present invention
Shows a small ear ratio and a high value of both As proof stress and AB proof stress.

【0030】これらに対し、連続鋳造時の冷却速度や熱
間圧延時の終了温度、冷却速度は適正であるにもかかわ
らずAl合金組成が本発明の規定要件を外れる比較例
は、概して耳率が大きく、また耳率の比較的低いものは
As耐力やAB耐力が低いことが分かる。
On the other hand, comparative examples in which the Al alloy composition deviates from the prescribed requirements of the present invention despite the fact that the cooling rate during continuous casting, the end temperature during hot rolling, and the cooling rate are appropriate are generally It can be seen that those having a large value and a relatively low ear rate have low As proof stress and AB proof stress.

【0031】[0031]

【表1】 [Table 1]

【0032】次に、表2に示す化学組成のAl合金を溶
解した後、表2に示す凝固時の冷却速度で20mmの板
厚に連続鋳造して移動帯板とし、これを直ちに圧延開始
温度を450℃、終了温度を250℃として直送熱間圧
延を行ない、圧延後200℃/分の速度で冷却して3m
m厚の熱延板を作製した。尚、熱間圧延後の冷却には水
ミスト噴霧を採用した。その後、1mmまで冷間圧延
し、急速加熱により480℃まで昇温してから1分間の
連続中間焼鈍を行なった後急速冷却し、更に冷間圧延を
行なって厚さ0.3mmのAl板材を得た。
Next, the Al alloy having the chemical composition shown in Table 2 was melted, and then continuously cast at a plate thickness of 20 mm at a cooling rate at the time of solidification shown in Table 2 to obtain a moving strip plate, which was immediately rolled at a starting temperature. At 450 ° C. and the end temperature of 250 ° C. to perform direct hot rolling, and after rolling, cool at a rate of 200 ° C./min for 3 m
An m-thick hot rolled sheet was produced. Water mist spray was used for cooling after hot rolling. After that, cold rolling is performed to 1 mm, the temperature is raised to 480 ° C. by rapid heating, continuous intermediate annealing is performed for 1 minute, rapid cooling is performed, and then cold rolling is performed to obtain an Al plate material having a thickness of 0.3 mm. Obtained.

【0033】得られた各Al合金板について、断面顕微
鏡観察によって不溶性化合物の平均結晶粒径を測定する
と共に、引張試験による0.2%耐力(As耐力)を測
定し、また応力−歪曲線から引張破断に要する単位体積
当たりの仕事量を求め、靭性の指標とした。結果は表2
に併記する通りであり、本発明の規定要件を満たす実施
例(No.9〜11)は、比較例(No.12〜18)
に比べて平均粒子径が小さく、As耐力および仕事量の
いずれにおいてもバランスの取れた優れたものであるこ
とが分かる。
With respect to each of the obtained Al alloy plates, the average crystal grain size of the insoluble compound was measured by cross-sectional microscopic observation, and the 0.2% proof stress (As proof stress) was also measured by a tensile test. The work amount per unit volume required for tensile rupture was determined and used as an index of toughness. The results are shown in Table 2.
The examples (Nos. 9 to 11) satisfying the requirements of the invention are comparative examples (Nos. 12 to 18).
It is understood that the average particle diameter is smaller than that of No. 1, and that it is an excellent one in which both the As proof stress and the work amount are well balanced.

【0034】[0034]

【表2】 [Table 2]

【0035】次に、表3に示す化学組成のAl合金を溶
解した後、凝固時の冷却速度を12℃/secとして2
0mmの板厚に連続鋳造して移動帯板とし、これを直ち
に圧延開始温度を450℃、終了温度を表3に示す温度
に設定して直送熱間圧延を行ない、3mm厚の熱延板を
作製した。但し、No.27については連続鋳造後一旦
冷却固化した後、500℃×12分間保持してから上記
の条件で熱間圧延を行なった。その後1mmまで冷間圧
延し、急速加熱して480℃で1分間の連続中間焼鈍を
行なった後急速冷却し、更に冷間圧延を行なって0.3
mmの冷延板を得た。
Next, after the Al alloy having the chemical composition shown in Table 3 was melted, the cooling rate during solidification was set to 12 ° C./sec.
A continuous strip having a thickness of 0 mm was cast to form a moving strip. Immediately after that, the rolling start temperature was set to 450 ° C. and the end temperature was set to the temperature shown in Table 3 to carry out direct hot rolling to obtain a 3 mm thick hot rolled sheet. It was made. However, No. Regarding No. 27, after continuous casting, it was once cooled and solidified, held at 500 ° C. for 12 minutes, and then hot-rolled under the above conditions. After that, cold rolling is performed to 1 mm, rapid heating is performed, continuous intermediate annealing is performed at 480 ° C. for 1 minute, rapid cooling is performed, and further cold rolling is performed to 0.3.
A cold rolled sheet of mm was obtained.

【0036】得られた各冷延板の耳率、As耐力、AB
耐力を上記と同様にして測定し、表3に併記する結果を
得た。表3からも明らかである様に、本発明の規定要件
を全て満たす実施例(No.19〜22)は、比較例
(No.23〜27)に比べて概して耳率が小さく且つ
As,AB耐力のいずれも良好であり、強度と成形性の
いずれにおいても優れたものであることが分かる。
Ear ratio, As proof stress, AB of each obtained cold-rolled sheet
The yield strength was measured in the same manner as above, and the results shown in Table 3 were obtained together. As is clear from Table 3, the examples (Nos. 19 to 22) satisfying all the requirements of the present invention generally have a smaller ear ratio and As, AB than the comparative examples (Nos. 23 to 27). It can be seen that the yield strength is good and both the strength and the moldability are excellent.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明は以上の様に構成されており、A
l合金溶湯を使用し、連続鋳造された移動帯板を熱間圧
延温度以上に保持して直ちに熱間圧延工程へ送り、或は
連鋳鋳片を熱間圧延温度に調整してから熱間圧延工程へ
送って熱間圧延し、更に冷間圧延を行なってAl合金板
を製造する際において、特に連続鋳造時の冷却速度、熱
間圧延時の仕上げ温度や冷却速度を規定し、冷間圧延後
の連続焼鈍時に生じる立方体方位を増大させることによ
って、最終冷間圧延後の成形性、特に耳率を最少限に抑
えると共に高強度化を達成することができ、強度と成形
性の双方を満足するAl合金板を提供し得ることになっ
た。
The present invention is constituted as described above, and A
Using a molten alloy, the continuously cast moving strip is kept at a hot rolling temperature or higher and immediately sent to the hot rolling process, or the continuous cast slab is adjusted to the hot rolling temperature and then hot rolled. When the aluminum alloy sheet is manufactured by sending it to the rolling step, hot rolling, and cold rolling, the cooling rate during continuous casting, the finishing temperature and the cooling rate during hot rolling, are specified. By increasing the cubic orientation that occurs during continuous annealing after rolling, it is possible to minimize the formability after the final cold rolling, especially the earrings, and to achieve high strength. It has become possible to provide a satisfactory Al alloy plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で実施される連続鋳造時の好ましい冷却
速度条件を示すグラフである。
FIG. 1 is a graph showing preferable cooling rate conditions during continuous casting carried out in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/04 C 1/047 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22F 1/04 C 1/047

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Mn:0.4〜1.5%(重量%を意味す
る、以下同じ) Mg:0.8〜2.5% Cu:0.25%以下(0%を含む) Zn:0.25%以下(0%を含む) Fe:0.1〜1.0% Si:0.1〜1.0% の要件を満たすAl合金を、凝固時の冷却速度が R≧5で、且つR≧7.5([Fe]+[Si])+2 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片温度を熱間圧
延温度以上に保持して熱間圧延し、該熱間圧延の仕上げ
温度を150〜280℃とすると共に熱間圧延後100
℃/分以上の速度で冷却し、次いで冷間圧延を行なうこ
とを特徴とする強度に優れた絞り成形用Al合金板の製
造方法。
1. Mn: 0.4 to 1.5% (meaning weight%; the same applies hereinafter) Mg: 0.8 to 2.5% Cu: 0.25% or less (including 0%) Zn: 0.25% or less (including 0%) Fe: 0.1-1.0% Si: 0.1-1.0% Al alloy satisfying the requirements, the cooling rate during solidification is R ≧ 5, And R ≧ 7.5 ([Fe] + [Si]) + 2, where R: cooling rate during solidification (° C./sec) [Fe], [Si]: Fe and Si content in Al alloy (%) ) Is continuously cast, then the slab temperature is hot-rolled at a hot rolling temperature or higher, and the hot-rolling finishing temperature is set to 150 to 280 ° C. and 100
A method for producing an Al alloy sheet for drawing, which is excellent in strength, characterized by cooling at a rate of ° C / min or more and then performing cold rolling.
【請求項2】 連続鋳造された移動帯板を直ちに熱間圧
延工程へ送る請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the continuously cast moving strip is immediately sent to the hot rolling step.
【請求項3】 連続鋳造された鋳片を、熱間圧延温度以
上に調整して熱間圧延工程へ送る請求項1に記載の製造
方法。
3. The manufacturing method according to claim 1, wherein the continuously cast slab is adjusted to a hot rolling temperature or higher and sent to a hot rolling step.
JP4726194A 1994-03-17 1994-03-17 Production of al alloy sheet for deep drawing Withdrawn JPH07256416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4726194A JPH07256416A (en) 1994-03-17 1994-03-17 Production of al alloy sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4726194A JPH07256416A (en) 1994-03-17 1994-03-17 Production of al alloy sheet for deep drawing

Publications (1)

Publication Number Publication Date
JPH07256416A true JPH07256416A (en) 1995-10-09

Family

ID=12770354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4726194A Withdrawn JPH07256416A (en) 1994-03-17 1994-03-17 Production of al alloy sheet for deep drawing

Country Status (1)

Country Link
JP (1) JPH07256416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120621A (en) * 1996-07-08 2000-09-19 Alcan International Limited Cast aluminum alloy for can stock and process for producing the alloy
JP2000514139A (en) * 1996-07-08 2000-10-24 アルキャン・インターナショナル・リミテッド Manufacturing process of aluminum alloy can structure stock
JP2009292480A (en) * 2008-06-02 2009-12-17 Universal Seikan Kk Aluminum can
WO2016040562A1 (en) * 2014-09-12 2016-03-17 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120621A (en) * 1996-07-08 2000-09-19 Alcan International Limited Cast aluminum alloy for can stock and process for producing the alloy
JP2000514139A (en) * 1996-07-08 2000-10-24 アルキャン・インターナショナル・リミテッド Manufacturing process of aluminum alloy can structure stock
JP2009292480A (en) * 2008-06-02 2009-12-17 Universal Seikan Kk Aluminum can
WO2016040562A1 (en) * 2014-09-12 2016-03-17 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same
JP2017531094A (en) * 2014-09-12 2017-10-19 ノベリス・インコーポレイテッドNovelis Inc. Alloys for highly formed aluminum products and methods for making the same
US9909199B2 (en) 2014-09-12 2018-03-06 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same
US10947613B2 (en) 2014-09-12 2021-03-16 Novelis Inc. Alloys for highly shaped aluminum products and methods of making the same

Similar Documents

Publication Publication Date Title
US20070217943A1 (en) Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
US20070144630A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
US5634991A (en) Alloy and method for making continuously cast aluminum alloy can stock
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JPH07256416A (en) Production of al alloy sheet for deep drawing
JP3351087B2 (en) Manufacturing method of Al-Mg-Si alloy plate
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP3566448B2 (en) Manufacturing method of aluminum alloy plate for can body with low ear ratio
JPH09272938A (en) Aluminum foil and its production
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH07252614A (en) Production of aluminum alloy sheet for drawing
JPS5943825A (en) Manufacture of cold rolled steel plate for press forming
JPH07252615A (en) Production of aluminum alloy sheet for drawing
JPH07252610A (en) Production of aluminum alloy sheet for drawing
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
EP3827109A1 (en) Method of manufacturing an al-mg-mn alloy plate product
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH07252611A (en) Aluminum-manganese-magnesium alloy sheet for forming
JP6809363B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and shape freezing property and its manufacturing method
JP3600021B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPH10130766A (en) Direct cast and rolled sheet excellent in moldability and surface quality and small in secular change and its production
JP2593479B2 (en) Manufacturing method of aluminum alloy material for forming

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605