JPH0713276B2 - Heat treatment type aluminum alloy rolled plate Soft material - Google Patents

Heat treatment type aluminum alloy rolled plate Soft material

Info

Publication number
JPH0713276B2
JPH0713276B2 JP60087792A JP8779285A JPH0713276B2 JP H0713276 B2 JPH0713276 B2 JP H0713276B2 JP 60087792 A JP60087792 A JP 60087792A JP 8779285 A JP8779285 A JP 8779285A JP H0713276 B2 JPH0713276 B2 JP H0713276B2
Authority
JP
Japan
Prior art keywords
soft material
precipitates
treatment
aluminum alloy
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60087792A
Other languages
Japanese (ja)
Other versions
JPS61246341A (en
Inventor
俊樹 村松
守 松尾
俊雄 小松原
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP60087792A priority Critical patent/JPH0713276B2/en
Publication of JPS61246341A publication Critical patent/JPS61246341A/en
Publication of JPH0713276B2 publication Critical patent/JPH0713276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種成形加工の用途に供されるアルミニウム
合金圧延板軟質材に関するものであり、特にAl−Cu系、
Al−Cu−Mg系、Al−Zn−Mg系、Al−Zn−Mg−Cu系、Al−
Mg−Si系の熱処理型高力アルミニウム合金の成形加工前
の圧延板軟質材、したがって該軟質材を溶体化焼入処理
しさらに自然時効もしくは人工時効を施すことにより高
強度の成形品を得ようとする用途に使用される圧延板に
関するものである。
TECHNICAL FIELD The present invention relates to a soft material of an aluminum alloy rolled plate used for various forming applications, and particularly to an Al--Cu system,
Al-Cu-Mg system, Al-Zn-Mg system, Al-Zn-Mg-Cu system, Al-
Rolled sheet soft material before forming of Mg-Si heat-treatable high-strength aluminum alloy, therefore, obtain a high-strength molded product by subjecting the soft material to solution quenching and natural aging or artificial aging The present invention relates to a rolled plate used for the following purposes.

従来の技術 熱処理型高力合金は、Al−Cu系、Al−Cu−Mg系、Al−Zn
−Mg系、Al−Zn−Mg−Cu系、Al−Mg−Si系に大別され、
それらの代表的なものとしては、Al−Cu系では2219合金
など、Al−Cu−Mg系では2017合金や2024合金など、Al−
Zn−Mg系ではJIS 7N01合金など、Al−Zn−Mg−Cu系では
AA規格の7075合金や7050合金など、Al−Mg−Si系では60
61合金などが知られており、いずれも時効硬化に寄与す
る元素を溶体化処理により固溶させ、焼入れ後これらの
元素を自然時効もしくは人工時効によって微細に析出さ
せることにより強化するものである。
Conventional technology Heat-treatable high-strength alloys include Al-Cu, Al-Cu-Mg, and Al-Zn.
-Mg system, Al-Zn-Mg-Cu system, Al-Mg-Si system,
Typical examples of these are Al-Cu-based alloys such as 2219 alloys, Al-Cu-Mg-based alloys such as 2017 alloys and 2024 alloys.
JIS-N01 alloy etc. for Zn-Mg system, Al-Zn-Mg-Cu system
60 for Al-Mg-Si system such as AA standard 7075 alloy and 7050 alloy
61 alloys and the like are known, and in each case, elements that contribute to age hardening are solid-solved by solution treatment, and after quenching, these elements are strengthened by fine precipitation by natural aging or artificial aging.

このような熱処理型高力アルミニウム合金は、最終的に
自然時効もしくは人工時効を施した状態では一般に成形
加工性が著しく劣るため、溶体化焼入処理を施す前の軟
質材の状態の圧延板に対して成形加工を施し、しかる後
溶体化焼入処理を行ない、引続き自然時効もしくは人工
時効によって所要の強度を得るのが通常である。
Such heat-treatable high-strength aluminum alloys generally have significantly poor formability when finally subjected to natural aging or artificial aging. On the other hand, it is usual that a forming process is performed, and then a solution hardening treatment is performed, and then a required strength is obtained by natural aging or artificial aging.

ところで熱処理型高力アルミニウム合金圧延板において
その成形加工のために軟質材を得るための従来の方法と
しては、圧延後にバッチ炉によって焼鈍する方法が一般
的であった。このようなバッチ炉による焼鈍は、遅い昇
温速度で加熱して約400℃で1〜3時間保持した後、徐
冷するものであり、時効硬化元素を硬化に寄与しない程
度の大きな析出物として充分に析出させることを意図し
たものである。
By the way, as a conventional method for obtaining a soft material for forming the heat-treated high-strength aluminum alloy rolled sheet, a method of annealing in a batch furnace after rolling is generally used. Annealing in such a batch furnace is to heat at a slow temperature rising rate, hold at about 400 ° C. for 1 to 3 hours, and then gradually cool, and to age-harden elements as large precipitates that do not contribute to hardening. It is intended for sufficient precipitation.

発明が解決すべき問題点 前述のような従来の方法によって得られた熱処理型高力
アルミニウム合金圧延板軟質材においては、次のような
問題があった。すなわち、先ず第1には、その後に施す
成形加工時において肌荒れが生じ易く、外観上好ましく
なくなり、また微少割れも生じ易い欠点があった。また
第2には、エリクセン値、伸び、曲げで代表される成形
加工性が不充分であり、強度の成形加工に耐えられない
問題があった。さらに第3には、成形加工品を溶体化処
理した場合、加工度が3〜20%程度の低歪部分で結晶粒
の異常成長が生じて結晶粒粗大化を招き、その結果焼入
れ後の歪修正のための加工時に肌荒れが生じたり、また
ケミカルミーリング時に肌荒れが生じたり、機械的性
質、特に疲労強度の低下をもたらしたりする問題があっ
た。
Problems to be Solved by the Invention The heat treatment type high strength aluminum alloy rolled sheet soft material obtained by the conventional method as described above has the following problems. That is, first of all, there is a drawback that roughening is likely to occur during the subsequent molding process, which is unfavorable in appearance, and microcracks are likely to occur. Secondly, there is a problem that the molding processability represented by Erichsen value, elongation, and bending is insufficient and the molding process with high strength cannot be endured. Thirdly, when the molded product is subjected to solution treatment, abnormal growth of crystal grains occurs in a low strain portion where the workability is about 3 to 20%, resulting in coarsening of the crystal grains. As a result, strain after quenching There have been problems that roughening occurs during processing for correction, roughening occurs during chemical milling, and mechanical properties, particularly fatigue strength, are reduced.

この発明は以上の事情を背景としてなされたもので、Al
−Cu系、Al−Cu−Mg系、Al−Zn−Mg系、Al−Zn−Mg−Cu
系、もしくはAl−Mg−Si系の熱処理型アルミニウム合金
圧延板の軟質材、すなわち成形加工に供される前の段階
の圧延板軟質材として、成形加工時における肌荒れや微
小割れの発生がなく、成形加工性が良好で強度の成形加
工にも耐えることができ、しかも成形加工後の溶体化処
理による結晶粒粗大化を防止し得る熱処理型アルミニウ
ム合金圧延板軟質材を提供することを目的とするもので
ある。
This invention was made against the background of the above circumstances.
-Cu system, Al-Cu-Mg system, Al-Zn-Mg system, Al-Zn-Mg-Cu
System, or Al-Mg-Si-based heat treatment type aluminum alloy rolled plate soft material, i.e., as a rolled plate soft material at the stage before being subjected to molding processing, without roughening or microcracking during molding processing, It is an object of the present invention to provide a heat-treatable aluminum alloy rolled sheet soft material that has good moldability and can withstand high-strength molding, and that can prevent crystal grain coarsening due to solution treatment after molding. It is a thing.

問題点を解決するための手段 本発明者等は前述のような問題を解決するべく、種々実
験・検討を重ねた結果、従来の熱処理型アルミニウム合
金圧延板軟質材は、その結晶粒径が粗く、100μmを超
えるものがほとんどであり、しかも軟質材の結晶粒界の
かなりの領域にわたって時効硬化元素を主体とする粗大
な析出物が存在するものが多く、このような結晶粒径お
よび粒界上析出物が前述の問題の原因となっていること
が判明した。そしてさらに実験・検討を進めた結果、軟
質材の平均結晶粒径を100μm以下に規制するとともに
結晶粒界上の粒界析出物の面積が全粒界面積の1/3以下
となるように規制することによって、その後の成形加工
時における成形性が良好でかつ肌荒れや微小割れの発生
もなく、しかも成形加工後の溶体化処理における結晶粒
粗大化も防止できることを見出し、この発明をなすに至
ったのである。
Means for Solving the Problems The inventors of the present invention have conducted various experiments and studies in order to solve the above-mentioned problems, and as a result, the conventional heat treatment type aluminum alloy rolled sheet soft material has a rough crystal grain size. In most cases, coarse precipitates mainly composed of age hardening elements exist over a considerable area of the crystal grain boundary of the soft material. It was found that the precipitates were responsible for the above mentioned problems. As a result of further experiments and examinations, the average grain size of the soft material was regulated to 100 μm or less and the grain boundary precipitate area on the grain boundaries was regulated to 1/3 or less of the total grain boundary area. By doing so, it was found that the moldability during the subsequent molding process is good, and that there is no occurrence of surface roughness or microcracks, and that the crystal grain coarsening during the solution treatment after the molding process can be prevented, and the present invention was achieved. It was.

したがってこの発明の熱処理型アルミニウム合金圧延板
軟質材は、Al−Cu系、Al−Cu−Mg系、Al−Zn−Mg系、Al
−Zn−Mg−Cu系もしくはAl−Mg−Si系の熱処理型アルミ
ニウム合金からなりかつ溶体化処理・焼入り前に成形加
工を施して使用される用途の圧延板についての成形加工
前の軟質材において、平均結晶粒径が100μm以下であ
り、かつ結晶粒界上の粒界析出物の面積が全粒界面積の
1/3以下であることを特徴とするものである。
Therefore, the heat treatment type aluminum alloy rolled plate soft material of the present invention includes Al-Cu system, Al-Cu-Mg system, Al-Zn-Mg system, and Al.
-Zn-Mg-Cu-based or Al-Mg-Si-based heat-treatable aluminum alloy, which is used before being subjected to solution treatment / quenching and used for forming before use. , The average grain size is 100 μm or less, and the area of the grain boundary precipitates on the grain boundaries is less than the total grain boundary area.
It is characterized by being 1/3 or less.

なおここで平均結晶粒径とは、圧延面に平行な面での平
均結晶粒径を意味し、代表的には平均切断法により計測
した値を示す。
Here, the average crystal grain size means the average crystal grain size in a plane parallel to the rolled surface, and typically represents a value measured by the average cutting method.

発明の具体的説明 先ずこの発明をなすに至る基礎となった従来の熱処理型
アルミニウム合金圧延板軟質材についての知見を説明す
る。
DETAILED DESCRIPTION OF THE INVENTION First, the knowledge about the conventional heat-treatment type aluminum alloy rolled sheet soft material which is the basis for forming the present invention will be explained.

前述のように従来の熱処理型アルミニウム合金圧延板軟
質材は、結晶粒が粗大であって特に粒径100μmを越え
るものが殆んどであり、しかも粒界上のかなりの領域に
わたって粒界析出物が存在し、これらの粒径および粒界
析出物が成形加工性の劣化や溶体化処理時の結晶粒粗大
化に次のような影響を及ぼしていることが判明した。
As described above, most of the conventional soft materials of heat-treated aluminum alloy rolled plate have coarse crystal grains, especially those having a grain size of more than 100 μm, and the grain boundary precipitates over a considerable area on the grain boundaries. It was found that these grain sizes and grain boundary precipitates affect the deterioration of moldability and the coarsening of crystal grains during solution treatment as follows.

すなわち、軟質材の状態で結晶粒が粗大であれば、成形
加工時に肌荒れが生じて表面外観を損い、しかも強い成
形加工によって微小割れが生じ易い。また結晶粒界上に
粗大な析出物が連続して存在すれば、成形加工時にこの
部分が割れの起点となり易く、強度の成形加工が困難と
なる。このような理由により、結晶粒が粗大でしかも結
晶粒界の多くに析出物が存在している従来の熱処理型ア
ルミニウム合金圧延板軟質材では、成形加工時の表面外
観に劣り、しかもエリクセン値、伸び、曲げで代表され
る成形加工性が不充分であって、強度の成形加工に耐え
られなかったのである。
That is, if the crystal grains are large in the soft material state, the surface becomes rough during the molding process and the surface appearance is impaired, and microcracks are likely to occur due to the strong molding process. If coarse precipitates are continuously present on the crystal grain boundaries, this portion is likely to be a starting point of cracks during the molding process, which makes it difficult to perform the strength molding process. For this reason, the conventional heat treatment type aluminum alloy rolled plate soft material in which the crystal grains are coarse and many of the crystal grain boundaries have precipitates is inferior in surface appearance during the forming process, and the Erichsen value, Molding workability represented by elongation and bending was insufficient, and it was not possible to endure strong molding work.

一方、熱処理型合金に限らず、軟質材に低加工度の冷間
加工歪を与えた後高温で加熱すれば、歪誘起型の結晶粒
界移動が生じ、特定の結晶粒が選択的に成長して粗大化
する現象が認められる。特に結晶粒界は、低加工度の冷
間加工時に歪が集中し易く、粒内よりも活性度が高いこ
とが知られており、また同じ結晶粒界でも隣接する結晶
粒同士の方位差の大きい粒界すなわち整合性の低い粒界
ほど、低歪の冷間加工時に歪が集中し易く、このように
粒内や他の粒界よりも一層局部的に活性化された粒界か
ら後続する加熱時に選択成長が生じ易い。ところで結晶
粒サイズが大きければ粒界は少なくなるから、結晶粒界
への歪の集中度が大きくなり、しかもある加工度で活性
化される粒界の数が少なくなることから、優先的に結晶
成長が生じる粒界が限られ、その結果溶体化処理時にお
いて局部的な粒成長が生じて結晶粒が粗大化し易くな
る。また、粗大かつ硬質な析出物が存在する場合、冷間
加工時にその粗大硬質析出物の周辺に変形歪が集積し
て、その部分がその後の加熱時における再結晶核の生成
場所となることも知られている。
On the other hand, not only heat-treatable alloys, but if soft materials are cold-worked with a low workability and then heated at high temperatures, strain-induced grain boundary migration occurs and specific crystal grains grow selectively. Then, the phenomenon of coarsening is observed. In particular, it is known that the crystal grain boundaries tend to concentrate strain during cold working with a low working degree, and that the activity is higher than that within the grains. Larger grain boundaries, that is, grain boundaries with a low degree of conformity, tend to concentrate strain during cold work with low strain, and thus, grain boundaries that are more locally activated within the grain and other grain boundaries will follow. Selective growth is likely to occur during heating. By the way, if the grain size is large, the number of grain boundaries decreases, so that the degree of concentration of strain on the grain boundaries increases, and the number of grain boundaries activated by a certain degree of processing decreases, so that the crystals preferentially grow. The grain boundaries where the growth occurs are limited, and as a result, local grain growth occurs during the solution treatment, and the crystal grains tend to become coarse. In addition, when a coarse and hard precipitate is present, deformation strain is accumulated around the coarse hard precipitate during cold working, and that portion may be a place where recrystallization nuclei are generated during subsequent heating. Are known.

従来の熱処理型アルミニウム合金圧延板軟質材において
は、既に述べたように結晶粒サイズが粗大でしかも結晶
粒界上に硬質な粗大析出物が存在しているため、前述の
機構によって結晶粒界自体の歪の集積とこの粒界の析出
物にとよる歪の集積が重畳され、その結果粒界への歪の
集積が粒内より著しくなり、そのため低歪加工によって
結晶粒界の選択的な成長が一層生じ易くなり、低歪加工
後の溶体化処理時に結晶粒粗大化が著しくなるのであ
る。
In the conventional heat-treated aluminum alloy rolled plate soft material, since the crystal grain size is coarse and hard coarse precipitates are present on the crystal grain boundaries as described above, the crystal grain boundaries themselves are formed by the mechanism described above. The accumulation of strain in the grain boundary and the accumulation of strain due to the precipitate of this grain boundary are superposed, and as a result, the accumulation of strain in the grain boundary becomes more remarkable than in the grain. Is more likely to occur, and crystal grain coarsening becomes remarkable during the solution treatment after low strain processing.

以上のような現象を見出した本発明者等は、さらに熱処
理型アルミニウム合金圧延板軟質材において結晶粒径の
具体的サイズと全粒界面積に対する粒界析出物面積の割
合とが成形加工性や溶体化処理時における結晶粒粗大化
に及ぼす影響を詳細に調べた結果、平均結晶粒径が100
μm以下でかつ前記割合が1/3以下であれば優れた成形
加工性が得られかつ溶体化処理での結晶粒粗大化を実質
的に支障ない程度まで抑制し得ることを見出したのであ
る。
The inventors of the present invention who have found the above phenomenon, further in the heat treatment type aluminum alloy rolled plate soft material, the specific size of the crystal grain size and the ratio of the grain boundary precipitate area to the total grain boundary area is formability and As a result of detailed examination of the effect on the crystal grain coarsening during solution treatment, the average grain size was 100
It has been found that if the ratio is not more than μm and the ratio is not more than ⅓, excellent moldability can be obtained and the crystal grain coarsening in the solution treatment can be suppressed to such an extent that it does not substantially interfere.

ここで、平均結晶粒径が100μmを越える場合には成形
加工時に肌荒れが生じ易くなり、また成形加工後の溶体
化処理時に結晶粒の選択的な成長による結晶粒粗大化が
生じ易くなる。また粒界析出物の面積が全粒界面積の1/
3を越える場合には、成形加工性が低下し、かつ溶体化
処理時に結晶粒の選択的な成長による結晶粒粗大化が生
じ易い。したがってこの発明の目的を達成するために
は、前述の如く平均結晶粒径を100μm以下とし、しか
も粒界上の粒界析出物の面積が全粒界面積の1/3以下と
なるように起生する必要がある。
Here, when the average crystal grain size exceeds 100 μm, roughening is likely to occur during the forming process, and crystal grain coarsening is likely to occur due to selective growth of crystal grains during the solution treatment after the forming process. The area of grain boundary precipitates is 1 / of the total grain boundary area.
When it exceeds 3, the moldability is deteriorated, and the crystal grains are likely to become coarse due to the selective growth of the crystal grains during the solution treatment. Therefore, in order to achieve the object of the present invention, the average grain size is set to 100 μm or less as described above, and the area of the grain boundary precipitates on the grain boundaries is 1/3 or less of the total grain boundary area. Need to live.

なおこの発明で対象としている熱処理型アルミニウム合
金は、前述のようにAl−Cu系、Al−Cu−Mg系、Al−Zn−
Mg系、Al−Zn−Mg−Cu系、Al−Mg−Si系のものであり、
その代表的な成分組成は次の通りである。
The heat-treatable aluminum alloy that is the subject of the present invention, as described above, Al-Cu system, Al-Cu-Mg system, Al-Zn-
Mg type, Al-Zn-Mg-Cu type, Al-Mg-Si type,
The typical composition of the components is as follows.

すなわちAl−Cu系合金はその主要合金成分としてCu2〜7
wt%を含み、またAl−Cu−Mg系合金はその主要合金成分
としてCu2〜7wt%およびMg0.2〜2wt%を含み、いずれも
その他必要に応じてMn0.8wt%以下、Cr0.3wt%以下、Zr
0.3wt%以下、Ti0.15wt%以下、V0.15wt%以下の1種以
上を含有する合金である。またAl−Zn−Mg系合金は主要
合金成分としてZn3〜8wt%、Mg0.5〜3wt%、を含み、Al
−Zn−Mg−Cu系合金は主要合金成分としてZn3〜8wt%、
Mg0.5〜3wt%、Cu0.3〜3wt%を含み、いずれもその他必
要に応じてMn0.8wt%以下、Cr0.3%以下、Zr0.3wt%以
下、Ti0.15wt%以下、V0.15wt%以下の1種以上を含有
する合金である。さらにAl−Mg−Si系合金は、主要合金
成分としてMg0.3〜1.5wt%、Si0.2〜1.5wt%を含み、そ
の他必要に応じてMn1.0%以下、Cr0.4%以下、Cu0.4%
以下、Zr0.3wt%以下、Ti0.15wt%以下、V0.15wt%以下
の1種以上を含有する合金である。
In other words, Al-Cu alloys have Cu2 ~ 7 as their main alloying components.
In addition, the Al-Cu-Mg-based alloy contains Cu2 to 7 wt% and Mg 0.2 to 2 wt% as its main alloying components, and Mn is 0.8 wt% or less and Cr is 0.3 wt% as necessary. Below, Zr
It is an alloy containing at least one of 0.3 wt% or less, Ti 0.15 wt% or less, and V 0.15 wt% or less. The Al-Zn-Mg alloy contains Zn3 to 8 wt% and Mg0.5 to 3 wt% as main alloying components.
-Zn-Mg-Cu system alloy is Zn3 ~ 8 wt% as the main alloy component,
Contains 0.5 to 3 wt% Mg and 0.3 to 3 wt% Cu, all of which are Mn 0.8 wt% or less, Cr 0.3% or less, Zr 0.3 wt% or less, Ti 0.15 wt% or less, V0.15 wt % Is an alloy containing one or more kinds. Further, the Al-Mg-Si alloy contains Mg 0.3 to 1.5 wt% and Si 0.2 to 1.5 wt% as main alloy components, and if necessary, Mn 1.0% or less, Cr 0.4% or less, Cu0 .Four%
Hereafter, it is an alloy containing at least one of Zr 0.3 wt% or less, Ti 0.15 wt% or less, and V 0.15 wt% or less.

次前述のようなこの発明の熱処理型アルミニウム合金圧
延板軟質材を製造する方法、すなわち平均結晶粒径を10
0μm以下としかつ粒界析出物の面積を全粒界面積に対
し1/3以下とした熱処理型アルミニウム合金圧延板軟質
材を得るための方法について説明する。
Next, a method for producing a heat-treated aluminum alloy rolled sheet soft material of the present invention as described above, that is, an average crystal grain size of 10
A method for obtaining a heat-treatable aluminum alloy rolled sheet soft material having a grain boundary precipitate area of 0 μm or less and 1/3 or less of the total grain boundary area will be described.

このような軟質材を得るための手法は種々考えられる
が、その基本となる手法は、次のi)、ii)、iii)の
3段階の処理をその順に適用する方法である。
Although various methods for obtaining such a soft material are conceivable, the basic method is to apply the following three steps i), ii), and iii) in that order.

i)先ず熱間圧延段階あるいは熱間圧延後の焼鈍段階、
もしくは熱間圧延後一次冷間圧延を行なって中間焼鈍を
行なう段階、以上のいずれかの段階において、最終的に
時効処理によって硬化に寄与すべき元素を硬化に寄与し
ないような大きな析出物サイズで可及的に多量に析出さ
せるような処理を行なう。
i) First, a hot rolling step or an annealing step after hot rolling,
Alternatively, a step of performing intermediate annealing by performing primary cold rolling after hot rolling, and in any of the above steps, with a large precipitate size that does not contribute to hardening of elements that should eventually contribute to hardening by aging treatment. Perform a treatment to deposit as much as possible.

ii)次いで最終冷間圧延によって加工歪を与えるととも
に、その前の段階で析出した粗大析出物を分断して圧延
方向に並ばせる。
ii) Next, the final cold rolling gives a working strain, and the coarse precipitates precipitated in the preceding stage are divided to be aligned in the rolling direction.

iii)最終冷間圧延後、析出物の再固溶が実質的に行な
われないような条件で加熱して、再結晶のみを行なわせ
る。
iii) After the final cold rolling, heating is performed under the condition that re-dissolution of precipitates is not substantially performed, and only recrystallization is performed.

これらのi)〜iii)の各段階の処理について次にさら
に具体的に説明すると、先ず前記i)の段階(以下第1
段階と記す)の処理としては、例えばAl−Cu系、Al−Cu
−Mg系、Al−Zn−Mg系、Al−Zn−Mg−Cu系もしくはAl−
Mg−Si系の熱処理型アルミニウム合金鋳塊を熱間圧延す
るにあたって、熱間圧延上り温度を300℃以上とし、熱
延上りのコイルを平均30℃/hr未満の冷却速度で徐冷す
れば良い。
The processing in each of the steps i) to iii) will be described more specifically below. First, the step i) (hereinafter referred to as the first step) will be described.
Examples of the treatment), such as Al-Cu system, Al-Cu
-Mg system, Al-Zn-Mg system, Al-Zn-Mg-Cu system or Al-
When hot-rolling a Mg-Si heat-treatable aluminum alloy ingot, the hot rolling rising temperature may be 300 ° C or higher, and the hot rolling coil may be gradually cooled at an average cooling rate of less than 30 ° C / hr. .

あるいは第1段階の処理としては、常法に従って熱間圧
延を行なった熱延上り坂、あるいは常法に従って熱間圧
延および一次冷間圧延を行なった板に対し、次のような
熱処理を施しても良い。すなわち、これらの板に対しAl
−Mg−Zn系もしくはAl−Mg−Zn−Cu系の合金の場合は15
0〜500℃に、またAl−Cu系、Al−Cu−Mg系、もしくはAl
−Mg−Si系の合金の場合は200〜580℃にそれぞれ加熱保
持し、その後30℃/hr未満の冷却速度で徐冷するか、あ
るいは例えば450℃×2hr→400℃×2hr→350℃×5hr→30
0℃×5hr→250℃×5hr→室温というように段階的に温度
を下げつつ保持する熱処理を行なう。
Alternatively, as the first-stage treatment, a hot rolling uphill which is hot-rolled according to a conventional method, or a plate which is hot-rolled and primary cold-rolled according to a conventional method is subjected to the following heat treatment. Is also good. That is, for these plates Al
-Mg-Zn system or Al-Mg-Zn-Cu system alloy 15
0-500 ℃, Al-Cu system, Al-Cu-Mg system, or Al
In the case of -Mg-Si alloys, each is heated and held at 200 to 580 ° C, and then slowly cooled at a cooling rate of less than 30 ° C / hr, or, for example, 450 ° C × 2hr → 400 ° C × 2hr → 350 ° C × 5hr → 30
A heat treatment is performed in which the temperature is gradually reduced and maintained, such as 0 ° C × 5 hrs → 250 ° C × 5 hrs → room temperature.

このような第1段階の処理を行なうことによって、最終
的な時効処理で硬化に寄与すべき元素からなる析出物相
を硬化に寄与しない程度の粗大なサイズでしかもできる
だけ多量に析出させることができる。ここで、析出物を
粗大なサイズで析出物させることは、板を微細析出物に
より硬質化させずに軟質化させるばかりでなく、後の第
3段階の熱処理(焼鈍)において析出物の再固溶を防止
し、かつ最終軟質材での結晶粒を微細化するに役立つ。
したがってこの第1段階では、できる限り粗大なサイズ
で析出させることが望ましい。なおこの第1段階の処理
の目的は、前述のように析出物相を硬化に寄与しないよ
うに可及的に大きいサイズで析出させることにあるか
ら、マトリックスの結晶粒は再結晶しなくても良い。こ
のような第1段階の処理で析出される粗大析出物は、結
晶粒界および粒内のいずれにも存在するが、特に粒界析
出物は粒内析出物より一層粗大となっているのが通常で
ある。
By performing such a first-stage treatment, it is possible to deposit a precipitate phase consisting of an element that should contribute to hardening in the final aging treatment in a coarse size that does not contribute to hardening and in a large amount as much as possible. . Here, making precipitates in a coarse size not only softens the plate without hardening it by fine precipitates, but also re-solidifies the precipitates in the heat treatment (annealing) in the subsequent third stage. It helps prevent melting and refines the grains in the final soft material.
Therefore, in this first step, it is desirable to deposit the grains in the coarsest size possible. The purpose of this first-stage treatment is to precipitate the precipitate phase in a size as large as possible so as not to contribute to hardening as described above, so that the crystal grains of the matrix need not be recrystallized. good. Coarse precipitates precipitated by such a first-stage treatment are present both at the grain boundaries and within the grains, but especially the grain boundary precipitates are much coarser than the intragrain precipitates. It is normal.

次に前記ii)の段階(以下第2段階と記す)では、第1
段階の処理で粗大析出物が充分に析出して軟質化した板
に対し、40%以上の圧延率、より最適には50%以上の圧
延率で冷間圧延を施す。この冷間圧延は、軟質材の結晶
粒を微細化するに必須のものである。第1段階の処理で
粒界および粒内に粗大析出物が析出した板に対し40%以
上の圧延率の冷間圧延を行なうことによって、粗大析出
物が分解され、圧延方向に並ぶ。
Next, in the step ii) (hereinafter referred to as the second step), the first
Cold rolling is performed on a plate softened by coarse precipitates sufficiently precipitated in the step treatment at a rolling rate of 40% or more, and more optimally a rolling rate of 50% or more. This cold rolling is essential for refining the crystal grains of the soft material. By performing cold rolling at a rolling rate of 40% or more on a plate in which coarse precipitates have been precipitated in the grain boundaries and grains in the first stage treatment, the coarse precipitates are decomposed and aligned in the rolling direction.

以上のようにして粗大な析出物が圧延方向に並んだ冷間
圧延板に対し、前記iii)の処理(以下これを第3段階
の処理と記す)を行なう。すなわち、析出物の再固溶が
実質的に殆んど行なわれない範囲の温度および保持時間
に急速加熱し、再結晶のみを行なわせる。このように予
め充分に析出させた析出物の再固溶を実質的に行なわせ
ずに再結晶のみを生じさせための温度範囲は、合金成
分、均熱加熱条件、析出物サイズ、冷間圧延率、加熱速
度等によっても異なるが、目安としては加熱速度は300
℃/min以上の急速加熱、温度は325〜430℃程度とすれば
良く、再結晶が生じる範囲で可及的に低温とすることが
好ましい。
As described above, the cold rolled sheet in which the coarse precipitates are lined up in the rolling direction is subjected to the treatment of iii) (hereinafter, this is referred to as the third stage treatment). That is, rapid reheating is carried out at a temperature and holding time in a range in which re-dissolution of precipitates is practically hardly performed, and only recrystallization is carried out. In this way, the temperature range for causing only recrystallization without substantially re-dissolving the precipitate that has been sufficiently precipitated in advance includes alloy components, soaking and heating conditions, precipitate size, and cold rolling. As a guide, the heating rate is 300, although it varies depending on the rate, heating rate, etc.
C./min or more rapid heating, the temperature may be about 325 to 430.degree. C., and it is preferable that the temperature is as low as possible within the range where recrystallization occurs.

このような第3段階の処理によって、微細な再結晶組織
が得られるが、圧延方向に並んだ粗大析出物は再固溶し
ないため、このままの状態で、硬化に寄与すべき元素か
らなる相が硬化に寄与しない程度の大きさで充分に析出
しておりしかもマトリックスが再結晶組織となっている
熱処理型アルミニウム合金の圧延板軟質材が得られる。
ここで、析出物は再結晶粒界にかかわらず圧延方向に並
んでいるため、従来の熱処理型アルミニウム合金軟質材
の場合と異なり、粒界に析出物がほとんど存在しないこ
とになる。
A fine recrystallized structure can be obtained by such a treatment in the third stage, but coarse precipitates lined up in the rolling direction do not form a solid solution again, so that in this state, a phase composed of elements that should contribute to hardening is formed. It is possible to obtain a rolled sheet soft material of a heat-treatment type aluminum alloy in which the size is such that it does not contribute to hardening and is sufficiently precipitated, and the matrix has a recrystallized structure.
Here, since the precipitates are lined up in the rolling direction regardless of the recrystallized grain boundary, unlike the case of the conventional heat-treatable aluminum alloy soft material, almost no precipitate exists at the grain boundaries.

なおこの第3段階の処理前の圧延板中に粗大析出物とと
もに微細な析出物が混在している場合には、再結晶のた
めの第3段階の加熱処理中に微細な析出物が一部再固溶
することもあるが、粗大な析出物の再固溶はほとんど生
じない。この場合完全な軟質材を得るためには、第3段
階の加熱処理の冷却過程において30℃/hr未満の冷却速
度で徐冷して、一旦再固溶した微細析出物の元素をその
冷却過程で再析出させるか、あるいは第3段階の加熱処
理の冷却過程は急速冷却として、その後再析出のための
低温再加熱を行なえば良い。後者の再析出のための低温
再加熱の条件としては、Al−Zn−Mg系もしくはAl−Zn−
Mg−Cu系合金の場合は150〜350℃の温度に再加熱し、Al
−Cu系、Al−Mg−Cu系もしくはAl−Mg−Si系の場合は20
0〜350℃の温度に再加熱し、さらにその再加熱温度が15
0〜250℃の場合は再加熱後急冷もしくは徐冷し、一方再
加熱温度が250〜350℃の場合は再加熱後30℃/hr未満の
冷却速度で徐冷すれば良い。このような再加熱処理で再
析出される析出物は、その前の第3段階の加熱処理で再
固溶された元素に由来するものであるが、その再固溶量
はわずかであるから再加熱処理で再析出される析出物量
もわずかであり、したがって結晶粒界上への再析出はほ
とんどなく、仮に結晶粒界上へ再析出したとしてもその
量は極くわずかであり、その程度はこの発明において規
定しているように粒界析出物の面積が全粒界面積の1/3
以下に充分に収まる程度である。
In addition, when coarse precipitates and fine precipitates are mixed in the rolled plate before the third-stage treatment, some of the fine precipitates are generated during the third-stage heat treatment for recrystallization. Re-dissolution may occur, but re-dissolution of coarse precipitate hardly occurs. In this case, in order to obtain a completely soft material, in the cooling process of the heat treatment in the third stage, the elements of the fine precipitates once re-dissolved in the cooling process are gradually cooled at a cooling rate of less than 30 ° C / hr. Re-precipitation, or rapid cooling in the cooling process of the third stage heat treatment, and then low-temperature re-heating for re-precipitation. The conditions of low temperature reheating for the latter reprecipitation include Al-Zn-Mg system or Al-Zn-
In the case of Mg-Cu alloy, reheat to a temperature of 150-350 ℃, Al
-Cu-based, Al-Mg-Cu-based or Al-Mg-Si-based 20
Reheat to a temperature of 0 to 350 ° C, and
When the temperature is 0 to 250 ° C, the material is reheated and then rapidly cooled or gradually cooled, while when the reheating temperature is 250 to 350 ° C, the material is reheated and then slowly cooled at a cooling rate of less than 30 ° C / hr. The precipitate re-precipitated by such a reheating treatment is derived from the element re-dissolved in the previous third heating treatment, but the re-dissolved amount is small, so The amount of precipitates re-precipitated by the heat treatment is also small, so there is almost no re-precipitation on the crystal grain boundaries, and even if they are re-precipitated on the crystal grain boundaries, the amount is extremely small, and the degree is As specified in this invention, the area of grain boundary precipitates is 1/3 of the total grain boundary area.
It is well within the following.

以上のように、この発明の熱処理型アルミニウム合金圧
延板軟質材を得るための代表的な方法として説明した前
述の方法の基本は、要は硬化に寄与する元素を予め充分
多量にかつ充分粗大に析出させておき、次いで冷間圧延
によって冷間加工歪を与えるとともに粗大析出物を圧延
方向に並ばせ、しかる後その析出物を実質的に再固溶さ
せない範囲に急速加熱して、微細な再結晶粒からなる再
結晶組織を形成し、さらに必要に応じて一部の再固溶し
た元素を再析出させるものである。このような手法に従
ってこの発明のアルミニウム合金圧延板軟質材を得るた
めの具体的手段、具体的条件としては前に述べたような
手段、条件以外にも種々考えられるが、この発明で規定
する析出物サイズおよび粒界析出物条件を満たす手段、
条件であれば適用できることは勿論である。
As described above, the basis of the above-described method described as a typical method for obtaining the heat-treatable aluminum alloy rolled sheet soft material of the present invention is that the elements contributing to hardening should be sufficiently large and sufficiently coarse in advance. After precipitation, cold rolling gives cold working strain and coarse precipitates are lined up in the rolling direction, and then the precipitates are rapidly heated to a range that does not substantially re-dissolve, and fine re-formation is performed. A recrystallized structure composed of crystal grains is formed, and if necessary, some of the re-dissolved elements are reprecipitated. Specific means and specific conditions for obtaining the aluminum alloy rolled sheet soft material of the present invention in accordance with such a method can be variously considered in addition to the means and conditions described above. Means for satisfying material size and grain boundary precipitate conditions,
Of course, it can be applied if it is a condition.

ここで、前述のようなこの発明の熱処理型アルミニウム
合金圧延板軟質材を得るための代表的な手法と、従来の
熱処理型アルミニウム合金圧延板軟質材を得る方法との
相異を明確化すれば、従来の方法では、その基本的な考
え方が、先ず充分に高い温度で再結晶させ、しかる後、
過剰に固溶した硬化寄与元素を充分に粗大化させること
によって完全軟化を図る点にあり、このような方法では
この発明で規定するような結晶粒径および粒界析出物条
件を同時に満足する軟質材は得られず、特に結晶粒界の
多くの領域にわたって析出物が析出してしまう。これに
対し既に述べたこの発明の軟質材を得るための代表的な
方法では、逆に硬化に寄与する元素を予め充分粗大に析
出させ、しかる後これらが実質的に再固溶しない条件で
再結晶させるものであり、このような手法の適用によっ
てこの発明で規定する結晶粒径と粒界析出物条件とを同
時に満足し得るのである。
Here, if the difference between the typical method for obtaining the heat treatment type aluminum alloy rolled sheet soft material of the present invention as described above and the method for obtaining the conventional heat treatment type aluminum alloy rolled sheet soft material is clarified , In the conventional method, the basic idea is to first recrystallize at a sufficiently high temperature, and then,
It is in the point of achieving complete softening by sufficiently coarsening the hardening-contribution elements that are excessively solid-solved. In such a method, a softness that simultaneously satisfies the crystal grain size and the grain boundary precipitate conditions as specified in the present invention. No material is obtained, and in particular, precipitates are deposited over many regions of the grain boundaries. On the other hand, in the typical method for obtaining the soft material of the present invention described above, on the contrary, the elements contributing to the hardening are preliminarily coarsely precipitated in advance, and thereafter, the elements are re-formed under the condition that they are not substantially re-dissolved. Crystallization is performed, and by applying such a method, it is possible to simultaneously satisfy the grain size and grain boundary precipitate conditions specified in the present invention.

なお第3段階の加熱処理(再結晶焼鈍)においては、粗
大な析出物が実質的に再固溶しないから、その後の冷却
速度は本質的に影響を与えず、たとえ急冷したとしても
硬質化せず、そのまま軟質材となる。加熱により微細な
析出物が若干再固溶する場合にはやや硬質化することも
あるが、その程度はわずかであり、そのままでも充分に
良好な成形加工性を示す。もちろんこの場合必要があれ
ば前述のように再析出のための適切な再加熱処理を施し
ても良い。但しこの再析出処理を行なう場合、加熱温度
を低温とすることが重要である。すなわち、再固溶した
元素を再析出させるとはいえども、実質的には大部分の
析出が既に起っている状態の板に対し施す処理であるか
ら、再析出処理温度を上げすぎれば再析出処理で再固溶
が進行してしまい、この場合はその再析出処理の冷却過
程で新たな析出物が粒界に生じてしまい、この発明の目
的を達成し得なくなる。このような観点から、前述のよ
うに再析出処理を行なう場合の加熱温度は350℃以下と
することが適当である。
In the third-step heat treatment (recrystallization annealing), since coarse precipitates do not substantially re-dissolve, the subsequent cooling rate has essentially no effect, and even if it is rapidly cooled, it is hardened. Instead, it becomes a soft material as it is. When fine precipitates are slightly re-dissolved by heating, they may be slightly hardened, but the extent thereof is slight, and sufficient molding workability is exhibited as they are. In this case, of course, if necessary, an appropriate reheating treatment for reprecipitation may be performed as described above. However, when performing this reprecipitation treatment, it is important to set the heating temperature to a low temperature. That is, even though the re-dissolved elements are re-precipitated, this is a treatment to be performed on a plate in which most of the precipitation has already occurred. Re-dissolution progresses in the precipitation treatment, and in this case, a new precipitate is generated in the grain boundary in the cooling process of the re-precipitation treatment, and the object of the present invention cannot be achieved. From this point of view, it is appropriate that the heating temperature in the case of performing the reprecipitation treatment as described above is 350 ° C. or lower.

以上述べたような代表的な工程で得られた熱処理型アル
ミニウム合金圧延板軟質材は、その平均結晶粒径が100
μm以下であってしかも粒界析出物の面積が全粒界面積
の1/3以下であるため、成形加工性が良好であってしか
も後の溶体化処理時に結晶粒が粗大化することを防止で
きる。すなわち、後の溶体化処理時における結晶粒粗大
化は、低歪の冷間加工によって歪の集積した粒界が歪誘
起型粒界移動により選択的に成長して生じるものである
が、結晶粒界に存在する析出物が少ないため低歪の冷間
加工を受けても結晶粒界に歪が集積しにくく、かつ結晶
粒が微細であるため粒界が多いから粒界の歪は分散し、
一方粒界に析出物が少ないことから逆に粒内にも大きな
析出物が散在しているため、粒内の粗大析出物周辺にも
歪がある程度集積し、その結果粒界と粒内の歪分布が平
均化することから、結晶粒界の歪集積による溶体化処理
時の結晶粒粗大化が防止できるのである。
The heat treatment type aluminum alloy rolled plate soft material obtained by the typical process as described above has an average crystal grain size of 100.
Since it is less than μm and the area of grain boundary precipitates is less than 1/3 of the total grain boundary area, it has good moldability and prevents the crystal grains from becoming coarse during the subsequent solution treatment. it can. That is, the crystal grain coarsening at the time of the subsequent solution treatment is caused by the selective growth of the strain-integrated grain boundaries by the low strain cold working by the strain-induced grain boundary movement. Since there are few precipitates existing in the boundaries, strain does not easily accumulate at the crystal grain boundaries even when subjected to cold working with low strain, and since there are many grain boundaries because the crystal grains are fine, the strain at the grain boundaries is dispersed,
On the other hand, since there are few precipitates at the grain boundaries, on the contrary, large precipitates are also scattered within the grains, and strain is accumulated to some extent around the coarse precipitates within the grains. Since the distribution is averaged, it is possible to prevent the crystal grains from becoming coarse during the solution treatment due to the strain accumulation of the crystal grain boundaries.

実施例 第1表の合金符号A〜Eに示す代表的な熱処理型アルミ
ニウム合金を常法に従って溶製して連続鋳造し、第2表
中に示す条件で均質化処理を施し、続いて同じく第2表
中に示す熱延開始温度、熱延上り温度で熱間圧延し、厚
さ6.0mmの熱延板(コイル)を得た。なおここで合金A
は熱延上りで再結晶が終了していた。
Examples Representative heat-treatable aluminum alloys shown by alloy codes A to E in Table 1 were melted and continuously cast by a conventional method, homogenized under the conditions shown in Table 2, and then similarly. 2 Hot rolling was performed at the hot rolling start temperature and the hot rolling temperature shown in the table to obtain a hot rolled sheet (coil) having a thickness of 6.0 mm. Here, alloy A
Had recrystallized due to thermal expansion.

次いで各合金A〜Eの熱延板に対し、前記の第1段階の
熱処理としてそれぞれ次のような熱処理を施した。
Next, the following heat treatments were performed on the hot-rolled sheets of each of the alloys A to E as the first-stage heat treatment.

合金について: 300℃×10hr加熱後15℃/hrの冷却速度で200℃以下まで
冷却した。
Regarding alloy: After heating at 300 ° C for 10 hours, it was cooled to below 200 ° C at a cooling rate of 15 ° C / hr.

合金Bについて: 450℃×2hr加熱後15℃/hrの冷却速度で200℃以下まで冷
却した。
Regarding alloy B: After heating at 450 ° C. for 2 hours, it was cooled to 200 ° C. or less at a cooling rate of 15 ° C./hr.

合金C、Dについて: 450℃×2hr加熱後15℃/hrの冷却速度で260℃まで冷却
し、その温度で5hr保持後15℃/hrの冷却速度で200℃以
下まで冷却した。
Regarding alloys C and D: After heating at 450 ° C. for 2 hours, it was cooled to 260 ° C. at a cooling rate of 15 ° C./hr, held at that temperature for 5 hours, and then cooled to 200 ° C. or less at a cooling rate of 15 ° C./hr.

合金Eについて: 450℃×2hr加熱後260℃まで冷却し、その温度で5hr保持
後15℃/hrの冷却速度で200℃以下まで冷却した。
Regarding Alloy E: After heating at 450 ° C. for 2 hours, it was cooled to 260 ° C., held at that temperature for 5 hours, and then cooled to 200 ° C. or less at a cooling rate of 15 ° C./hr.

以上のようにして得た軟質コイルを次に1.5mm厚まで冷
間圧延(圧延率75%)した。
The soft coil thus obtained was then cold-rolled (rolling rate 75%) to a thickness of 1.5 mm.

次いで冷間圧延後のコイルに対し、前述の第3段階の処
理として、次の処理符号A−1,…,E−1;に示すような条
件、および比較用として処理符号A−2,…,E−2に示す
条件で熱処理した。なおここで各処理符号(A−1等)
の頭の文字は合金符号に対応し、したがって例えばA−
1,A−2はいずれも合金Aの冷延コイルに対しての処理
を意味する。
Then, for the coil after cold rolling, as the above-described third stage processing, the following processing symbols A-1, ..., E-1; and the processing symbols A-2 ,. , E-2 were heat-treated under the conditions. Here, each processing code (A-1 etc.)
The letter at the beginning of the letter corresponds to the alloy code, so that for example A-
Both 1 and A-2 mean the treatment for the cold rolled coil of alloy A.

A−1:連続焼鈍ラインを用いて連続的に急速加熱した。
加熱昇温速度は1500℃/min、加熱温度は400℃とし、そ
の温度での保持は実質的に行なわなかった。すなわち40
0℃に到達して直ちに冷却した。冷却は空冷とし、その
時の冷却速度は概ね1000℃/minであった。さらにそのコ
イルを300℃×5hr加熱し、20℃/hrの冷却速度で冷却し
た。
A-1: Continuous rapid heating was performed using a continuous annealing line.
The heating rate was 1500 ° C./min, the heating temperature was 400 ° C., and the temperature was not maintained. Ie 40
Upon reaching 0 ° C, it was immediately cooled. The cooling was air cooling, and the cooling rate at that time was about 1000 ° C / min. Further, the coil was heated at 300 ° C. for 5 hours and cooled at a cooling rate of 20 ° C./hr.

B−1:連続焼鈍ラインを用いて連続的に急速加熱した。
加熱昇温速度および冷却速度はA−1の場合と同じであ
り。また加熱温度は380℃、その温度での保持は実質的
に行わなかった。さらにそのコイルを230℃×5hr加熱し
て冷却した。
B-1: Continuous rapid heating was performed using a continuous annealing line.
The heating rate and the cooling rate are the same as in A-1. The heating temperature was 380 ° C., and the temperature was not maintained. Further, the coil was heated at 230 ° C. for 5 hours and cooled.

B−3:連続焼鈍ラインを用いて連続的に急速加熱した。
加熱速度及び冷却速度はA−1の場合と同じである。ま
た加熱温度は425℃で3秒間の保持を行なった。さらに
そのコイルを330℃×5hr加熱して30℃/hrの冷却速度で
冷却した。
B-3: Continuous rapid heating was performed using a continuous annealing line.
The heating rate and cooling rate are the same as in A-1. The heating temperature was 425 ° C. and the holding was performed for 3 seconds. Further, the coil was heated at 330 ° C. for 5 hours and cooled at a cooling rate of 30 ° C./hr.

B−4:連続焼鈍ラインを用いて連続的に急速加熱した。
加熱昇温速度は1500℃/min、加熱温度は520℃、保持時
間は15秒間とした。冷却速度は1000℃/minとした。さら
にこのコイルを加熱速度50℃/hrで380℃×2hrの加熱保
持後、冷却速度35℃/hrで冷却した。
B-4: Continuous rapid heating was performed using a continuous annealing line.
The heating rate was 1500 ° C./min, the heating temperature was 520 ° C., and the holding time was 15 seconds. The cooling rate was 1000 ° C / min. Further, this coil was heated and held at 380 ° C. × 2 hr at a heating rate of 50 ° C./hr, and then cooled at a cooling rate of 35 ° C./hr.

C−1:連続焼鈍ラインを用いて連続的に急速加熱した。
加熱昇温速度および冷却速度はA−1の場合と同じであ
り、また加熱温度は380℃、その温度での保持は0とし
た。そらにそのコイルを190℃×10hr加熱した後、炉冷
した。
C-1: Continuous rapid heating was performed using a continuous annealing line.
The heating rate and the cooling rate were the same as those in A-1, the heating temperature was 380 ° C., and the holding at that temperature was 0. The coil was heated at 190 ° C. for 10 hours and then cooled in the furnace.

D−1:切板を赤外線ヒーターにより急速加熱した。加熱
温度は350℃とし、加熱昇温速度は1000℃/sec以上であ
る。また350℃での保持時間は30secとし、その後200℃
まで20℃/hrで徐冷した。
D-1: The cut plate was rapidly heated by an infrared heater. The heating temperature is 350 ° C, and the heating rate is 1000 ° C / sec or more. Hold time at 350 ° C for 30 seconds, then 200 ° C
It was gradually cooled to 20 ° C / hr.

E−1:切板をソルトバスにて急速に加熱した。ソルトバ
スの温度は500℃とし、切板に実体温度計を取付け、材
料温度が420℃になった時に炉外に取出し、放冷した。
したがって保持時間は実質的に0であり、また加熱昇温
速度は1000℃/secを越えていた。
E-1: The plate was heated rapidly with a salt bath. The temperature of the salt bath was 500 ° C, a thermometer was attached to the cutting plate, and when the material temperature reached 420 ° C, it was taken out of the furnace and allowed to cool.
Therefore, the holding time was practically 0, and the heating rate was over 1000 ° C / sec.

A−2:バッチ炉により400℃×2hr加熱し、200℃まで25
℃/hrで冷却した。加熱速度は20℃/hrである。
A-2: Heated up to 400 ℃ × 2hr by batch furnace, up to 200 ℃ 25
Cooled at ° C / hr. The heating rate is 20 ° C / hr.

B−2:A−2と同じ条件で処理した。B-2: Processed under the same conditions as A-2.

C−2:A−2と同じ条件で処理した。C-2: Treated under the same conditions as A-2.

D−2:連続焼鈍ラインを用いて連続急速加熱した。加熱
昇温速度は1500℃/min、加熱温度は480℃、保持時間は
実質的に0、冷却速度は1000℃/minとした。さらにこの
コイルを400℃×2hr加熱保持数15℃/hrの冷却速度で室
温まで徐冷した。
D-2: Continuous rapid heating was performed using a continuous annealing line. The heating rate was 1500 ° C./min, the heating temperature was 480 ° C., the holding time was substantially 0, and the cooling rate was 1000 ° C./min. Furthermore, this coil was gradually cooled to room temperature at a cooling rate of 400 ° C. × 2 hr heating retention number of 15 ° C./hr.

E−2:連続焼鈍ラインを用いて連続急速加熱した。条件
は、加熱温度を520℃とした以外はD−2の場合と同じ
である。
E-2: Continuous rapid heating was performed using a continuous annealing line. The conditions are the same as in the case of D-2 except that the heating temperature was 520 ° C.

以上の各処理A−1,…,E−1;A−2,…,E−2により得ら
れた熱処理型アルミニウム合金圧延板軟質材について、
その平均結晶粒径と、粒界析出物の面積が全粒界面積に
占める割合を調べ、併せて各種材料特性、成形性を調べ
た。またここで、全粒界面積および粒界析出物の面積は
透過電子顕微鏡による観察で行なった。すなわち透過電
子顕微鏡で断面を観察し、観察像を直接または写真に焼
付けて画像処理装置により一定観察面積内(目安として
結晶粒4〜5個を含む面積)の粒界面積、粒界上の析出
物の面積を計算し、結晶粒界上の粒界析出物の面積が全
粒界面積に占める割合を求めた。またその軟質材に対
し、成形加工に相当する15%冷間加工を施した後、溶体
化処理して焼入れし、結晶粒の粗大化の程度を肌荒の程
度で確認した。なお溶体化処理は、合金A、Bに対して
は500℃×1hr、合金C、Dに対しては470℃×1hr、合金
Eに対しては530℃×1hrでそれぞれ行なった。それらの
調査結果を第3表に示す。
About the heat treatment type aluminum alloy rolled plate soft material obtained by the above respective treatments A-1, ..., E-1; A-2, ..., E-2,
The average crystal grain size and the ratio of the area of grain boundary precipitates to the total grain boundary area were investigated, and various material properties and formability were also investigated. Further, the total grain boundary area and the area of the grain boundary precipitate were observed by a transmission electron microscope. That is, the cross section is observed with a transmission electron microscope, the observed image is directly or photographed, and the grain boundary area within a certain observation area (the area including 4 to 5 crystal grains as a standard) and the precipitation on the grain boundary by an image processing device. The area of the product was calculated, and the ratio of the area of the grain boundary precipitate on the crystal grain boundary to the total grain boundary area was determined. Further, the soft material was subjected to 15% cold working corresponding to the forming work, and then solution treatment and quenching were performed, and the degree of crystal grain coarsening was confirmed by the degree of rough skin. The solution treatment was performed at 500 ° C. × 1 hr for alloys A and B, 470 ° C. × 1 hr for alloys C and D, and 530 ° C. × 1 hr for alloy E. The results of those investigations are shown in Table 3.

第3表から明らかなように、A−1,B−1,B−3,C−1,D−
1,E−1の処理を行なって得られた軟質材は、その平均
粒径がいずれも30μm前後と微細であって、この発明で
規定する100μm以下の条件を充分に満足しており、か
つ析出物が存在する粒界は極くわずかであり、粒界析出
物の面積の割合もこの発明で規定するように全粒界面積
の1/3以下の条件を充分に満足している。そしてこれら
の本発明条件を満たす軟質材はいずれも伸びが20%以
上、エリクセン値が9.1mm以上と成形性に優れ、かつ15
%冷間加工を施して溶体化・焼入処理を施した後の表面
の肌荒も少ないこと換言すれば溶体化による結晶粒の粗
大化傾向が小さいことが明らかである。
As is clear from Table 3, A-1, B-1, B-3, C-1, D-
The soft material obtained by performing the treatment of 1, E-1 has a fine average particle size of about 30 μm, and fully satisfies the condition of 100 μm or less specified in the present invention, and The number of grain boundaries where precipitates are present is extremely small, and the area ratio of the grain boundary precipitates sufficiently satisfies the condition of 1/3 or less of the total grain boundary area as defined in the present invention. And all of these soft materials satisfying the present invention have an elongation of 20% or more and an Erichsen value of 9.1 mm or more, which are excellent in moldability, and
% It is clear that the surface roughness after the solution treatment / quenching treatment after cold working is small, in other words, the tendency of crystal grains to coarsen due to solution treatment is small.

一方、A−2,B−2,C−2処理を行なった場合は、結晶粒
が粗大でかつ粒界析出物も著しく多く、そのため伸び、
エリクセン値が低く成形加工性が劣るとともに、15%冷
間加工−溶体化・焼入処理後の肌荒も著しく、溶体化処
理で結晶粒の粗大化が生じていることが判る。またB−
4,D−2,E−2の処理を施した場合は、結晶粒は100μm
以下と微細であったが、粒界析出物が多く、そのため成
形加工性は良好であったが15%冷間加工−溶体化焼入後
の肌荒が生じ、溶体化処理で結晶粒の粗大化が生じてい
ることが判る。
On the other hand, when the A-2, B-2, and C-2 treatments were performed, the crystal grains were coarse and the grain boundary precipitates were remarkably large, so that elongation,
The Erichsen value is low and the moldability is poor, and the surface roughness after 15% cold working-solution treatment / quenching is remarkable, and it can be seen that the crystal grains are coarsened by the solution treatment. Also B-
When treated with 4, D-2, E-2, the crystal grain is 100μm
Although it was fine as below, there were many grain boundary precipitates, and therefore the formability was good, but 15% cold working-roughening after solution hardening, roughening of crystal grains by solution treatment It is understood that the change has occurred.

なお合金BについてB−1の処理を施して得られた軟質
材(本発明材)およびB−2の処理を施して得られた軟
質材(比較材)の透過電子顕微鏡写真を第1図、第2図
に示す。これらの図から明らかなように、B−2処理材
(第2図)では粒界のほぼ全域わたって析出物が存在し
ているのに対し、B−1処理材(第1図)では粒界にほ
とんど析出物が存在しないことが判る。
Incidentally, FIG. 1 is a transmission electron micrograph of a soft material (inventive material) obtained by subjecting alloy B to treatment B-1 and a soft material (comparative material) obtained by subjecting alloy B to treatment B-2. It is shown in FIG. As is clear from these figures, in the B-2 treated material (Fig. 2), precipitates are present over almost the entire grain boundary, whereas in the B-1 treated material (Fig. 1), the precipitates are present. It can be seen that there are almost no precipitates in the boundary.

発明の効果 以上の実施例からも明らかなように、この発明の熱処理
型アルミニウム合金圧延板軟質材は、Al−Cu系、Al−Cu
−Mg系、Al−Zn−Mg系、Al−Zn−Mg−Cu系、Al−Mg−Si
系の熱処理型合金からなりかつ溶体化処理・焼入れ前に
成形加工を施して使用される用途の圧延板についての成
形加工に供する前の段階の軟質材として、成形加工性が
著しく良好であって、強度の成形加工に耐えることがで
きるとともに成形加工時の肌荒や微小割れの発生を防止
でき、しかも成形加工後の溶体化処理による結晶粒粗大
化が防止されることから、溶体化処理時の結晶粒粗大化
による肌荒の発生や機械的性質の劣化を防止できる等、
従来の熱処理型アルミニウム合金軟質材と比較して格段
に優れた効果を発揮できるものである。
Effects of the Invention As is clear from the above examples, the heat treatment type aluminum alloy rolled plate soft material of the present invention is Al-Cu system, Al-Cu system.
-Mg system, Al-Zn-Mg system, Al-Zn-Mg-Cu system, Al-Mg-Si
As a soft material in the stage before being subjected to the forming process for a rolled plate for the purpose of being used after being subjected to the forming process before solution treatment / quenching, it has a remarkably good forming processability. During the solution treatment, it can withstand high-strength molding processing, can prevent the occurrence of surface roughening and minute cracks during molding processing, and can prevent crystal grain coarsening due to solution treatment after molding processing. Can prevent the occurrence of rough skin and deterioration of mechanical properties due to the coarsening of crystal grains of
Compared with the conventional heat-treatment type aluminum alloy soft material, it is possible to exert a remarkably excellent effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例におけるB−1処理材(本発明材)の
析出物析出状況を示すための透過電子顕微鏡写真、第2
図はB−2処理材(比較材)の析出物析出状況を示すた
めの透過電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph for showing the precipitation state of deposits of the B-1 treated material (material of the present invention) in Examples, and FIG.
The figure is a transmission electron micrograph for showing the state of deposits of the B-2 treated material (comparative material).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−171547(JP,A) 特開 昭59−166658(JP,A) 特開 昭56−69348(JP,A) 特開 昭59−100252(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-58-171547 (JP, A) JP-A-59-166658 (JP, A) JP-A-56-69348 (JP, A) JP-A-59- 100252 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Al−Cu系、Al−Cu−Mg系、Al−Zn−Mg系、
Al−Zn−Mg−Cu系もしくはAl−Mg−Si系の熱処理型アル
ミニウム合金からなりかつ溶体化処理・焼入れ前に成形
加工を施して使用される用途の圧延板についての成形加
工前の軟質材において、 平均結晶粒径が100μm以下であり、かつ結晶粒界上の
粒界析出物の面積が全粒界面積の1/3以下であることを
特徴とする、成形加工性が良好でかつ成形加工後の溶体
化処理において結晶粒粗大化の生じない熱処理型アルミ
ニウム合金圧延板軟質材。
1. An Al-Cu system, an Al-Cu-Mg system, an Al-Zn-Mg system,
A soft material before forming, which is made of an Al-Zn-Mg-Cu-based or Al-Mg-Si-based heat-treatable aluminum alloy and which is used after being subjected to solution-treatment / quenching before forming. , The average crystal grain size is 100 μm or less, and the area of the grain boundary precipitates on the grain boundaries is 1/3 or less of the total grain boundary area. A heat-treated aluminum alloy rolled sheet soft material that does not cause crystal grain coarsening in the solution treatment after working.
JP60087792A 1985-04-24 1985-04-24 Heat treatment type aluminum alloy rolled plate Soft material Expired - Fee Related JPH0713276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087792A JPH0713276B2 (en) 1985-04-24 1985-04-24 Heat treatment type aluminum alloy rolled plate Soft material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087792A JPH0713276B2 (en) 1985-04-24 1985-04-24 Heat treatment type aluminum alloy rolled plate Soft material

Publications (2)

Publication Number Publication Date
JPS61246341A JPS61246341A (en) 1986-11-01
JPH0713276B2 true JPH0713276B2 (en) 1995-02-15

Family

ID=13924826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087792A Expired - Fee Related JPH0713276B2 (en) 1985-04-24 1985-04-24 Heat treatment type aluminum alloy rolled plate Soft material

Country Status (1)

Country Link
JP (1) JPH0713276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705320B2 (en) * 1997-04-18 2005-10-12 株式会社神戸製鋼所 High strength heat treatment type 7000 series aluminum alloy with excellent corrosion resistance
US10786051B2 (en) 2015-03-27 2020-09-29 Ykk Corporation Element for slide fastener

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669348A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture
JPS6050864B2 (en) * 1982-03-31 1985-11-11 住友軽金属工業株式会社 Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPS59100252A (en) * 1982-12-01 1984-06-09 Kobe Steel Ltd Al alloy having excellent moldability and quench hardenability and its production
JPS59166658A (en) * 1983-03-08 1984-09-20 Furukawa Alum Co Ltd Preparation of high tensile aluminum alloy plate for forming

Also Published As

Publication number Publication date
JPS61246341A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
EP0097319B1 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
KR101103135B1 (en) Aluminum alloy sheet and method for manufacturing the same
EP0062469B1 (en) Method for producing fine-grained, high strength aluminum alloy material
KR950032684A (en) How to Improve Bend Secondary Formability of Copper Alloys
JPH111737A (en) Heat treated type 7000 series aluminum alloy with excellent corrosion resistance and high strength, and its production
EP0368005B1 (en) A method of producing an unrecrystallized aluminum based thin gauge flat rolled, heat treated product
CA2493403A1 (en) High damage tolerant al-cu alloy
US5061327A (en) Method of producing unrecrystallized aluminum products by heat treating and further working
WO1998037251A1 (en) Process for producing aluminium alloy sheet
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
US4699673A (en) Method of manufacturing aluminum alloy sheets excellent in hot formability
JPH0668146B2 (en) Method for manufacturing rolled aluminum alloy plate
EP0646655B1 (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability
EP0030070A1 (en) Method for producing aircraft stringer material
JP3417844B2 (en) Manufacturing method of high-strength Ti alloy with excellent workability
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH0713276B2 (en) Heat treatment type aluminum alloy rolled plate Soft material
EP0818553B1 (en) Method of manufacture of aluminium sheet of the AA5000 type
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS6136065B2 (en)
JPH0547615B2 (en)
JPH0959736A (en) Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JPH11343529A (en) High strength, high ductility and high toughness titanium alloy member and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees