JPH0959736A - Aluminum alloy sheet excellent in high speed superplastic formability and its formation - Google Patents

Aluminum alloy sheet excellent in high speed superplastic formability and its formation

Info

Publication number
JPH0959736A
JPH0959736A JP7237707A JP23770795A JPH0959736A JP H0959736 A JPH0959736 A JP H0959736A JP 7237707 A JP7237707 A JP 7237707A JP 23770795 A JP23770795 A JP 23770795A JP H0959736 A JPH0959736 A JP H0959736A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
grain size
alloy sheet
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7237707A
Other languages
Japanese (ja)
Other versions
JP3145904B2 (en
Inventor
Hideo Yoshida
英雄 吉田
Hiroki Tanaka
宏樹 田中
Koichiro Takiguchi
浩一郎 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP23770795A priority Critical patent/JP3145904B2/en
Priority to US09/000,097 priority patent/US20010001969A1/en
Priority to EP95940435A priority patent/EP0846781B1/en
Priority to PCT/JP1995/002564 priority patent/WO1997008354A1/en
Priority to DE69519444T priority patent/DE69519444T2/en
Publication of JPH0959736A publication Critical patent/JPH0959736A/en
Application granted granted Critical
Publication of JP3145904B2 publication Critical patent/JP3145904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet capable of high temp. forming at high speed and excellent in high speed superplastic formability and to shorten forming time and improve prcductivity by using the aluminum alloy sheet. SOLUTION: An alloy, having a composition which consists of, by weight, 3.0-8.0% Mg, 0.001-0.1% Ti, and the balance Al with inevitable impurities and in which Fe and Si as impurities are regulated to <=0.06% and <=0.06%, respectively, is used. Moreover, the number of Al-Fe-Si compounds of >=1μm grain size is <=2000pieces/mm<2> and average crystalline grain size is 25-200μm, and further, the elongation in the case where forming is done at 350-550 deg.C at (10<-2> to 10<0> )/s strain rate is regulated to >=350%. Small amounts of Cu, Mn, and Cr can be added, and forming is performed at 350-550 deg.C at (10<-3> to 10<0> )/s strain rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高速超塑性成形に
優れたアルミニウム合金板、とくに歪速度が10-2〜100/
s の高速超塑性成形を可能とするAl−Mg系合金板、
およびその成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy plate excellent in high-speed superplastic forming, and particularly to a strain rate of 10 -2 to 10 0 /
Al-Mg alloy plate that enables high-speed superplastic forming of s,
And a molding method thereof.

【0002】[0002]

【従来の技術】Al−Mg系合金において、再結晶を抑
制して結晶粒を微細化し、例えば500〜550 ℃の高温領
域で数100 %の伸びを生じるようにした超塑性合金が開
発され、各種用途に適用されているが、従来のAl−M
g系超塑性合金は、成形速度(歪速度)が10-4〜10-3/s
での成形において最適の伸びが得られるもので、このよ
うな成形速度を適用した場合、一般的な器物などの成形
では、成形に例えば30〜100 分程度の時間を要するた
め、工業規模での生産においては生産性がわるく、さら
に早い成形速度で成形加工し得る超塑性合金が求められ
ている。
2. Description of the Related Art In an Al--Mg alloy, a superplastic alloy has been developed in which recrystallization is suppressed and the crystal grains are made finer, and for example, elongation of several hundreds% is produced in a high temperature region of 500 to 550.degree. It is used for various purposes, but it is the conventional Al-M
The g-type superplastic alloy has a forming rate (strain rate) of 10 -4 to 10 -3 / s.
The optimum elongation can be obtained by molding at this temperature.When such a molding speed is applied, it takes about 30 to 100 minutes to mold a general container, for example. In production, there is a demand for a superplastic alloy that has poor productivity and can be formed at a higher forming rate.

【0003】例えば、Mg:2.0〜6.0 %、Be:0.0001
〜0.01%、Ti:0.001〜0.15%を含み、不純物のFeお
よびSiをいずれも0.2 %以下の制限し、不純物に基づ
く金属間化合物の最大粒径を10μm 以下に限定したアル
ミニウム合金板が提案されている( 特開平4-72030 号公
報) が、この合金板は、400 ℃での高温変形において、
歪速度が10-3/sでは350 %以上の伸びを示すものの、成
形速度が増加するにつれて伸びが減少し、10-2/s以上の
歪速度では十分な伸びが得られない。
For example, Mg: 2.0 to 6.0%, Be: 0.0001
.About.0.01%, Ti: 0.001 to 0.15%, Fe and Si as impurities are both limited to 0.2% or less, and the maximum grain size of the intermetallic compound based on the impurities is limited to 10 μm or less. (Japanese Patent Laid-Open No. 4-72030), this alloy plate is
When the strain rate is 10 -3 / s, the elongation is 350% or more, but the elongation decreases as the molding rate increases, and at a strain rate of 10 -2 / s or more, sufficient elongation cannot be obtained.

【0004】また、Mg:2〜5 %、Cu:0.04 〜0.10%
を含み、さらに選択成分として少量の遷移元素、Cr、
Zr、Mnを含有し、不純物のSiを0.10%以下、Fe
を0.15%以下に制限し、結晶粒径20μm 以下、遷移元素
系の金属間化合物の粒径および体積率を特定範囲に制御
した超塑性アルミニウム合金板も提案されている( 特開
平4-318145号公報) が、この合金板も10-4/s程度の歪速
度での成形加工に適するものであり、高速超塑性成形に
は問題がある。
Further, Mg: 2-5%, Cu: 0.04-0.10%
And a small amount of a transition element, Cr, as a selective component.
Containing Zr and Mn, 0.10% or less of Si as an impurity, Fe
Is limited to 0.15% or less, a crystal grain size of 20 μm or less, a superplastic aluminum alloy plate in which the grain size and volume ratio of the transition element intermetallic compound are controlled within a specific range is also proposed (Japanese Patent Laid-Open No. 4-318145). However, this alloy sheet is also suitable for forming at a strain rate of about 10 −4 / s, and there is a problem in high-speed superplastic forming.

【0005】[0005]

【発明が解決しようとする課題】本発明は、Al−Mg
系の超塑性アルミニウム合金における上記従来の問題点
を解消するために、合金成分とその量的組合わせ、不純
物量と不純物に基づく金属間化合物の分布態様および結
晶粒径と、超塑性成形との関連性について多角的な実
験、検討を重ねた結果としてなされたものであり、その
目的は、とくに不純物としてのFeおよびSiの制限に
基づくAl−Fe−Si系化合物の特定な分布と結晶粒
径の特定によって、高速の成形速度、例えば10 -2 〜10
0/s の歪速度での成形において、十分な伸びが得られる
ようにした高速超塑性成形に優れたアルミニウム合金板
および当該アルミニウム合金板の成形加工方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention provides an Al-Mg
In order to solve the above-mentioned conventional problems in superplastic aluminum alloys of the system, alloy components and their quantitative combinations, the amount of impurities and the distribution mode and crystal grain size of intermetallic compounds based on impurities, and superplastic forming It was made as a result of repeated experiments and studies on the relevance, and its purpose is to obtain a specific distribution and crystal grain size of an Al-Fe-Si compound based on the limitation of Fe and Si as impurities. The high molding speed, for example 10 -2 to 10
An object of the present invention is to provide an aluminum alloy sheet excellent in high-speed superplastic forming capable of obtaining sufficient elongation in forming at a strain rate of 0 / s, and a method for forming the aluminum alloy sheet.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による高速超塑性成形に優れたアルミニウム
合金板は、Mg:3.0〜8.0 %、Ti:0.001〜0.1 %を含
有し、不純物としてのFeを0.06%以下、Siを0.06%
以下に制限し、残部Alおよび不可避的不純物からなる
合金よりなり、該合金のマトリックス中に存在する粒径
1 μm 以上のAl−Fe−Si系化合物が2000個/mm2
下、平均結晶粒径が25〜200 μm 、350〜550 ℃の温度
域で歪速度10-2〜100/s で成形加工した場合の伸びが35
0 %以上であることを構成上の基本的特徴とする。
The aluminum alloy sheet excellent in high-speed superplastic forming according to the present invention for achieving the above object contains Mg: 3.0 to 8.0%, Ti: 0.001 to 0.1%, and contains impurities. Fe as 0.06% or less, Si as 0.06%
The grain size is limited to the following and consists of an alloy consisting of the balance Al and unavoidable impurities, and the grain size present in the matrix of the alloy.
1 [mu] m or more Al-Fe-Si based compounds are 2,000 / mm 2 or less, the average crystal grain size is 25 to 200 [mu] m, molding at a strain rate of 10 -2 ~10 0 / s in a temperature range of 350 to 550 ° C. If you do, the growth is 35
The basic characteristic of the composition is 0% or more.

【0007】また、Mg、Tiの他にCu:0.05 〜0.50
%を含有すること、およびMg、Tiの他にMn:0.10
以下、Cr:0.10 %以下のうちの1種または2種を含有
し、あるいはMg、Ti、Cuに加えてMn:0.10 %以
下、Cr:0.10 %以下のうちの1種または2種を含有す
ることを発明構成上の第2、第3の特徴とする。
In addition to Mg and Ti, Cu: 0.05-0.50
%, And Mn in addition to Mg and Ti: 0.10
In the following, one or two of Cr: 0.10% or less is contained, or in addition to Mg, Ti, Cu, one or two of Mn: 0.10% or less and Cr: 0.10% or less is contained. These are the second and third characteristics of the invention structure.

【0008】本発明による高速超塑性成形に優れたアル
ミニウム合金板の成形方法は、上記のアルミニウム合金
板を、350 〜550 ℃の温度で、歪速度10-3〜100/s で成
形加工することを特徴とする。
[0008] molding method of an aluminum alloy sheet with excellent high-speed superplastic forming according to the present invention, the above aluminum alloy plate at a temperature of 350 to 550 ° C., is molded at a strain rate of 10 -3 ~10 0 / s It is characterized by

【0009】本発明における含有成分の意義および限定
理由について説明すると、Mgは、高温変形中に合金を
再結晶させる作用を有する。好ましい含有範囲は3.0 〜
8.0%で、3.0 %未満では再結晶促進の効果が小さく、
8.0 %を越えて含有すると熱間加工性が劣化する。Cu
はAl−Mg系合金の超塑性伸びを向上させる元素であ
る。好ましい含有範囲は0.05〜0.50%であり、0.05%未
満ではその効果が十分でなく、0.50%を越えると熱間加
工性が低下する。
Explaining the meaning and limiting reason of the contained components in the present invention, Mg has a function of recrystallizing the alloy during high temperature deformation. The preferred content range is 3.0-
If it is less than 3.0%, the effect of promoting recrystallization is small.
If the content exceeds 8.0%, hot workability deteriorates. Cu
Is an element that improves the superplastic elongation of the Al-Mg alloy. A preferred content range is 0.05 to 0.50%, and if it is less than 0.05%, its effect is not sufficient, and if it exceeds 0.50%, the hot workability is deteriorated.

【0010】Tiは鋳塊の結晶粒を微細化し、合金の超
塑性特性の向上に役立つ。好ましい含有範囲は0.001 〜
0.1 %であり、0.001 %未満ではその効果が小さく、0.
1 %を越えて含有すると、粗大な化合物が生じ加工性、
延性が害される。Mn、Crは、高温変形中の合金の再
結晶において、再結晶粒を微細にする機能を有する。好
ましい含有量はそれぞれ0.10%以下の範囲であり、0.10
%を越えると、粒径が1 μm 以上のAl−Fe−Si系
化合物を増加させ、合金の高速超塑性変形能を低下させ
る傾向がある。
Ti serves to refine the crystal grains of the ingot and improve the superplastic properties of the alloy. The preferred content range is 0.001 to
0.1%, the effect is small when it is less than 0.001%.
If the content exceeds 1%, a coarse compound is formed and processability,
Ductility is impaired. Mn and Cr have a function of refining recrystallized grains during recrystallization of the alloy during high-temperature deformation. The preferred contents are each in the range of 0.10% or less, and 0.10% or less.
%, The Al-Fe-Si-based compound having a grain size of 1 µm or more tends to increase, and the high-speed superplastic deformability of the alloy tends to decrease.

【0011】本発明においては、不純物としてのFe、
Siをそれぞれ0.06%以下に制限することが重要であ
る。不純物のFe、Siは不溶性のAl−Fe−Si系
化合物を生成し、この化合物が結晶粒界に析出してキャ
ビティを増加させ、超塑性伸びを低下させる。好ましく
はFe:0.05 %以下、Si:0.05 %以下の制限する。ま
た、Beを通常のAl−Mg系合金と同様、溶湯の酸化
を防止するために50ppm以下の範囲で添加することもで
きる。
In the present invention, Fe as an impurity,
It is important to limit each of Si to 0.06% or less. The impurities Fe and Si generate an insoluble Al-Fe-Si-based compound, which precipitates at crystal grain boundaries to increase the cavity and reduce superplastic elongation. Preferably, Fe: 0.05% or less and Si: 0.05% or less are restricted. Also, Be can be added in a range of 50 ppm or less in order to prevent oxidation of the molten metal, similarly to a normal Al-Mg alloy.

【0012】本発明の合金組織について説明すると、合
金のマトリックス中に存在するAl−Fe−Si系化合
物は、上記の弊害をもたらすものであり、とくに粒径が
1 μm 以上の化合物は少ないほどよい。その限界は粒径
が1 μm 以上のAl−Fe−Si径化合物が2000個/mm2
以下であり、2000個/mm2を越えて分布すると、結晶粒界
にキャビティが増加し超塑性伸びを低下させる。
Explaining the alloy structure of the present invention, the Al--Fe--Si compound present in the matrix of the alloy causes the above-mentioned adverse effects, and particularly the grain size is
The smaller the number of compounds of 1 μm or more, the better. The limit is 2000 Al / Fe-Si diameter compounds with a grain size of 1 μm or more / mm 2
When the distribution is more than 2000 pieces / mm 2 , the number of cavities increases in the grain boundaries and the superplastic elongation decreases.

【0013】結晶粒径については、アルミニウム合金板
の初期の平均結晶粒径を25〜200 μm に制御することが
必要である。初期の平均結晶粒径が25μm 未満では、高
温変形中に再結晶した場合に元の結晶粒が現出され、上
記不溶性化合物の析出している粒界が消失し、再結晶し
た結果として生じる清浄な結晶粒からなる再結晶組織が
得難い。初期の平均結晶粒径が200 μm を越えると、変
形速度が増大するにつれて結晶粒内の剪断変形が顕著と
なって破断し易くなるため、超塑性伸びが低下し易い。
Regarding the crystal grain size, it is necessary to control the initial average crystal grain size of the aluminum alloy plate to 25 to 200 μm. If the initial average crystal grain size is less than 25 μm, the original crystal grains will appear when recrystallized during high-temperature deformation, and the grain boundaries where the insoluble compounds have precipitated will disappear, resulting in cleanliness resulting from recrystallization. It is difficult to obtain a recrystallized structure composed of fine crystal grains. If the initial average crystal grain size exceeds 200 μm, the shear deformation within the crystal grains becomes remarkable as the deformation rate increases, and the crystal grains are easily broken, so that the superplastic elongation tends to decrease.

【0014】本発明のアルミニウム合金板の成形加工
は、350 〜550 ℃の温度で行うのが好ましい。350 ℃未
満では、Al−Mg系化合物、Al−Mg−Cu系化合
物が結晶粒界に析出し易く、伸びが低下する。成形加工
温度が550 ℃を越えると結晶粒の粗大化が生じ、伸びが
わるくなる。成形加工時の歪速度は10-3〜100/s の範囲
が好ましく、10-3/s未満の歪速度では、変形中に結晶粒
が粗大化して伸びの低下を招き、100/s を越える歪速度
では、結晶粒内に剪断変形が生じて割れの原因となった
り、結晶粒界に析出が生じ伸びを低下させる。
The forming process of the aluminum alloy sheet of the present invention is preferably carried out at a temperature of 350 to 550 ° C. If the temperature is lower than 350 ° C., the Al—Mg-based compound and the Al—Mg—Cu-based compound are likely to precipitate at the crystal grain boundaries, and the elongation is reduced. If the molding temperature exceeds 550 ° C, the crystal grains become coarse and the elongation becomes poor. The strain rate during molding is preferably in the range of 10 -3 to 10 0 / s, and at a strain rate of less than 10 -3 / s, the crystal grains become coarse during deformation, leading to a decrease in elongation and 10 0 / s. If the strain rate exceeds, shear deformation occurs in the crystal grains to cause cracking, or precipitation occurs at the crystal grain boundaries to reduce elongation.

【0015】[0015]

【発明の実施の形態】以下、本発明のアルミニウム合金
板の製造方法について説明する。常法に従って、上記組
成のアルミニウム合金を溶解、鋳造し、得られた鋳塊を
均質化処理する。均質化処理条件は450 〜550 ℃の温度
で行うのが好ましい。450 ℃未満では、鋳塊の結晶粒界
面やセル境界に偏析したMg、Cuが十分に再固溶され
ず熱間圧延割れの原因となる。550 ℃を越えた温度で
は、融点の低いAl−Mg系あるいはAl−Mg−Cu
系晶出物が共晶融解を生じ、熱間圧延時における割れ発
生の原因となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing an aluminum alloy sheet according to the present invention will be described. According to a conventional method, the aluminum alloy having the above composition is melted and cast, and the obtained ingot is homogenized. The homogenization treatment is preferably performed at a temperature of 450 to 550 ° C. If the temperature is lower than 450 ° C., Mg and Cu segregated at the crystal grain interface and the cell boundary of the ingot are not sufficiently re-dissolved to cause hot rolling cracks. At temperatures exceeding 550 ° C, Al-Mg based materials with low melting points or Al-Mg-Cu
Eutectic melting occurs in the system crystallized material, which causes cracking during hot rolling.

【0016】均質化処理後、熱間圧延を行い、鋳塊組織
を展伸材組織とする。熱間圧延の開始温度は250 〜500
℃であるが、好ましくは 400℃未満とするのがよい。25
0 ℃未満で熱間圧延を開始すると、材料の変形抵抗が高
く熱間圧延が困難となる。熱間圧延温度が高くなると、
析出物の分布態様の変化により、所定の結晶粒組織およ
び析出化合物の分布が得難くなる場合がある。
After the homogenization treatment, hot rolling is performed to make the ingot structure a wrought material structure. Hot rolling start temperature is 250 ~ 500
° C, but preferably less than 400 ° C. twenty five
If the hot rolling is started at a temperature lower than 0 ° C., the deformation resistance of the material is high and the hot rolling becomes difficult. When the hot rolling temperature increases,
A change in the distribution of precipitates may make it difficult to obtain a predetermined crystal grain structure and distribution of the precipitated compound.

【0017】熱間圧延に続いて冷間圧延を行う。必要に
応じて、冷間圧延中に中間焼鈍を行ってもよい。冷間圧
延材の最終焼鈍は350 〜550 ℃の温度で実施する。350
℃未満の焼鈍では、熱間圧延で形成された組織の異方性
が十分に消失しない場合があり、550 ℃を越えると再結
晶粒界に局部溶解が生じるおそれがある。最終焼鈍は、
連続焼鈍などの急速焼鈍処理によるのが好ましい。
Cold rolling is performed subsequent to hot rolling. If necessary, intermediate annealing may be performed during cold rolling. The final annealing of the cold-rolled material is performed at a temperature of 350 to 550 ° C. 350
If the annealing is performed at a temperature lower than ℃, the anisotropy of the structure formed by the hot rolling may not be sufficiently eliminated. If the temperature exceeds 550 ℃, local melting may occur at the recrystallized grain boundaries. The final annealing is
It is preferable to use rapid annealing such as continuous annealing.

【0018】本発明においては、Al−Mg系合金中の
不純物であるFe、Siを制限し、合金組成の組合わせ
に応じて上記の製造条件の組合わせを調整することによ
り、マトリックス中に存在するAl−Fe−Si系化合
物を特定の分布に制御するとともに、結晶粒径を特定の
範囲に制御し、この組織性状によって結晶粒界における
化合物を少なくして、清浄な粒界としてキャビティの生
成を抑制し、高温変形中に平均で20μm 以下の再結晶粒
が形成され、350 〜550 ℃の温度域において、歪速度10
-2〜100/s の高速成形でも、350 %以上、好ましくは38
0 %以上の十分な延性を得ることを可能とする。
In the present invention, Fe and Si, which are impurities in the Al-Mg-based alloy, are limited, and the combination of the above manufacturing conditions is adjusted according to the combination of the alloy compositions, so that they are present in the matrix. The Al-Fe-Si-based compound is controlled to have a specific distribution, the crystal grain size is controlled to a specific range, and the compound in the crystal grain boundary is reduced by this texture property to form a cavity as a clean grain boundary. The average of recrystallized grains of 20 μm or less is formed during high-temperature deformation, and strain rate of 10
-2 to 10 0 / s at high speed molding of 350% or more, preferably 38
It is possible to obtain sufficient ductility of 0% or more.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1、比較例1 表1に示す組成のAl−Mg系アルミニウム合金を溶解
し、DC鋳造法により造塊した。得られた鋳塊を530 ℃
で10時間均質化処理したのち、30mm厚さとし、390 ℃の
温度で熱間圧延を開始し、4mm 厚さまで熱間圧延した。
ついで冷間圧延を行って板厚を2mm とし、480 ℃の温度
に急速に加熱し5 分間保持する急速焼鈍処理を行った。
これらの板材を試験材として、温度480 ℃、歪速度10-2
/sで引張試験を行った。各試験材の平均結晶粒径( 板面
の平均結晶粒径) 、粒径が1 μm以上のAl−Fe−S
i系化合物の1mm2当たりの個数、引張試験により測定し
た伸び率を表1に示す。なお、化合物量は画像処理によ
り求めた。また表1において、本発明の条件を外れたも
のには下線を付した。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1, Comparative Example 1 An Al-Mg-based aluminum alloy having the composition shown in Table 1 was melted and ingot was formed by DC casting. The obtained ingot is 530 ℃
After homogenizing for 10 hours, the thickness was reduced to 30 mm, hot rolling was started at a temperature of 390 ° C, and hot rolling was performed to a thickness of 4 mm.
Then, cold rolling was performed to a plate thickness of 2 mm, and a rapid annealing treatment was performed in which the plate was rapidly heated to a temperature of 480 ° C and held for 5 minutes.
Using these plates as test materials, the temperature was 480 ° C and the strain rate was 10 -2.
A tensile test was performed at / s. Average crystal grain size of each test material (average crystal grain size on the plate surface), Al-Fe-S with grain size of 1 μm or more
Table 1 shows the number of i-type compounds per 1 mm 2 and the elongation percentage measured by the tensile test. The amount of compound was determined by image processing. Further, in Table 1, those which do not satisfy the conditions of the present invention are underlined.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、本発明に従う試験材N
o.1〜5 は、いずれも400 %を越える優れた伸び率を示
した。一方、試験材No.6はCu量が多過ぎるため、また
試験材No.7はMg含有量が多過ぎるため、いずれも熱間
圧延において割れが生じ試験片が形成できなかった。試
験材No.8は、不純物のFeおよびSiが多量に含まれる
ため、大径の化合物量が多く伸び率が劣る。試験材No.9
はMg量が少ないため、引張変形中に再結晶が不十分と
なり伸び率が低い。
As shown in Table 1, test material N according to the present invention
All of o.1 to 5 showed an excellent elongation rate of more than 400%. On the other hand, since the test material No. 6 contained too much Cu, and the test material No. 7 contained too much Mg, cracking occurred during hot rolling and no test piece could be formed. Since the test material No. 8 contains a large amount of impurities Fe and Si, it has a large amount of large-diameter compounds and inferior elongation. Test material No. 9
Since the amount of Mg is small, recrystallization is insufficient during tensile deformation and the elongation is low.

【0022】実施例2、比較例2 表2に示す組成のAl−Mg系アルミニウム合金を、実
施例1と同様に溶解、鋳造し、実施例1と同一の工程、
同一の条件で処理して厚さ2mm の試験材を作製し、各試
験材について実施例1と同じ条件で引張試験を行った。
各試験材の平均結晶粒径、粒径1 μm 以上のAl−Fe
−Si系化合物の量、引張試験で測定された伸び率を表
2に示す。なお、表2において、本発明の条件を外れた
ものには下線を付した。
Example 2, Comparative Example 2 An Al-Mg-based aluminum alloy having the composition shown in Table 2 was melted and cast in the same manner as in Example 1, and the same steps as in Example 1 were carried out.
A test material having a thickness of 2 mm was prepared under the same conditions, and a tensile test was performed on each test material under the same conditions as in Example 1.
Al-Fe with average crystal grain size of each test material and grain size of 1 μm or more
Table 2 shows the amount of the -Si compound and the elongation percentage measured by the tensile test. In addition, in Table 2, the values out of the conditions of the present invention are underlined.

【0023】[0023]

【表2】 [Table 2]

【0024】表2にみられるように、本発明に従う試験
材No.10 〜12は、いずれも380 %を越える優れた伸び率
を示したが、試験材No.13 〜14はMnの含有量が多く、
試験材No.15 はCr量が多いため、ともに粒径が1 μm
以上のAl−Fe−Si系化合物の分布が多く、高温伸
びが得られない。
As shown in Table 2, all of the test materials No. 10 to 12 according to the present invention showed an excellent elongation ratio exceeding 380%, but the test materials No. 13 to 14 had a Mn content. Many,
Since the test material No. 15 has a large amount of Cr, the grain size is 1 μm in both cases.
Since the Al-Fe-Si-based compound has a large distribution as described above, high temperature elongation cannot be obtained.

【0025】実施例3、比較例3 実施例1の試験材No.5と同一の組成を有するアルミニウ
ム合金を、実施例1と同様に溶解、鋳造し、得られた鋳
塊を520 ℃で8 時間均質化処理したのち、鋳塊を30mm厚
さとして、390 ℃の温度で熱間圧延を開始し、4mm 厚さ
まで熱間圧延した。続いて冷間圧延により2mm 厚の板材
とし、480 ℃の温度に急速加熱して5 分間保持する急速
焼鈍処理を行った。作製された板材を試験材として、表
3に示すように、成形温度、歪速度を変えて引張試験を
行った。各試験材の伸び率を表3に示す。表3におい
て、本発明の条件を外れたものには下線を付した。な
お、各試験材の平均結晶粒径(板面の平均結晶粒径)は
いずれも50〜60μm の範囲、粒径が1 μm 以上のAl−
Fe−Si系化合物の1mm2当たりの個数はいずれも2000
個以下であった。
Example 3, Comparative Example 3 An aluminum alloy having the same composition as the test material No. 5 of Example 1 was melted and cast in the same manner as in Example 1, and the obtained ingot was heated at 520 ° C. for 8 hours. After homogenizing for a period of time, the ingot was made to have a thickness of 30 mm, hot rolling was started at a temperature of 390 ° C., and hot rolling was performed to a thickness of 4 mm. Then, it was cold-rolled into a sheet material with a thickness of 2 mm, which was rapidly annealed by rapidly heating it to a temperature of 480 ° C and holding it for 5 minutes. Using the produced plate material as a test material, as shown in Table 3, a tensile test was conducted by changing the molding temperature and the strain rate. Table 3 shows the elongation percentage of each test material. In Table 3, those out of the conditions of the present invention are underlined. The average crystal grain size (average crystal grain size on the plate surface) of each test material was in the range of 50 to 60 μm, and the grain size was 1 μm or more.
The number of Fe-Si compounds per 1 mm 2 is 2000
Or less.

【0026】[0026]

【表3】 [Table 3]

【0027】表3に示すように、本発明に従う試験材N
o.16 〜20は、いずれも380 %以上の優れた伸び率を示
したが、試験材No.21 は引張試験温度が高いため結晶粒
が粗大化し、伸び率が低下している。試験材No.22 は歪
速度が小さいため、変形中に結晶粒の粗大化が生じ伸び
率が低下した。試験材No.23 は歪速度が大き過ぎるため
伸びの低下が生じた。
As shown in Table 3, test material N according to the present invention
All of o.16 to 20 showed an excellent elongation rate of 380% or more, but the test material No. 21 had a high tensile test temperature, so that the crystal grains became coarse and the elongation rate decreased. Since the test material No. 22 had a low strain rate, coarsening of crystal grains occurred during the deformation and the elongation rate decreased. Since the strain rate of test material No. 23 was too high, the elongation decreased.

【0028】[0028]

【発明の効果】以上のとおり、本発明によれば、高温に
おいて、歪速度が 10 -2〜100/s のような高速成形にお
いても十分な超塑性伸びが得られるAl−Mg系アルミ
ニウム合金板が提供され、当該アルミニウム合金板を使
用して超塑性成形を行うことにより成形時間が短縮され
生産性が改善される。
As evident from the foregoing description, according to the present invention, at high temperature, strain rate 10 -2 ~10 0 / s fast enough superplastic elongation can be obtained even in the forming Al-Mg series aluminum alloys such as A plate is provided, and by performing superplastic forming using the aluminum alloy plate, forming time is shortened and productivity is improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mg:3.0〜8.0 %(重量%、以下同
じ)、Ti:0.001〜0.1%を含有し、不純物としてのF
eを0.06%以下、Siを0.06%以下に制限し、残部Al
および不可避的不純物からなる合金よりなり、該合金の
マトリックス中に存在する粒径1 μm 以上のAl−Fe
−Si系化合物が2000個/mm2以下、平均結晶粒径が25〜
200 μm 、350 〜550 ℃の温度域で歪速度10-2〜100/s
で成形加工した場合の伸びが350 %以上であることを特
徴とする高速超塑性成形に優れたアルミニウム合金板。
1. Mg: 3.0 to 8.0% (weight%, the same applies hereinafter) and Ti: 0.001 to 0.1%, and F as an impurity.
Limit e to 0.06% or less and Si to 0.06% or less, and balance Al
And an Al-Fe alloy having an inevitable impurity and having a grain size of 1 μm or more present in the matrix of the alloy.
-2000 compounds / mm 2 or less of Si-based compound, average crystal grain size of 25-
200 [mu] m, 350 to 550 strain rate of 10 -2 to 10 in a temperature range of ° C. 0 / s
An aluminum alloy sheet excellent in high-speed superplastic forming characterized by an elongation of 350% or more when formed by.
【請求項2】 Cu:0.05 〜0.50%を含有することを特
徴とする請求項1記載の高速超塑性成形に優れたアルミ
ニウム合金板。
2. The aluminum alloy sheet excellent in high-speed superplastic forming according to claim 1, which contains Cu: 0.05 to 0.50%.
【請求項3】 Mn:0.10 %以下、Cr:0.10 %以下の
うちの1種または2種を含有することを特徴とする請求
項1または2記載の高速超塑性成形に優れたアルミニウ
ム合金板。
3. An aluminum alloy sheet excellent in high-speed superplastic forming according to claim 1, which contains one or two of Mn: 0.10% or less and Cr: 0.10% or less.
【請求項4】 請求項1〜3記載のアルミニウム合金板
を、350 〜550 ℃の温度で、歪速度10-3〜100/s で成形
加工することを特徴とする高速超塑性成形に優れたアル
ミニウム合金板の成形方法。
The 4. The aluminum alloy sheet of claim 1, wherein, at a temperature of 350 to 550 ° C., excellent high-speed superplastic forming, which comprises molding a strain rate 10 -3 ~10 0 / s Method for forming aluminum alloy sheet.
JP23770795A 1995-08-23 1995-08-23 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method Expired - Fee Related JP3145904B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23770795A JP3145904B2 (en) 1995-08-23 1995-08-23 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
US09/000,097 US20010001969A1 (en) 1995-08-23 1995-12-12 Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same
EP95940435A EP0846781B1 (en) 1995-08-23 1995-12-12 Process of forming an aluminium sheet with excellent high speed superplastic formability
PCT/JP1995/002564 WO1997008354A1 (en) 1995-08-23 1995-12-12 Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same
DE69519444T DE69519444T2 (en) 1995-08-23 1995-12-12 Process for producing an aluminum sheet with excellent high speed super plasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23770795A JP3145904B2 (en) 1995-08-23 1995-08-23 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method

Publications (2)

Publication Number Publication Date
JPH0959736A true JPH0959736A (en) 1997-03-04
JP3145904B2 JP3145904B2 (en) 2001-03-12

Family

ID=17019320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23770795A Expired - Fee Related JP3145904B2 (en) 1995-08-23 1995-08-23 Aluminum alloy sheet excellent in high speed superplastic forming and its forming method

Country Status (5)

Country Link
US (1) US20010001969A1 (en)
EP (1) EP0846781B1 (en)
JP (1) JP3145904B2 (en)
DE (1) DE69519444T2 (en)
WO (1) WO1997008354A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676174B1 (en) * 2006-05-25 2007-02-01 주식회사 엠코 Attachment-free safety net support for steel construction frame
US8500926B2 (en) 2006-01-12 2013-08-06 Furukawa-Sky Aluminum Corp Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
JP2016191137A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
JP2018199866A (en) * 2018-08-24 2018-12-20 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534573B2 (en) * 2004-04-23 2010-09-01 日本軽金属株式会社 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
EP1842935B1 (en) * 2005-01-19 2014-10-29 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
US8323428B2 (en) * 2006-09-08 2012-12-04 Honeywell International Inc. High strain rate forming of dispersion strengthened aluminum alloys
CN113695538B (en) * 2021-09-03 2023-07-25 中铝河南洛阳铝加工有限公司 Preparation method of high-formability mirror aluminum plate strip and mirror aluminum plate strip

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285046A (en) * 1989-04-26 1990-11-22 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic working and its manufacture
JPH0472030A (en) * 1990-06-05 1992-03-06 Sky Alum Co Ltd Al alloy steel for diaphragm forming and its manufacture
JPH05212562A (en) * 1992-01-31 1993-08-24 Sky Alum Co Ltd Roll bond panel and production thereof
JPH0617178A (en) * 1991-09-26 1994-01-25 Takeshi Masumoto Superplastic aluminum base alloy material and manufacture of superplastic alloy material
JPH06240395A (en) * 1993-02-12 1994-08-30 Sky Alum Co Ltd Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH07145441A (en) * 1993-01-27 1995-06-06 Toyota Motor Corp Superplastic aluminum alloy and its production
JPH07197177A (en) * 1994-01-10 1995-08-01 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JPH08199272A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Aluminum alloy sheet and forming method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159961A (en) * 1983-02-28 1984-09-10 Mitsubishi Alum Co Ltd Superplastic al alloy
JPH05230583A (en) * 1992-02-25 1993-09-07 Mitsubishi Alum Co Ltd High strength al alloy sheet excellent in formability
JPH05345963A (en) * 1992-06-12 1993-12-27 Furukawa Alum Co Ltd Manufacture of high formability aluminum alloy sheet
DE69304009T2 (en) * 1992-10-23 1997-02-06 Kawasaki Steel Co Process for the production of sheet metal from Al-Mg alloy for press molds
DE69303461T2 (en) * 1992-11-17 1996-11-28 Kawasaki Steel Co Process for producing aluminum alloy sheet with excellent strength and deformability by deep drawing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285046A (en) * 1989-04-26 1990-11-22 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic working and its manufacture
JPH0472030A (en) * 1990-06-05 1992-03-06 Sky Alum Co Ltd Al alloy steel for diaphragm forming and its manufacture
JPH0617178A (en) * 1991-09-26 1994-01-25 Takeshi Masumoto Superplastic aluminum base alloy material and manufacture of superplastic alloy material
JPH05212562A (en) * 1992-01-31 1993-08-24 Sky Alum Co Ltd Roll bond panel and production thereof
JPH07145441A (en) * 1993-01-27 1995-06-06 Toyota Motor Corp Superplastic aluminum alloy and its production
JPH06240395A (en) * 1993-02-12 1994-08-30 Sky Alum Co Ltd Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH07197177A (en) * 1994-01-10 1995-08-01 Sky Alum Co Ltd Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JPH08199272A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Aluminum alloy sheet and forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500926B2 (en) 2006-01-12 2013-08-06 Furukawa-Sky Aluminum Corp Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
KR100676174B1 (en) * 2006-05-25 2007-02-01 주식회사 엠코 Attachment-free safety net support for steel construction frame
JP2016191137A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body
JP2018199866A (en) * 2018-08-24 2018-12-20 株式会社神戸製鋼所 Aluminum alloy sheet for resin coated can body

Also Published As

Publication number Publication date
WO1997008354A1 (en) 1997-03-06
EP0846781A4 (en) 1998-11-18
EP0846781B1 (en) 2000-11-15
US20010001969A1 (en) 2001-05-31
EP0846781A1 (en) 1998-06-10
DE69519444D1 (en) 2000-12-21
DE69519444T2 (en) 2001-06-13
JP3145904B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
US4618382A (en) Superplastic aluminium alloy sheets
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP1902149A2 (en) Aluminium foil alloy
JPS59159961A (en) Superplastic al alloy
JPS623225B2 (en)
JP4325126B2 (en) Aluminum alloy plate excellent in warm formability and manufacturing method thereof
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
JPH0959736A (en) Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JPH0726342A (en) Aluminum alloy sheet for superplastic forming, capable of cold preforming, and its production
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
CN113474479B (en) Method for producing sheet or strip from aluminium alloy and sheet, strip or shaped part produced therefrom
JPH0447019B2 (en)
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0718389A (en) Production of al-mg series alloy sheet for forming
KR960007633B1 (en) Al-mg alloy &amp; the preparation
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH08333644A (en) Aluminum alloy foil and its production
JPS6296643A (en) Superplastic aluminum alloy
JPH062064A (en) High-strength and high-formability al-mg-si alloy and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees