JPH06240395A - Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it - Google Patents

Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it

Info

Publication number
JPH06240395A
JPH06240395A JP5047431A JP4743193A JPH06240395A JP H06240395 A JPH06240395 A JP H06240395A JP 5047431 A JP5047431 A JP 5047431A JP 4743193 A JP4743193 A JP 4743193A JP H06240395 A JPH06240395 A JP H06240395A
Authority
JP
Japan
Prior art keywords
superplastic
less
alloy
casting
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5047431A
Other languages
Japanese (ja)
Inventor
Mamoru Matsuo
守 松尾
Tsutomu Tagata
勉 田形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP5047431A priority Critical patent/JPH06240395A/en
Publication of JPH06240395A publication Critical patent/JPH06240395A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an Al base alloy sheet for superplastic forming having good superplastic properties and also excellent in corrosion resistance and weldability, to provide its producing method and to provide an superplastic formed body using it. CONSTITUTION:An Al alloy sheet for superplastic forming contg. 4.0 to 7.0% Mg, >1.5 to 2.5% Mn and 0.00005 to 0.01% Be and furthermore contg., at need, one or more kinds among Cr, V and Zr, and the balance substantially A1 with impurities of <0.2% Fe is produced. Or, at the time of subjecting the alloy having the same componental compsn. to DC casting, in the process of adding an Al-Ti or Al-Ti-B alloy as a refining agent, heating the cast ingot at 450 to 560 deg.C for 0.5 to 24hr and executing hot rolling-cold rolling, the final cold rolling ratio is regulated to >=30%. Or, after that, recrystallizing treatment of holding it at 280 to 560 deg.C for 0 to 5hr at >=10 deg.C/min may be executed. Furthermore, the superplastic formed body having the same componental compsn. and also contg. crystalline grains of <=50mum after superplastic forming is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超塑性成形用アルミ
ニウム合金板、すなわち350〜560℃の温度域で成
形加工(超塑性成形)を施して用いられる用途のアルミ
ニウム合金板と、その合金板の製造方法、およびその合
金板を用いた超塑性成形体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for superplastic forming, that is, an aluminum alloy sheet for use after being subjected to forming processing (superplastic forming) in a temperature range of 350 to 560 ° C, and the alloy sheet. And a superplastic molded body using the alloy plate.

【0002】[0002]

【従来の技術】近年、高温において適切な歪速度で引張
りを与えた場合に局部的変形(ネック)の発生を招くこ
となく著しく大きな伸びを示す超塑性材料が種々開発さ
れるようになっている。アルミニウム合金材料について
も、350℃以上の高温で150%以上の伸びを示す超
塑性材料が種々研究されている。
2. Description of the Related Art In recent years, various superplastic materials have been developed which exhibit remarkably large elongation without causing local deformation (neck) when tensile is applied at an appropriate strain rate at high temperature. . As for aluminum alloy materials, various studies have been conducted on superplastic materials that exhibit an elongation of 150% or more at a high temperature of 350 ° C or more.

【0003】従来のアルミニウム系超塑性材料として
は、Al−78%Zn合金、Al−33%Cu合金、A
l−6%Cu−0.4%Zr合金(“SUPRAL
L”)、Al−Zn−Mg−Cu合金(AA規格の74
75合金、7075合金等)、Al−2.5〜6.0%
Mg−0.05〜0.6%Zr合金等が知られている。
このような超塑性材料を用いれば、複雑な形状への成形
加工を容易に行なうことが可能となる。
As conventional aluminum-based superplastic materials, Al-78% Zn alloy, Al-33% Cu alloy, A
1-6% Cu-0.4% Zr alloy ("SUPRAL
L "), Al-Zn-Mg-Cu alloy (AA standard 74
75 alloy, 7075 alloy, etc.), Al-2.5 to 6.0%
Mg-0.05-0.6% Zr alloy and the like are known.
If such a superplastic material is used, it becomes possible to easily perform a forming process into a complicated shape.

【0004】[0004]

【発明が解決しようとする課題】超塑性材料は、高温で
優れた成形性が得られることから、多くの分野への適用
が考えられている。一方一般にアルミニウム合金材料に
おいては、例えば内装用、外装用の建築パネルあるいは
鞄等の容器などに使用するためには耐食性に充分に考慮
が払われねばならない。また構造部材として使用される
場合には、成形後に優れた機械的特性を有するばかりで
なく、溶接を施して使用することが多いことから、優れ
た溶接性を有することが要求される。
Since superplastic materials can obtain excellent formability at high temperatures, they are expected to be applied to many fields. On the other hand, in general, in the case of aluminum alloy materials, sufficient consideration must be given to corrosion resistance in order to use them for interior or exterior building panels or containers such as bags. When it is used as a structural member, it is required to have not only excellent mechanical properties after molding but also excellent weldability because it is often used by welding.

【0005】しかるに従来の超塑性成形用アルミニウム
合金においては、超塑性性能を追及するあまり、Cu等
の多量の合金添加元素を必要とし、その結果、耐食性が
劣るとともに、溶接性も劣るという欠点があり、そのた
めたとえ成形性が良好であっても、実用化を進める上で
の大きな障害となっていたのが実情である。また逆に耐
食性や溶接性を向上させようとすれば、肝心の超塑性特
性が劣ってしまい、優れた成形性が望めなくなってしま
うのが実情であった。
However, the conventional aluminum alloys for superplastic forming require a large amount of alloying elements such as Cu in order to pursue superplasticity, and as a result, they have the drawbacks of poor corrosion resistance and poor weldability. Therefore, even if the moldability is good, it has been a serious obstacle to the practical application. On the contrary, if it is attempted to improve the corrosion resistance and the weldability, the essential superplasticity property is deteriorated, and the excellent formability cannot be expected.

【0006】この発明は以上の事情を背景としてなされ
たもので、優れた超塑性特性を有すると同時に、耐食
性、溶接性のいずれもが優れた超塑性成形用アルミニウ
ム合金板およびその製造方法を提供し、併せてそのアル
ミニウム合金板を用いた超塑性成形品を提供することを
基本的な目的とするものである。
The present invention has been made in view of the above circumstances, and provides an aluminum alloy plate for superplastic forming, which has excellent superplastic properties, and at the same time, has excellent corrosion resistance and weldability, and a method for producing the same. At the same time, the basic object is to provide a superplastic molded product using the aluminum alloy plate.

【0007】[0007]

【課題を解決するための手段】前述のような課題を解決
するため、本発明者等が鋭意実験・研究を行なった結
果、合金の化学成分組成を適切に設定すること、また圧
延板の製造条件を適切に設定すること、さらには超塑性
成形後の結晶粒径が所定の範囲となるように調整するこ
とによって、優れた超塑性特性を有すると同時に、耐食
性、溶接性の優れたアルミニウム合金板が得られること
を見出し、この発明をなすに至ったのである。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention have conducted diligent experiments and research, and as a result, have properly set the chemical composition of the alloy, and manufacture of the rolled plate. By setting the conditions appropriately and adjusting the crystal grain size after superplastic forming to be within a predetermined range, an aluminum alloy with excellent superplastic properties as well as corrosion resistance and weldability The inventors have found that a plate can be obtained and have completed the present invention.

【0008】具体的には、請求項1の発明の超塑性成形
用アルミニウム合金板は、Mg4.0〜7.0%、Mn
1.5%を越え2.5%以下、Be0.00005〜
0.01%を含有し、かつ不純物としてのFeが0.2
%未満に規制され、残部がAlおよびその他の不可避的
不純物よりなることを特徴とするものである。
Specifically, the aluminum alloy sheet for superplastic forming according to the first aspect of the present invention has Mg of 4.0 to 7.0% and Mn.
More than 1.5% and 2.5% or less, Be0.00005-
Fe as an impurity is 0.2
%, And the balance consists of Al and other unavoidable impurities.

【0009】また請求項2の発明の超塑性成形用アルミ
ニウム合金板は、Mg4.0〜7.0%、Mn1.5%
を越え2.5%以下、Be0.00005〜0.01%
を含有するとともに、Cr0.05〜0.3%、V0.
05〜0.3%、Zr0.05〜0.3%のうちの1種
または2種以上を含有し、かつ不純物としてのFeが
0.2%未満に規制され、残部がAlおよびその他の不
可避的不純物よりなることを特徴とするものである。
The aluminum alloy sheet for superplastic forming according to the second aspect of the present invention is Mg 4.0-7.0%, Mn 1.5%.
Over 2.5%, Be0.00005-0.01%
In addition to containing Cr of 0.05 to 0.3%, V0.
05-0.3%, Zr 0.05-0.3%, one or more of them are contained, Fe as an impurity is regulated to less than 0.2%, and the balance is Al and other unavoidable. It is characterized in that it is made up of specific impurities.

【0010】一方請求項3の発明は上述のような超塑性
成形用アルミニウム合金板を製造する方法についてのも
のであって、Mg4.0〜7.0%、Mn1.5%を越
え2.5%以下、Be0.00005〜0.01%を含
有し、さらに必要に応じてCr0.05〜0.3%、V
0.05〜0.3%、Zr0.05〜0.3%のうちの
1種または2種以上を含有し、かつ不純物としてのFe
が0.2%未満に規制され、残部がAlおよびその他の
不可避的不純物からなるアルミニウム合金を鋳造するに
あたって、鋳造前もしくは鋳造中に、結晶粒微細化剤と
して、Al−Ti母合金もしくはAl−Ti−B母合金
をTi量にして0.15%以下添加し、DC鋳造法によ
り鋳造した後、鋳塊を450〜560℃で0.5〜24
時間加熱し、さらに熱間圧延および冷間圧延を施して所
要の板厚とするにあたって、最終の冷間圧延率を30%
以上とすることを特徴とするものである。
On the other hand, the invention of claim 3 relates to a method for producing an aluminum alloy plate for superplastic forming as described above, wherein Mg exceeds 4.0% to 7.0% and Mn exceeds 1.5% to 2.5. % Or less, Be0.00005-0.01%, and if necessary, Cr0.05-0.3%, V
Fe as an impurity, containing one or more of 0.05 to 0.3% and Zr 0.05 to 0.3%.
Is controlled to be less than 0.2% and the balance is Al and other unavoidable impurities. When casting an aluminum alloy, before or during casting, as a grain refiner, an Al-Ti mother alloy or Al- The Ti-B mother alloy was added in an amount of Ti of 0.15% or less, and the ingot was cast at a temperature of 450 to 560 ° C for 0.5 to 24 after casting by a DC casting method.
The final cold rolling rate is 30% when heating for a period of time and then performing hot rolling and cold rolling to obtain the required plate thickness.
The above is characterized.

【0011】また請求項4の発明の超塑性成形用アルミ
ニウム合金板の製造方法は、請求項3の発明の方法と同
様なプロセスを経て最終冷間圧延した後、さらに10℃
/min 以上の昇温速度で280〜560℃に加熱して0
〜5時間保持する再結晶処理(最終焼鈍)を施すことを
特徴とするものである。
According to a fourth aspect of the present invention, there is provided a method for producing an aluminum alloy sheet for superplastic forming, wherein after the final cold rolling through the same process as the method of the third aspect of the invention, further 10 ° C. is applied.
Heating to 280 to 560 ° C. at a temperature rising rate of at least min / min
It is characterized in that a recrystallization treatment (final annealing) of holding for up to 5 hours is performed.

【0012】さらに請求項5の発明は、請求項1の発明
で規定する超塑性成形用アルミニウム合金板を用いた超
塑性成形体についてのものであり、Mg4.0〜7.0
%、Mn1.5%を越え2.5%以下、Be0.000
05〜0.01%を含有し、かつ不純物としてのFeが
0.2%未満に規制され、残部がAlおよびその他の不
可避的不純物よりなり、かつ超塑性成形後の結晶粒の大
きさが50μm以下であることを特徴とするものであ
る。
Further, the invention of claim 5 relates to a superplastic compact using the aluminum alloy plate for superplastic compacting defined in the invention of claim 1, Mg 4.0 to 7.0.
%, Mn more than 1.5% and 2.5% or less, Be 0.000
Fe as an impurity is regulated to less than 0.2%, the balance consists of Al and other unavoidable impurities, and the size of crystal grains after superplastic forming is 50 μm. It is characterized by the following.

【0013】そしてまた請求項6の発明は、請求項2の
発明で規定する超塑性成形用アルミニウム合金板を用い
た超塑性成形体についてのものであって、Mg4.0〜
7.0%、Mn1.5%を越え2.5%以下、Be0.
00005〜0.01%を含有するとともに、Cr0.
05〜0.3%、V0.05〜0.3%、Zr0.05
〜0.3%のうちの1種または2種以上を含有し、かつ
不純物としてのFeが0.2%未満に規制され、残部が
Alおよびその他の不可避的不純物よりなり、かつ超塑
性成形後の結晶粒の大きさが50μm以下であることを
特徴とするものである。
Further, the invention of claim 6 relates to a superplastic forming product using the aluminum alloy plate for superplastic forming specified in the invention of claim 2, wherein Mg4.0 to Mg4.0
7.0%, Mn more than 1.5% and 2.5% or less, Be0.
0.0005 to 0.01%, Cr0.
05-0.3%, V0.05-0.3%, Zr0.05
Of 0.3% to 0.3%, Fe as an impurity is regulated to less than 0.2%, the balance is Al and other unavoidable impurities, and after superplastic forming The size of the crystal grains is 50 μm or less.

【0014】[0014]

【作用】先ずこの発明の超塑性成形用アルミニウム合金
圧延板における成分組成の限定理由を説明する。
First, the reasons for limiting the component composition of the aluminum alloy rolled sheet for superplastic forming of the present invention will be explained.

【0015】Mg:Mgは、 a:再結晶粒を微細化し超塑性成形性を向上させる、 b:材料の耐食性および溶接性を阻害することなく、強
度と超塑性成形性を向上させる、 等の作用を有する。ここで、Mg量が4.0%未満では
超塑性成形性が不充分となり、7.0%を越えれば、熱
間圧延性、冷間圧延性が悪くなって、製造が困難とな
る。したがってMg量は4.0〜7.0%の範囲内とし
た。
Mg: Mg is: a: Recrystallized grains are refined to improve superplastic formability, b: Strength and superplastic formability are improved without impairing the corrosion resistance and weldability of the material, etc. Have an effect. Here, if the amount of Mg is less than 4.0%, the superplastic formability becomes insufficient, and if it exceeds 7.0%, the hot-rollability and cold-rollability deteriorate and the production becomes difficult. Therefore, the amount of Mg was made into the range of 4.0-7.0%.

【0016】Mn:Mnは、結晶粒を微細化し、かつ3
50〜560℃の温度での超塑性成形中における結晶組
織を安定化させ、これによって優れた超塑性特性を発揮
させるに有効な元素である。Mn量が1.5%以下で
も、超塑性成形前の板の結晶粒の微細化を図ることは可
能であるが、超塑性成形中に結晶粒が粗大化して超塑性
特性が不充分となり、それに加えてキャビテーションも
成長し易くなる。ここで、キャビテーションは超塑性伸
びの低下の原因となるとともに、超塑性成形後の製品の
機械的性質、耐食性を劣化させる原因となる。一方Mn
量が2.5%を越えれば、DC鋳造時に初晶の粗大金属
間化合物が生成され、この粗大金属間化合物がキャビテ
ーションの核生成サイトとなって、この場合もキャビテ
ーションが生じやすくなる。したがってMnは1.5%
を越え2.5%以下の範囲内とした。
Mn: Mn refines the crystal grains, and
It is an element effective for stabilizing the crystal structure during superplastic forming at a temperature of 50 to 560 ° C. and thereby exhibiting excellent superplastic properties. Even if the Mn content is 1.5% or less, it is possible to refine the crystal grains of the plate before superplastic forming, but the crystal grains become coarse during superplastic forming and the superplastic properties become insufficient, In addition, cavitation also grows easily. Here, cavitation causes not only a decrease in superplastic elongation but also a deterioration in mechanical properties and corrosion resistance of the product after superplastic forming. On the other hand, Mn
If the amount exceeds 2.5%, a primary crystal coarse intermetallic compound is generated during DC casting, and this coarse intermetallic compound serves as a nucleation site for cavitation, and in this case also, cavitation easily occurs. Therefore, Mn is 1.5%
Over the range of 2.5% or less.

【0017】Be:Beは一般に溶湯中のMgの酸化防
止のために添加される場合があるが、この発明の場合は
特にBeが溶湯表面に緻密な酸化皮膜を形成することか
ら、水素の混入を防止して、圧延板のキャビテーション
発生の防止にも役立っていることが判明した。またBe
は、圧延板表面のMgの酸化を抑制し、表面を安定化す
る。すなわち超塑性成形は、350〜560℃と高温で
行われるため、この発明の合金のようにMg量が多い場
合、超塑性成形時における表面の酸化が激しくなって、
表面が黒変しやすいが、Beの添加により超塑性成形時
の板表面の酸化が抑制されて、製品表面が安定化する。
Be量が0.00005%(0.5ppm )未満では上記
の効果が発現せず、0.01%(100ppm )を越える
と効果が飽和するばかりでなく、毒性や経済性の点で問
題を生じるから、Be量は0.00005〜0.01%
の範囲内とした。
Be: Be is generally added to prevent the oxidation of Mg in the molten metal. In the case of the present invention, however, since Be forms a dense oxide film on the surface of the molten metal, the inclusion of hydrogen. It has been found that this also helps prevent the occurrence of cavitation in the rolled plate. Also Be
Suppresses the oxidation of Mg on the surface of the rolled plate and stabilizes the surface. That is, since superplastic forming is performed at a high temperature of 350 to 560 ° C., when the amount of Mg is large as in the alloy of the present invention, surface oxidation during superplastic forming becomes severe,
The surface tends to turn black, but the addition of Be suppresses the oxidation of the plate surface during superplastic forming and stabilizes the product surface.
If the amount of Be is less than 0.00005% (0.5 ppm), the above effects are not exhibited, and if it exceeds 0.01% (100 ppm), not only the effect is saturated, but also toxicity and economical problems occur. Therefore, Be amount is 0.00005-0.01%
Within the range of.

【0018】Cr,V,Zr:請求項2の発明の超塑性
成形用アルミニウム合金板においては、上記各合金元素
の他にCr,V,Zrの1種または2種以上を添加す
る。これらの元素は再結晶粒を微細かつ安定化し、超塑
性成形時に結晶粒の異常粗大化を防ぐ効果がある。これ
らのCr,V,Zrは、いずれも0.05%未満では上
記の効果が充分に得られず、一方0.3%を越えれば粗
大金属間化合物が生成して好ましくなくなるから、C
r,V,Zrはいずれも0.05〜0.3%の範囲内と
した。
Cr, V, Zr: In the aluminum alloy plate for superplastic forming according to the second aspect of the present invention, one or more of Cr, V and Zr are added in addition to the above alloy elements. These elements have the effect of making the recrystallized grains fine and stable and preventing abnormal coarsening of the crystal grains during superplastic forming. If Cr, V, and Zr are all less than 0.05%, the above effect cannot be sufficiently obtained, while if over 0.3%, a coarse intermetallic compound is formed, which is not preferable.
All of r, V, and Zr were within the range of 0.05 to 0.3%.

【0019】さらに、一般のAl合金では不純物として
Fe,Si,Cu,Zn等が含有されるが、これらのう
ち特にFeは、この発明の合金において重大な影響を及
ぼすから、次のように規制する必要がある。
Further, in general Al alloys, Fe, Si, Cu, Zn, etc. are contained as impurities. Of these, especially Fe has a significant effect on the alloy of the present invention, so the following restrictions are imposed. There is a need to.

【0020】Fe:Feは、Al−Fe、Al−Fe−
Mn、Al−Fe−Si等の金属間化合物を晶出させ、
これらは超塑性成形時にキャビテーションの原因とな
り、超塑性伸びの低下の原因となり、またキャビテーシ
ョンが存在すれば、前述のように製品の機械的性質、疲
労特性や耐食性を劣化させる。したがってFeは少ない
ほど好ましい。またFeはMnの析出にも若干影響を与
え、Fe量が多ければ粗大な金属間化合物の晶出を促進
する。これらのFeによる悪影響を回避するためには、
0.2%未満にFe量を規制する必要がある。
Fe: Fe is Al-Fe, Al-Fe-
Crystallizing an intermetallic compound such as Mn or Al-Fe-Si,
These cause cavitation during superplastic forming, cause a decrease in superplastic elongation, and the presence of cavitation deteriorates the mechanical properties, fatigue properties and corrosion resistance of the product as described above. Therefore, the smaller the Fe content, the more preferable. Further, Fe slightly affects the precipitation of Mn, and if the amount of Fe is large, it promotes the crystallization of coarse intermetallic compounds. In order to avoid these adverse effects of Fe,
It is necessary to regulate the Fe content to less than 0.2%.

【0021】以上の各元素の残部は、基本的にはAl
と、前記のFe以外の不純物とすれば良いが、不純物と
してのSiの量が多ければ、粗大なαAl−Mn(F
e)−Si相やMg2 Si相等の金属間化合物が晶出し
やすくなり、キャビテーションが多くなって超塑性特性
に対して悪影響を与えるから、Siは不純物として0.
5%未満に規制することが好ましい。またCuが多けれ
ば熱間圧延が困難となるから、Cuは0.3%未満に規
制することが好ましい。そのほか、不純物としてのZn
は、0.5%以下であれば特にこの発明のアルミニウム
合金板の特性を損なうことはなく、したがってZnは
0.5%程度以下は許容される。
The balance of each of the above elements is basically Al.
However, if the amount of Si as an impurity is large, coarse αAl-Mn (F
e) Since intermetallic compounds such as -Si phase and Mg 2 Si phase are easily crystallized and cavitation is increased to adversely affect superplastic properties, Si is an impurity.
It is preferable to regulate to less than 5%. Further, if there is a large amount of Cu, hot rolling becomes difficult, so it is preferable to regulate the Cu content to less than 0.3%. In addition, Zn as an impurity
Is 0.5% or less, the characteristics of the aluminum alloy sheet of the present invention are not particularly impaired, and therefore Zn is allowed to be about 0.5% or less.

【0022】さらにこの発明の超塑性成形用アルミニウ
ム合金板の製造にあたっては、鋳造前もしくは鋳造中
に、鋳塊組織微細化のためにTiを単独であるいはTi
をBと組合せて添加するのが通常である。この場合、T
i、もしくはTiおよびBは、Al−Ti母合金もしく
はAl−Ti−B母合金の形で添加するのが通常であ
る。またこの場合、Ti量が0.15%を越えればTi
Al3 の粗大初晶粒子が晶出して好ましくないから、T
i量は0.15%以下の範囲内とすることが好ましい。
またBはTiと共存して添加されて、結晶粒の微細化と
均一化を一層促進するが、B量が0.05%を越えれば
TiB2 粒子が生成して好ましくなく、したがってB量
は0.05%の範囲内とすることが好ましい。
Further, in manufacturing the aluminum alloy sheet for superplastic forming of the present invention, Ti alone or Ti is used for refining the ingot structure before or during casting.
Is usually added in combination with B. In this case, T
i, or Ti and B are usually added in the form of an Al-Ti master alloy or an Al-Ti-B master alloy. In this case, if the Ti content exceeds 0.15%, Ti
Since coarse primary crystal grains of Al 3 crystallize out, which is not preferable, T
The i amount is preferably within the range of 0.15% or less.
Further, B is added in coexistence with Ti to further promote the refinement and homogenization of crystal grains, but if the B content exceeds 0.05%, TiB 2 particles are generated, which is not preferable. It is preferably within the range of 0.05%.

【0023】この発明の超塑性成形用アルミニウム合金
板は、化学的成分組成としては以上の条件を満たしてい
れば良いが、超塑性特性には結晶粒径が大きな影響を及
ぼし、一般には結晶粒径が微細であるほど超塑性特性が
良好となる。ここで、超塑性成形開始前の圧延板の状態
における結晶粒径が微細であることはもちろん重要であ
るが、350〜560℃の温度で行なう超塑性成形中に
結晶粒が大きくなれば、超塑性特性が低下して、最終的
に大きな超塑性伸びが得られなくなってしまう。したが
って超塑性成形後の結晶粒径が微細であることが、優れ
た超塑性特性を発揮させるに必要な条件ということにな
る。そこで請求項5、請求項6の発明では、超塑性成形
品として、超塑性成形後の結晶粒の大きさを50μm以
下と規定した。超塑性成形品の結晶粒径が50μmを越
えるような大径となる場合には、良好な超塑性特性が得
られない。なお超塑性成形品とするための超塑性温度域
(360〜560℃)での成形加工手段は特に限定され
るものではなく、公知の任意の手段を用いることができ
る。
The aluminum alloy sheet for superplastic forming of the present invention may satisfy the above-mentioned conditions as a chemical composition, but the crystal grain size has a great influence on the superplastic properties, and the crystal grain is generally The finer the diameter, the better the superplastic properties. Here, it is of course important that the crystal grain size in the state of the rolled plate before the start of superplastic forming is fine, but if the crystal grains become large during superplastic forming performed at a temperature of 350 to 560 ° C, The plastic properties deteriorate, and eventually a large superplastic elongation cannot be obtained. Therefore, a fine crystal grain size after superplastic forming is a condition necessary for exhibiting excellent superplastic properties. Therefore, in the inventions of claims 5 and 6, the size of the crystal grain after superplastic forming is defined as 50 μm or less as the superplastic forming product. If the crystal grain size of the superplastic molded product has a large diameter exceeding 50 μm, good superplastic properties cannot be obtained. In addition, the forming process means in the superplasticity temperature range (360 to 560 ° C.) for forming the superplastically formed product is not particularly limited, and any known means can be used.

【0024】次にこの発明の超塑性成形用アルミニウム
合金板を製造する方法について説明する。
Next, a method for producing the aluminum alloy plate for superplastic forming of the present invention will be described.

【0025】先ず前述のような成分組成の合金溶湯を溶
製し、これを鋳造する。その鋳造法としては、半連続鋳
造(DC鋳造)が一般的である。鋳造に際しては、鋳造
に先立って、あるいは鋳造中に鋳塊組織微細化のために
Al−Ti母合金もしくはAl−Ti−B母合金を微細
化剤として溶湯に添加する。その添加量は、前述のよう
にTi量にして0.15%以下とする。この添加手段と
しては、鋳造に先立ってワッフルで添加する方法、ある
いは鋳造中にロッドにて連続的に添加する方法のいずれ
を適用しても良い。
First, a molten alloy having the above-described composition is melted and cast. As the casting method, semi-continuous casting (DC casting) is generally used. Before casting, or during casting, an Al-Ti master alloy or an Al-Ti-B master alloy is added to the molten metal as a refining agent in order to refine the ingot structure. The amount of addition is 0.15% or less in terms of Ti amount as described above. As the adding means, either a method of adding with a waffle prior to casting or a method of continuously adding with a rod during casting may be applied.

【0026】得られた鋳塊には、必要に応じて面削を施
してから、鋳塊加熱(均質化処理)を450〜580℃
で0.5〜24時間行う。この鋳塊加熱(均質化処理)
は均熱と熱間圧延前予備加熱を兼ねて1段で行っても、
あるいは分けて2段で行っても良い。鋳塊加熱を2段で
行う場合には、高温の方の段階における条件が上記を満
たせばよい。
If necessary, the obtained ingot is faced, and then ingot is heated (homogenized) at 450 to 580 ° C.
For 0.5 to 24 hours. This ingot heating (homogenization treatment)
Is performed in a single stage for both soaking and preheating before hot rolling,
Alternatively, it may be divided into two stages. When the ingot heating is performed in two stages, the conditions in the higher temperature stage may satisfy the above.

【0027】ここで、鋳塊加熱温度が450℃未満で
は、均質化が不充分であるためばかりでなく、Mnの析
出が不充分で、超塑性成形後の結晶粒径が50μm以下
とならず、超塑性成形性に悪影響を及ぼす。一方鋳塊加
熱温度が580℃を越えれば、共晶融解が生じやすくな
るとともに、金属間化合物が粗大化して超塑性特性に悪
影響を及ぼす。また鋳塊加熱時間が0.5時間未満では
加熱が不均一となり、一方24時間を越えれば効果が飽
和し、経済性の悪化を招く。
If the ingot heating temperature is lower than 450 ° C., not only is the homogenization insufficient, but the precipitation of Mn is insufficient, and the crystal grain size after superplastic forming does not become 50 μm or less. , Adversely affect superplastic formability. On the other hand, if the ingot heating temperature exceeds 580 ° C., eutectic melting is likely to occur, and the intermetallic compound becomes coarse, which adversely affects superplastic properties. On the other hand, if the ingot heating time is less than 0.5 hours, the heating becomes uneven, and if it exceeds 24 hours, the effect is saturated and the economical efficiency is deteriorated.

【0028】続いて、常法にしたがって熱間圧延、冷間
圧延を施し、所要の板厚とする。この際、熱間圧延と冷
間圧延の間、もしくは冷間圧延の途中で、中間焼鈍を行
なっても良い。ここで、最終の冷間圧下率が低ければ再
結晶粒が粗大化して、超塑性成形後の結晶粒径が50μ
m以下とならず、良好な超塑性特性が得られない。そこ
で最終の冷間圧下率は30%以上とする必要がある。
Then, hot rolling and cold rolling are performed according to a conventional method to obtain a required plate thickness. At this time, intermediate annealing may be performed between the hot rolling and the cold rolling or during the cold rolling. Here, if the final cold reduction is low, the recrystallized grains become coarse, and the crystal grain size after superplastic forming is 50 μm.
It does not become m or less, and good superplastic properties cannot be obtained. Therefore, the final cold rolling reduction needs to be 30% or more.

【0029】超塑性成形は350〜560℃で行なわ
れ、この超塑性成形温度までの昇温中にも再結晶は生
じ、超塑性が発現するから、前述のようにして得られた
圧延板に対しては、必ずしも板製造工程中で再結晶のた
めの最終焼鈍を施す必要はない。しかしながら、一般的
には、最終焼鈍により再結晶組織にすることが多い。こ
の場合、連続焼鈍、バッチ焼鈍のいずれでも良いが、連
続焼鈍の方がやや超塑性に優れる。この最終焼鈍(再結
晶処理)としては、基本的には10℃/min 以上の昇温
速度で280〜560℃に加熱して保持なし(0時間保
持)または5時間以下の保持とすれば良いが、特にバッ
チ焼鈍の場合には、280〜400℃で0.5時間以上
保持が一般的であり、一方連続焼鈍の場合には、350
〜560℃で保持なしか、長くても180秒以内の保持
とするのが一般的である。
Superplastic forming is carried out at 350 to 560 ° C. Recrystallization occurs even during the temperature rise to the superplastic forming temperature, and superplasticity develops. Therefore, the rolled plate obtained as described above is On the other hand, it is not always necessary to perform the final annealing for recrystallization during the plate manufacturing process. However, in general, the final annealing often results in a recrystallized structure. In this case, either continuous annealing or batch annealing may be used, but continuous annealing is slightly superior in superplasticity. As the final annealing (recrystallization treatment), basically, heating to 280 to 560 ° C. at a temperature rising rate of 10 ° C./min or more and no holding (holding for 0 hour) or holding for 5 hours or less may be performed. However, especially in the case of batch annealing, holding at 280 to 400 ° C. for 0.5 hour or more is general, while in the case of continuous annealing, it is 350.
Generally, the temperature is kept at ˜560 ° C., or at most 180 seconds.

【0030】[0030]

【実施例】表1の合金番号1〜6に示す各合金を溶製
し、350mm×1000mm断面のスラブに半連続鋳造
(DC鋳造)した。なお鋳造中に、微細化剤としてAl
−5%Ti−1%B母合金のロッドを添加した。これら
の鋳塊に対し片面12mmずつの面削を行なった後、表2
に示す条件で鋳塊加熱(均質化処理)を行なった。
EXAMPLES Alloys 1 to 6 shown in Table 1 were melted and semi-continuously cast (DC casting) on a slab having a cross section of 350 mm × 1000 mm. During casting, Al is used as a refiner.
A rod of -5% Ti-1% B master alloy was added. After cutting each ingot by 12 mm on each side, Table 2
Ingot heating (homogenization treatment) was performed under the conditions shown in.

【0031】次に熱間圧延により板厚6mmまで圧延した
後、冷間圧延により板厚2mmまで圧延し、その後連続焼
鈍炉を用い550℃保持なしの最終焼鈍(再結晶処理)
を行なった。
Next, after hot rolling to a sheet thickness of 6 mm, cold rolling to a sheet thickness of 2 mm, and then final annealing (recrystallization treatment) using a continuous annealing furnace without holding at 550 ° C.
Was done.

【0032】また、従来から超塑性材として広く知られ
ているAA7475合金(合金番号7)とSUPRAL
合金(Al−6%Cu−0.5%Zr合金;合金番号
8)も供試材とした。従来材の7475合金はDC鋳造
法を適用して常法により製造した板厚2mmの板を用い、
またSUPRAL合金は実験室的に30mm×150mm×
200mmに金型鋳造して500℃×2時間加熱後板厚6
mmまで熱間圧延し、さらに板厚2mmまで冷間圧延した板
を用いた。
AA7475 alloy (alloy No. 7), which has been widely known as a superplastic material, and SUPRAL
An alloy (Al-6% Cu-0.5% Zr alloy; alloy number 8) was also used as a test material. The conventional 7475 alloy uses a plate with a thickness of 2 mm manufactured by the ordinary method by applying the DC casting method,
In addition, SUPRAL alloy is 30mm × 150mm × in a laboratory.
After die casting to 200 mm and heating at 500 ° C for 2 hours, plate thickness 6
A plate hot-rolled to mm and cold-rolled to a plate thickness of 2 mm was used.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】これらの供試材を、幅4mm×平行部長さ1
5mmの試験片に切り出し、超塑性特性を調べた。これら
の供試材に対する超塑性特性の測定条件および超塑性特
性測定結果を表3に示す。
A width of 4 mm and a parallel portion length of 1
A 5 mm test piece was cut out and examined for superplastic properties. Table 3 shows the superplastic property measurement conditions and the superplastic property measurement results for these test materials.

【0036】[0036]

【表3】 [Table 3]

【0037】伸びが300%以上であれば超塑性特性が
良好であると判断されるが、表3に示されるように成分
組成が本発明範囲内の場合(合金番号1,2)は、鋳塊
加熱が不充分で超塑性成形後の結晶粒径が50μmを越
えた場合(合金番号1についての製造符号G)を除き、
いずれも300%以上の大きな伸びが得られ、従来の超
塑性材(合金番号7,8)ほどでないが、比較材にくら
べて優れた超塑性特性を示すことが明らかである。
If the elongation is 300% or more, the superplastic property is judged to be good, but as shown in Table 3, when the component composition is within the range of the present invention (alloy Nos. 1 and 2), Except when the ingot heating is insufficient and the crystal grain size after superplastic forming exceeds 50 μm (Production code G for Alloy No. 1),
It is clear that all of them have a large elongation of 300% or more, and show superior superplasticity characteristics as compared with the comparative materials, although they are not as good as the conventional superplasticity materials (alloy numbers 7 and 8).

【0038】次いで、前記製造符号Aにより製造された
本発明成分組成範囲内の合金番号1の板と、製造符号B
によって製造された本発明成分組成範囲内の合金番号2
の板、および従来の7475合金(合金番号7)、SU
PRAL合金(合金番号8)について、溶接割れ試験を
行なった。この試験は、図1に示すフィッシュボーン割
れ試験片を、TIG自動溶接(肉盛なし)、電流60
A、走行25cm/min 、電極タングステン2.4mmφ、
Ar気流、アーク長3mmの条件でTIG溶接し、割れ率
を調べた。その結果を表4に示す。なお割れ率は次の式
で定義した。 割れ率=([割れの入ったビード長さ]/[全溶接ビー
ド長])×100(%)
Next, the alloy No. 1 plate within the composition range of the present invention manufactured by the manufacturing code A, and the manufacturing code B
Alloy No. 2 within the composition range of the present invention manufactured by
Plate and conventional 7475 alloy (alloy number 7), SU
A welding crack test was performed on the PRAL alloy (alloy number 8). In this test, the fishbone crack test piece shown in FIG.
A, traveling 25 cm / min, electrode tungsten 2.4 mmφ,
TIG welding was performed under the conditions of Ar air flow and arc length of 3 mm, and the crack rate was examined. The results are shown in Table 4. The crack rate was defined by the following formula. Crack rate = ([bead length with crack] / [total weld bead length]) x 100 (%)

【0039】[0039]

【表4】 [Table 4]

【0040】表4に示す結果から、本発明合金は従来合
金と比べて割れの発生が著しく少ないこと、すなわち溶
接性が極めて優れていることが判る。
From the results shown in Table 4, it can be seen that the alloy of the present invention has significantly less cracking than the conventional alloy, that is, the weldability is extremely excellent.

【0041】さらに、前述の溶接割れ試験に供した材料
と同じ材料について、耐食性を次のようにして調べた。
すなわち、70mm×150mmのサイズの試験片を切り出
し、10%NaOH水溶液で50℃×1分→純水で洗浄
→15%HNO3 でディスマット→純水で洗浄後、JI
S Z 2371に準拠した塩水噴霧試験を1000時
間行ない耐食性を評価(SST評価)した。その結果を
表5に示す。
Further, the corrosion resistance of the same material as the material used in the above-mentioned welding crack test was examined as follows.
That is, a 70 mm × 150 mm size test piece is cut out and washed with 10% NaOH aqueous solution at 50 ° C. for 1 minute → washing with pure water → dismuting with 15% HNO 3 → washing with pure water, and then JI
A salt spray test according to SZ2371 was performed for 1000 hours to evaluate corrosion resistance (SST evaluation). The results are shown in Table 5.

【0042】[0042]

【表5】 [Table 5]

【0043】表5から、本発明合金はいずれも従来合金
とくらべて極めて良好な耐食性を示すことが明らかであ
る。
It is clear from Table 5 that all the alloys of the present invention have extremely good corrosion resistance as compared with the conventional alloys.

【0044】[0044]

【発明の効果】以上の実施例から明らかなように、この
発明の超塑性成形用アルミニウム合金板は、良好な超塑
性特性を有すると同時に、耐食性および溶接性が、従来
の超塑性成形用アルミニウム合金板と比較して格段に優
れており、したがって各種建材、あるいは鞄その他の容
器、さらには各種構造材料等として要求される性能を充
分に満たすことができる。
As is apparent from the above examples, the aluminum alloy sheet for superplastic forming of the present invention has good superplastic properties and, at the same time, has the same corrosion resistance and weldability as those of conventional superplastic forming aluminum sheets. It is remarkably superior to the alloy plate, and therefore can sufficiently satisfy the performance required for various building materials, bags and other containers, and various structural materials.

【0045】また特に請求項3、請求項4の発明の製造
方法によれば、前述のように優れた性能を有する超塑性
成形用アルミニウム合金板を、実際に量産的規模で確実
かつ安定して得ることができる。
Further, in particular, according to the manufacturing method of the inventions of claims 3 and 4, the aluminum alloy plate for superplastic forming having excellent performance as described above can be reliably and stably produced on a mass production scale. Obtainable.

【0046】さらに請求項5、請求項6の発明の超塑性
成形体は、良好な超塑性特性を伴なって超塑性成形され
た製品として、耐食性および溶接性に著しく優れてお
り、したがって前記同様な用途に最適である。
Further, the superplastic molded body of the inventions of claims 5 and 6 is remarkably excellent in corrosion resistance and weldability as a superplastically molded product accompanied by good superplasticity characteristics. Suitable for various applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における溶接性を判定するためのフィッ
シュボーン割れ試験片を示す略解的な平面図である。
FIG. 1 is a schematic plan view showing a fishbone crack test piece for determining weldability in an example.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Mg4.0〜7.0%(重量%、以下同
じ)、Mn1.5%を越え2.5%以下、Be0.00
005〜0.01%を含有し、かつ不純物としてのFe
が0.2%未満に規制され、残部がAlおよびその他の
不可避的不純物よりなることを特徴とする超塑性成形用
アルミニウム合金板。
1. Mg 4.0 to 7.0% (weight%, the same applies hereinafter), Mn exceeding 1.5% and 2.5% or less, Be 0.00.
Fe as an impurity containing 005 to 0.01%
Is regulated to less than 0.2%, and the balance comprises Al and other unavoidable impurities, an aluminum alloy plate for superplastic forming.
【請求項2】 Mg4.0〜7.0%、Mn1.5%を
越え2.5%以下、Be0.00005〜0.01%を
含有するとともに、Cr0.05〜0.3%、V0.0
5〜0.3%、Zr0.05〜0.3%のうちの1種ま
たは2種以上を含有し、かつ不純物としてのFeが0.
2%未満に規制され、残部がAlおよびその他の不可避
的不純物よりなることを特徴とする超塑性成形用アルミ
ニウム合金板。
2. Mg of 4.0 to 7.0%, Mn of more than 1.5% and 2.5% or less, Be of 0.00005 to 0.01%, Cr of 0.05 to 0.3%, V0. 0
5 to 0.3%, Zr 0.05 to 0.3%, and one or more of them are contained, and Fe as an impurity is 0.
An aluminum alloy plate for superplastic forming, which is regulated to less than 2% and the balance is Al and other unavoidable impurities.
【請求項3】 Mg4.0〜7.0%、Mn1.5%を
越え2.5%以下、Be0.00005〜0.01%を
含有し、さらに必要に応じてCr0.05〜0.3%、
V0.05〜0.3%、Zr0.05〜0.3%のうち
の1種または2種以上を含有し、かつ不純物としてのF
eが0.2%未満に規制され、残部がAlおよびその他
の不可避的不純物からなるアルミニウム合金を鋳造する
にあたって、鋳造前もしくは鋳造中に、結晶粒微細化剤
として、Al−Ti母合金もしくはAl−Ti−B母合
金をTi量にして0.15%以下添加し、DC鋳造法に
より鋳造した後、鋳塊を450〜560℃で0.5〜2
4時間加熱し、さらに熱間圧延および冷間圧延を施して
所要の板厚とするにあたって、最終の冷間圧延率を30
%以上とすることを特徴とする、超塑性成形用アルミニ
ウム合金板の製造方法。
3. Mg of 4.0 to 7.0%, Mn of more than 1.5% and 2.5% or less, Be of 0.00005 to 0.01%, and if necessary, Cr of 0.05 to 0.3. %,
V as an impurity, containing one or more of V0.05-0.3% and Zr0.05-0.3%
When casting an aluminum alloy in which e is restricted to less than 0.2% and the balance is Al and other unavoidable impurities, an Al-Ti mother alloy or Al is used as a grain refiner before or during casting. -Ti-B mother alloy was added in a Ti amount of 0.15% or less, and after casting by a DC casting method, the ingot was cast at 450 to 560 ° C for 0.5 to 2
The final cold rolling rate was 30 when heating for 4 hours and further performing hot rolling and cold rolling to obtain the required plate thickness.
% Or more, a method for producing an aluminum alloy sheet for superplastic forming.
【請求項4】 Mg4.0〜7.0%、Mn1.5%を
越え2.5%以下、Be0.00005〜0.01%を
含有し、さらに必要に応じてCr0.05〜0.3%、
V0.05〜0.3%、Zr0.05〜0.3%のうち
の1種または2種以上を含有し、かつ不純物としてのF
eが0.2%未満に規制され、残部がAlおよびその他
の不可避的不純物からなるアルミニウム合金を鋳造する
にあたって、鋳造前もしくは鋳造中に、結晶粒微細化剤
として、Al−Ti母合金もしくはAl−Ti−B母合
金をTi量にして0.15%以下添加し、DC鋳造法に
より鋳造した後、鋳塊を450〜560℃で0.5〜2
4時間加熱し、さらに熱間圧延および冷間圧延を施して
所要の板厚とするにあたって、最終の冷間圧延率を30
%以上とし、最終冷間圧延後、10℃/min 以上の昇温
速度で280〜560℃に加熱して0〜5時間保持する
再結晶処理を行なうことを特徴とする、超塑性成形用ア
ルミニウム合金板の製造方法。
4. Mg of 4.0 to 7.0%, Mn of more than 1.5% to 2.5% or less, Be of 0.00005 to 0.01%, and if necessary, Cr of 0.05 to 0.3. %,
V as an impurity, containing one or more of V0.05-0.3% and Zr0.05-0.3%
When casting an aluminum alloy in which e is restricted to less than 0.2% and the balance is Al and other unavoidable impurities, an Al-Ti mother alloy or Al is used as a grain refiner before or during casting. -Ti-B mother alloy was added in a Ti amount of 0.15% or less, and after casting by a DC casting method, the ingot was cast at 450 to 560 ° C for 0.5 to 2
The final cold rolling rate was 30 when heating for 4 hours and further performing hot rolling and cold rolling to obtain the required plate thickness.
%, And after the final cold rolling, the aluminum for superplastic forming is characterized by performing recrystallization treatment of heating at 280 to 560 ° C. at a temperature rising rate of 10 ° C./min or more and holding for 0 to 5 hours. Method for manufacturing alloy plate.
【請求項5】 Mg4.0〜7.0%、Mn1.5%を
越え2.5%以下、Be0.00005〜0.01%を
含有し、かつ不純物としてのFeが0.2%未満に規制
され、残部がAlおよびその他の不可避的不純物よりな
り、かつ超塑性成形後の結晶粒の大きさが50μm以下
であることを特徴とする、超塑性成形体。
5. The composition contains Mg of 4.0 to 7.0%, Mn of more than 1.5% and 2.5% or less, Be of 0.00005 to 0.01%, and Fe as an impurity of less than 0.2%. A superplastic compact, characterized in that the balance is regulated, the balance being Al and other unavoidable impurities, and the crystal grain size after superplastic compacting is 50 μm or less.
【請求項6】 Mg4.0〜7.0%、Mn1.5%を
越え2.5%以下、Be0.00005〜0.01%を
含有するとともに、Cr0.05〜0.3%、V0.0
5〜0.3%、Zr0.05〜0.3%のうちの1種ま
たは2種以上を含有し、かつ不純物としてのFeが0.
2%未満に規制され、残部がAlおよびその他の不可避
的不純物よりなり、かつ超塑性成形後の結晶粒の大きさ
が50μm以下であることを特徴とする、超塑性成形
体。
6. Mg of 4.0 to 7.0%, Mn of more than 1.5% and 2.5% or less, Be of 0.00005 to 0.01%, Cr of 0.05 to 0.3%, V0. 0
5 to 0.3%, Zr 0.05 to 0.3%, and one or more of them are contained, and Fe as an impurity is 0.
A superplastic compact, characterized in that the content is regulated to less than 2%, the balance being Al and other unavoidable impurities, and the crystal grain size after superplastic compacting is 50 μm or less.
JP5047431A 1993-02-12 1993-02-12 Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it Withdrawn JPH06240395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047431A JPH06240395A (en) 1993-02-12 1993-02-12 Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047431A JPH06240395A (en) 1993-02-12 1993-02-12 Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it

Publications (1)

Publication Number Publication Date
JPH06240395A true JPH06240395A (en) 1994-08-30

Family

ID=12774966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047431A Withdrawn JPH06240395A (en) 1993-02-12 1993-02-12 Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it

Country Status (1)

Country Link
JP (1) JPH06240395A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959736A (en) * 1995-08-23 1997-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and its formation
US6261391B1 (en) 1994-05-11 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same
EP1221492A2 (en) * 2000-12-29 2002-07-10 Alcan Technology & Management AG Light alloy container and method for its production
KR20040042469A (en) * 2002-11-14 2004-05-20 현대자동차주식회사 Thixocast magnesium alloy and method for manufacturing the same
WO2016056240A1 (en) * 2014-10-09 2016-04-14 株式会社Uacj Superplastic-forming aluminium alloy plate and production method therefor
CN109811160A (en) * 2019-02-27 2019-05-28 云南云铝涌鑫铝业有限公司 A356.2 cast aluminium alloy gold and its precell add the method for titanium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261391B1 (en) 1994-05-11 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same
JPH0959736A (en) * 1995-08-23 1997-03-04 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and its formation
WO1997008354A1 (en) * 1995-08-23 1997-03-06 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet excellent in high-speed superplastic formability and process of forming the same
EP1221492A2 (en) * 2000-12-29 2002-07-10 Alcan Technology & Management AG Light alloy container and method for its production
EP1221492A3 (en) * 2000-12-29 2002-08-28 Alcan Technology & Management AG Light alloy container and method for its production
KR20040042469A (en) * 2002-11-14 2004-05-20 현대자동차주식회사 Thixocast magnesium alloy and method for manufacturing the same
WO2016056240A1 (en) * 2014-10-09 2016-04-14 株式会社Uacj Superplastic-forming aluminium alloy plate and production method therefor
JPWO2016056240A1 (en) * 2014-10-09 2017-07-20 株式会社Uacj Aluminum alloy plate for superplastic forming and manufacturing method thereof
US11499209B2 (en) 2014-10-09 2022-11-15 Uacj Corporation Superplastic-forming aluminum alloy plate and production method therefor
CN109811160A (en) * 2019-02-27 2019-05-28 云南云铝涌鑫铝业有限公司 A356.2 cast aluminium alloy gold and its precell add the method for titanium

Similar Documents

Publication Publication Date Title
JP2640993B2 (en) Aluminum alloy rolled plate for superplastic forming
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
US5540791A (en) Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
JPH11293363A (en) Manufacture of aluminum alloy for automobile member, and automobile member obtained thereby
JPH06240395A (en) Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JPH0447019B2 (en)
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH07197177A (en) Aluminum alloy rolled sheet for superplastic formation and low in cavitation
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH11140610A (en) Production of aluminum alloy structural material excellent in toughness and weldability
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPH05295478A (en) Aluminum alloy extruded material excellent in bendability and its manufacture
JPH05125506A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JP2001098338A (en) High strength and high formability aluminum alloy sheet excellent in refining of recrystallized grain at the time of high temperature annealing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509