JPH11140610A - Production of aluminum alloy structural material excellent in toughness and weldability - Google Patents

Production of aluminum alloy structural material excellent in toughness and weldability

Info

Publication number
JPH11140610A
JPH11140610A JP31197097A JP31197097A JPH11140610A JP H11140610 A JPH11140610 A JP H11140610A JP 31197097 A JP31197097 A JP 31197097A JP 31197097 A JP31197097 A JP 31197097A JP H11140610 A JPH11140610 A JP H11140610A
Authority
JP
Japan
Prior art keywords
rolling
hot rolling
toughness
content
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31197097A
Other languages
Japanese (ja)
Inventor
Hidenori Shiroshita
秀則 城下
Yasuto Nakai
康人 中井
Kazuo Matsubara
和男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31197097A priority Critical patent/JPH11140610A/en
Publication of JPH11140610A publication Critical patent/JPH11140610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a material excellent in toughness and weldability by casting an Al alloy in which the contents of Zn, Cu, Mg, Ti, Cr, Zr, rare earth elements or the like are specified and the content of Si is prescribed and controlling the conditions in hot rolling. SOLUTION: An Al alloy having a compsn. contg., by weight, 5.0 to 8.0% Zn, 2.0 to 3.0% Cu, 1.2 to 2.8% Mg, 0.005 to 0.3% Ti, 0.05 to 0.3% Cr, 0.05 to 0.15% Zr, <=0.03% Mn, 0.01 to 0.2% V, 0.05 to 0.15% misch metal, 0.01 to 0.25% Fe, and the balance Al, and in which the content of Si is regulated to <=0.1% is cast. This Al ingot is subjected to hot rolling composed of initial hot rolling 1 in which the rolling starting temp. is regulated to 380 to 450 deg.C, the finishing temp. to 350 to 400 deg.C, and the thickness to from 0.95 to 0.9 T, intermediate hot rolling 1 in which the thickness is regulated to from 0.5 to 0.33 T, intermediate hot rolling 2 in which the thickness is regulated to from 2.0 to 1.3 (t) and final rolling in which the thickness is regulated to 1.0 (t). The drafts and rolling rates in the intermediate hot rolling 1 and 2 are respectively regulated to 10 to 15 mm/pass, 40 to 70 m/min, 20 to 40 mm/pass and 70 to 130 m/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、靱性および溶接性
に優れる高強度アルミニウム合金構造材の製造方法に関
する。
The present invention relates to a method for producing a high-strength aluminum alloy structural material having excellent toughness and weldability.

【0002】[0002]

【従来の技術】高強度を要する構造材には、時効硬化型
のAl−Zn−Mg−Cu系の7075合金、7175
合金、Al−Zn−Mg系合金の7N01合金などの7
000系合金が用いられている。特にAl−Zn−Mg
−Cu系合金は高強度であり、かつ靱性、比強度に優れ
るため航空機用にも使用されている。ところで、靱性
は、構造材においては、信頼性の点から最重要な特性で
あり、例えば、前記7000系合金では、最高強度まで
時効処理(T6処理)すると破壊靱性が低下するため、
過時効処理(T73処理)して、強度を犠牲にしても靱
性を持たせるようにしている。
2. Description of the Related Art Age-hardening type Al-Zn-Mg-Cu based 7075 alloy, 7175
Alloy, 7N01 alloy such as Al-Zn-Mg alloy
000 series alloy is used. Especially Al-Zn-Mg
-Cu-based alloys are used for aircraft because of their high strength and excellent toughness and specific strength. By the way, toughness is the most important characteristic in terms of reliability in structural materials. For example, in the case of the 7000 series alloy, when aging treatment (T6 treatment) is performed to the maximum strength, fracture toughness is reduced.
The overaging treatment (T73 treatment) imparts toughness even at the expense of strength.

【0003】この7000系合金における靱性低下の原
因は、凝固時に晶出するAl−Cu−Mg系、Al−F
e−Si系、Al−Fe系、Al−Fe−Cu系などの
金属間化合物が一部固溶しないまま製品中に残存するこ
とにある。このため、靱性を害するFe、Siなどの不
純物量を規制した7050−T736処理材または71
75−T736処理材などが開発されている。また、熱
間圧延を2回に分けて行って晶出物を再固溶させる方法
(300〜480℃で第1圧延→450〜525℃で4
時間均熱処理→300〜420℃で第2圧延する方法)
も報告されている(特公昭63−60820号公報)。
[0003] The cause of the decrease in toughness of the 7000 series alloys is the Al-Cu-Mg system, Al-F crystallized during solidification.
An intermetallic compound such as an e-Si system, an Al-Fe system, or an Al-Fe-Cu system remains in a product without being partially dissolved. For this reason, 7050-T736 treated material or 71, which regulates the amount of impurities such as Fe and Si that impair toughness.
75-T736 treatment materials and the like have been developed. Further, a method in which hot rolling is performed twice and the crystallized material is re-dissolved (first rolling at 300 to 480 ° C. → 4 at 450 to 525 ° C.)
Time uniform heat treatment → second rolling at 300 to 420 ° C)
(Japanese Patent Publication No. 63-60820).

【0004】一方、アルミニウム合金は熱伝導性が良
く、熱膨張係数が大きく、表面に酸化皮膜が生成し易い
ため、鉄鋼材料に比べて溶接が困難とされていたが、溶
接に適したアルミニウム合金、溶接機器、溶接施工法な
どの進歩により、アルミニウム合金の溶接構造物が、鉄
道車両、船舶、化学・食品工業用装置、航空・宇宙機器
などに多数用いられるようになった。しかし、7000
系合金は熱処理型合金のため、溶接箇所に割れが入った
り、溶接箇所の強度(特に耐力)が低下したりする。従
って7000系合金の接合には、主にボルトやリベット
による機械的接合が用いられ、溶接は特殊な用途に限定
されている。この他、7000系合金の中では、7N0
1合金が圧延成形性、溶接性、耐応力腐食割れ性などに
優れるが、機械的強度に劣る欠点がある。このように、
従来は、靱性および溶接性に優れる高強度アルミニウム
合金構造材がなかった。
[0004] On the other hand, aluminum alloys are considered to be difficult to weld compared to steel materials because aluminum alloys have good thermal conductivity, a large coefficient of thermal expansion, and an oxide film is easily formed on the surface. Advances in welding equipment, welding construction methods, and the like have led to the use of aluminum alloy welded structures in railway vehicles, ships, chemical and food industry equipment, and aerospace equipment. However, 7000
Since the system alloy is a heat-treated alloy, cracks are formed in the welded portions, and strength (particularly, proof stress) of the welded portions is reduced. Therefore, mechanical joining mainly by bolts and rivets is used for joining of the 7000 series alloy, and welding is limited to special applications. In addition, among 7000 series alloys, 7N0
Alloy 1 is excellent in roll formability, weldability, stress corrosion cracking resistance, etc., but has the disadvantage of poor mechanical strength. in this way,
Conventionally, there has been no high-strength aluminum alloy structural material excellent in toughness and weldability.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、このよ
うな状況に鑑み、靱性を害する晶出物に着目してその微
細化、再固溶化による改善の検討と、Tiや希土類元素
などの添加と加工条件により溶接性の改善について研究
を行った。その結果、従来の7000系合金では得られ
なかった、靱性と溶接性に優れる高強度アルミニウム合
金構造材の製造方法を開発したのである。
In view of such circumstances, the present inventors have focused on crystallized substances that impair the toughness, studied their refinement by refining and re-solidifying, and studied the improvement of Ti and rare earth elements. We researched the improvement of weldability by adding Cu and processing conditions. As a result, a method for producing a high-strength aluminum alloy structural material excellent in toughness and weldability, which cannot be obtained with the conventional 7000 series alloy, has been developed.

【0006】[0006]

【課題を解決するための手段】本発明は、Znを5.0
〜8.0wt%、Cuを2.0〜3.0wt%、Mgを1.
2〜2.8wt%、Tiを0.005〜0.3wt%、Cr
を0.05〜0.3wt%、Zrを0.05〜0.15wt
%、Mnを0.03wt%以下、Vを0.01〜0.2wt
%、MM(ミッシュメタル)を0.05〜0.15wt
%、Feを0.01〜0.25wt%含有し、Siを0.
1wt%以下に規制し、残部実質的にAlからなるアルミ
ニウム合金を溶解鋳造し、得られる鋳塊に熱間圧延、冷
間圧延、仕上圧延を順に施す構造材の製造方法におい
て、前記熱間圧延を、圧延開始温度380〜450℃、
圧延終了温度350〜400℃とし、鋳塊厚さTから圧
延材厚さ0.95T〜0.9Tまでの圧延を初期圧延、
初期圧延後圧延材厚さ0.5T〜0.33Tまでの圧延
を中間熱間圧延1、中間熱間圧延1後圧延材厚さ2.0
t(tは熱間圧延終了厚さ)〜1.3tまでの圧延を中
間熱間圧延2、中間熱間圧延2後圧延材厚さ1.0tま
での圧延を終期圧延としたとき、前記中間熱間圧延1を
圧下量10〜15mm/パス、圧延速度40〜70m/
分の条件で施し、前記中間熱間圧延2を圧下量20〜4
0mm/パス、圧延速度70〜130m/分の条件で施
すことを特徴とする靱性および溶接性に優れるアルミニ
ウム合金構造材の製造方法である。
According to the present invention, Zn is added to 5.0.
~ 8.0 wt%, Cu 2.0 ~ 3.0 wt%, Mg 1.
2 to 2.8 wt%, 0.005 to 0.3 wt% Ti, Cr
0.05-0.3wt%, Zr 0.05-0.15wt
%, Mn is 0.03 wt% or less, and V is 0.01 to 0.2 wt%.
%, MM (Misch metal) 0.05 ~ 0.15wt
%, 0.01 to 0.25 wt% of Fe, and 0.1% of Si.
A method for producing a structural material in which an aluminum alloy substantially consisting of Al is melted and cast, and the obtained ingot is subjected to hot rolling, cold rolling, and finish rolling in this order. A rolling start temperature of 380 to 450 ° C,
Rolling end temperature is 350-400 ° C., and rolling from ingot thickness T to rolled material thickness 0.95T-0.9T is initial rolling,
Rolling to a rolled material thickness of 0.5T to 0.33T after the initial rolling is performed by intermediate hot rolling 1 and intermediate hot rolling 1 and a rolled material thickness of 2.0.
When the rolling from t (t is the hot rolling end thickness) to 1.3 t is the intermediate hot rolling 2, and the rolling to the rolling material thickness 1.0t after the intermediate hot rolling 2 is the final rolling, Hot rolling 1 is performed with a rolling reduction of 10 to 15 mm / pass and a rolling speed of 40 to 70 m / pass.
And the intermediate hot rolling 2 is performed under the conditions of
This is a method for producing an aluminum alloy structural material excellent in toughness and weldability, characterized by being applied under the conditions of 0 mm / pass and a rolling speed of 70 to 130 m / min.

【0007】[0007]

【発明の実施の形態】以下に、本発明における合金元素
について説明する。Znは強度向上に不可欠の元素であ
る。その含有量を5.0〜8.0wt%に規定する理由
は、5.0wt%未満ではその効果が十分に得られず、
8.0wt%を超えると靱性、溶接性、および耐応力腐食
割れ性が低下するためである。Cuは、Znと同様に強
度向上に不可欠な元素である。その含有量を2.0〜
3.0wt%に規定する理由は、2.0wt%未満ではその
効果が十分に得られず、3.0wt%を超えると靱性と溶
接性が低下するためである。Mgは、Znと同様に強度
向上に不可欠な元素である。その含有量を1.2〜2.
8wt%に規定する理由は、1.2wt%未満ではその効果
が十分に得られず、2.8wt%を超えると靱性が低下す
るためである。
BEST MODE FOR CARRYING OUT THE INVENTION The alloying elements according to the present invention will be described below. Zn is an element indispensable for improving the strength. The reason for defining the content to be 5.0 to 8.0 wt% is that if the content is less than 5.0 wt%, the effect cannot be sufficiently obtained.
If the content exceeds 8.0 wt%, toughness, weldability, and stress corrosion cracking resistance are reduced. Cu is an element indispensable for strength improvement like Zn. The content is 2.0-
The reason why the content is specified as 3.0 wt% is that if the content is less than 2.0 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 3.0 wt%, toughness and weldability are reduced. Mg is an element indispensable for strength improvement like Zn. Its content is 1.2-2.
The reason for defining the content to be 8 wt% is that if the content is less than 1.2 wt%, the effect cannot be sufficiently obtained, and if the content exceeds 2.8 wt%, the toughness is reduced.

【0008】Tiは組織を微細化し、溶接性を向上させ
る。その含有量を0.005〜0.3wt%に規定する理
由は、0.005wt%未満ではその効果が十分に得られ
ず、0.3wt%を超えると鋳造時に晶出した巨大化合物
が残存して製品の靱性が低下するためである。Crは結
晶組織を微細化し溶接性を向上させる。その含有量を
0.05〜0.3wt%に規定する理由は、含有量が0.
05wt%未満ではその効果が十分に得られず、0.3wt
%を超えると鋳造時に晶出した巨大化合物が残存して製
品の靱性が低下するためである。Zrは結晶組織を微細
化し溶接性を向上させる。その含有量を0.05〜0.
15wt%に規定する理由は、0.05wt%未満ではその
効果が十分に得られず、0.15wt%以上を超えると鋳
造時に晶出した巨大化合物が残存して製品の靱性が低下
するためである。
[0008] Ti refines the structure and improves the weldability. The reason that the content is defined as 0.005 to 0.3 wt% is that if the content is less than 0.005 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.3 wt%, the giant compound crystallized at the time of casting remains. This is because the toughness of the product decreases. Cr refines the crystal structure and improves weldability. The reason for defining the content to be 0.05 to 0.3% by weight is that the content is 0.1%.
If the content is less than 05 wt%, the effect cannot be sufficiently obtained.
%, The giant compound crystallized at the time of casting remains to lower the toughness of the product. Zr refines the crystal structure and improves the weldability. The content is 0.05 to 0.1.
The reason for specifying 15 wt% is that if the content is less than 0.05 wt%, the effect cannot be sufficiently obtained, and if it exceeds 0.15 wt%, a giant compound crystallized at the time of casting remains and the toughness of the product decreases. is there.

【0009】Mnは結晶組織の安定化に寄与する。その
含有量を0.03wt%以下に規定する理由は、0.03
wt%を超えると鋳造時に晶出した巨大化合物が残存して
製品の靱性が低下するためである。VもMnと同様に結
晶組織の安定化に寄与する。その含有量を0.01〜
0.2wt%に規定する理由は、0.01wt%未満ではそ
の効果が十分に得られず、0.2wt%を超えると鋳造時
に晶出した巨大化合物が残存して製品の靱性が低下する
ためである。MMは耐溶接割れ性を改善する。その含有
量を0.05〜0.15wt%に規定する理由は、0.0
5wt%未満ではその効果が十分に得られず、0.15wt
%を超えると鋳造時に晶出した巨大化合物が残存して製
品の靱性が低下するためである。MMはLa、Ce、N
dなどの希土類元素が混在したもので、La、Ce、N
dなどを単体で使用しても同様の効果が得られる。
Mn contributes to stabilization of the crystal structure. The reason for defining the content to be 0.03% by weight or less is as follows.
If the content exceeds wt%, a giant compound crystallized at the time of casting remains and the toughness of the product decreases. V also contributes to stabilization of the crystal structure similarly to Mn. The content is 0.01 to
The reason for specifying 0.2 wt% is that if it is less than 0.01 wt%, its effect cannot be sufficiently obtained, and if it exceeds 0.2 wt%, the giant compound crystallized at the time of casting remains and the toughness of the product decreases. It is. MM improves weld crack resistance. The reason for defining the content to be 0.05 to 0.15 wt% is as follows.
If the content is less than 5 wt%, the effect cannot be sufficiently obtained.
%, The giant compound crystallized at the time of casting remains to lower the toughness of the product. MM is La, Ce, N
a mixture of rare earth elements such as d, La, Ce, N
The same effect can be obtained by using d alone.

【0010】Feは強度向上に寄与する。その含有量を
0.01〜0.25wt%に規定する理由は、0.01wt
%未満ではその効果が十分に得られず、0.25wt%を
超えると鋳造時に晶出した巨大化合物が残存して製品の
靱性が低下し、またマトリックス中の固溶Cu量が減少
して時効硬化特性が低下するためである。Siの含有量
を0.1wt%以下に規定する理由は、0.1wt%を超え
ると均熱処理中に粗大なMg−Si系化合物が生成して
製品強度が低下するためである。
[0010] Fe contributes to improvement in strength. The reason for defining the content to be 0.01 to 0.25 wt% is that 0.01 wt%
%, The effect cannot be sufficiently obtained, and if it exceeds 0.25 wt%, a giant compound crystallized at the time of casting remains to reduce the toughness of the product, and the amount of solute Cu in the matrix decreases, resulting in aging. This is because the curing properties are reduced. The reason for specifying the Si content to be 0.1 wt% or less is that if the content exceeds 0.1 wt%, coarse Mg-Si-based compounds are generated during the soaking treatment, and the product strength is reduced.

【0011】次に本発明の製造方法について説明する。
本発明の構造材は、溶解、鋳造、熱間圧延、冷間圧延、
仕上圧延を順に施す通常の製造工程により製造される。
本発明において、熱間圧延の開始温度を380〜450
℃に規定する理由は、380℃未満では内部歪みに起因
する内部裂化、または図1(イ)〜(ハ)に示すよう
に、圧延材1先端部にワニ口2が発生し、450℃を超
えるとAl−Mg合金に見られるような高温脆化に起因
するワニ口が発生するためである。図1で3は圧延ロー
ルである。熱間圧延の終了温度を350〜400℃に規
定する理由は、350℃未満では内部歪みに起因する内
部裂化またはワニ口が発生し、400℃を超えると加工
発熱による圧延材の内部と外部の温度差が大きくなりワ
ニ口が発生し易くなるためである。
Next, the manufacturing method of the present invention will be described.
The structural material of the present invention is melting, casting, hot rolling, cold rolling,
It is manufactured by a normal manufacturing process in which finish rolling is performed in order.
In the present invention, the starting temperature of hot rolling is set to 380 to 450.
When the temperature is lower than 380 ° C., internal cracking due to internal strain occurs, or as shown in FIGS. If the amount exceeds the above range, a crocodile mouth due to high-temperature embrittlement as seen in an Al-Mg alloy is generated. In FIG. 1, reference numeral 3 denotes a rolling roll. The reason for defining the end temperature of hot rolling at 350 to 400 ° C. is that if the temperature is lower than 350 ° C., internal cracking or alligator due to internal strain occurs, and if it exceeds 400 ° C., the internal and external portions of the rolled material due to processing heat This is because the temperature difference becomes large and a crocodile mouth is easily generated.

【0012】本発明において、中間熱間圧延1での圧下
量を10〜15mm/パスと規定する理由は、10mm
/パス未満では加工発熱量が減少し、それに伴い内部歪
みが大きくなって内部裂化もしくはワニ口が発生し、1
5mm/パスを超えると加工発熱により内部と外部の温
度差によりワニ口が発生するためである。中間熱間圧延
1での圧延速度を40〜70m/分に規定する理由は、
40m/分未満では圧延材の温度が低下して変形抵抗が
大きくなり割れが発生し、70m/分を超えると加工発
熱により圧延材の温度が異常に上昇するためである。
In the present invention, the reason why the rolling reduction in the intermediate hot rolling 1 is defined as 10 to 15 mm / pass is 10 mm.
If the number of passes is less than / pass, the calorific value of the working decreases and the internal strain increases, causing internal cracking or crocodile mouth.
This is because if the width exceeds 5 mm / pass, an alligator is generated due to a difference in temperature between the inside and the outside due to the heat generated during processing. The reason for setting the rolling speed in the intermediate hot rolling 1 to 40 to 70 m / min is as follows.
If it is less than 40 m / min, the temperature of the rolled material decreases, the deformation resistance increases, and cracks occur. If it exceeds 70 m / min, the temperature of the rolled material rises abnormally due to heat generated during processing.

【0013】本発明において、中間熱間圧延2での圧下
量を20〜40mm/パスに規定する理由は、20mm
/パス以下では板厚中層部は鋳造組織が十分加工組織に
変化しないでT6処理後に板厚中層部の結晶粒径が大き
くなって靱性が低下し、また40mm/パスを超えると
圧延材に表層剥離が生じるためである。本発明におい
て、中間熱間圧延2での圧延速度を70〜130m/分
に規定する理由は、中間熱間圧延2では圧延材の表面積
が広がって温度が低下し易く、70m/分未満では材料
温度が低下して変形抵抗が大きくなり加工性が悪化する
ためである。また130m/分を超えると加工発熱によ
る圧延材の温度が異常に上昇するためである。
In the present invention, the reason why the rolling reduction in the intermediate hot rolling 2 is defined as 20 to 40 mm / pass is as follows.
When the thickness is less than / pass, the middle part of the sheet thickness does not change sufficiently into a processed structure, and the crystal grain size of the middle part of the sheet thickness increases after T6 treatment, and the toughness decreases. This is because peeling occurs. In the present invention, the reason why the rolling speed in the intermediate hot rolling 2 is specified to be 70 to 130 m / min is that the surface area of the rolled material is widened in the intermediate hot rolling 2 and the temperature is easily lowered. This is because the temperature decreases, the deformation resistance increases, and the workability deteriorates. On the other hand, if it exceeds 130 m / min, the temperature of the rolled material due to the heat generated by processing increases abnormally.

【0014】本発明では、従来のように熱間圧延を2回
に分けて行う必要がなく、板厚に関係なく、連続圧延に
より靱性および溶接性に優れた構造材が得られ、生産性
に優れる。本発明は、圧延材、押出材、鍛造材として用
いられる。
According to the present invention, there is no need to perform hot rolling in two separate steps as in the prior art, and a structural material excellent in toughness and weldability can be obtained by continuous rolling, regardless of the sheet thickness, and productivity can be improved. Excellent. The present invention is used as a rolled material, an extruded material, and a forged material.

【0015】本発明において、初期圧延と終期圧延の圧
延条件は特に設定しないが、初期圧延では、通常、鋳塊
は圧延割れを起こし易いので軽圧下するが、材料に因っ
ては中間熱間圧延1と同じ条件で圧延しても差し支えな
い。また終期圧延についても中間熱間圧延2と同じ条件
で圧延しても良い。
In the present invention, the rolling conditions for the initial rolling and the final rolling are not particularly set, but in the initial rolling, the ingot is usually easily rolled, so that the ingot is lightly reduced. Rolling may be performed under the same conditions as in rolling 1. In the final rolling, rolling may be performed under the same conditions as in the intermediate hot rolling 2.

【0016】[0016]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す本発明例組成の合金 (No.A〜H)
を半連続水冷鋳造法により厚さ500mmの板状鋳塊に
鋳造した。次に、この鋳塊に350〜400℃で2時間
加熱の歪取り焼鈍と、470℃で5時間加熱の均質化熱
処理を順に施し、これを450mmまで初期圧延し、次
いで厚さ200mmまで中間熱間圧延1し、次いで10
0mmまで中間熱間圧延2し、さらに終期圧延して厚さ
25〜50mmの熱延板を得、次いでこれらに470℃
で2時間の溶体化処理と120℃で24時間の時効処理
を順に施して板状構造材を得た。熱間圧延の開始温度と
終了温度、中間熱間圧延1と中間熱間圧延2の圧下量お
よび圧延速度は種々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) Alloys of the compositions of the present invention shown in Table 1 (Nos. A to H)
Was cast into a plate-shaped ingot having a thickness of 500 mm by a semi-continuous water-cooled casting method. Next, the ingot was subjected to a strain relief annealing at 350 to 400 ° C. for 2 hours and a homogenizing heat treatment at 470 ° C. for 5 hours, which was initially rolled to 450 mm, and then subjected to an intermediate heat treatment to a thickness of 200 mm. Cold rolling 1 then 10
Hot-rolled sheet 2 to 0 mm, and further subjected to final rolling to obtain a hot-rolled sheet having a thickness of 25 to 50 mm.
For 2 hours and aging treatment at 120 ° C. for 24 hours to obtain a plate-shaped structural material. The starting temperature and the ending temperature of the hot rolling, the rolling reduction and the rolling speed of the intermediate hot rolling 1 and the intermediate hot rolling 2 were variously changed.

【0017】(比較例1)表2に示す比較例組成の合金
(No.I〜N)を用い、圧延を本発明条件で行った他は、実
施例1と同じ方法により板状構造材を製造した。
(Comparative Example 1) Alloys of Comparative Example Compositions shown in Table 2
(No. I to N), and a plate-like structural material was produced in the same manner as in Example 1 except that rolling was performed under the conditions of the present invention.

【0018】得られた各々の板状構造材について靱性試
験および耐溶接割れ試験を下記方法により行った。結果
を、圧延条件を併記して表3、4に示す 〔靱性試験〕 (a)試験片:図2に示す、幅40mm、長さ60m
m、厚さ6mmの引裂試験片1に角度45度、深さ10
mmのV形切欠部4を形成した。V形切欠部4の底部5
は0.025Rに形成した。このV形切欠部4の底部5
と引張力作用点6の中心部とは一直線上に形成した。 (b)試験方法:アムスラー万能試験機を用いて上記試
験片の引張力作用点6にチャックを掛けて引張り、得ら
れた引張荷重−変位曲線からA(図3における斜線部分
の面積)を求め、これを下式に代入して引裂抵抗値UP
Eを求めた。 UPE=A/S(式中Sは試験片の有効断面積) (c)評価法:引裂抵抗値UPEを下記3基準に分け判
定した。 良(○)… 2.0kg・mm/mm2以上。 やや不良(△)… 2.0kg・mm/mm2未満、1.0 kg・mm/mm2以上。 不良(×)… 1.0kg・mm/mm2未満。 〔耐溶接割れ性試験〕 (a)試験片:図4に示す溶接後の試験片に切込み深さ
を段階的に変化させたフィッシュボーン型試験片を用い
た。図4で、L0 =114mm、L1 =105mm、L
2 =12.7mm、L3 =1.2mm、W0 =66.8
mm、W1 =55mm、W2 =9.6mm。 (b)溶接条件:溶接方法…TIG、溶加材…使用せ
ず、電極棒…3.2mmφのセリウム入りW棒、溶接電
流…180A、アーク電圧…19V、溶接速度…30m
m/min、アルゴンガス流量…10リットル/mi
n。 (c)評価法:割れ長さ(図4に示すIc)を下記3基
準に分け判定した。 良(○)…割れ長さ30mm未満。 やや不良(△)…割れ長さ30mm以上、50mm未満。 不良(×)…割れ長さ50mm以上。
Each of the obtained plate-like structural members was subjected to a toughness test and a weld crack resistance test by the following methods. The results are shown in Tables 3 and 4 together with the rolling conditions [Toughness test] (a) Test piece: 40 mm wide and 60 m long shown in FIG.
m, a tear test piece 1 having a thickness of 6 mm, an angle of 45 degrees and a depth of 10
A V-shaped notch 4 of mm was formed. V-shaped notch 4 bottom 5
Was formed to 0.025R. The bottom 5 of this V-shaped notch 4
And the center of the tensile force application point 6 were formed on a straight line. (B) Test method: Using an Amsler universal testing machine, the test piece was pulled by applying a chuck to the point of action 6 of tensile force, and A (the area of the hatched portion in FIG. 3) was determined from the obtained tensile load-displacement curve. , Which is substituted into the following equation to determine the tear resistance UP
E was sought. UPE = A / S (where S is the effective area of the test piece) (c) Evaluation method: The tear resistance value UPE was determined according to the following three criteria. Good (○): 2.0kg ・ mm / mm 2 or more. Slightly poor (△): Less than 2.0 kg · mm / mm 2 and 1.0 kg · mm / mm 2 or more. Bad (×) ... 1.0kg · mm / mm less than 2. [Weld Cracking Resistance Test] (a) Test piece: A fishbone type test piece in which the cutting depth was changed stepwise was used as the test piece after welding shown in FIG. In FIG. 4, L0 = 114 mm, L1 = 105 mm, L
2 = 12.7 mm, L3 = 1.2 mm, W0 = 66.8
mm, W1 = 55 mm, W2 = 9.6 mm. (B) Welding conditions: welding method: TIG, filler metal: not used, electrode rod: 3.2 mmφ cerium-containing W rod, welding current: 180 A, arc voltage: 19 V, welding speed: 30 m
m / min, argon gas flow rate ... 10 liter / mi
n. (C) Evaluation method: The crack length (Ic shown in FIG. 4) was determined according to the following three criteria. Good (O): Crack length less than 30 mm. Slightly poor (△): Crack length 30 mm or more and less than 50 mm. Poor (x): crack length 50 mm or more.

【0019】(比較例2)表1に示す No.Bの合金を用
い、圧延を本発明規定値外の条件で行った他は、実施例
1と同じ方法により、板状構造材を製造し、靱性試験と
耐溶接性試験を行った。結果を表5に示す。
(Comparative Example 2) A plate-shaped structural material was manufactured in the same manner as in Example 1 except that rolling was performed under conditions outside the range specified in the present invention using the alloys of No. B shown in Table 1. , A toughness test and a welding resistance test were performed. Table 5 shows the results.

【0020】(従来例1)従来の7075合金を用い、
前記特公昭63−60820号公報に開示された方法に
従って熱間圧延を2回に分けて行った他は、実施例1と
同じ方法により、板状構造材を製造し、靱性試験と耐溶
接性試験を行った。結果を表6に示す。
(Conventional Example 1) Using a conventional 7075 alloy,
A plate-like structural material was produced in the same manner as in Example 1 except that hot rolling was performed twice in accordance with the method disclosed in JP-B-63-60820, and a toughness test and welding resistance were performed. The test was performed. Table 6 shows the results.

【0021】[0021]

【表1】 (注) No.A〜Hは本発明例合金。[Table 1] (Note) Nos. A to H are alloys of the present invention.

【0022】[0022]

【表2】 (注) No.I〜Nは比較例合金。[Table 2] (Note) Nos. I to N are comparative alloys.

【0023】[0023]

【表3】 (注)中間熱間圧延1:450mm以下 200mm以上。 圧下量は1パスあたり、単位mm、速度は圧延速度、単位m/分。 中間熱間圧延2:200mm未満 100mm以上。圧下量、速度はと同じ。 引裂抵抗、単位:kg・mm/mm2 。 割れ長さ、単位:mm。[Table 3] (Note) Intermediate hot rolling 1: 450 mm or less 200 mm or more. The rolling reduction is in mm per pass, and the rolling speed is in m / min. Intermediate hot rolling 2: less than 200mm 100mm or more. The amount of reduction and speed are the same. Tear resistance, unit: kg · mm / mm 2 . Crack length, unit: mm.

【0024】[0024]

【表4】 (注)〜は表3の(注)と同じ。[Table 4] (Note)-are the same as (Note) in Table 3.

【0025】[0025]

【表5】 (注)〜は表3の(注)と同じ。* 本発明規定値外。[Table 5] (Note)-are the same as (Note) in Table 3. * Out of the specified value of the present invention.

【0026】[0026]

【表6】 (注)P7075(Al-0.40Si-0.5Fe-1.5Cu-0.3Mn-2.5Mg-0.2Cr-5.5Zn-0.2Ti:wt%) 。 Q7175(Al-0.15Si-0.2Fe-1.5Cu-0.1Mn-2.5Mg-0.2Cr-6.8Zn-0.2Ti:wt%) 。 圧延開始温度、単位℃。圧延加工率、単位%。 単位℃。単位hr。表3の(注)と同じ。表3の(注)と同じ。[Table 6] (Note) P7075 (Al-0.40Si-0.5Fe-1.5Cu-0.3Mn-2.5Mg-0.2Cr-5.5Zn-0.2Ti: wt%). Q7175 (Al-0.15Si-0.2Fe-1.5Cu-0.1Mn-2.5Mg-0.2Cr-6.8Zn-0.2Ti: wt%). Rolling start temperature, unit ° C. Rolling rate, unit%. Unit ℃. Unit hr. Same as (Note) in Table 3. Same as (Note) in Table 3.

【0027】表3より明らかなように、本発明例のNo.1
〜8 は、いずれも靱性と耐溶接割れ性に優れた。これに
対し、比較例1のNo.9〜14は合金組成が本発明の規定値
を外れているため、表4に示すように、靱性または耐溶
接割れ性が低下した。比較例2の No.15〜20は製造条件
が、表5に示すように、本発明例を外れているため靱性
と耐溶接割れ性が低下した。従来例のNo.21,22は、表6
に示すように、熱処理を2回に分けて行ったが、晶出物
が十分再固溶しないで残存したため、靱性と耐溶接割れ
性が低下した。
As is clear from Table 3, No. 1 of the present invention example
No. 8 were excellent in toughness and weld crack resistance. On the other hand, in Nos. 9 to 14 of Comparative Example 1, since the alloy composition was out of the range specified in the present invention, as shown in Table 4, the toughness or weld cracking resistance was reduced. As shown in Table 5, the production conditions of Nos. 15 to 20 of Comparative Example 2 were out of the examples of the present invention, so that the toughness and weld crack resistance were reduced. No. 21 and 22 of the conventional example are shown in Table 6.
As shown in (2), the heat treatment was performed twice, but the toughness and weld cracking resistance were reduced because the crystallized material remained without re-dissolving sufficiently.

【0028】[0028]

【発明の効果】以上に述べたように、本発明方法によれ
ば、靱性および溶接性に優れる高強度アルミニウム合金
構造材が、通常の連続圧延法を用い、その圧延条件を選
定することにより効率良く製造することができ、工業上
顕著な効果を奏する。
As described above, according to the method of the present invention, a high-strength aluminum alloy structural material having excellent toughness and weldability can be efficiently produced by using a normal continuous rolling method and selecting the rolling conditions. It can be manufactured well and has an industrially significant effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間圧延でのワニ口の発生状況の説明図で
(イ)は圧延前、(ロ)は圧延中、(ハ)は圧延後の状
況を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of the state of occurrence of crocodile mouths in hot rolling, (a) shows a state before rolling, (b) shows a state during rolling, and (c) shows a state after rolling.

【図2】靱性試験用試験片の説明図である。FIG. 2 is an explanatory diagram of a test piece for a toughness test.

【図3】靱性試験における引張荷重−変位曲線図であ
る。
FIG. 3 is a diagram showing a tensile load-displacement curve in a toughness test.

【図4】溶接性試験用フィシュボーン型試験片の説明図
である。
FIG. 4 is an explanatory view of a fishbone type test piece for a weldability test.

【符号の説明】[Explanation of symbols]

1 ワニ口 2 圧延材 3 圧延ロール 4 V形切欠部 5 V形切欠部の底部(0.025R) 6 引張力作用点 DESCRIPTION OF SYMBOLS 1 Alligator 2 Rolled material 3 Rolling roll 4 V-shaped notch 5 Bottom of V-shaped notch (0.025R) 6 Tensile force action point

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 683 C22F 1/00 683 685 685Z 694 694A 694B ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code FI C22F 1/00 683 C22F 1/00 683 685 685Z 694 694A 694B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Znを5.0〜8.0wt%、Cuを2.
0〜3.0wt%、Mgを1.2〜2.8wt%、Tiを
0.005〜0.3wt%、Crを0.05〜0.3wt
%、Zrを0.05〜0.15wt%、Mnを0.03wt
%以下、Vを0.01〜0.2wt%、MM(ミッシュメ
タル)を0.05〜0.15wt%、Feを0.01〜
0.25wt%含有し、Siを0.1wt%以下に規制し、
残部実質的にAlからなるアルミニウム合金を溶解鋳造
し、得られる鋳塊に熱間圧延、冷間圧延、仕上圧延を順
に施す構造材の製造方法において、前記熱間圧延を、圧
延開始温度380〜450℃、圧延終了温度350〜4
00℃とし、鋳塊厚さTから圧延材厚さ0.95T〜
0.9Tまでの圧延を初期圧延、初期圧延後圧延材厚さ
0.5T〜0.33Tまでの圧延を中間熱間圧延1、中
間熱間圧延1後圧延材厚さ2.0t(tは熱間圧延終了
厚さ)〜1.3tまでの圧延を中間熱間圧延2、中間熱
間圧延2後圧延材厚さ1.0tまでの圧延を終期圧延と
したとき、前記中間熱間圧延1を圧下量10〜15mm
/パス、圧延速度40〜70m/分の条件で施し、前記
中間熱間圧延2を圧下量20〜40mm/パス、圧延速
度70〜130m/分の条件で施すことを特徴とする靱
性および溶接性に優れるアルミニウム合金構造材の製造
方法。
1. A Zn content of 5.0 to 8.0 wt% and a Cu content of 2.
0-3.0 wt%, Mg 1.2-2.8 wt%, Ti 0.005-0.3 wt%, Cr 0.05-0.3 wt%
%, Zr 0.05-0.15 wt%, Mn 0.03 wt%
%, V is 0.01 to 0.2 wt%, MM (Misch metal) is 0.05 to 0.15 wt%, and Fe is 0.01 to 0.2 wt%.
0.25 wt%, Si is regulated to 0.1 wt% or less,
In a method for producing a structural material in which an aluminum alloy substantially consisting of Al is melt-cast and the obtained ingot is subjected to hot rolling, cold rolling, and finish rolling, the hot rolling is performed at a rolling start temperature of 380 to 380. 450 ° C, rolling end temperature 350-4
00 ° C, rolled material thickness 0.95T ~
Rolling to 0.9T is the initial rolling, rolling after the initial rolling is 0.5T to 0.33T, the intermediate hot rolling is 1, the intermediate hot rolling is 1, and the rolling material thickness is 2.0t (t is When the rolling up to the hot rolling end thickness) to 1.3 t is defined as intermediate hot rolling 2 and the intermediate hot rolling 2 is followed by the rolling up to the rolling material thickness 1.0 t as the final rolling, the intermediate hot rolling 1 The rolling amount is 10 to 15 mm
And hot rolling at a rolling speed of 40 to 70 m / min, and applying the intermediate hot rolling 2 at a rolling reduction of 20 to 40 mm / pass at a rolling speed of 70 to 130 m / min. Method for manufacturing aluminum alloy structural materials with excellent performance.
JP31197097A 1997-11-13 1997-11-13 Production of aluminum alloy structural material excellent in toughness and weldability Pending JPH11140610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31197097A JPH11140610A (en) 1997-11-13 1997-11-13 Production of aluminum alloy structural material excellent in toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31197097A JPH11140610A (en) 1997-11-13 1997-11-13 Production of aluminum alloy structural material excellent in toughness and weldability

Publications (1)

Publication Number Publication Date
JPH11140610A true JPH11140610A (en) 1999-05-25

Family

ID=18023635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31197097A Pending JPH11140610A (en) 1997-11-13 1997-11-13 Production of aluminum alloy structural material excellent in toughness and weldability

Country Status (1)

Country Link
JP (1) JPH11140610A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001149A3 (en) * 2003-06-24 2005-05-26 Pechiney Rhenalu Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
CN105369089A (en) * 2015-11-24 2016-03-02 安徽鑫发铝业有限公司 Electrophoretic aluminum alloy industrial section bar
CN105420567A (en) * 2015-11-24 2016-03-23 安徽鑫发铝业有限公司 High-strength high-toughness corrosion-resistant aluminum alloy sectional material
WO2020232990A1 (en) * 2019-05-17 2020-11-26 江苏亨通电力特种导线有限公司 Heat-resistant aluminum alloy having high conductivity, preparation method therefor and alloy aluminum rod used for overhead cables
KR20210020992A (en) * 2018-06-12 2021-02-24 알레리스 로울드 프로덕츠 저머니 게엠베하 Manufacturing method of 7xxx-series aluminum alloy plate products with improved fatigue fracture resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001149A3 (en) * 2003-06-24 2005-05-26 Pechiney Rhenalu Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
CN105369089A (en) * 2015-11-24 2016-03-02 安徽鑫发铝业有限公司 Electrophoretic aluminum alloy industrial section bar
CN105420567A (en) * 2015-11-24 2016-03-23 安徽鑫发铝业有限公司 High-strength high-toughness corrosion-resistant aluminum alloy sectional material
CN105369089B (en) * 2015-11-24 2017-12-15 安徽鑫发铝业有限公司 A kind of electrophoresis aluminum alloy industry profile
KR20210020992A (en) * 2018-06-12 2021-02-24 알레리스 로울드 프로덕츠 저머니 게엠베하 Manufacturing method of 7xxx-series aluminum alloy plate products with improved fatigue fracture resistance
JP2021526591A (en) * 2018-06-12 2021-10-07 アレリス、ロールド、プロダクツ、ジャーマニー、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングAleris Rolled Products Germany Gmbh Manufacturing method of 7xxx series aluminum alloy plate products with improved fatigue fracture resistance
EP3807434B1 (en) 2018-06-12 2022-09-14 Novelis Koblenz GmbH Method of manufacturing a 7xxx-series aluminium alloy plate product having improved fatigue failure resistance
WO2020232990A1 (en) * 2019-05-17 2020-11-26 江苏亨通电力特种导线有限公司 Heat-resistant aluminum alloy having high conductivity, preparation method therefor and alloy aluminum rod used for overhead cables

Similar Documents

Publication Publication Date Title
JP4101749B2 (en) Weldable high strength Al-Mg-Si alloy
JP2640993B2 (en) Aluminum alloy rolled plate for superplastic forming
AU725069B2 (en) High strength Al-Mg-Zn-Si alloy for welded structures and brazing application
JP4115936B2 (en) Weldable high strength Al-Mg-Si alloy
US6440583B1 (en) Aluminum alloy for a welded construction and welded joint using the same
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
US20050211345A1 (en) High conductivity bare aluminum finstock and related process
JPH11507102A (en) Aluminum or magnesium alloy plate or extruded product
EP1848835A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
US20230175103A1 (en) New 6xxx aluminum alloys and methods for producing the same
EP1078109B1 (en) Formable, high strength aluminium-magnesium alloy material for application in welded structures
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
US20030145912A1 (en) Formable, high strength aluminium-magnesium alloy material for application in welded structures
JP3219293B2 (en) Aluminum alloy filler metal and its manufacturing method
JP7215870B2 (en) Method for manufacturing Al-Mg-Si-based aluminum alloy plastically worked material and Al-Mg-Si-based aluminum alloy extruded material
JPH11140610A (en) Production of aluminum alloy structural material excellent in toughness and weldability
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH06240395A (en) Aluminum alloy sheet for superplastic forming, its production and superplastic formed body using it
JPH08165539A (en) Heat treated type thin aluminum extruded shape and its production
JP3071058B2 (en) Method of manufacturing high-strength aluminum alloy thick plate for welded structure
JP3529664B2 (en) Aluminum alloy filler metal
JPH05179389A (en) Aluminum alloy material for upset butt welding
JP2000144293A (en) Bending and arc welding-use automotive frame structural material consisting of aluminum-magnesium- silicon alloy extruded material