JPH08165539A - Heat treated type thin aluminum extruded shape and its production - Google Patents

Heat treated type thin aluminum extruded shape and its production

Info

Publication number
JPH08165539A
JPH08165539A JP33212094A JP33212094A JPH08165539A JP H08165539 A JPH08165539 A JP H08165539A JP 33212094 A JP33212094 A JP 33212094A JP 33212094 A JP33212094 A JP 33212094A JP H08165539 A JPH08165539 A JP H08165539A
Authority
JP
Japan
Prior art keywords
weight
strength
extrusion
heating
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33212094A
Other languages
Japanese (ja)
Other versions
JP3006446B2 (en
Inventor
Shigeru Okaniwa
茂 岡庭
Noboru Numata
昇 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP6332120A priority Critical patent/JP3006446B2/en
Publication of JPH08165539A publication Critical patent/JPH08165539A/en
Application granted granted Critical
Publication of JP3006446B2 publication Critical patent/JP3006446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce a high strength aluminum extruded shapes excellent in corrosion resistance and weldability and capable of high speed hot extrusion. CONSTITUTION: This shape has a composition, which contains 2.1-2.9% Mg, 0.8-1.5% Si, 0.51-0.8% Cu, 0.3-0.8% Mn, and 0.05-0.4% Cr and in which the contents of Fe, Pb, Ti, and B are limited to <=0.15%, <=0.03%, 0.006-0.03%, and 0.0001-0.005%, respectively, and extruded at high speed into a shape having a thin and complicated shape. The blonk for extrusion is prepared by subjecting an ingot, prepared by DC casting, to heating at 460-540 deg.C for 1-10hrs for homogenizing treatment and then to forced air cooling. At the time of extrusion, the ingot is preheated to 350-520 deg.C and then subjected to forced air cooling or water-quenching at >=100 deg.C/min cooling rate at the outlet of a platen. When artificial aging treatment consisting of heating at 140-200 deg.C for 1-12hr is applied, strength required of a structural material can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶,車両等の薄肉構
造材料として使用され、押出し性,耐食性に優れた高強
度アルミニウム押出し形材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum extruded shape material which is used as a thin structural material for ships, vehicles and the like and has excellent extrudability and corrosion resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】5083,5086等のAl−Mg系合
金やAl−Mg−Mn系合金は、海水や大気中での耐食
性に優れており、熱処理を施さなくても高い強度を示す
ことから、各種設備,機器等の構造用材料として使用さ
れている。この系の合金は、溶接性が良好で、溶接割れ
欠陥が少ない。また、溶接後の強度、すなわち焼鈍状態
での耐力が大きい長所ももっている。Al−Mg系合
金,Al−Mg−Mn系合金等は、Mg含有量が多くな
るに従って強度が向上する反面、応力腐食割れや剥離腐
食が発生し易くなる。この点、特開平4−32534号
公報で紹介されているAl−Mg−Mn系合金において
は、FeとSiの含有量及び比率を規制し、且つCuを
添加することにより、耐溶接割れ性,耐応力腐食割れ性
等を改善している。
2. Description of the Related Art Al-Mg alloys and Al-Mg-Mn alloys such as 5083 and 5086 have excellent corrosion resistance in seawater or air, and exhibit high strength without heat treatment. It is used as a structural material for various facilities and equipment. This type of alloy has good weldability and few weld crack defects. It also has the advantage that the strength after welding, that is, the yield strength in the annealed state is large. Al-Mg-based alloys, Al-Mg-Mn-based alloys, and the like have higher strength as the Mg content increases, but stress corrosion cracking and peel corrosion are more likely to occur. In this regard, in the Al-Mg-Mn-based alloy introduced in JP-A-4-32534, by controlling the contents and ratios of Fe and Si and adding Cu, the weld crack resistance, Improves resistance to stress corrosion cracking.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のAl−
Mg系又はAl−Mg−Mn系で十分な強度を確保しよ
うとすると、4重量%以上のMg含有量が必要である。
このように多量のMgが含まれると、熱間押出し性が劣
化し、中空材は勿論、厚みが3mm以下の中実薄肉形材
の製造も困難になる。押出し加工性は、5052,51
54,5454等の合金系にみられるようにMg含有量
の低減によって向上する。しかし、この系の合金は、強
度が不足し、5083のように構造材料として使用する
ことはできない。また、5083,5086,5056
等の合金系では、Mgの外にMn,Cr等の遷移金属を
多量に含んでいるため、押出し時に高い圧力が必要とな
り、しかも得られた押出し形材の表面にクラックが発生
し易い。
However, the conventional Al-
In order to secure sufficient strength with a Mg type or an Al-Mg-Mn type, a Mg content of 4% by weight or more is required.
When such a large amount of Mg is contained, the hot extrudability is deteriorated, and it becomes difficult to manufacture not only a hollow material but also a solid thin-walled material having a thickness of 3 mm or less. Extrudability is 5052,51
It is improved by reducing the Mg content as seen in alloy systems such as 54 and 5454. However, this type of alloy lacks strength and cannot be used as a structural material like 5083. Also, 5083, 5086, 5056
Since alloys such as Mn contain a large amount of transition metals such as Mn and Cr in addition to Mg, a high pressure is required at the time of extrusion, and cracks are easily generated on the surface of the obtained extruded profile.

【0004】5000系以外の合金としては、押出し加
工性に優れ、押出し後の空気焼入れによって強度を得る
6N01合金がある。6N01合金は、薄肉で複雑な形
状(ホーロー材)の押出しが可能であり、車両材等とし
て利用されている。しかし、5083,5086等の構
造用5000系合金に比較して、耐食性や溶接後の強度
が劣る。本発明は、このような問題を解消すべく案出さ
れたものであり、押出し性を向上させるためにMg含有
量を低く押さえた合金系においてSi,Cu等を添加す
ることにより、押出し後の人工時効処理で5083合金
に匹敵する強度を発現し、且つ押出し性,耐食性,溶接
性等に優れたアルミニウム合金押出し形材を得ることを
目的とする。
As an alloy other than the 5000 series alloy, there is a 6N01 alloy which is excellent in extrudability and obtains strength by air quenching after extrusion. The 6N01 alloy can be extruded into a thin and complex shape (enameled material), and is used as a vehicle material or the like. However, the corrosion resistance and the strength after welding are inferior to the 5000 series structural alloys such as 5083 and 5086. The present invention has been devised to solve such problems, and by adding Si, Cu or the like in an alloy system in which the Mg content is kept low in order to improve the extrudability, It is an object of the present invention to obtain an aluminum alloy extruded shape member which exhibits a strength comparable to that of the 5083 alloy by artificial aging treatment and is excellent in extrudability, corrosion resistance, weldability and the like.

【0005】[0005]

【課題を解決するための手段】本発明の熱処理型薄肉ア
ルミニウム押出し形材は、その目的を達成するため、M
g:2.1〜2.9重量%,Si:0.8〜1.5重量
%,Cu:0.51〜0.8重量%,Mn:0.3〜
0.8重量%及びCr:0.05〜0.4重量%を含
み、Fe,Pb,Ti及びBをそれぞれFe:0.15
重量%以下,Pb:0.03重量%以下,Ti:0.0
06〜0.03重量%及びB:0.0001〜0.00
5重量%に規制したことを特徴とする。この押出し形材
は、アルミニウム合金溶湯をDC鋳造し、得られた鋳塊
を460〜540℃で1〜10時間加熱する均質化処理
を施した後、強制空冷し、350〜520℃に鋳塊を予
熱し、熱間で押し出し、プラテン出口で冷却速度100
℃/分以上で強制空冷又は水焼入れすることにより溶質
元素を固溶させ、次いで140〜200℃で1〜12時
間加熱する人工時効処理を施し、室温まで空冷すること
により製造される。
The heat-treatable thin-walled aluminum extruded profile of the present invention has the following object.
g: 2.1 to 2.9 wt%, Si: 0.8 to 1.5 wt%, Cu: 0.51 to 0.8 wt%, Mn: 0.3 to
0.8 wt% and Cr: 0.05 to 0.4 wt%, Fe: Pb, Ti and B: Fe: 0.15
% By weight, Pb: 0.03% by weight or less, Ti: 0.0
06-0.03% by weight and B: 0.0001-0.00
It is characterized by being regulated to 5% by weight. This extruded shape material was obtained by subjecting a molten aluminum alloy to DC casting, subjecting the obtained ingot to homogenization treatment by heating at 460 to 540 ° C for 1 to 10 hours, and then forcibly air cooling and ingot at 350 to 520 ° C. Preheat, hot extrude, cooling rate 100 at platen exit
It is manufactured by subjecting the solute element to a solid solution by forced air cooling or water quenching at a temperature of not less than ° C / min, then subjecting it to an artificial aging treatment of heating at 140 to 200 ° C for 1 to 12 hours, and air cooling to room temperature.

【0006】[0006]

【作用】船舶のデッキ材を始めとする構造材には、アル
ミニウム合金の軽量性を活かし、肉厚2mm以下で40
0〜500mmの広幅材が望まれている。また、溶接個
所を省略又は節減し、剛体強度を向上させるため、リブ
付きの形状が要求される。このような形状をもつ構造材
を押出しで製造するためには、使用するアルミニウム合
金が従来にも増して押出し性に優れ、大きな押出し速度
で押出されることが必要になる。また、構造材としての
用途から熱処理後の耐力σ0.2 が180N/mm2 以上
で、耐食性に優れていることも要求される。本発明は、
これらの要求を満足する合金設計を確立したものであ
る。すなわち、従来の5000系合金に比較してMg含
有量を低減することにより、薄肉の押出しを可能にし
た。その結果、たとえば肉厚2mm及び幅450mmの
押出し形材を得る場合、従来の5083合金では押出し
速度が2m/分であったのに対し、本発明に従った合金
系では押出し速度を5m/分まで上げることができる。
この点、特開平4−32534号公報で紹介されている
Al−Mg−Mn系合金も、Mg含有量が多いため押出
し速度を大きく設定することができない。低いMg含有
量に伴った強度不足は、Si,Cu等の時効硬化で補償
することによって回復する。時効処理によって析出する
Mg2 Si,CuAl2 等によって、強度が向上し、構
造材として要求される耐力σ0.2 が180N/mm2
上となる。
[Operation] For the structural materials such as the deck material of a ship, the lightness of aluminum alloy is utilized, and the thickness of 2mm or less
A wide material of 0 to 500 mm is desired. In addition, a ribbed shape is required in order to omit or save welding points and improve the strength of the rigid body. In order to manufacture a structural material having such a shape by extrusion, it is necessary that the aluminum alloy to be used is more excellent in extrudability than ever and is extruded at a high extrusion speed. Further, from the use as a structural material, it is required that the yield strength σ 0.2 after heat treatment is 180 N / mm 2 or more and that the corrosion resistance is excellent. The present invention
The alloy design satisfying these requirements has been established. That is, by reducing the Mg content as compared with the conventional 5000 series alloy, it was possible to extrude a thin wall. As a result, for example, when obtaining an extruded profile having a wall thickness of 2 mm and a width of 450 mm, the extrusion rate was 2 m / min in the conventional 5083 alloy, whereas the extrusion rate was 5 m / min in the alloy system according to the present invention. Can be raised up to.
In this respect, the Al-Mg-Mn-based alloy introduced in Japanese Patent Laid-Open No. 4-32534 also has a large Mg content, and therefore the extrusion rate cannot be set high. The lack of strength associated with a low Mg content is recovered by compensating with age hardening of Si, Cu and the like. The strength is improved by Mg 2 Si, CuAl 2 and the like precipitated by the aging treatment, and the yield strength σ 0.2 required as a structural material becomes 180 N / mm 2 or more.

【0007】以下、本発明に従ったアルミ合金に含まれ
る合金元素や含有量等について説明する。 Mg:2.1〜2.9重量% 強度,延性及び耐食性の改善に有効な合金元素である。
Mg含有量が2.1重量%以上で、十分な強度及び耐食
性が得られる。しかし、2.9重量%を超えるMg含有
量では、押出し性が劣り、薄肉複雑形状の押出し形材が
得られない。 Si:0.8〜1.5重量% 時効処理時にMgと結合し、Mg2 Siとして析出する
ことにより合金の強度を向上させる。Mg2 Siの析出
硬化は、0.8重量%以上のSi含有量で顕著となり、
強度を有効に向上させる。しかし、1.5重量%を超え
る多量のSiが含まれると、Mg2 Si析出量の増加に
伴って固溶Mg量が減少し、耐食性が悪くなる。
The alloying elements and contents contained in the aluminum alloy according to the present invention will be described below. Mg: 2.1 to 2.9 wt% It is an alloying element effective for improving strength, ductility and corrosion resistance.
When the Mg content is 2.1% by weight or more, sufficient strength and corrosion resistance can be obtained. However, if the Mg content exceeds 2.9% by weight, the extrudability is inferior and an extruded profile having a thin and complicated shape cannot be obtained. Si: 0.8 to 1.5 wt% Improves the strength of the alloy by combining with Mg during the aging treatment and precipitating as Mg 2 Si. The precipitation hardening of Mg 2 Si becomes remarkable at a Si content of 0.8% by weight or more,
Effectively improve strength. However, when a large amount of Si exceeding 1.5% by weight is contained, the amount of solid solution Mg decreases as the amount of Mg 2 Si precipitation increases, and the corrosion resistance deteriorates.

【0008】Cu:0.51〜0.8重量% 強度及び延性の改善に有効な合金元素である。また、M
2 Siの時効硬化性を向上させると共に、Cu自体
も、CuAl2 ,Al−Cu系,Al−Mg−Cu系等
の析出物となって時効硬化性を高める。このようなCu
の作用は、0.51重量%以上の含有量で顕著になる。
しかし、0.8重量%を超える多量のCuが含まれる
と、Al−Mg−Cu系化合物が増加し、耐食性や押出
し性が悪くなる。たとえば、多量のCuを含むもので
は、粒界腐食が発生し易くなる。 Mn:0.3〜0.8重量% 押出し形材の組織を繊維状にして、強度及び耐食性を改
善する有効な合金元素であり、0.3重量%以上の含有
量でMnの作用が顕著になる。しかし、0.8重量%を
超えて多量のMnが含まれると、巨大な金属間化合物が
生成し、押出し性及び耐食性が劣化する。
Cu: 0.51 to 0.8% by weight An alloying element effective for improving strength and ductility. Also, M
improves age hardening of g 2 Si, Cu itself, CuAl 2, Al-Cu-based, increase the age hardening properties become Al-Mg-Cu system or the like of the precipitates. Such Cu
The effect of is remarkable when the content is 0.51% by weight or more.
However, when a large amount of Cu exceeding 0.8% by weight is contained, the Al-Mg-Cu-based compound increases, and the corrosion resistance and extrudability deteriorate. For example, if a large amount of Cu is contained, intergranular corrosion is likely to occur. Mn: 0.3 to 0.8% by weight It is an effective alloying element that improves the strength and corrosion resistance by making the extruded shape structure fibrous, and the effect of Mn is remarkable at a content of 0.3% by weight or more. become. However, when a large amount of Mn is contained in excess of 0.8% by weight, a huge intermetallic compound is generated and extrudability and corrosion resistance are deteriorated.

【0009】Cr:0.05〜0.4重量% Mnと同様に押出し形材の組織を繊維状にし、強度及び
耐食性を改善する有効な合金元素である。Crは、0.
05重量%以上の含有量で顕著な効果を発揮する。しか
し、0.4重量%を超える多量のCr含有量では、巨大
な金属間化合物が生成し、押出し性及び耐食性が劣化す
る。 Fe:0.15重量%以下 不純物として混入する元素であり、FeAl3 ,Al−
Fe−Si系等の化合物を晶出させ、耐食性を劣化させ
る。この点、Fe含有量を極力低く抑える必要があり、
本発明ではFe含有量の上限を0.15重量%に規制し
た。 Pb:0.03重量%以下 不純物として混入してくる元素であり、粒界腐食,応力
腐食割れ等の原因となる。そこで、本発明においては、
Pb含有量の上限を0.03重量%に規制した。
Cr: 0.05 to 0.4% by weight Like Mn, it is an effective alloying element which improves the strength and corrosion resistance by making the extruded shape structure into a fibrous structure. Cr is 0.
When the content is 05% by weight or more, a remarkable effect is exhibited. However, if the Cr content exceeds 0.4% by weight, a huge intermetallic compound is generated, and extrudability and corrosion resistance are deteriorated. Fe: 0.15 wt% or less FeAl 3 , Al-, which is an element mixed as an impurity.
A compound such as Fe-Si system is crystallized to deteriorate the corrosion resistance. In this respect, it is necessary to keep the Fe content as low as possible,
In the present invention, the upper limit of the Fe content is regulated to 0.15% by weight. Pb: 0.03 wt% or less An element mixed in as an impurity, which causes intergranular corrosion, stress corrosion cracking, and the like. Therefore, in the present invention,
The upper limit of the Pb content was restricted to 0.03% by weight.

【0010】Ti:0.006〜0.03重量% 鋳造割れ防止のために、結晶粒微細化剤として添加され
る。結晶粒を微細化させる上から、0.006重量%以
上のTi添加が必要である。しかし、0.03重量%を
超える多量のTiを添加すると、巨大なTiAl3 ,T
iB2 を生じ、形材の表面を劣化させる。また、金型損
傷に原因にもなる。 B:0.0001〜0.005重量% Tiと同様に鋳造割れ防止のために、結晶粒微細化剤と
して添加される。結晶粒を微細化させる上から、0.0
001重量%以上のB添加が必要である。しかし、0.
005重量%を超える多量のBを添加すると、巨大なT
iB2 及びAl−B系化合物を形成し、金型損傷や形材
欠陥を生じる。また、Tiとの複合添加により、Ti−
B系化合物を形成して鋳塊の組織を微細化し、DC鋳造
時の割れを防止し、鋳塊生産性を高めると共に押出し材
の品質を向上させる効果を呈する。
Ti: 0.006 to 0.03% by weight It is added as a grain refiner to prevent casting cracks. In order to make the crystal grains finer, it is necessary to add 0.006% by weight or more of Ti. However, if a large amount of Ti exceeding 0.03% by weight is added, huge TiAl 3 , T
It produces iB 2 and deteriorates the surface of the profile. It also causes damage to the mold. B: 0.0001 to 0.005% by weight Like Ti, it is added as a grain refiner to prevent casting cracks. From the point of refining the crystal grains, 0.0
It is necessary to add B in an amount of 001% by weight or more. However, 0.
If a large amount of B exceeding 005 wt% is added, a huge T
forming a iB 2 and Al-B-based compound, resulting in mold damage and frame members defects. In addition, Ti-
It has the effects of forming a B-based compound to refine the structure of the ingot, preventing cracks during DC casting, increasing ingot productivity and improving the quality of the extruded material.

【0011】DC鋳造 DC鋳造法は、ビレット等の鋳塊を製造する方法として
大量生産に適すると共に、水冷鋳型を通過した溶湯が直
接水冷されることにより、鋳塊組織のセルサイズ,結晶
粒,化合物等が微細化され、製品の品質を向上させる。 均質化処理:460〜540℃で1〜10時間加熱 DC鋳造によって得られた鋳塊に晶出している各種金属
間化合物を十分に固溶させ、また微細化させるため、均
質化処理を施す。加熱温度460℃以上及び加熱時間1
時間以上で、Al−Mg系,MgSi2 等の晶出物が完
全に固溶し、均質な組織を持つ材料が得られる。しか
し、540℃を超える加熱温度では、バーニングが粒界
に発生し易くなる。また、鋳造組織は10時間以内で十
分に均質化され、それ以上の長時間をかけて加熱しても
それに見合った効果が得られない。均質化処理されたア
ルミニウム合金は、固溶した元素が析出しないように強
制空冷される。
DC casting The DC casting method is suitable for mass production as a method for producing ingots such as billets, and the molten metal that has passed through a water-cooled mold is directly water-cooled, so that the cell size of the ingot structure, crystal grains, Compounds are miniaturized to improve product quality. Homogenization treatment: heating at 460 to 540 ° C. for 1 to 10 hours A homogenization treatment is performed in order to sufficiently dissolve the intermetallic compounds crystallized in the ingot obtained by DC casting into a solid solution and to refine the ingot. Heating temperature 460 ° C or higher and heating time 1
After a lapse of time, the crystallized substances such as Al-Mg system and MgSi 2 are completely dissolved, and a material having a homogeneous structure is obtained. However, at a heating temperature higher than 540 ° C, burning is likely to occur at grain boundaries. Further, the cast structure is sufficiently homogenized within 10 hours, and even if the casting structure is heated for a longer period of time, the effect corresponding to it cannot be obtained. The homogenized aluminum alloy is forcibly air-cooled so that solid solution elements do not precipitate.

【0012】熱間押出し時の予熱温度:350〜520
℃ 押出し時の鋳塊加熱温度は、低温で押出し可能であれ
ば、低いほど好ましい。しかし、生産性及び押出し中に
化合物を固溶させるため、350℃以上が必要である。
また、局部溶融に起因した割れが押出し中に発生するこ
とを防止するため、520℃以下が好ましい。 熱間押出し後の冷却:冷却速度100℃/分以上で強制
空冷又は水焼入れ 押出された形材は、溶質元素が十分に固溶したままの状
態を常温まで保持させるため、熱間押出し後に強制空冷
又は水焼入れによって冷却速度100℃/分以上で急冷
される。冷却速度が100℃/分以上であると、溶質元
素は析出することなく、常温まで固溶状態に維持され
る。
Preheating temperature during hot extrusion: 350 to 520
The heating temperature of the ingot at the time of extrusion is preferably as low as possible so long as it can be extruded at a low temperature. However, 350 ° C. or higher is required for productivity and solid solution of the compound during extrusion.
Moreover, in order to prevent cracks due to local melting from occurring during extrusion, the temperature is preferably 520 ° C. or lower. Cooling after hot extrusion: Forced air cooling or water quenching at a cooling rate of 100 ° C / min or more The extruded shape is forced after hot extrusion to keep the solute elements in a solid solution state at room temperature. It is rapidly cooled at a cooling rate of 100 ° C./min or more by air cooling or water quenching. When the cooling rate is 100 ° C./minute or more, the solute element does not precipitate and is maintained in a solid solution state at room temperature.

【0013】人工時効処理:140〜200℃で1〜1
2時間加熱 溶質元素が固溶したアルミニウム合金に、140〜20
0℃で1〜12時間加熱する人工時効を施すとき、溶質
元素はMg2 Si,AlCu2 等の金属間化合物として
析出し、材料強度が向上する。金属間化合物は、140
℃以上の加熱温度及び1時間以上の加熱時間で析出が促
進される。しかし、200℃を超える加熱温度では、強
化に有効なMgSi2 ,AlCu2 等の析出物が粗大化
し易く、過時効となって強度低下を引き起こす。また、
12時間を超えて加熱しても、析出硬化による材質改善
効果は飽和し、却って熱消費量が増加する。
Artificial aging treatment: 1-1 at 140-200 ° C
Heating for 2 hours 140 ~ 20 in aluminum alloy with solute element
When artificial aging is performed by heating at 0 ° C. for 1 to 12 hours, solute elements are precipitated as intermetallic compounds such as Mg 2 Si and AlCu 2 and the material strength is improved. The intermetallic compound is 140
Precipitation is promoted at a heating temperature of ℃ or more and a heating time of 1 hour or more. However, at a heating temperature exceeding 200 ° C., precipitates such as MgSi 2 , AlCu 2 and the like, which are effective for strengthening, are likely to be coarsened, and overaging causes strength reduction. Also,
Even if heating is performed for more than 12 hours, the material improvement effect due to precipitation hardening saturates, and rather the heat consumption increases.

【0014】[0014]

【実施例】各種アルミニウム合金をDC鋳造し、直径6
00mmのビレットを得た。各ビレットを分析した結果
を、比較例と共に表1に示す。
[Example] DC casting of various aluminum alloys with a diameter of 6
A billet of 00 mm was obtained. The results of analysis of each billet are shown in Table 1 together with comparative examples.

【0015】[0015]

【表1】 [Table 1]

【0016】個々のビレットに均質化処理を施した後、
強制空冷した。そして、ビレットから押出し用ブランク
を切り出した。各ブランクを予熱した後、コンテナに収
容して熱間で押し出した。このとき、コンテナ及び押出
しダイス共に460℃に保持した。そして、押出し速度
5m/分で図1に示す形材形状に押出し、押出しダイス
の端部に当るプラテン出口で強制空冷した。得られた押
出し形材を、人工時効処理した後、室温まで空冷した。
均質化処理から人工時効処理までの処理条件を表2に示
す。なお、合金番号13の比較例では、6000系合金
に対して通常施されている加熱条件を採用した。また、
押出し形材は、図1に示すように最も薄い部分の肉厚が
2mm,幅が450mmで、幅に比較して肉厚が極めて
小さく、しかも複数のリブが一体化された複雑形状であ
る。このような形状の形材を押し出す場合、通常、押出
し性の良好な6000系等の合金でも、10m/分程度
の高速になると、左右両端にムシレが生じたり、形状が
悪化する。また、従来の5000系合金では、5052
系においても左右両端で割れ及びダイス孔での詰り等の
欠陥が発生し易い。
After subjecting each billet to homogenization treatment,
Forced air cooling. Then, a blank for extrusion was cut out from the billet. After preheating each blank, it was housed in a container and extruded hot. At this time, both the container and the extrusion die were kept at 460 ° C. Then, it was extruded at a extrusion speed of 5 m / min into the shape of the shape shown in FIG. The extruded profile obtained was subjected to artificial aging treatment and then air-cooled to room temperature.
Table 2 shows the processing conditions from the homogenization treatment to the artificial aging treatment. In addition, in the comparative example of alloy number 13, the heating condition usually applied to the 6000 series alloy was adopted. Also,
As shown in FIG. 1, the extruded profile has a thickness of 2 mm and a width of 450 mm at its thinnest portion, which is extremely small compared to the width, and has a complicated shape in which a plurality of ribs are integrated. In the case of extruding a profile having such a shape, even a 6000 series alloy or the like, which has good extrudability, usually has a rustle at the left and right ends or deteriorates in shape at a high speed of about 10 m / min. In addition, in the conventional 5000 series alloy, 5052
Even in the system, defects such as cracks at the left and right ends and clogging in the die holes are likely to occur.

【0017】[0017]

【表2】 [Table 2]

【0018】人工時効処理した各合金材料から試験片を
切り出し、引張り試験に供した。試験結果を示す表3に
みられるように、本発明に従った実施例1〜4の合金
は、非熱処理型の5083合金(合金番号11)に匹敵
する0.2%耐力を示し、構造材として必要とされる強
度を持っていることが判る。
Specimens were cut out from each of the alloy materials that had been subjected to artificial aging treatment and subjected to a tensile test. As can be seen from Table 3 showing the test results, the alloys of Examples 1 to 4 according to the present invention showed 0.2% proof stress comparable to that of the non-heat treated type 5083 alloy (alloy No. 11) and the structural materials. It turns out that it has the required strength.

【0019】[0019]

【表3】 [Table 3]

【0020】次いで、得られた各押出し形材について、
押出し性,溶接性及び耐食性を調査した。調査結果を表
4に示す。押出し性は、押出し速度5m/分で押し出さ
れた押出し形材の表面性状や内部欠陥に基づいて判定
し、欠陥がなく非常に良好な表面性状を呈したものを
◎,欠陥の発生なく押出されたものを○,コーナー部に
クラックが発生したものを三角,押出しができなかった
ものを×として4段階評価した。溶接性は、押出し形材
の切断部を突き合わせてMIG溶接し、溶接部の強度を
測定することにより判定した。そして、T5 強度に対し
て90%以上の溶接強度をもつものを◎,80%以上を
○,70%以上を△として評価した。なお、溶接部の欠
陥発生について、溶接部にマイクロクラックが発生した
ものを△,目視で割れがみられるものを×として評価し
た。耐食性は、酢酸でpH≒3に調整した35%NaC
l水溶液に10分間した後で50分間の乾燥を繰り返す
サイクルを7日間継続し、粒界に発生したピットの平均
深さによって判定した。そして、ピット深さが平均10
0μm以下のものを◎,平均100〜500μmのもの
を○,平均500μm以上のものを×として3段階評価
した。
Next, for each of the obtained extruded shape members,
The extrudability, weldability and corrosion resistance were investigated. The survey results are shown in Table 4. The extrudability was judged based on the surface texture and internal defects of the extruded profile extruded at an extrusion speed of 5 m / min, and those exhibiting a very good surface quality with no defects were extruded without any defects. The samples were evaluated in four grades, the ones with cracks at the corners being triangular, and the ones that could not be extruded with x. The weldability was determined by butt welding the cut portions of the extruded shape member, MIG welding, and measuring the strength of the weld portion. Then, those having a welding strength of 90% or more with respect to the T 5 strength were evaluated as ⊚, 80% or more as ◯, and 70% or more as Δ. The occurrence of defects in the welded part was evaluated as Δ when microcracks were generated in the welded part and as x when visually cracked. Corrosion resistance is 35% NaC adjusted to pH ≈ 3 with acetic acid
A cycle of repeating 10 minutes in an aqueous solution for 10 minutes and then drying for 50 minutes was continued for 7 days, and judged by the average depth of pits generated at grain boundaries. And the pit depth is 10 on average
A grade of 0 μm or less was evaluated as “⊚”, an average of 100 to 500 μm was rated as “◯”, and an average of 500 μm or more was rated as “X”.

【0021】[0021]

【表4】 [Table 4]

【0022】表4から明らかなように、本発明に従った
実施例1〜4の合金は、押出し性,溶接性及び耐食性の
何れも良好な結果を示している。これに対し、合金番号
5,6,9〜13の比較例では、押出し性,溶接性及び
耐食性の何れかが劣っていた。合金番号7,8の比較例
は、押出し性,溶接性及び耐食性が良好であるものの、
表3に示されているように引張り強さ及び耐力が不足し
ており、構造材としての使用に適さないものであった。
As is clear from Table 4, the alloys of Examples 1 to 4 according to the present invention show good results in terms of extrudability, weldability and corrosion resistance. On the other hand, in Comparative Examples of Alloy Nos. 5, 6, 9 to 13, any of the extrudability, weldability and corrosion resistance was inferior. Although the comparative examples of Alloy Nos. 7 and 8 have good extrudability, weldability and corrosion resistance,
As shown in Table 3, the tensile strength and the yield strength were insufficient, and it was not suitable for use as a structural material.

【0023】[0023]

【発明の効果】以上に説明したように、本発明のアルミ
ニウム押出し形材は、Mg含有量を低減した合金系にお
いて合金成分の含有量を相関的に特定すると共に、不純
物として混入してくるFe,Pb等の上限を規制してい
る。これによって、良好な押出し性が確保されると共
に、高強度で溶接性及び耐食性に優れた押出し形材が得
られる。このようにして、本発明によって得られた押出
し形材は、船舶や車両等の構造材,陸上構造物,農耕用
部材等として広範な分野で使用される。
As described above, the extruded aluminum profile of the present invention correlatively specifies the content of alloying components in an alloy system with a reduced Mg content, and Fe which is mixed as an impurity. , Pb, etc. are restricted. As a result, a good extrudability is ensured, and an extruded profile having high strength and excellent weldability and corrosion resistance is obtained. In this way, the extruded profile obtained according to the present invention is used in a wide range of fields as structural materials such as ships and vehicles, land structures, agricultural members, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例で製造した押出し形材の断面形状FIG. 1 is a cross-sectional shape of an extruded shape member manufactured in an example.

【手続補正書】[Procedure amendment]

【提出日】平成7年1月25日[Submission date] January 25, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg:2.1〜2.9重量%,Si:
0.8〜1.5重量%,Cu:0.51〜0.8重量
%,Mn:0.3〜0.8重量%及びCr:0.05〜
0.4重量%を含み、Fe,Pb,Ti及びBをそれぞ
れFe:0.15重量%以下,Pb:0.03重量%以
下,Ti:0.006〜0.03重量%及びB:0.0
001〜0.005重量%に規制した押出し性に優れた
熱処理型薄肉アルミニウム押出し形材。
1. Mg: 2.1 to 2.9% by weight, Si:
0.8-1.5 wt%, Cu: 0.51-0.8 wt%, Mn: 0.3-0.8 wt% and Cr: 0.05-
0.4% by weight, Fe, Pb, Ti and B are respectively Fe: 0.15% by weight or less, Pb: 0.03% by weight or less, Ti: 0.006 to 0.03% by weight and B: 0. .0
A heat-treatable thin-walled aluminum extruded shape material that has an excellent extrudability controlled to 001 to 0.005% by weight.
【請求項2】 請求項1で特定される組成をもつアルミ
ニウム合金溶湯をDC鋳造し、得られた鋳塊を460〜
540℃で1〜10時間加熱する均質化処理を施した
後、強制空冷し、350〜520℃に鋳塊を予熱し、熱
間で押し出し、プラテン出口で冷却速度100℃/分以
上で強制空冷又は水焼入れすることにより溶質元素を固
溶させ、次いで140〜200℃で1〜12時間加熱す
る人工時効処理を施し、室温まで空冷する熱処理型薄肉
アルミニウム押出し形材の製造方法。
2. An aluminum alloy melt having the composition specified in claim 1 is DC-cast, and the obtained ingot is 460-460.
After homogenizing treatment by heating at 540 ° C for 1 to 10 hours, forced air cooling, preheating the ingot to 350 to 520 ° C, extruding hot, forced air cooling at a cooling rate of 100 ° C / min or more at the platen outlet. Alternatively, a method for producing a heat-treatable thin-walled aluminum extruded profile, in which a solute element is solid-dissolved by water quenching, then artificial aging treatment is performed by heating at 140 to 200 ° C. for 1 to 12 hours, and air cooling is performed to room temperature.
JP6332120A 1994-12-12 1994-12-12 Heat-treated thin aluminum extruded profile and method for producing the same Expired - Fee Related JP3006446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6332120A JP3006446B2 (en) 1994-12-12 1994-12-12 Heat-treated thin aluminum extruded profile and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6332120A JP3006446B2 (en) 1994-12-12 1994-12-12 Heat-treated thin aluminum extruded profile and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08165539A true JPH08165539A (en) 1996-06-25
JP3006446B2 JP3006446B2 (en) 2000-02-07

Family

ID=18251381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6332120A Expired - Fee Related JP3006446B2 (en) 1994-12-12 1994-12-12 Heat-treated thin aluminum extruded profile and method for producing the same

Country Status (1)

Country Link
JP (1) JP3006446B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564308A1 (en) * 2004-02-11 2005-08-17 ALUMINIUM RHEINFELDEN GmbH Casting of an aluminium alloy
CN103103370A (en) * 2012-12-11 2013-05-15 龙口市丛林铝材有限公司 Production technology of aluminum alloy sections used for brake pad
CN103706662A (en) * 2013-12-17 2014-04-09 芜湖万润机械有限责任公司 Preparation method of aluminum alloy section for automobiles
CN105369084A (en) * 2015-12-04 2016-03-02 北京工业大学 Homogenizing annealing and extruding deforming process for high-magnesium aluminum alloy with trace amount of Er added

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564308A1 (en) * 2004-02-11 2005-08-17 ALUMINIUM RHEINFELDEN GmbH Casting of an aluminium alloy
CN103103370A (en) * 2012-12-11 2013-05-15 龙口市丛林铝材有限公司 Production technology of aluminum alloy sections used for brake pad
CN103706662A (en) * 2013-12-17 2014-04-09 芜湖万润机械有限责任公司 Preparation method of aluminum alloy section for automobiles
CN105369084A (en) * 2015-12-04 2016-03-02 北京工业大学 Homogenizing annealing and extruding deforming process for high-magnesium aluminum alloy with trace amount of Er added

Also Published As

Publication number Publication date
JP3006446B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
CN108118210B (en) Aluminum alloy and processing method of extruded section thereof
JP4101614B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent resistance to corrosion and stress corrosion cracking
AU725069B2 (en) High strength Al-Mg-Zn-Si alloy for welded structures and brazing application
EP3214191B1 (en) A high-strength al-mg-si aluminium alloy and its manufacturing process
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
JPH11507102A (en) Aluminum or magnesium alloy plate or extruded product
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
EP1078109A1 (en) Formable, high strength aluminium-magnesium alloy material for application in welded structures
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JPS6150141B2 (en)
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JPH10317113A (en) Production of aluminum extruded shape excellent in bendability
JP3006446B2 (en) Heat-treated thin aluminum extruded profile and method for producing the same
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
KR20190030296A (en) Methods of treating aluminum alloy
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor
JP3550943B2 (en) Manufacturing method of 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
KR102563406B1 (en) 2xxx aluminum alloys, and methods for producing the same
WO2023068167A1 (en) Extruded multi-hole tube and production method for same
JP3414436B2 (en) Aluminum alloy for extrusion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees