JPS6150141B2 - - Google Patents

Info

Publication number
JPS6150141B2
JPS6150141B2 JP4903982A JP4903982A JPS6150141B2 JP S6150141 B2 JPS6150141 B2 JP S6150141B2 JP 4903982 A JP4903982 A JP 4903982A JP 4903982 A JP4903982 A JP 4903982A JP S6150141 B2 JPS6150141 B2 JP S6150141B2
Authority
JP
Japan
Prior art keywords
alloy
cooled
temperature
samples
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4903982A
Other languages
Japanese (ja)
Other versions
JPS58167757A (en
Inventor
Tadashi Furuya
Hiroyuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP4903982A priority Critical patent/JPS58167757A/en
Publication of JPS58167757A publication Critical patent/JPS58167757A/en
Publication of JPS6150141B2 publication Critical patent/JPS6150141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は押出加工等に用いる加工用A−Mg
−Si系合金の製造法に関する。 JIS6061合金はT6処理を施こすことによつて、
27Kg/mm2以上の引張強さと25Kg/mm2以上の耐力を
有し、また一応溶接も可能であるので構造材等に
使用される。 しかし乍らこの系の合金は焼入感受性が高く上
記したような高強度を与えるためには熱間加工後
の材料を可成り急速に冷却する必要があり従つて
水冷などの強度の焼入をするため焼入後の材料に
歪を生ずることがあつて好ましくなかつた。 また、6061合金は時効処理によつて粒界に析出
するMg2Siがアノードとして作用するため使用中
に粒界腐食が発生進行し、材料の耐用年数が低下
する欠点や溶接に際してミクロ割れを発生するな
ど溶接構造材としていまひとつ信頼性に乏しい欠
点があつた。 本発明は耐食性、溶接性、焼入性ともにすぐれ
た高強度、高靭性の加工用A−Mg−Si系合金
を提供しようとするものであつて、その要旨とす
るところはSi0.5〜1.0%、Mg0.5〜1.4%、Cu0.30
〜0.55%、Ti0.01〜0.20%、Fe0.15〜0.40%、
Mn0.04〜0.50%、Cr0.04〜0.30%およびZr0.04〜
0.30%(但し、Mg/Si=0.7〜2.0,0.3≦Fe+Cr
+Mn+Zr≦0.7)を含み残部Aおよび不純物か
らなるA−Mg−Si系合金鋳塊を (1) 200℃/hr以下の昇温速度で加熱し、480〜
575℃の温度範囲に1時間以上保持する均質化
処理工程。 (2) 加熱後の鋳塊を460℃以上の温度で加工する
熱間加工工程。 (3) 熱間加工後の材料を80℃/分以上の冷却速度
で冷却する焼入工程。 (4) 焼入工程を経た素材を130〜220℃の温度範囲
に0.5〜15時間保持する人工時効処理工程を含
むA−Si−Mg系合金の製造法である。 このような製造法によつて製造されたA−Si
−Mg系合金材は、中強度合金材としての優れた
特性により、従来の6061合金材での用途は勿論の
こと、例えば高欄や橋梁等の道路資材、鉄道車両
やトラツク或いは海上・陸上コンテナー等の溶接
構造部材としての用途のみならず、従来耐食性の
点から6061合金材の使用に問題があつた用途、例
えば足場板や船舶用資材にも広くその適用が可能
である。 本発明において合金中に含まれるSi,Mgは本
系合金の主合金元素となるもので焼入後、人工時
効処理を施こすことによつてMg2Siとして析出し
合金強度の向上に寄与する。Si0.5%、Mg0.5%以
下ではMg2Siの析出による強度向上の効果が少な
く、またSi1.0%、Mg1.4%を越えると熱間加工
性、特に押出性が低下する。 Mg/Siが2.0以上であると時効成分である
Mg2Siの形成が十分でなく、また0.7以下になる
と粒界に析出するSi量が過大となつて靭性を低下
する。 CuはMgと共存することによつて合金基質の強
化に寄与するほか、時効に際して他の合金元素に
対する核作用を生じ、析出物を微細均一に分散さ
せることによつて最終時効強度が高くなり焼入感
受性の鈍化に寄与し、またTiと共に耐溶接性を
向上する。 0.3%以下ではこれらの効果に乏しく、また
0.55%を越えると耐食性を低下する。 Tiは溶接に際して溶接部のミクロ割れを防止
する効果を有する。なお、Tiの添加効果を促進
させるためにTiと共にTi量の1/20以下のBを
添加してもよい。 Fe,Cr,Mn,Zrはそれぞれ合金中に共存させ
ることによつて合金中のAやSiと結合して、本
発明による製造工程中で微細な分散相として合金
中に析出し再結晶阻止作用をなし、焼入感受性を
減少させ、また合金に高強度と高靭性を附与し、
耐食性、溶接性を向上させる。 それぞれの下限値、即ちFe0.15%、Mn0.04
%、Cr0.04%、Zr0.04%以下では上記した効果が
十分行われず、またそれぞれの上限値、即ち
Fe0.45%、Mn0.50%、Cr0.30%、Zr0.30%以上
では焼入性や熱間加工性が低下する。 また、Fe,Cr,MnおよびZrの合計量が0.3%
以下では再結晶阻止効果が不十分となり、また合
計量が0.7%を超えると焼入感受性が高くなり、
且つ押出性を阻害するようになるので好ましくな
い。 その他不純物として含有される金属元素のうち
Znはその含有量が0.5%を超えると耐食性を阻害
するので好ましくない。 本発明は上記した組成の合金元素を含むA−
Mg−Si系合金の鋳塊を均質化処理、熱間加工、
焼入および人工時効処理等の一連の工程を経るに
際し、各工程における熱的条件を適切に制御する
ことによつて合金の強度、靭性、耐食性、溶接
性、焼入性等を改善するものである。 鋳塊の均質化処理を行うにあたつては鋳塊の昇
温速度を200℃/hr以下、好ましくは150℃/hr以
下に制御し、480〜575℃の温度範囲に少くとも1
時間以上の加熱保持を行わねばならない。 均質化処理における昇温速度を200℃/hr以下
に制御することは鋳塊中に固溶するFe,Mn,Cr
およびZrを均質化処理工程および次の熱間加工工
程で可及的に微細な金属間化合物の分散相として
マトリツクス中に析出させるために必須な条件で
ある。 均質化処理温度を480〜575℃に定めた理由は
480℃以下では造塊工程中で析出したMg−Si−化
合物を十分に再固溶させることができず、また
575℃を超えると析出するFe,Mn,Cr,Zrの化
合物粒子が粗大となり、また分布も粗くなつて再
結晶阻止効果が低下するからである。 均質化処理を終つた鋳塊は押出加工などの常法
による熱間加工を施こすのであるが、加工終了時
の温度を460℃以上に保つ必要がある。460℃以下
では均質化処理に続くMg−Si化合物の再固溶が
不十分となり雨後の熱処理による素材強度が低下
する。 熱間加工後の素材は焼入されるが、本発明合金
においては適切なFe,Mn,CrおよびZr含有量の
規制とこれらの元素の合計量の規制ならびに均質
化処理における昇温速度、均質化処理温度および
熱間加工温度の規制が相俟つて焼入感受性が著し
く改善されているので従来JIS6061合金で行われ
ているような強度の焼入を行わなくてもよく、例
えば100℃/min程度の冷却速度(冷却用フアン
による強制空冷などによつて達成しうる。)でも
つてJIS6061合金材を水冷(約3600℃/minの冷
却速である。)したときとほぼ同等の強度の素材
を人工時効処理後に得ることができる。 人工時効処理はほぼこの系の合金材において通
常行われている処理条件、即ち130〜220℃の温度
範囲で0.5〜20時間加熱保持することによつて行
われる。 なお焼入工程後の素材を人工時効処理を施す前
に冷間加工を加えてもよい。 次にこの発明の実施例を示す。 第1表は実施例に使用した合金の化学組成を示
したものである。
The present invention is a processing A-Mg used for extrusion processing, etc.
-Relating to a method for producing Si-based alloys. JIS6061 alloy is processed by T6 treatment.
It has a tensile strength of 27Kg/mm2 or more and a yield strength of 25Kg/mm2 or more , and can be welded, so it is used for structural materials. However, this type of alloy is highly sensitive to quenching, and in order to provide the above-mentioned high strength, it is necessary to cool the material after hot working fairly rapidly. As a result, distortion may occur in the material after quenching, which is undesirable. In addition, in 6061 alloy, Mg 2 Si that precipitates at grain boundaries during aging acts as an anode, so intergranular corrosion occurs and progresses during use, reducing the service life of the material and causing microcracks during welding. As a welded structural material, it had the drawback of being unreliable. The present invention aims to provide a high-strength, high-toughness A-Mg-Si alloy for processing with excellent corrosion resistance, weldability, and hardenability. %, Mg0.5~1.4%, Cu0.30
~0.55%, Ti0.01~0.20%, Fe0.15~0.40%,
Mn0.04~0.50%, Cr0.04~0.30% and Zr0.04~
0.30% (However, Mg/Si=0.7~2.0, 0.3≦Fe+Cr
+Mn+Zr≦0.7) and the balance A and impurities.(1) Heat the ingot of A-Mg-Si alloy at a temperature increase rate of 200℃/hr or less to 480℃~
A homogenization process that is maintained at a temperature range of 575℃ for over 1 hour. (2) A hot working process in which heated ingots are processed at a temperature of 460°C or higher. (3) A quenching process in which the material after hot working is cooled at a cooling rate of 80°C/min or more. (4) A method for producing an A-Si-Mg alloy that includes an artificial aging treatment process in which the material that has undergone the quenching process is held at a temperature range of 130 to 220°C for 0.5 to 15 hours. A-Si manufactured by such a manufacturing method
- Due to its excellent properties as a medium-strength alloy, Mg alloy materials can be used not only for conventional 6061 alloy materials, but also for road materials such as handrails and bridges, railway vehicles, trucks, sea and land containers, etc. It can be widely applied not only to welded structural members, but also to applications where the use of 6061 alloy materials has traditionally had problems due to corrosion resistance, such as scaffolding boards and ship materials. In the present invention, Si and Mg contained in the alloy are the main alloying elements of this alloy, and after quenching and artificial aging treatment, they precipitate as Mg 2 Si and contribute to improving the alloy strength. . If Si is less than 0.5% and Mg is less than 0.5%, the effect of improving strength due to the precipitation of Mg 2 Si is small, and if Si is more than 1.0% and Mg is more than 1.4%, hot workability, especially extrudability, decreases. If Mg/Si is 2.0 or more, it is an aging component.
If the formation of Mg 2 Si is not sufficient and is less than 0.7, the amount of Si precipitated at the grain boundaries will be excessive and the toughness will decrease. Cu not only contributes to strengthening the alloy matrix by coexisting with Mg, but also causes a nucleation effect on other alloying elements during aging, and by finely and uniformly dispersing precipitates, the final aging strength increases and the sintering strength increases. It contributes to reducing the susceptibility to welding, and together with Ti, improves welding resistance. Below 0.3%, these effects are poor, and
If it exceeds 0.55%, corrosion resistance will decrease. Ti has the effect of preventing microcracks in the welded part during welding. In addition, in order to promote the effect of adding Ti, B may be added together with Ti in an amount of 1/20 or less of the amount of Ti. By allowing Fe, Cr, Mn, and Zr to coexist in the alloy, they combine with A and Si in the alloy, and precipitate in the alloy as fine dispersed phases during the manufacturing process of the present invention, which acts to inhibit recrystallization. , reduces quenching sensitivity, and imparts high strength and toughness to the alloy.
Improves corrosion resistance and weldability. Each lower limit value, i.e. Fe0.15%, Mn0.04
%, Cr0.04%, Zr0.04% or less, the above effects will not be sufficiently achieved, and the respective upper limit values, i.e.
If Fe0.45%, Mn0.50%, Cr0.30%, Zr0.30% or more, hardenability and hot workability decrease. Also, the total amount of Fe, Cr, Mn and Zr is 0.3%
If the total amount is less than 0.7%, the recrystallization prevention effect will be insufficient, and if the total amount exceeds 0.7%, quenching sensitivity will increase.
Moreover, this is not preferable because it impairs extrudability. Among other metallic elements contained as impurities
Zn content exceeding 0.5% is undesirable because it impairs corrosion resistance. The present invention provides A-
Mg-Si alloy ingots are homogenized, hot worked,
Through a series of processes such as quenching and artificial aging treatment, the strength, toughness, corrosion resistance, weldability, hardenability, etc. of the alloy are improved by appropriately controlling the thermal conditions in each process. be. When homogenizing the ingot, the temperature increase rate of the ingot should be controlled to 200℃/hr or less, preferably 150℃/hr or less, and at least 1 hour in the temperature range of 480 to 575℃.
The heating must be maintained for a period of time or longer. Controlling the temperature increase rate in the homogenization treatment to 200℃/hr or less is important to reduce Fe, Mn, and Cr dissolved in solid solution in the ingot.
This is an essential condition for precipitating Zr and Zr in the matrix as a dispersed phase of intermetallic compounds as fine as possible in the homogenization process and the subsequent hot working process. The reason why the homogenization temperature was set at 480 to 575℃ is
At temperatures below 480℃, the Mg-Si-compounds precipitated during the agglomeration process cannot be sufficiently re-dissolved, and
This is because when the temperature exceeds 575°C, the precipitated Fe, Mn, Cr, and Zr compound particles become coarse and their distribution becomes coarse, reducing the recrystallization inhibiting effect. After homogenization, the ingot is subjected to hot working using conventional methods such as extrusion, but it is necessary to maintain the temperature at 460°C or higher at the end of the working. If the temperature is below 460°C, the Mg-Si compound will not be sufficiently re-dissolved following the homogenization treatment, and the strength of the material will decrease due to the heat treatment after rain. The material after hot working is quenched, but in the alloy of the present invention, appropriate regulation of Fe, Mn, Cr, and Zr contents, regulation of the total amount of these elements, temperature increase rate in homogenization treatment, and homogeneity are required. The quenching sensitivity is significantly improved due to the regulation of heat treatment temperature and hot working temperature, so there is no need to perform hard quenching as is conventionally done with JIS6061 alloys, for example, at 100°C/min. The material has almost the same strength as a JIS 6061 alloy material water-cooled (cooling rate of about 3600℃/min) at a cooling rate of It can be obtained after artificial aging treatment. The artificial aging treatment is carried out under the treatment conditions commonly used for alloy materials of this type, that is, by heating and holding in a temperature range of 130 to 220° C. for 0.5 to 20 hours. Note that cold working may be applied to the material after the quenching process before subjecting it to artificial aging treatment. Next, examples of this invention will be shown. Table 1 shows the chemical composition of the alloys used in the examples.

【表】 実施例 1 水冷焼入試料の機械的性質 第1表に示す本発明による合金ビレツト(試料
No.1〜3)を100℃/hrの昇温速度で540℃に加
熱昇温し、同温度で4時間の均質化処理を行つた
後、520℃で押出加工し、直ちに水冷(冷却速度
約3500℃/min)による焼入を行つた。また、
JIS6061合金ビレツト(試料No.4)について同様
の条件で均質化処理を施した後、500℃で押出加
工し、同様の条件で水冷による焼入を行つた。 次いでこれらの試料を180℃に4時間の人工時
効処理を施し、試料の機械的性質を測定した。結
果を第2表に示す。
[Table] Example 1 Mechanical properties of water-cooled quenched sample Alloy billet (sample) according to the present invention shown in Table 1
Nos. 1 to 3) were heated to 540°C at a heating rate of 100°C/hr, homogenized at the same temperature for 4 hours, extruded at 520°C, and immediately cooled with water (cooling rate Hardening was performed at approximately 3500°C/min). Also,
A JIS6061 alloy billet (sample No. 4) was homogenized under the same conditions, extruded at 500°C, and quenched by water cooling under the same conditions. These samples were then subjected to artificial aging treatment at 180°C for 4 hours, and the mechanical properties of the samples were measured. The results are shown in Table 2.

【表】 実施例 2 第1表に示す合金ビレツト(試料番号No.1〜
4)を100℃/hrの昇温速度で540℃に加熱昇温
し、同温度で4時間の均熱処理を行つた後、500
〜510℃で押出加工し、直ちにフアンによる強制
空冷(冷却速度110〜120℃/min)による焼入を
行つた。 次いでこれらの試料を180℃に4時間の人工時
効処理を施し、試料の機械的性質を測定した。第
3表にその結果を示す。
[Table] Example 2 Alloy billets shown in Table 1 (sample numbers No. 1~
4) was heated to 540℃ at a heating rate of 100℃/hr, soaked at the same temperature for 4 hours, and heated to 500℃.
Extrusion processing was performed at ~510°C, and immediately quenching was performed by forced air cooling using a fan (cooling rate: 110-120°C/min). These samples were then subjected to artificial aging treatment at 180°C for 4 hours, and the mechanical properties of the samples were measured. Table 3 shows the results.

【表】 実施例 3 (衝撃試験) 実施例1および2と同様の条件で作成した本発
明による試料(試料No.1およびNo.2)とJIS6061
合金試料(試料No.4)についてシヤルピー衝撃
値を測定した。試験結果を第4表に示す。なお試
験片形状は10mm×10mm×55mmと板片にVノツチを
付したものである。
[Table] Example 3 (Impact test) Samples according to the present invention (Samples No. 1 and No. 2) prepared under the same conditions as Examples 1 and 2 and JIS6061
The Charpy impact value of the alloy sample (Sample No. 4) was measured. The test results are shown in Table 4. The shape of the test piece was 10 mm x 10 mm x 55 mm, with a V-notch attached to the plate.

【表】 上記実施例1〜2に示された様に従来の
JIS6061合金より作成された試料は空冷によるも
のは水冷によるものに較べ著しく強度が低下して
いるのに対し、本発明合金より作成された試料に
おいては水冷によるものと空冷によるものと強度
がほぼ同等であり、このことは本発明によるとき
は従来のものに較べ焼入感受性が低いこと、言い
換えれば焼入性にすぐれていることが判る。 また、実施例3から本発明によつて得られた試
料(試料No.1およびNo.2)は従来のJIS6061合金
から得られた試料(試料No.4)に較べ水冷試
料、空冷試料共に耐衝撃性がすぐれていることが
判る。 実施例 4 (溶接性試験) 実施例2と同様条件で作成した本発明による試
料(No.2−空冷)と実施例1と同様条件で作成
したJIS6061合金による試料(No.4−水冷)試料
形状4mm×100mm×1000mm)をそれぞれ両面1パ
スの突合せ溶液(溶接条件250A,21V、溶接速度
500mm/min、溶加材A5356)を行ないビードを残
したものとビードを除去したものについて溶接部
の機械的性質およびミクロ割れの有無について調
べた。 結果を第5表に示す。機械的性質は繰返し5個
の平均値である。
[Table] As shown in Examples 1 and 2 above, the conventional
For samples made from JIS6061 alloy, air-cooled samples have significantly lower strength than water-cooled samples, whereas samples made from the alloy of the present invention have almost the same strength as water-cooled samples and air-cooled samples. This shows that the steel according to the present invention has lower quenching sensitivity than the conventional one, in other words, it has excellent hardenability. In addition, the samples obtained from Example 3 according to the present invention (Samples No. 1 and No. 2) were more durable than the samples obtained from the conventional JIS6061 alloy (Sample No. 4) for both the water-cooled sample and the air-cooled sample. It can be seen that the impact resistance is excellent. Example 4 (Weldability test) A sample according to the present invention (No. 2 - air-cooled) prepared under the same conditions as in Example 2, and a sample made of JIS6061 alloy (No. 4 - water-cooled) prepared under the same conditions as in Example 1. Shape: 4mm x 100mm x 1000mm) with one pass on both sides of the butt solution (welding conditions: 250A, 21V, welding speed)
500mm/min, filler metal A5356), and the mechanical properties of the welds and the presence or absence of micro-cracking were investigated for those with beads left and those from which the beads were removed. The results are shown in Table 5. Mechanical properties are the average of five replicates.

【表】 第5表より本発明による試料は空冷によるもの
であつてもJIS6061合金より作られた水冷試料と
同等の溶接強度を示し、且つミクロ割れが全くな
いことが判る。 実施例 6 耐食性試験 実施例1および実施例2と同様条件で作成した
本発明による試料(No.3−水冷およびNo.3−空
冷)と実施例1と同様条件で作成したJIS6061合
金より作られた試料(No.4−水冷)とを用い5
%食塩水に交互浸漬する腐食促進試験を1000時間
継続し各試料における内部方向への粒界腐食の進
行状況を調べた。 結果を第6表に示す。
[Table] From Table 5, it can be seen that even when the samples according to the present invention were air-cooled, they exhibited a welding strength equivalent to that of the water-cooled samples made from JIS6061 alloy, and there were no microcracks at all. Example 6 Corrosion resistance test Samples according to the present invention (No. 3 - water cooling and No. 3 - air cooling) prepared under the same conditions as Example 1 and Example 2 and JIS6061 alloy prepared under the same conditions as Example 1. 5 using a sample (No. 4 - water-cooled).
A corrosion acceleration test in which the specimens were alternately immersed in saline solution was continued for 1000 hours, and the progress of intergranular corrosion inward in each sample was investigated. The results are shown in Table 6.

【表】 第6表の結果より本発明によるときは空冷条件
であつても従来のものに較べ粒界腐食の進行が遅
く、殊に両者が水冷条件のものについては進行速
度が1/2程度になること、即ち耐食性が著しくす
ぐれていることが判る。
[Table] From the results in Table 6, the progress of intergranular corrosion is slower in the present invention than in the conventional method even under air-cooled conditions, and especially when both are under water-cooled conditions, the progress rate is about 1/2. It can be seen that the corrosion resistance is extremely excellent.

Claims (1)

【特許請求の範囲】 1 Si0.5〜1.0%、Mg0.5〜1.4%、Cu0.30〜0.55
%、Ti0.01〜0.20%、Fe0.15〜0.40%、Mn0.04〜
0.50%、Cr0.04〜0.30%およびZr0.04〜0.30%
(但し、Mg/Si=0.7〜2.0,0.3≦Fe+Cr+Mn+
Zr≦0.7)を含み残部Aおよび不純物からなる
A−Mg−Si系合金鋳塊を (1) 200℃/hr以下の昇温速度で加熱し、480〜
575℃の温度範囲に1時間以上保持する均質化
処理工程。 (2) 加熱後の鋳塊を460℃以上の温度で加工する
熱間加工工程。 (3) 熱間加工後の材料を80℃/分以上の冷却速度
で冷却する焼入工程。 (4) 冷却後の材料を130〜220℃の温度範囲に0.5
〜15時間保持する人工時効処理工程を含む耐食
性、溶接性および焼入性のすぐれた加工用A
−Mg−Si系合金の製造法。
[Claims] 1 Si0.5-1.0%, Mg0.5-1.4%, Cu0.30-0.55
%, Ti0.01~0.20%, Fe0.15~0.40%, Mn0.04~
0.50%, Cr0.04~0.30% and Zr0.04~0.30%
(However, Mg/Si=0.7~2.0, 0.3≦Fe+Cr+Mn+
(1) An A-Mg-Si alloy ingot consisting of Zr≦0.7) and the balance A and impurities is heated at a temperature increase rate of 200℃/hr or less to 480℃
A homogenization process that is maintained at a temperature range of 575℃ for over 1 hour. (2) A hot working process in which heated ingots are processed at a temperature of 460°C or higher. (3) A quenching process in which the material after hot working is cooled at a cooling rate of 80°C/min or more. (4) After cooling, the material is heated to a temperature range of 130 to 220℃ by 0.5
A for processing with excellent corrosion resistance, weldability, and hardenability, including an artificial aging treatment process that lasts for ~15 hours.
-Production method of Mg-Si alloy.
JP4903982A 1982-03-29 1982-03-29 Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability Granted JPS58167757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4903982A JPS58167757A (en) 1982-03-29 1982-03-29 Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4903982A JPS58167757A (en) 1982-03-29 1982-03-29 Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability

Publications (2)

Publication Number Publication Date
JPS58167757A JPS58167757A (en) 1983-10-04
JPS6150141B2 true JPS6150141B2 (en) 1986-11-01

Family

ID=12819938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4903982A Granted JPS58167757A (en) 1982-03-29 1982-03-29 Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability

Country Status (1)

Country Link
JP (1) JPS58167757A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160786U (en) * 1984-09-22 1986-04-24
JPS62287033A (en) * 1986-06-06 1987-12-12 Kobe Steel Ltd Aluminum alloy for extrusion having superior hardenability
JPS6379942A (en) * 1986-09-22 1988-04-09 Sumitomo Light Metal Ind Ltd Manufacture of aluminum-alloy pipe for piping excellent in strength, workability, and corrosion resistance
JPS63230843A (en) * 1987-03-19 1988-09-27 Nippon Light Metal Co Ltd Structural al-mg-si-cu alloy excellent in toughness and strength
JPH04314840A (en) * 1991-04-12 1992-11-06 Furukawa Alum Co Ltd Aluminum alloy sheet excellent in formability and corrosion resistance
JP2697400B2 (en) * 1991-08-28 1998-01-14 日本軽金属株式会社 Aluminum alloy for forging
JP3236480B2 (en) 1995-08-11 2001-12-10 トヨタ自動車株式会社 High strength aluminum alloy for easy porthole extrusion
JP5166702B2 (en) * 2006-03-30 2013-03-21 トヨタ自動車株式会社 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP5329746B2 (en) * 2006-07-13 2013-10-30 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
WO2011122958A1 (en) * 2010-03-30 2011-10-06 Norsk Hydro Asa High temperature stable aluminium alloy
WO2019139723A1 (en) 2018-01-12 2019-07-18 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
CN109487132A (en) * 2018-12-20 2019-03-19 广西柳州银海铝业股份有限公司 Power battery shell aluminium alloy strips and its manufacturing method

Also Published As

Publication number Publication date
JPS58167757A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
KR100192936B1 (en) Ultra high strength aluminum-base alloys
JP3194742B2 (en) Improved lithium aluminum alloy system
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPS6150141B2 (en)
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2001115226A (en) Malleable aluminum alloy
US4113472A (en) High strength aluminum extrusion alloy
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP2001011559A (en) High strength aluminum alloy extruded material excellent in corrosion resistance and its production
US6726785B2 (en) Aluminum alloy sheet material and method for producing the same
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JP2020164946A (en) Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH0469220B2 (en)
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
KR102434921B1 (en) High-strength corrosion-resistant aluminum alloy and method for manufacturing same
JP3006446B2 (en) Heat-treated thin aluminum extruded profile and method for producing the same
JPS5831054A (en) Aluminum alloy having superior strength and corrosion resistance and its manufacture
JPS62297433A (en) Structural al alloy excellent in hardenability