JPS63230843A - Structural al-mg-si-cu alloy excellent in toughness and strength - Google Patents
Structural al-mg-si-cu alloy excellent in toughness and strengthInfo
- Publication number
- JPS63230843A JPS63230843A JP6269287A JP6269287A JPS63230843A JP S63230843 A JPS63230843 A JP S63230843A JP 6269287 A JP6269287 A JP 6269287A JP 6269287 A JP6269287 A JP 6269287A JP S63230843 A JPS63230843 A JP S63230843A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- strength
- alloy
- structural
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- 229910018134 Al-Mg Inorganic materials 0.000 claims description 3
- 229910018467 Al—Mg Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910018594 Si-Cu Inorganic materials 0.000 claims 1
- 229910008465 Si—Cu Inorganic materials 0.000 claims 1
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910017028 MnSi Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910019086 Mg-Cu Inorganic materials 0.000 description 2
- 229910007880 ZrAl Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 1
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- -1 Fe50.3% Substances 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910019094 Mg-S Inorganic materials 0.000 description 1
- 229910019397 Mg—S Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
「発明の目的」
本発明は靭性および強度に優れた構造用A7!−Mg−
5t−Co系合金に係り、構造物として重要な靭性およ
び強度に優れたアルミニウム合金を提供しようとするも
のである。DETAILED DESCRIPTION OF THE INVENTION ``Object of the Invention'' The present invention provides a structural A7 with excellent toughness and strength! -Mg-
The present invention relates to a 5t-Co alloy and aims to provide an aluminum alloy with excellent toughness and strength, which are important for structures.
(産業上の利用分野)
自動車、鉄道車輌、オートバイ、自転車、航空機などの
機器用部材、その他の機械部品等に用いられる合金。(Industrial Application Fields) Alloys used for equipment components such as automobiles, railway vehicles, motorcycles, bicycles, and aircraft, and other mechanical parts.
(従来の技術)
構造用アルミニウム合金として従来においては、耐力4
0kg/ms”以上を有するAl2−Cu系合金および
Al2−Zn−Mg−Cu系合金、耐力30〜35kg
/龍2を有するAl −Zn−Mg系合金、耐力25〜
35kg/鶴2を有するAN −Mg−3t系合金およ
び耐力15〜20kg/m”のA1−Mg系合金などが
知られている。(Conventional technology) Conventionally, structural aluminum alloys have a yield strength of 4
Al2-Cu alloy and Al2-Zn-Mg-Cu alloy with yield strength of 30 to 35 kg
/Al-Zn-Mg alloy with dragon 2, yield strength 25~
An AN-Mg-3t alloy having a yield strength of 35 kg/Tsuru2 and an A1-Mg alloy having a yield strength of 15 to 20 kg/m'' are known.
(発明が解決しようとする問題点)
Al−Cu系合金およびAnt −Zn−Mg−Cu系
合金は強度的にアルミニウム合金中で最も高く、航空機
などを中心に使用されているが、耐食性や押出し加工性
に劣る。(Problems to be Solved by the Invention) Al-Cu alloys and Ant-Zn-Mg-Cu alloys have the highest strength among aluminum alloys and are mainly used in aircraft, but they have poor corrosion resistance and extrusion resistance. Poor workability.
八l −Zn Mg系合金は、押出し加工性および溶
接性に優れ、また耐食性においても前記Al−Mg系合
金やA l −Zn−Mg−Cu系合金より良好である
から鉄道車輌などを中心に使用されているが、強度的に
は不充分である。The 8l-Zn-Mg alloy has excellent extrusion workability and weldability, and is also better in corrosion resistance than the Al-Mg-based alloy and the Al-Zn-Mg-Cu-based alloy, so it is mainly used in railway vehicles. Although it is used, its strength is insufficient.
Al−Mg系合金は優れた溶接性および耐食性を有する
としても強度が他の合金系に比し大幅に劣り、又押出し
加工性においても劣っている。Although Al-Mg alloys have excellent weldability and corrosion resistance, their strength is significantly inferior to other alloy systems, and their extrusion workability is also inferior.
これらに対し、へβ−Mg−5i系合金は良好な耐食性
と優れた押出し加工性を有しており、特に耐力25kg
/mm”級の6061合金は広く構造部材として利用さ
れているが強度的に不充分であり、この強度を30〜3
5 kg/ 1111”まで増加した6066合金、6
070合金、6082合金などは靭性に劣り、構造材と
しての信頌性に欠けるのでその用途が限定されている。On the other hand, the β-Mg-5i alloy has good corrosion resistance and excellent extrusion processability, especially with a yield strength of 25 kg.
/mm'' grade 6061 alloy is widely used as structural members, but its strength is insufficient, and its strength is 30 to 3
6066 alloy increased to 5 kg/1111”, 6
070 alloy, 6082 alloy, etc. have poor toughness and lack credibility as structural materials, so their uses are limited.
即ち、近年においては機械部品や構造物の軽量化要求が
増大し、このようなアルミニウム合金の利用も増加し3
0kg/Im2以上、特に35kg/f12以上の耐力
と共に高靭性を具備したものに対する要望は大きいが、
斯様な要請に応じ得るアルミニウム系合金材は未だ実用
化されるに到ってぃない。In other words, in recent years there has been an increase in the demand for lighter weight machine parts and structures, and the use of such aluminum alloys has also increased.
There is a strong demand for products with high toughness and yield strength of 0 kg/Im2 or more, especially 35 kg/f12 or more.
Aluminum alloy materials that can meet such demands have not yet been put into practical use.
「発明の構成」
(問題点を解決するための手段)
Mg : 0.60〜0.9wt%、St : 0.5
o〜o、awt%、Cu : 0.40〜0.8wt
%、Mn : 0.20 No、 6wt%の範囲内で
、しかも5.2×Si%≦3×Mg%+1.73×Mn
%+0.5%なる条件を満足する量のMg。"Structure of the invention" (Means for solving the problem) Mg: 0.60-0.9wt%, St: 0.5
o~o, awt%, Cu: 0.40~0.8wt
%, Mn: 0.20 No, within the range of 6wt%, and 5.2×Si%≦3×Mg%+1.73×Mn
%+0.5% of Mg.
Si、 MnおよびCuを含有し、更にZr : 0.
05〜0.25れ%、V:0.05〜0.20訂%の範
囲内で、しかも0.05%≦Zr%+ν%≦0.20%
なる条件を満足する量のZr、 Vの何れが1種または
両者を含有し、残部がAlおよび不純物より成ることを
特徴とする靭性および強度に優れた構造用^II −M
g−St−Cu系合金。Contains Si, Mn and Cu, and further contains Zr: 0.
05-0.25%, V: within the range of 0.05-0.20%, and 0.05%≦Zr%+ν%≦0.20%
A structural material with excellent toughness and strength, characterized by containing one or both of Zr and V in an amount that satisfies the following conditions, and the remainder consisting of Al and impurities.
g-St-Cu alloy.
(作用)
Mg、 Si、 Cuを下限以上で、しかも過剰Stが
生じない量比である5、2×Si%≦3×Mg%+1.
73×Mn%+0.5%で含有させることにより、溶体
化処理後の時効によってMgzSiの微細粒子を均一に
分散した状態に析出させ、析出硬化によって大きな強度
を与える。又これらを上限以下とすることによって靭性
の劣化を回避する。(Function) Mg, Si, and Cu are at least the lower limit and the amount ratio is 5, where excess St does not occur. 2×Si%≦3×Mg%+1.
By containing 73×Mn%+0.5%, MgzSi fine particles are precipitated in a uniformly dispersed state by aging after solution treatment, and large strength is imparted by precipitation hardening. Also, by keeping these below the upper limit, deterioration of toughness is avoided.
Mnを下限以上に含有させることにより均質化処理によ
ってA I MnSi相粒子を析出させ靭性向上を図る
。又Mnが上限以下とされることにより焼入れ感受性の
増大と、靭性の低下を回避する。By containing Mn above the lower limit, A I MnSi phase particles are precipitated by homogenization treatment to improve toughness. Furthermore, by keeping Mn below the upper limit, an increase in quenching sensitivity and a decrease in toughness are avoided.
Zr5Vの何れか1種または両者を下限以上に含有させ
ることによって熱間加工による未再結晶組織を安定化さ
せ、靭性を向上させる。一方その上限以下(両者を含有
させる場合は0.20%が上限)とすることにより靭性
の低下を回避する。By containing one or both of Zr5V in an amount above the lower limit, the unrecrystallized structure due to hot working is stabilized and toughness is improved. On the other hand, a decrease in toughness can be avoided by keeping the amount below the upper limit (0.20% is the upper limit when both are contained).
これらの技術的関係について更にれ%(以下単に%とい
う)により説明すると、MgはStとMg、st相を形
成し、溶体化処理後の時効によってG、P、ゾーンや中
間相として析出し、強度を向上させる。To further explain these technical relationships in terms of % (hereinafter simply referred to as %), Mg forms a st phase with St, and precipitates as G, P, zones and intermediate phases by aging after solution treatment. Improve strength.
このMgが、0.60%未満では充分な強度が得られず
、一方0.9%を超えると熱間加工性を低下させるので
、0.60〜0.9%の範囲とする。Siは、MgとM
gzSi相を形成し、上述のように強度を向上させるが
、0.50%未満では充分な強度が得られず、一方0.
8%を超えるか、0.8%以内でも5.2×Si%≦3
’xMg%+1.73×Mn%+0.5%なる関係を満
足しないと靭性が劣化するので0.50〜0.8%とす
る。Cuは、MgzSi相を微細且つ均一に析出させ、
強度と靭性を向上させる。0.40%以下ではその効果
が充分でなく、一方0.8%を越えると熱間加工性の劣
化と耐食性の低下を来す。従って0.40〜0.8%と
する。If this Mg is less than 0.60%, sufficient strength cannot be obtained, while if it exceeds 0.9%, hot workability is reduced, so the range is set from 0.60 to 0.9%. Si is Mg and M
gzSi phase is formed and the strength is improved as mentioned above, but if it is less than 0.50%, sufficient strength cannot be obtained;
Over 8% or even within 0.8%, 5.2×Si%≦3
If the relationship: 'xMg%+1.73xMn%+0.5% is not satisfied, the toughness will deteriorate, so the content is set at 0.50 to 0.8%. Cu precipitates the MgzSi phase finely and uniformly,
Improve strength and toughness. If it is less than 0.40%, the effect is not sufficient, while if it exceeds 0.8%, hot workability deteriorates and corrosion resistance decreases. Therefore, it is set at 0.40 to 0.8%.
Mnは、A I MnSi相として主に均質化処理時に
析出し、靭性を向上するもので、0.20%以下ではそ
の効果が充分でなく、一方0.6%を越えると焼入れ感
受性が増加し、強度と靭性を低下させる。Mn mainly precipitates as an A I MnSi phase during homogenization treatment and improves toughness, and if it is less than 0.20%, this effect is not sufficient, while if it exceeds 0.6%, quenching sensitivity increases. , reducing strength and toughness.
又鋳造性に生成する晶出物粒子が増加し、靭性の低下を
来すので0.20〜0.6%の範囲内とする。In addition, the amount of crystallized particles generated during casting increases, resulting in a decrease in toughness, so the content should be within the range of 0.20 to 0.6%.
ZrおよびVは、主として均質化処理時にlrA l
3およびVAβ1゜として析出し、熱間加工組織を安定
化して、靭性と強度の向上に効果がある。Zr and V are mainly used in lrA l during the homogenization process.
3 and VAβ1°, which stabilizes the hot-worked structure and is effective in improving toughness and strength.
この場合にZr単独であると、0.05%未満ではその
効果が充分でなく、一方0.25%を越えると鋳造時に
粗大なZrA l 2相が形成されて靭性を劣化させる
。従って0.05〜0.25%の範囲とすることが必要
である。In this case, if Zr is used alone, its effect will not be sufficient if it is less than 0.05%, while if it exceeds 0.25%, a coarse ZrAl 2 phase will be formed during casting and the toughness will deteriorate. Therefore, it is necessary to set it in the range of 0.05 to 0.25%.
又V単独であると、0.05%以下では上記したような
効果が不充分であり、一方0.20%を超えると鋳造時
に粗大なVAN、。相が形成されて靭性を劣化させるの
で、0.05〜0.20%の範囲とする。Further, when V alone is used in an amount of less than 0.05%, the above-mentioned effects are insufficient, and on the other hand, if it exceeds 0.20%, VAN becomes coarse during casting. Since phases are formed and the toughness is deteriorated, the content is set in the range of 0.05 to 0.20%.
更にZrとVが同時に添加する場合においても、両者の
量の和が0.05%以下ではその効果が充分でない。一
方0,20%を超えると鋳造時に粗大なZrA l!
:lおよびVANI。相が形成されて靭性を劣化させる
。従って0.05≦Zr%+V%≦0.20%の範囲と
する。Further, even when Zr and V are added at the same time, the effect is not sufficient if the sum of the amounts of both is less than 0.05%. On the other hand, if it exceeds 0.20%, coarse ZrAl!
:l and VANI. Phases are formed and deteriorate toughness. Therefore, the range is 0.05≦Zr%+V%≦0.20%.
なお、本発明によるものは上記成分以外に、鋳造割れ防
止および結晶粒微細化のために一般的に添加されている
TI%Bの何れか一方または双方を通常用いられている
範囲内で含有させてもよい。In addition, in addition to the above-mentioned components, the product according to the present invention contains one or both of TI%B, which is generally added for prevention of casting cracks and grain refinement, within the range normally used. It's okay.
その効果は一般的に添加されている場合と同様に得られ
るが、Tiが0.15%を超え、あるいはBが0.01
%を超えるとTi Aj! 3、TiBz、AJB2な
どの粗大粒子を生成して靭性を低下させるので、Tiは
0.15%、Bは0.01%を上限とする。The effect is obtained in the same way as when Ti is added generally, but if Ti exceeds 0.15% or B is 0.01%
If it exceeds %, Ti Aj! 3. Since coarse particles such as TiBz and AJB2 are generated and the toughness is reduced, the upper limit of Ti is 0.15% and the upper limit of B is 0.01%.
また、不純物として、Fe50.3%、Zn≦0.3%
の範囲であれば、本発明の特性を劣化させないので許容
される。然しCrは焼入れ感受性を著しく増大させ、強
度および靭性を低下させるので、Cr<0.05%とす
ることが望ましい。In addition, as impurities, Fe50.3%, Zn≦0.3%
If it is within this range, it is permissible because it does not deteriorate the characteristics of the present invention. However, since Cr significantly increases quenching sensitivity and reduces strength and toughness, it is desirable that Cr<0.05%.
(実施例)
本発明による合金の製造は、常法により適切に行い得る
。即ち通常のアルミニウム合金と同様に溶解され、前記
した結晶粒微細化剤としてのTi、Bなどが溶解炉中、
または鋳造機への溶湯移送樋中へ連続的に添加され、次
いで溶湯中の酸化物などの非金属介在物を除去すべく濾
過され、最後に半連続鋳造法によって鋳塊とされる。次
に該鋳塊は均質化処理され、この均質化処理の目的は鋳
造時に偏析したMg、 sl、 Cuなとの均質化と、
過飽和に固溶したMn5V % Zrなどを微細なA
I MnSi、VAl、01ZrAJsとして均一な分
布状態で析出させることである。(Example) The alloy according to the present invention can be suitably produced by conventional methods. That is, it is melted in the same way as a normal aluminum alloy, and the above-mentioned grain refiners such as Ti and B are melted in a melting furnace.
Alternatively, it is continuously added to the molten metal transfer trough to the casting machine, then filtered to remove nonmetallic inclusions such as oxides in the molten metal, and finally made into an ingot by a semi-continuous casting method. Next, the ingot is homogenized, and the purpose of this homogenization treatment is to homogenize Mg, SL, Cu, etc. that were segregated during casting,
Supersaturated solid solution of Mn5V% Zr, etc.
The purpose is to precipitate I MnSi, VAl, and 01ZrAJs in a uniformly distributed state.
この合金に対しては、昇温速度が200℃/Hr以下で
加熱し、540〜570℃で2〜24hr保持する条件
を採用することが好ましい。次いで熱間加工および冷間
加工の一方または双方が行われ、熱間加工が押出し加工
の場合は520〜550℃の温度で行うことが望ましい
。加工後の溶体化処理は540〜570℃で、0.5〜
2hrが適当である。更に150℃/min以上の冷却
速度で焼入れすることが好ましく、最後に150〜19
0℃で2〜24hrの人工時効が施されて目的の製品を
得ることができる。For this alloy, it is preferable to adopt conditions in which the alloy is heated at a temperature increase rate of 200° C./Hr or less and maintained at 540 to 570° C. for 2 to 24 hours. Next, one or both of hot working and cold working is performed, and when the hot working is extrusion working, it is desirable to perform it at a temperature of 520 to 550°C. Solution treatment after processing is at 540-570℃, 0.5-
2 hours is appropriate. Further, it is preferable to quench at a cooling rate of 150°C/min or more, and finally to a temperature of 150°C to 19°C.
The desired product can be obtained by artificial aging at 0° C. for 2 to 24 hours.
本発明によるものの具体的な製造例について説明すると
以下の如くである。A specific manufacturing example of the product according to the present invention will be described below.
次の第1表に示すような成分組成を有する本発明例1〜
6および比較例A−JのAl−Mg−3i−Cu系合金
を溶解し、0.01%Tiを、Al−5%Ti−1%B
合金により添加し、203waφの鋳塊として半連続鋳
造した。Examples 1 to 1 of the present invention having component compositions as shown in Table 1 below
6 and Comparative Examples A-J were melted, and 0.01% Ti was added to Al-5% Ti-1% B.
It was added to the alloy and semi-continuously cast as an ingot of 203 waφ.
第 1 表
得られた各鋳塊は、100℃/hrの昇温速度で加熱し
、550℃で6時間保持したのち、300”C/hrで
冷却した。次いで540℃で厚さ10mmの押出しバー
に熱間押出し加工し、この押出しバーを550℃でlh
rの溶体化処理をなし、水焼入れした。Table 1 Each obtained ingot was heated at a temperature increase rate of 100°C/hr, held at 550°C for 6 hours, and then cooled at 300"C/hr. Then, it was extruded at 540°C to a thickness of 10 mm. Hot extrusion processing is performed on the bar, and the extruded bar is heated at 550℃ for lh.
R solution treatment and water quenching.
最後に165℃で8時間の人工時効を施した。Finally, artificial aging was performed at 165°C for 8 hours.
このような押出し材について、引張り試験による強度の
測定および引裂き試験による靭性の測定を行った。引裂
き試験による靭性の測定については第1図に示すように
幅40龍で長さが60酊であり、厚さ5 mmの試験片
1における一側中央部に角度が45°の■形切欠部2を
深さLowのものとして形成し、しかもこの■形切欠部
2の底部を通過する側縁と平行な直線上における切欠部
2より等間隔を採った位置に引張り力を与える作用点3
.3を対象的に形成したものを夫々準備した。又このよ
うな試験片1を用いた靭性の測定評価方法は、その引裂
き試験から得られる第2図に示す荷重−変位曲線から次
の■、■式によって切欠き靭性σwaxおよび引裂き抵
抗t1.P、E、を求めた。Regarding such extruded materials, the strength was measured by a tensile test and the toughness was measured by a tear test. Regarding the measurement of toughness by tearing test, as shown in Figure 1, a 45° angle cutout was made in the center of one side of test piece 1, which was 40mm wide, 60mm long, and 5mm thick. 2 with a low depth, and application points 3 that apply a tensile force at positions equally spaced from the notch 2 on a straight line parallel to the side edge passing through the bottom of the ■-shaped notch 2.
.. 3 were prepared symmetrically. In addition, the method for measuring and evaluating toughness using such a test piece 1 is to calculate notch toughness σwax and tear resistance t1. from the load-displacement curve shown in FIG. P, E, were found.
tymax = Pmax / S ………111
、P、E =A/S ・・・・・・・・・ ■
但し、蔓で、Pmax :第2図における最大荷重。tymax=Pmax/S……111
, P, E = A/S ...... ■
However, for vines, Pmax: Maximum load in Figure 2.
S :試験片の行動断面積。S: Behavioral cross-sectional area of the test piece.
A :第2図における斜線部分の 面積。A: The shaded area in Figure 2 area.
更に、光学顕微鏡によって金属&II織を観察した。Furthermore, the metal & II texture was observed using an optical microscope.
又強度および靭性の評価基準は次のように設定した。The evaluation criteria for strength and toughness were set as follows.
0.2%耐力≧30kg/龍2
σ1IIaX ≧13.5 kg/ va”U、
P、E ≧ 2 0 kg/
u+”得られた各測定結果を要約して示すと、次の第
2表の如くである。0.2% yield strength ≧30kg/Ryu2 σ1IIaX ≧13.5 kg/va”U,
P, E ≧ 20 kg/
A summary of the measurement results obtained is shown in Table 2 below.
なお芸で参考として前記した従来からの^J−Mg−S
i系合金についてのそれらの試験結果は次の第3表の如
くである。In addition, the conventional ^J-Mg-S mentioned above for reference in the performance
The test results for i-series alloys are shown in Table 3 below.
第 3 表
即ち前記した第2表の測定結果によるときは、本発明範
囲の合金組成を有するアルミニウム合金は比較例ないし
参考例(第3表)のものに比し、0.2%耐力では比較
的上位のレベルを示し、しかもσll1aXは一段と優
れたものであると共に、U、P。According to the measurement results in Table 3, that is, Table 2 above, the aluminum alloy having the alloy composition within the range of the present invention has a 0.2% yield strength compared to that of the comparative example or reference example (Table 3). In addition, σll1aX is even better, and U, P.
[についても何れもが20 kgw/as”以上であっ
て、卓越した靭性と強度を有していることが確認された
。It was confirmed that all of them had an excellent toughness and strength of 20 kgw/as" or more.
「発明の効果」
以上説明したような本発明によるときは、この種構造用
アルミニウム合金について、構造材や機械部品などに要
望される強度と共に靭性において頗る優れ且つ好ましい
バランスした製品を的確に得ることができるものであっ
て、工業的にその効果の大きい発明である。"Effects of the Invention" According to the present invention as explained above, it is possible to accurately obtain a product with an excellent and desirable balance of strength and toughness required for structural materials, machine parts, etc., for this type of structural aluminum alloy. This invention is industrially highly effective.
図面は本考案の技術的内容を示すものであって、第1図
は試験片についての構成を示した平面図と側面図、第2
図は引き裂き試験における荷重−変位曲線についての図
表的説明図である。
然してこれらの図面において、lは試験片、2は■形切
欠部、3は引張り力作用点を示すものである。
特許出願人 日本軽金属株式会社
発 明 者 篠 原 勝第
/ 翳
変イ改 くシThe drawings show the technical contents of the present invention, and Fig. 1 is a plan view and side view showing the configuration of the test piece, and Fig. 2 is a plan view and a side view showing the configuration of the test piece.
The figure is a graphical explanatory diagram of a load-displacement curve in a tear test. In these drawings, 1 indicates a test piece, 2 indicates a square notch, and 3 indicates a tensile force application point. Patent applicant Nippon Light Metal Co., Ltd. Inventor Katsuki Shinohara
/ Hideni Kai Kushi
Claims (1)
8wt%、Cu:0.40〜0.8wt%、Mn:0.
20〜0.6wt%の範囲内で、しかも5.2×Si%
≦3×Mg%+1.73×Mn%+0.5%なる条件を
満足する量のMg、Si、MnおよびCuを含有し、更
に Zr:0.05〜0.25wt%、V:0.05〜0.
20wt%の範囲内で、しかも0.05%≦Zr%+V
%≦0.20%なる条件を満足する量のZr、Vの何れ
か1種または両者を含有し、残部がAlおよび不純物よ
り成ることを特徴とする靭性および強度に優れた構造用
Al−Mg−Si−Cu系合金。[Claims] Mg: 0.60-0.9 wt%, Si: 0.50-0.
8wt%, Cu: 0.40-0.8wt%, Mn: 0.
Within the range of 20 to 0.6 wt%, and 5.2 x Si%
Contains Mg, Si, Mn, and Cu in an amount that satisfies the condition of ≦3×Mg% + 1.73×Mn% + 0.5%, and further contains Zr: 0.05 to 0.25 wt%, V: 0.05 ~0.
Within the range of 20wt% and 0.05%≦Zr%+V
Structural Al-Mg with excellent toughness and strength, characterized by containing one or both of Zr and V in an amount satisfying the condition of %≦0.20%, with the remainder consisting of Al and impurities. -Si-Cu alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6269287A JPS63230843A (en) | 1987-03-19 | 1987-03-19 | Structural al-mg-si-cu alloy excellent in toughness and strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6269287A JPS63230843A (en) | 1987-03-19 | 1987-03-19 | Structural al-mg-si-cu alloy excellent in toughness and strength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63230843A true JPS63230843A (en) | 1988-09-27 |
Family
ID=13207596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6269287A Pending JPS63230843A (en) | 1987-03-19 | 1987-03-19 | Structural al-mg-si-cu alloy excellent in toughness and strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63230843A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316616A (en) * | 1996-05-13 | 1997-12-09 | Aluminum Co Of America <Alcoa> | Production of improved long aluminum alloy formed part and formed part produced by the same method |
EP1104815A1 (en) * | 1999-12-02 | 2001-06-06 | Alusuisse Technology & Management AG | Aluminium alloy and extruded product made thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319117A (en) * | 1976-08-05 | 1978-02-22 | Aluminum Co Of America | Modified aluminium structure |
JPS55134149A (en) * | 1979-04-02 | 1980-10-18 | Mitsubishi Metal Corp | Manufacture of aluminum alloy sheet having strength, ductility and formability |
JPS57120648A (en) * | 1981-01-16 | 1982-07-27 | Kobe Steel Ltd | Baking hardenable al alloy |
JPS58167757A (en) * | 1982-03-29 | 1983-10-04 | Nippon Light Metal Co Ltd | Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability |
-
1987
- 1987-03-19 JP JP6269287A patent/JPS63230843A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319117A (en) * | 1976-08-05 | 1978-02-22 | Aluminum Co Of America | Modified aluminium structure |
JPS55134149A (en) * | 1979-04-02 | 1980-10-18 | Mitsubishi Metal Corp | Manufacture of aluminum alloy sheet having strength, ductility and formability |
JPS57120648A (en) * | 1981-01-16 | 1982-07-27 | Kobe Steel Ltd | Baking hardenable al alloy |
JPS58167757A (en) * | 1982-03-29 | 1983-10-04 | Nippon Light Metal Co Ltd | Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09316616A (en) * | 1996-05-13 | 1997-12-09 | Aluminum Co Of America <Alcoa> | Production of improved long aluminum alloy formed part and formed part produced by the same method |
EP1104815A1 (en) * | 1999-12-02 | 2001-06-06 | Alusuisse Technology & Management AG | Aluminium alloy and extruded product made thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4101749B2 (en) | Weldable high strength Al-Mg-Si alloy | |
EP1407057B1 (en) | Weldable high strength al-mg-si alloy | |
EP0656956B1 (en) | Tough aluminum alloy containing copper and magnesium | |
JP3194742B2 (en) | Improved lithium aluminum alloy system | |
CA2731669C (en) | Clad automotive sheet product | |
US5389165A (en) | Low density, high strength Al-Li alloy having high toughness at elevated temperatures | |
EP0030070A1 (en) | Method for producing aircraft stringer material | |
CN107447142A (en) | High tough high Alcoa of a kind of automobile using and preparation method thereof | |
JP7318274B2 (en) | Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method | |
JPH06256880A (en) | Aluminum alloy cast member for forging | |
CA3187478A1 (en) | New 6xxx aluminum alloys and methods for producing the same | |
CN111893354A (en) | Al-Si-Cu-Mg wrought aluminum alloy and preparation method thereof | |
EP0846781B1 (en) | Process of forming an aluminium sheet with excellent high speed superplastic formability | |
JPS63230843A (en) | Structural al-mg-si-cu alloy excellent in toughness and strength | |
JPH07150312A (en) | Manufacture of aluminum alloy forged base stock | |
CA2628229A1 (en) | 6000-series aluminum extruded material superior in paint-baking hardenability and method for manufacturing the same | |
JPS6154853B2 (en) | ||
JPH083675A (en) | Aluminum alloy for forging | |
JPH0547616B2 (en) | ||
JPH08120387A (en) | Aluminum alloy extruded material excellent in surface property, its production and frame for two-wheeler made of aluminum alloy | |
JPH06212336A (en) | Al alloy extruded material excellent in strength and bendability | |
JPH09202933A (en) | High strength aluminum alloy excellent in hardenability | |
JPS5932538B2 (en) | Medium strength AI alloy for extrusion with excellent toughness and press hardenability | |
JPH04160131A (en) | Al-mg-si alloy plate excellent in strength and formability, and its manufacture | |
JPS61130452A (en) | High strength aluminum alloy having high formability |