JPH09202933A - High strength aluminum alloy excellent in hardenability - Google Patents

High strength aluminum alloy excellent in hardenability

Info

Publication number
JPH09202933A
JPH09202933A JP1054796A JP1054796A JPH09202933A JP H09202933 A JPH09202933 A JP H09202933A JP 1054796 A JP1054796 A JP 1054796A JP 1054796 A JP1054796 A JP 1054796A JP H09202933 A JPH09202933 A JP H09202933A
Authority
JP
Japan
Prior art keywords
amount
hardenability
content
aluminum alloy
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1054796A
Other languages
Japanese (ja)
Inventor
Masao Kikuchi
正夫 菊池
Makoto Saga
誠 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1054796A priority Critical patent/JPH09202933A/en
Publication of JPH09202933A publication Critical patent/JPH09202933A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high strength aluminum alloy excellent in hardenability and furthermore capable obtaining tensile strength of >=300MPa by T6 treatment. SOLUTION: This high strength aluminum alloy is the one contg., by weight, 0.4 to 1.0% Mg and 0.6 to 1.6% Si, in which the content of Mg2 Si and the content of Si more excessive than the Mg2 Si balance compsn. satisfy the relational inequalities of 1-2-0.15 ×(excessive Si content) >= (Mg2 Si content) >= 1.4-1.4 ×(excessive Si content), where (excessive Si content) = (the total Si content) -(Si content as Mg2 Si), and the balance Al with inevitable impurities. Furthermore, this aluminum alloy may be incorporated with small amounts of Cu, Zn, Mn, Cr, Zr, V, Fe and Ti as specified elements. Thus, the high strength aluminum alloy excellent in hardenability and furthermore having >=300MPa tensile strength after T6 treatment can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼入性に優れ、自
動車の構造材をはじめ、車両,電気機器,建築用等の材
料に適した高強度を有するアルミニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy which is excellent in hardenability and has high strength suitable for materials such as automobile structural materials, vehicles, electric equipment, and construction.

【0002】[0002]

【従来の技術】従来より、Al−Mg−Si系合金は押
出性に優れる上に、熱処理によって高強度が得られるた
め、車両,船舶,建築等の用途に広く使用されている。
近年、自動車の軽量化の観点から、アルミニウム合金の
押出型材が自動車の構造部材に適用されるようになり、
その材料として、上記のAl−Mg−Si系合金が注目
されている。本系合金は熱処理型合金であるため、通常
は溶体化・焼入れ後、時効処理を行って使用されるが、
JISA6063合金やJISA6NO1合金など、一
部の合金は焼入性に優れているため、この溶体化・焼入
れ処理を省略し、押出加工後そのまま時効処理を行える
ので製造コストを節約できるという利点を有している。
しかしながら、これらの焼入性に優れた合金はいずれも
時効処理後の強度が低く、構造材としては強度不足であ
った。
2. Description of the Related Art Conventionally, Al-Mg-Si alloys have been widely used in applications such as vehicles, ships, and constructions because they have excellent extrudability and high strength by heat treatment.
In recent years, from the viewpoint of reducing the weight of automobiles, extruded aluminum alloy materials have come to be applied to structural members of automobiles,
As the material thereof, the Al-Mg-Si based alloy described above is drawing attention. Since this alloy is a heat treatment type alloy, it is usually used after aging treatment after solution heat treatment.
Since some alloys such as JISA6063 alloy and JISA6NO1 alloy have excellent hardenability, this solution treatment / hardening treatment can be omitted, and aging treatment can be performed as it is after extrusion processing, which has the advantage of saving manufacturing costs. ing.
However, all of these alloys having excellent hardenability had low strength after aging treatment and were insufficient in strength as structural materials.

【0003】[0003]

【発明が解決しようとする課題】そこで、焼入性に優
れ、溶体化・焼入れ処理を省略して、押出加工後そのま
ま時効処理を行うだけで、構造材として十分な強度が得
られるアルミニウム合金が望まれている。本発明は以上
の事情を背景としてなされたもので、焼入性に優れると
ともに、T6処理によって300MPa以上の引張強さ
が得られる高強度アルミニウム合金を提供することを目
的としたものである。
Therefore, an aluminum alloy which has excellent hardenability and which has sufficient strength as a structural material can be obtained by omitting the solution heat treatment and the aging treatment after extrusion. Is desired. The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-strength aluminum alloy which is excellent in hardenability and which can obtain a tensile strength of 300 MPa or more by T6 treatment.

【0004】[0004]

【課題を解決するための手段】従来、Al−Mg−Si
系合金の焼入性はMg2 Si量および過剰Si量の増大
とともに低下するとされていた(たとえば、軽金属学会
編「アルミニウムの組織と性質」(1991))。しか
しながら、本発明者は、Al−Mg−Si系合金の焼入
性および時効硬化能に及ぼす合金成分の影響について種
々検討した結果、本系合金の成分組成を適切に選択する
とともに、Mg2 Si量と過剰Si量の関係を特定する
ことによって上記目的を達成できることを見い出し、本
発明をなすに至ったものである。すなわち、本発明は、 (1)重量%で、 Mg:0.4〜1.0% Si:0.6〜1.6% を含有し、かつMg2 Si量(重量%)とMg2 Siバ
ランス組成よりも過剰なSi量(重量%)が、 1.2−0.15×(過剰Si量)≧(Mg2 Si量)
≧1.4−1.4×(過剰Si量) ここで、(過剰Si量)=(全Si量)−(Mg2 Si
としてのSi量)なる関係式を満足し、残部がAlおよ
び不可避的不純物よりなることを特徴とする焼入性に優
れた高強度アルミニウム合金。
Conventionally, Al--Mg--Si is conventionally used.
It has been said that the hardenability of a system alloy decreases as the amount of Mg 2 Si and the amount of excess Si increase (for example, “Structure and Properties of Aluminum” (1991) edited by Japan Institute of Light Metals). However, as a result of various studies on the influence of alloy components on the hardenability and age-hardening ability of the Al-Mg-Si alloy, the present inventor appropriately selected the component composition of the alloy of the present system and Mg 2 Si. The inventors have found that the above object can be achieved by specifying the relationship between the amount and the amount of excess Si, and have completed the present invention. That is, the present invention includes (1) wt%, containing Mg: 0.4 to 1.0% Si: 0.6 to 1.6%, and Mg 2 Si amount (wt%) and Mg 2 Si. The amount of Si (wt%) in excess of the balance composition is 1.2-0.15 x (excess Si amount) ≥ (Mg 2 Si amount)
≧ 1.4−1.4 × (amount of excess Si) where (amount of excess Si) = (total amount of Si) − (Mg 2 Si
A high-strength aluminum alloy having excellent hardenability, characterized in that the balance of Al and unavoidable impurities is satisfied.

【0005】(2)上記(1)記載のアルミニウム合金
において、さらに、重量%で、 Cu:0.05〜1.0% Zn:0.03〜1.5% Mn:0.03〜0.1% Cr:0.03〜0.1% Zr:0.03〜0.1% V :0.03〜0.1% Fe:0.03〜0.6% Ti:0.005〜0.2% のうちの1種または2種以上を含有する焼入性に優れた
高強度アルミニウム合金にある。
(2) In the aluminum alloy described in (1) above, further, in weight%, Cu: 0.05 to 1.0% Zn: 0.03 to 1.5% Mn: 0.03 to 0. 1% Cr: 0.03 to 0.1% Zr: 0.03 to 0.1% V: 0.03 to 0.1% Fe: 0.03 to 0.6% Ti: 0.005 to 0. It is a high-strength aluminum alloy containing 1% or more of 2% and having excellent hardenability.

【0006】[0006]

【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分組成の限定理由を述べる。なお、以下の%は
重量%を意味する。 Mg:Mgは本発明で対象としている系の合金で基本と
なる合金元素であり、Siとともに化合物を形成して強
度の上昇に寄与する。Mg量が0.4%未満では、析出
硬化によって強度の向上に寄与するMg2 Siの生成量
が少なくなるため、十分な強度が得られず、一方、1.
0%を越えれば焼入性が低下する上に、押出加工性も低
下することから、Mg量は0.4〜1.0%の範囲内と
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reasons for limiting the component composition will be described. In addition, the following% means weight%. Mg: Mg is a basic alloy element in the alloy of the system targeted in the present invention, and forms a compound with Si to contribute to an increase in strength. If the amount of Mg is less than 0.4%, the amount of Mg 2 Si that contributes to the improvement of strength due to precipitation hardening decreases, so sufficient strength cannot be obtained.
If it exceeds 0%, the hardenability is lowered and the extrusion processability is also lowered. Therefore, the Mg content is set within the range of 0.4 to 1.0%.

【0007】Si:Siも本発明の系の合金で基本とな
る合金元素であって、Mgとともに化合物を形成して強
度の向上に寄与する。Siが0.6%未満では硬化に寄
与するMg2 Siの生成量が少なくなるため、十分な強
度が得られない上に、焼入性が低下する。一方、1.6
%を越えると、凝固の際に粗大Si相が晶出して押出加
工性や曲げ加工性を低下させる。従って、Si量は0.
6〜1.6%の範囲とした。焼入性と強度のバランスか
らは0.7〜1.5%が好ましい。
Si: Si is also an alloying element which is a basic component of the alloy of the present invention, and forms a compound with Mg to contribute to the improvement of strength. If Si is less than 0.6%, the amount of Mg 2 Si that contributes to hardening is reduced, so that sufficient strength cannot be obtained and hardenability deteriorates. On the other hand, 1.6
If it exceeds 0.1%, a coarse Si phase is crystallized during solidification to deteriorate the extrudability and bendability. Therefore, the Si content is 0.
The range is 6 to 1.6%. From the viewpoint of balance between hardenability and strength, 0.7 to 1.5% is preferable.

【0008】上記の基本組成以外に、Cu,Zn,C
r,Zr,V,Fe,Tiの中から1種以上を含有させ
ることも有効である。 Cu:Cuは時効硬化を促進し、合金の強度を高める元
素である。0.05%未満ではその効果が十分に得られ
ず、一方、1.0%を越えると耐食性が低下する。従っ
て、Cuの添加量は0.05〜1.0%の範囲内とし
た。 Zn:Znは合金の時効硬化性の向上を通じて強度の向
上に寄与する元素であり、その含有量が0.03%未満
では上記の効果が不十分であり、一方、1.5%を越え
ると曲げ加工性および耐食性が低下する。そのため、Z
nを添加する場合のZn量は0.03〜1.5%の範囲
内とした。
In addition to the above basic composition, Cu, Zn, C
It is also effective to contain one or more of r, Zr, V, Fe and Ti. Cu: Cu is an element that promotes age hardening and enhances the strength of the alloy. If it is less than 0.05%, the effect cannot be sufficiently obtained, while if it exceeds 1.0%, the corrosion resistance is lowered. Therefore, the addition amount of Cu is set within the range of 0.05 to 1.0%. Zn: Zn is an element that contributes to the improvement of strength through the improvement of age hardening of the alloy, and if the content thereof is less than 0.03%, the above effect is insufficient, while if it exceeds 1.5%. Bending workability and corrosion resistance decrease. Therefore, Z
When adding n, the amount of Zn was made into the range of 0.03 to 1.5%.

【0009】Mn,Cr,Zr,V:これらの元素は強
度の向上と結晶粒の微細化に有効な元素であるが、いず
れも含有量が0.03%未満では上記の効果が十分に得
られず、一方、0.1%を越えると焼入性が低下する。
従って、Mn,Cr,ZrおよびVの含有量はいずれも
0.03〜0.1%の範囲内とした。 Fe:Feは本来、不可避的不純物として、アルミニウ
ム合金中に含まれる元素であるが、やはり強度の向上と
結晶粒の微細化に有効であり、0.03〜0.6%の範
囲内で添加しても良い。この場合、0.03%未満では
上記の効果が十分に得られず、一方、0.6%を越える
と上記効果は飽和するばかりでなく、巨大金属間化合物
が生成されて押出加工性、曲げ加工性等に悪影響を及ぼ
す恐れがある。従って、Feの含有量は0.03〜0.
6%の範囲内とした。
Mn, Cr, Zr, V: These elements are effective for improving the strength and refining the crystal grains, but if the content is less than 0.03%, the above effect is sufficiently obtained. However, if it exceeds 0.1%, the hardenability deteriorates.
Therefore, the contents of Mn, Cr, Zr and V are all within the range of 0.03 to 0.1%. Fe: Fe is an element that is originally contained in an aluminum alloy as an unavoidable impurity, but it is also effective in improving strength and refining crystal grains, and is added within the range of 0.03 to 0.6%. You may. In this case, if it is less than 0.03%, the above effect is not sufficiently obtained, while if it exceeds 0.6%, the above effect is not only saturated, but also a giant intermetallic compound is formed to cause extrusion processability and bending. It may adversely affect workability. Therefore, the Fe content is 0.03 to 0.
It was within the range of 6%.

【0010】また、Tiは一般に鋳塊の結晶粒微細化の
ため、単独あるいは微量のBと組み合わせて添加する。
この場合、Tiの含有量が0.005%未満では上記の
効果は得られず、0.2%を越えるとその効果は飽和す
る。従って、Tiの含有量は0.005〜0.2%の範
囲内とする。Bの添加量は0.0005〜0.03%が
有利である。つぎに、Mg2 Si量と過剰Si量の関係
について説明する。ここで、過剰Si量とは全Si量か
らMg2 SiとしてのSi量を差し引いた量である。
Further, Ti is generally added alone or in combination with a slight amount of B in order to refine the crystal grains of the ingot.
In this case, if the Ti content is less than 0.005%, the above effect cannot be obtained, and if it exceeds 0.2%, the effect is saturated. Therefore, the Ti content is set within the range of 0.005 to 0.2%. The amount of B added is preferably 0.0005 to 0.03%. Next, the relationship between the amount of Mg 2 Si and the amount of excess Si will be described. Here, the excess Si amount is an amount obtained by subtracting the Si amount as Mg 2 Si from the total Si amount.

【0011】Al−Mg−Si系合金においては、Mg
2 Si量および過剰Si量の増加に伴い、強度は上昇す
る。本発明者がT6処理後の引張強さに及ぼすMg2
i量および過剰Si量の影響を調査した結果、Mg2
i量と過剰Si量が次式(1)を満足する時にT6処理
後の引張強さが300MPaを越えることが明らかにな
った。 (Mg2 Si量)≧1.4−1.4×(過剰Si量) ・・・・・(1)
In the Al--Mg--Si system alloy, Mg
2 Strength increases as the amount of Si and excess Si increases. The present inventor has an effect on the tensile strength after T6 treatment Mg 2 S
As a result of investigating the effects of the i content and the excess Si content, Mg 2 S
It was revealed that the tensile strength after T6 treatment exceeds 300 MPa when the i amount and the excess Si amount satisfy the following expression (1). (Amount of Mg 2 Si) ≧ 1.4−1.4 × (Amount of excess Si) (1)

【0012】一方、Mg2 Si量および過剰Si量の増
加に伴い、Al−Mg−Si系合金の焼入性は低下す
る。今、焼入性の指標として、水冷後180℃×8時間
の時効処理を行った場合の引張強さに対する、空冷後同
処理を行った場合の引張強さの比を取り、この値が0.
8以上を示すものを焼入性が良好であるとする。この焼
入性指標とMg2 Si量および過剰Si量の関係を調査
した結果、Mg2 Si量と過剰Si量が次式(2)を満
足する時に焼入性指標が0.8以上になることを見いだ
した。 1.2−0.15×(過剰Si量)≧(Mg2 Si量)・・・・・(2)
On the other hand, as the amount of Mg 2 Si and the amount of excess Si increase, the hardenability of the Al-Mg-Si alloy decreases. Now, as an index of hardenability, take the ratio of the tensile strength when the same treatment is performed after air cooling to the tensile strength when the aging treatment is performed at 180 ° C. for 8 hours after water cooling, and this value is 0. .
Those having a hardness of 8 or more are considered to have good hardenability. As a result of investigating the relationship between the hardenability index, the Mg 2 Si amount and the excess Si amount, the hardenability index becomes 0.8 or more when the Mg 2 Si amount and the excess Si amount satisfy the following equation (2). I found a thing. 1.2-0.15 × (excess Si amount) ≧ (Mg 2 Si amount) (2)

【0013】従って、Mg2 Si量と過剰Si量の関係
を次式(3)のように規定した。 1.2−0.15×(過剰Si量)≧(Mg2 Si量)≧1.4−1.4 ×(過剰Si量) ・・・・・・・・・・・・・(3) 以上のように、本発明では合金の成分組成を適切に調整
するとともに、Mg2Si量と過剰Si量の関係を特定
することによって、焼入性に優れるとともに、T6処理
によって300MPa以上の引張強さを示す高強度アル
ミニウム合金が得られる。
Therefore, the relationship between the amount of Mg 2 Si and the amount of excess Si is defined by the following equation (3). 1.2-0.15 x (excess Si amount) ≥ (Mg 2 Si amount) ≥ 1.4-1.4 x (excess Si amount) ... (3) As described above, in the present invention, by appropriately adjusting the component composition of the alloy and identifying the relationship between the amount of Mg 2 Si and the amount of excess Si, the hardenability is excellent and the tensile strength of 300 MPa or more is obtained by the T6 treatment. A high-strength aluminum alloy having the following characteristics is obtained.

【0014】[0014]

【実施例】次に、本発明を実施例で説明する。表1に示
す化学成分を有する各合金を常法により、溶解,鋳造
し,面削,均質化処理を行って熱間押出用素材とした。
これらの素材を500℃で5分間予備加熱後、20m/
分の押出速度で熱間押出成形を行い、押出型材を作製し
た。型材の形状は板厚2mm、一辺40mmのロ型であ
る。押出後、50mm長さの試験片を切り出し、540
℃×30分の溶体化処理を施し、その温度から水冷およ
び空冷した後、180℃×8時間の時効処理を行った。
このようにして得られた各合金について、引張試験を実
施し、引張特性と焼入性を評価した。
EXAMPLES Next, the present invention will be described with reference to Examples. Each alloy having the chemical composition shown in Table 1 was melted, cast, chamfered and homogenized by a conventional method to obtain a material for hot extrusion.
After preheating these materials at 500 ° C for 5 minutes,
Hot extrusion molding was performed at an extrusion speed of minutes to produce an extrusion mold material. The shape of the mold material is a square shape having a plate thickness of 2 mm and a side of 40 mm. After extrusion, cut out a test piece of 50 mm in length, 540
After solution treatment at 30 ° C. for 30 minutes, water cooling and air cooling from that temperature, aging treatment at 180 ° C. for 8 hours was performed.
A tensile test was performed on each of the alloys thus obtained, and the tensile properties and hardenability were evaluated.

【0015】[0015]

【表1】 [Table 1]

【0016】焼入性は溶体化後空冷した場合と水冷した
場合の180℃×8時間時効後の引張強さの比で評価し
た。さらに、耐食性,押出性および曲げ加工性について
も評価した。耐食性は500時間の塩水噴霧後の錆発生
状況から〇:錆無し,△:錆小,×:錆大の三段階に評
価した。押出性は押出型材の作製の際の押出成形の容易
さを、比較材のJISA6063合金を100として相
対評価した。また、曲げ加工性はパンチ半径200mm
でプレス曲げ試験によって行い、〇:良好,△:しわ有
り,×:割れ、の3段階で評価した。それらの結果を表
2に示す。
The hardenability was evaluated by the ratio of tensile strength after aging for 8 hours at 180 ° C. when air-cooled after solution heat treatment and water-cooled. Furthermore, the corrosion resistance, extrudability and bending workability were also evaluated. Corrosion resistance was evaluated on the basis of the rust generation state after 500 hours of salt spraying, in three grades of ◯: no rust, △: small rust, ×: large rust. The extrudability was evaluated relative to the ease of extrusion molding when producing an extruded mold material by setting JIS A6063 alloy as a comparative material to 100. The bending radius is 200 mm for punches.
A press bending test was carried out, and the evaluation was made in three grades: ◯: good, Δ: wrinkled, ×: cracked. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】No.1〜28はいずれも合金の成分組成
が本発明で規定する範囲内で、かつMg2 Si量と過剰
Si量の関係が本発明で規定する条件を満たした例であ
る。これらの場合は、いずれも焼入性が良好(空冷材と
水冷材の引張強さの比が0.8以上)で、引張強さが3
00MPa以上の高強度が得られ、その他の特性も良好
である。
No. Nos. 1 to 28 are examples in which the composition of the alloy is within the range specified by the present invention and the relationship between the amount of Mg 2 Si and the excess Si satisfies the conditions specified by the present invention. In all of these cases, the hardenability is good (the ratio of the tensile strength of the air-cooled material to the water-cooled material is 0.8 or more), and the tensile strength is 3
A high strength of 00 MPa or more is obtained, and other properties are also good.

【0019】これに対して、No.29〜38は合金の
成分範囲が本発明で規定する条件を満たさなかったた
め、全ての特性を同時に満足することはできなかった。
すなわち、No.29は焼入性は良好であるがT6処理
後の強度が低く、No.30は焼入性および強度には優
れているが、押出性および曲げ加工性に劣り、No.3
1は耐食性および押出性に劣り、No.32,33,3
5,36,37および38は焼入性,押出性および曲げ
加工性に劣る。また、No.34は耐食性および曲げ加
工性に劣っている。No.39および40は合金の成分
組成は本発明で規定する範囲内であるが、Mg2 Si量
と過剰Si量の関係が本発明で規定する関係式を満たさ
ないため、No.39は焼入性に劣り、No.40はT
6処理後の強度が300MPaに満たなかった。
On the other hand, in No. In Nos. 29 to 38, the composition range of the alloy did not satisfy the conditions specified in the present invention, so that all the properties could not be satisfied at the same time.
That is, No. No. 29 has good hardenability, but the strength after T6 treatment is low. No. 30 is excellent in hardenability and strength, but inferior in extrudability and bending workability. 3
No. 1 was inferior in corrosion resistance and extrudability, and No. 1 32, 33, 3
5, 36, 37 and 38 are inferior in hardenability, extrudability and bending workability. In addition, No. 34 is inferior in corrosion resistance and bending workability. No. Nos. 39 and 40 are alloy compositions within the range specified by the present invention, but the relationship between the amount of Mg 2 Si and the excess Si does not satisfy the relational expression specified by the present invention. No. 39 is inferior in hardenability, and No. 40 is T
6 The strength after treatment was less than 300 MPa.

【0020】[0020]

【発明の効果】以上の説明で明らかなように、本発明に
よるとMg2 Si量と過剰Siの量的関係を特定するこ
とによって、焼入性が良好で、耐食性,押出性,曲げ加
工性にも優れ、かつT6処理後の引張強さが300MP
a以上の高強度アルミニウム合金を得ることができる。
As is clear from the above description, according to the present invention, by specifying the quantitative relationship between the amount of Mg 2 Si and the excess Si, the hardenability is good, the corrosion resistance, the extrudability and the bendability are good. Also excellent, and the tensile strength after T6 treatment is 300MP
It is possible to obtain a high-strength aluminum alloy of a or more.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Mg:0.4〜1.0% Si:0.6〜1.6% を含有し、かつMg2 Si量(重量%)とMg2 Siバ
ランス組成よりも過剰なSi量(重量%)が、 1.2−0.15×(過剰Si量)≧(Mg2 Si量)
≧1.4−1.4×(過剰Si量) ここで、(過剰Si量)=(全Si量)−(Mg2 Si
としてのSi量)なる関係式を満足し、残部がAlおよ
び不可避的不純物よりなることを特徴とする焼入性に優
れた高強度アルミニウム合金。
1. By weight%, Mg: 0.4-1.0% Si: 0.6-1.6% is contained, and the amount of Mg 2 Si (% by weight) and the Mg 2 Si balance composition are higher than the balance composition. Excessive Si amount (% by weight) is 1.2-0.15 × (excess Si amount) ≧ (Mg 2 Si amount)
≧ 1.4−1.4 × (amount of excess Si) where (amount of excess Si) = (total amount of Si) − (Mg 2 Si
A high-strength aluminum alloy having excellent hardenability, characterized in that the balance of Al and unavoidable impurities is satisfied.
【請求項2】 請求項1記載のアルミニウム合金におい
て、さらに、重量%で、 Cu:0.05〜1.0% Zn:0.03〜1.5% Mn:0.03〜0.1% Cr:0.03〜0.1% Zr:0.03〜0.1% V :0.03〜0.1% Fe:0.03〜0.6% Ti:0.005〜0.2% のうちの1種または2種以上を含有する焼入性に優れた
高強度アルミニウム合金。
2. The aluminum alloy according to claim 1, further comprising Cu: 0.05 to 1.0% Zn: 0.03 to 1.5% Mn: 0.03 to 0.1% by weight. Cr: 0.03-0.1% Zr: 0.03-0.1% V: 0.03-0.1% Fe: 0.03-0.6% Ti: 0.005-0.2% A high-strength aluminum alloy having excellent hardenability, which contains one or more of the above.
JP1054796A 1996-01-25 1996-01-25 High strength aluminum alloy excellent in hardenability Withdrawn JPH09202933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054796A JPH09202933A (en) 1996-01-25 1996-01-25 High strength aluminum alloy excellent in hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054796A JPH09202933A (en) 1996-01-25 1996-01-25 High strength aluminum alloy excellent in hardenability

Publications (1)

Publication Number Publication Date
JPH09202933A true JPH09202933A (en) 1997-08-05

Family

ID=11753294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054796A Withdrawn JPH09202933A (en) 1996-01-25 1996-01-25 High strength aluminum alloy excellent in hardenability

Country Status (1)

Country Link
JP (1) JPH09202933A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461454B2 (en) 2000-04-20 2002-10-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy plate for automobile and manufacturing method thereof
JP2007177308A (en) * 2005-12-28 2007-07-12 Sumitomo Light Metal Ind Ltd High strength and high toughness aluminum alloy extruded material and forged material having excellent corrosion resistance, and methods for producing the extruded material and forged material
JP2007254809A (en) * 2006-03-23 2007-10-04 Aisin Keikinzoku Co Ltd Aluminum alloy extruded shape material having excellent impact absorbing property and satisfactory hardenability, and its production method
WO2013115227A1 (en) * 2012-01-31 2013-08-08 アイシン軽金属株式会社 High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP2015166480A (en) * 2014-03-03 2015-09-24 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member
WO2019083969A1 (en) * 2017-10-23 2019-05-02 Novelis Inc. High-strength, highly formable aluminum alloys and methods of making the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461454B2 (en) 2000-04-20 2002-10-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy plate for automobile and manufacturing method thereof
JP2007177308A (en) * 2005-12-28 2007-07-12 Sumitomo Light Metal Ind Ltd High strength and high toughness aluminum alloy extruded material and forged material having excellent corrosion resistance, and methods for producing the extruded material and forged material
JP2007254809A (en) * 2006-03-23 2007-10-04 Aisin Keikinzoku Co Ltd Aluminum alloy extruded shape material having excellent impact absorbing property and satisfactory hardenability, and its production method
WO2013115227A1 (en) * 2012-01-31 2013-08-08 アイシン軽金属株式会社 High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JPWO2013115227A1 (en) * 2012-01-31 2015-05-11 アイシン軽金属株式会社 High strength aluminum alloy extruded material excellent in corrosion resistance, ductility and hardenability and method for producing the same
JP2015166480A (en) * 2014-03-03 2015-09-24 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire material, method for producing aluminum alloy wire material, method for producing aluminum alloy member and aluminum alloy member
WO2019083969A1 (en) * 2017-10-23 2019-05-02 Novelis Inc. High-strength, highly formable aluminum alloys and methods of making the same
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same

Similar Documents

Publication Publication Date Title
JPH0860285A (en) Bumper reinforcement made of aluminum alloy and its production
KR100493787B1 (en) A brazing sheet comprising an aluminium alloy for use as core material in the brazing sheet, a method of making said brazing sheet, use method of said brazing sheet, and a brazed assembly comprising said brazing sheet
JPH0559477A (en) Aluminum alloy for forging
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP2002235158A (en) Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JPH07145440A (en) Aluminum alloy forging stock
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP2001240930A (en) Al-Mg-Si BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR DOOR BEAM, AND DOOR BEAM
JPH10219413A (en) Production of high strength aluminum alloy excellent in intergranular corrosion resistance
JPH0941064A (en) Production of aluminum alloy for casting and aluminum alloy casting material
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP4286431B2 (en) Manufacturing method of aluminum alloy piping material
JPH0625783A (en) Aluminum alloy extruded material excellent in bendability and impact absorption and its manufacture
JPS6154853B2 (en)
JPH09209068A (en) High strength aluminum alloy excellent in hardenability
KR100909699B1 (en) Aluminum alloy with improved impact energy and extrusion made from the same
JP3248263B2 (en) Al-Mn alloy for cryogenic forming
JP3684245B2 (en) Aluminum alloy for cold forging
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030401