JPS6154853B2 - - Google Patents

Info

Publication number
JPS6154853B2
JPS6154853B2 JP58188947A JP18894783A JPS6154853B2 JP S6154853 B2 JPS6154853 B2 JP S6154853B2 JP 58188947 A JP58188947 A JP 58188947A JP 18894783 A JP18894783 A JP 18894783A JP S6154853 B2 JPS6154853 B2 JP S6154853B2
Authority
JP
Japan
Prior art keywords
alloy
strength
ductility
alloys
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58188947A
Other languages
Japanese (ja)
Other versions
JPS6082643A (en
Inventor
Ichizo Tsukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP18894783A priority Critical patent/JPS6082643A/en
Publication of JPS6082643A publication Critical patent/JPS6082643A/en
Publication of JPS6154853B2 publication Critical patent/JPS6154853B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、例えば自動車用ボデイシート、鋳
造用材料、成形用材料等に好適にしうる延性に優
れた耐食性高力アルミニウム合金に関する。 従来、延性に優れた高力アルミニウム合金とし
ては、A―Cu系合金、A―Mg系合金、A
―Mg―Si系合金がよく知られている。これらの
うち、A―Cu系合金およびA―Mg系合金
は、引張強さ30Kgf/mm2、伸び30%の機械的性質を
有しているものの、押出性、圧延性等の熱間加工
性に劣つているため、その具体的用途において制
約を受ける難点がある。一方、A―Mg―Si系
合金は、上記のようなA―Cu系合金やA―
Mg系合金に較べて、熱間加工性及び耐食性に優
れているところから、押出材としても広範囲の用
途に用いられているが、反面、引張り強さ、伸び
等の機械的性質にやや劣る難点がある。そこで、
この合金系において、高強度化をはかるために、
Mg,Si量を多くすることが考慮されるが、この
場合は粒界への粗大なMg2Siの析出により粒界割
れが生じ、延性が著しく低下してしまう結果とな
り、およそ所期するような実用合金を得ることが
できない。 この発明は、上記のような技術的な背景のもと
において、熱間加工性、成形性、耐食性等に優れ
たA―Mg―Si系合金をペースにして、その特
性を損じることなく、強度の点を改善した高力ア
ルミニウム合金の開発を意図してなされたもので
ある。 上記のような目的において、本発明者は種々実
験と研究を行つた結果、次のようなことを知見し
得た。即ち、従来既知のA―Mg―Si系合金
に、所定量のCuを添加すると、粒界割れが少な
くなることから、延性の低下を抑えて強度を向上
させることが可能である。もつともこのことのか
ぎりにおいては、Cuを添加したA―Mg―Si系
合金として従来からA6066合金が知られている。
しかし、Cuの添加だけでは延性が十分ではな
く、これに加えて更に所定量のZnを添加するこ
とにより、粒界割れを一層少なくして延性を向上
しうることを知見し得た。 而して、この発明は上記のような知見に基づ
き、熱間加工性が良好でかつ延性にも優れた耐食
性高力アルミニウム合金として、 Mg:0.5〜1.5% Si:0.4〜1.5% Cu:0.4〜1.8% Zn:1.0〜6.0% を含有すると共に、 Mn:0.05〜1.0% Cr:0.05〜0.35% Zr:0.05〜0.20% のうち一種以上を含有し、残部アルミニウムおよ
び不可避不純物からなることを特徴とするアルミ
ニウム合金を提供するものである。 なお、この明細書において、「%」はいずれも
重量基準で示すものである。 この発明による合金の組成範囲の限定理由を説
明すれば次のとおりである。 (a) Mg,Si,Cu,Zn これらの成分はいずれも合金を硬化させる作
用があり、その各含有量を限定組成範囲に規定
することにより、合金のマトリツクス中に析出
する主としてMg2Siからなる中間相の析出をCu
及びZnの添加によつて微細化し、高強度でか
つ高延性の材料を得ることが可能になるもので
ある。 即ちMgが0.5%未満、Siが0.4%未満では、所
定の強度を得ることができず、Mg及びSiがい
ずれも1.5%を超えるときは、かえつて強度が
得られないばかりでなく、熱間加工性が劣化す
る。またCuが0.4%未満、Znが1.0%未満で
は、マトリツクス中に析出するMg2Siの晶出物
の微細化に充分な効果を発現できず、延性の向
上が不十分なものとなる。しかしながら、Cu
が1.8%を超え、あるいはZnが6.0%を超える
と、合金の耐食性が劣化する。 (b) Mn,Cr,Zr これらの成分は、合金組織を制御するために
用いるものであり、各成分の一種または二種以
上を任意の組合わせにおいて含有せしめれば良
い。これらの成分の含有量は、Mn,Cr,Zrの
いずれも0.05%未満で所期の効果に乏しく、ま
た逆にMnが1.0%を超え、Crが0.35%を超え、
あるいはZrが0.20%を超えるときは、鋳造時に
粗大な金属化合物を生成して、強度、延性等の
機械的性質、熱間加工性をいずれも劣化させ
る。 この発明に係る合金は、上述のように、A―
Mg―Si系合金をベースにしたものであることに
より、それが本来的に有する押出性、圧延性、耐
食性等を劣化せしめることなく、Cu及びZnの添
加により高強度でしかも延性に優れたものとな
り、成形用、鍛造用材料として、従来合金では加
工できなかつたような用途にも好適に使用しうる
ものとすることができる。例えば、オートバイフ
オークシリンダーとして、従来拡管加工が不可能
であつたような引張強さ35Kgf/mm2の高強度な合金
に匹敵する強度を保有したものとしつつ、延性の
向上により拡管加工等の可能なものとすることが
でき、近時益々高強度、薄肉化が極限まで追及さ
れるようになつてくる傾向のもとにおいて、この
発明に係る合金は、強度と延性とを同時に満足さ
せうる点で極めて有用なものである。 次に、この発明の実施例を比較例との対比にお
いて示す。
The present invention relates to a corrosion-resistant, high-strength aluminum alloy with excellent ductility that can be used, for example, as an automobile body sheet, a casting material, a molding material, and the like. Conventionally, high-strength aluminum alloys with excellent ductility include A-Cu alloy, A-Mg alloy, and A-Cu alloy.
-Mg-Si alloys are well known. Among these, A-Cu alloy and A-Mg alloy have mechanical properties such as tensile strength of 30 Kgf/mm 2 and elongation of 30%, but have poor hot workability such as extrudability and rollability. Because it is inferior to On the other hand, A-Mg-Si alloys include A-Cu alloys such as those mentioned above and A-
Compared to Mg-based alloys, it has superior hot workability and corrosion resistance, so it is used in a wide range of applications as an extruded material, but on the other hand, it has the disadvantage of being slightly inferior in mechanical properties such as tensile strength and elongation. There is. Therefore,
In order to increase the strength of this alloy system,
Increasing the amount of Mg and Si is considered, but in this case, grain boundary cracking occurs due to the precipitation of coarse Mg 2 Si at the grain boundaries, resulting in a significant decrease in ductility, which is not as expected. It is not possible to obtain a practical alloy. Based on the above-mentioned technical background, this invention was developed based on an A-Mg-Si alloy that has excellent hot workability, formability, corrosion resistance, etc., and has been developed to improve strength without sacrificing its properties. This was done with the intention of developing a high-strength aluminum alloy with improved characteristics. For the above purpose, the present inventor conducted various experiments and research, and as a result, was able to find out the following. That is, when a predetermined amount of Cu is added to a conventionally known A--Mg--Si alloy, intergranular cracking is reduced, making it possible to suppress a decrease in ductility and improve strength. However, insofar as this is concerned, A6066 alloy has been known as an A--Mg--Si alloy containing Cu.
However, the addition of Cu alone is not sufficient to improve ductility, and it has been found that by adding a predetermined amount of Zn in addition to this, it is possible to further reduce intergranular cracking and improve ductility. Based on the above findings, this invention provides a corrosion-resistant, high-strength aluminum alloy with good hot workability and excellent ductility. ~1.8% Zn: 1.0-6.0%, Mn: 0.05-1.0% Cr: 0.05-0.35% Zr: 0.05-0.20%, and the remainder consists of aluminum and inevitable impurities. The present invention provides an aluminum alloy having the following properties. In this specification, all "%" are expressed on a weight basis. The reasons for limiting the composition range of the alloy according to the present invention are as follows. (a) Mg, Si, Cu, Zn All of these components have the effect of hardening the alloy, and by specifying their respective contents within a limited composition range, it is possible to reduce the amount of Mg 2 Si that precipitates in the alloy matrix. The precipitation of the intermediate phase becomes Cu
By adding Zn and Zn, it is possible to refine the material and obtain a material with high strength and high ductility. In other words, if Mg is less than 0.5% and Si is less than 0.4%, the specified strength cannot be obtained, and if both Mg and Si exceed 1.5%, not only the strength cannot be obtained, but also the hot Workability deteriorates. Further, if Cu is less than 0.4% and Zn is less than 1.0%, a sufficient effect on the refinement of Mg 2 Si crystals precipitated in the matrix cannot be achieved, and the improvement in ductility becomes insufficient. However, Cu
If Zn exceeds 1.8% or Zn exceeds 6.0%, the corrosion resistance of the alloy will deteriorate. (b) Mn, Cr, Zr These components are used to control the alloy structure, and one or more of these components may be contained in any combination. The content of these components is less than 0.05% for Mn, Cr, and Zr, which lacks the desired effect, and conversely, when Mn exceeds 1.0% and Cr exceeds 0.35%,
Alternatively, when Zr exceeds 0.20%, a coarse metal compound is generated during casting, which deteriorates mechanical properties such as strength and ductility, as well as hot workability. As mentioned above, the alloy according to the present invention has A-
Because it is based on Mg-Si alloy, it does not deteriorate its inherent extrudability, rollability, corrosion resistance, etc., and has high strength and excellent ductility due to the addition of Cu and Zn. Therefore, it can be suitably used as a molding or forging material in applications that could not be processed using conventional alloys. For example, when used as a motorcycle fork cylinder, it has a tensile strength of 35Kgf/mm 2 , which is comparable to a high-strength alloy that was previously impossible to expand, but its improved ductility makes it possible to expand the tube. The alloy according to the present invention has the advantage of being able to satisfy both strength and ductility at the same time, as there is a trend in recent years to pursue higher strength and thinner walls to the utmost. It is extremely useful. Next, examples of the present invention will be shown in comparison with comparative examples.

【表】【table】

【表】 表―1に示す各種組成の合金を、それぞれ金型
鋳造により直径7インチのビレツトに鋳造し、
560℃で8時間の均質化処理したのち、強度500±
5℃、押出速度6mm/secで厚さ6mm、幅125mmの
帯状板に押出した。次いで、この押出し材を厚さ
3mm(Red:50%)に冷間圧延し、530℃で1.5時
間の溶体化処理を施した後、水冷し、更に170℃
で7時間の時効処理を行つたものを試料とした。 そして、この各試料につき、JIS―4号試験片
に成形加工後、標点間距離50mmにて引張り強さ、
耐力、伸びを測定した。結果は表―2に示す。
[Table] Alloys with various compositions shown in Table 1 were cast into billets with a diameter of 7 inches by die casting.
After 8 hours of homogenization at 560℃, the strength is 500±.
It was extruded at 5° C. and at an extrusion speed of 6 mm/sec into a strip plate with a thickness of 6 mm and a width of 125 mm. Next, this extruded material was cold rolled to a thickness of 3 mm (Red: 50%), subjected to solution treatment at 530°C for 1.5 hours, water-cooled, and further heated to 170°C.
The sample was aged for 7 hours. After forming each sample into a JIS-4 test piece, the tensile strength was measured at a gauge distance of 50 mm.
Yield strength and elongation were measured. The results are shown in Table-2.

【表】【table】

【表】 上記の結果から明らかなように、この発明に係
る合金は、従来既知の比較合金に較べて、強度と
伸びが同時に優れているものである。 なお、この発明に係る合金は、熱処理型合金で
あることから、時効処理条件によつて伸びおよび
強度のコントロールを行うことができるものであ
る。
[Table] As is clear from the above results, the alloy according to the present invention is superior in both strength and elongation as compared to conventionally known comparative alloys. Note that since the alloy according to the present invention is a heat treatable alloy, the elongation and strength can be controlled by aging treatment conditions.

Claims (1)

【特許請求の範囲】 1 Mg:0.5〜1.5% Si:0.4〜1.5% Cu:0.4〜1.8% Zn:1.0〜6.0% を含有すると共に、 Mn:0.05〜1.0% Cr:0.05〜0.35% Zr:0.05〜0.20% のうち一種以上を含有し、残部アルミニウムおよ
び不可避不純物からなることを特徴とする延性に
優れた耐食性高力アルミニウム合金。
[Claims] 1 Contains Mg: 0.5-1.5% Si: 0.4-1.5% Cu: 0.4-1.8% Zn: 1.0-6.0%, Mn: 0.05-1.0% Cr: 0.05-0.35% Zr: A corrosion-resistant, high-strength aluminum alloy with excellent ductility, characterized by containing one or more of 0.05 to 0.20%, with the remainder consisting of aluminum and inevitable impurities.
JP18894783A 1983-10-07 1983-10-07 Corrosion resistant aluminum alloy having high strength and superior ductility Granted JPS6082643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18894783A JPS6082643A (en) 1983-10-07 1983-10-07 Corrosion resistant aluminum alloy having high strength and superior ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18894783A JPS6082643A (en) 1983-10-07 1983-10-07 Corrosion resistant aluminum alloy having high strength and superior ductility

Publications (2)

Publication Number Publication Date
JPS6082643A JPS6082643A (en) 1985-05-10
JPS6154853B2 true JPS6154853B2 (en) 1986-11-25

Family

ID=16232695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18894783A Granted JPS6082643A (en) 1983-10-07 1983-10-07 Corrosion resistant aluminum alloy having high strength and superior ductility

Country Status (1)

Country Link
JP (1) JPS6082643A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3827794A1 (en) * 1987-08-31 1989-03-16 Toyoda Gosei Kk Steering wheel core
US5204043A (en) * 1990-01-13 1993-04-20 Toyoda Gosei Co., Ltd. Method of manufacturing steering wheel
JPH04314840A (en) * 1991-04-12 1992-11-06 Furukawa Alum Co Ltd Aluminum alloy sheet excellent in formability and corrosion resistance
FR2726007B1 (en) * 1994-10-25 1996-12-13 Pechiney Rhenalu PROCESS FOR PRODUCING ALSIMGCU ALLOY PRODUCTS WITH IMPROVED INTERCRYSTALLINE CORROSION RESISTANCE
AU5664796A (en) * 1995-05-11 1996-11-29 Kaiser Aluminum & Chemical Corporation Improved damage tolerant aluminum 6xxx alloy
JP2004511650A (en) 2000-06-01 2004-04-15 アルコア インコーポレーテツド Corrosion resistant 6000 alloy suitable for aerospace applications
JP4818509B2 (en) * 2000-12-04 2011-11-16 新日本製鐵株式会社 Paint bake hardening and press forming aluminum alloy plate and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2092012A (en) * 1936-11-25 1937-09-07 Aluminum Co Of America Aluminum alloy
US2290016A (en) * 1941-04-17 1942-07-14 Nat Smelting Co Aluminum alloy
JPS54101706A (en) * 1978-01-28 1979-08-10 Nippon Keikinzoku Sougou Kenki High tensile aluminium alloy for bearing
JPS5794546A (en) * 1980-12-05 1982-06-12 Mitsubishi Alum Co Ltd Al alloy plate with high press formability and enameling hardenability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2092012A (en) * 1936-11-25 1937-09-07 Aluminum Co Of America Aluminum alloy
US2290016A (en) * 1941-04-17 1942-07-14 Nat Smelting Co Aluminum alloy
JPS54101706A (en) * 1978-01-28 1979-08-10 Nippon Keikinzoku Sougou Kenki High tensile aluminium alloy for bearing
JPS5794546A (en) * 1980-12-05 1982-06-12 Mitsubishi Alum Co Ltd Al alloy plate with high press formability and enameling hardenability

Also Published As

Publication number Publication date
JPS6082643A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
WO2019228416A1 (en) Aluminum alloy and preparation method and application thereof
JP2697400B2 (en) Aluminum alloy for forging
CN112662921B (en) High-strength and high-toughness die-casting aluminum-silicon alloy and preparation method thereof
CN115261684A (en) Cast Al-Si alloy and preparation method thereof
JPS60121249A (en) Stress corrosion resistant aluminum base alloy
JPS6154853B2 (en)
JP5725492B2 (en) High strength 7000 series aluminum alloy extruded material
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
JPS6237706B2 (en)
JPH04311545A (en) Al-mg-si alloy having superior strength and ductility
JP3471421B2 (en) Manufacturing method of aluminum alloy forging
JPH0447019B2 (en)
JPH0239574B2 (en)
CN113444939A (en) Corrosion-resistant aluminum alloy material and preparation method thereof
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JP3684245B2 (en) Aluminum alloy for cold forging
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH0547616B2 (en)
JPH09209068A (en) High strength aluminum alloy excellent in hardenability
JP3892179B2 (en) Extruded tube
CN108728704B (en) Aluminum-zinc alloy material for new energy automobile and production method thereof
JPH03247739A (en) High strength aluminum extruded material excellent in formability