JP2663078B2 - Aluminum alloy for T6 treatment with stable artificial aging - Google Patents

Aluminum alloy for T6 treatment with stable artificial aging

Info

Publication number
JP2663078B2
JP2663078B2 JP4101762A JP10176292A JP2663078B2 JP 2663078 B2 JP2663078 B2 JP 2663078B2 JP 4101762 A JP4101762 A JP 4101762A JP 10176292 A JP10176292 A JP 10176292A JP 2663078 B2 JP2663078 B2 JP 2663078B2
Authority
JP
Japan
Prior art keywords
treatment
artificial aging
alloy
aging
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4101762A
Other languages
Japanese (ja)
Other versions
JPH05271834A (en
Inventor
岩 朱
守 松尾
俊雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUKAI ARUMINIUMU KK
Original Assignee
SUKAI ARUMINIUMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUKAI ARUMINIUMU KK filed Critical SUKAI ARUMINIUMU KK
Priority to JP4101762A priority Critical patent/JP2663078B2/en
Publication of JPH05271834A publication Critical patent/JPH05271834A/en
Application granted granted Critical
Publication of JP2663078B2 publication Critical patent/JP2663078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は主に強度が重視される
船舶、車両、陸上構造材あるいは機械部品等に使用され
るアルミニウム合金に関するものであり、特に人工時効
処理を施すことによって所要の高強度を与えるようにし
た熱処理型T6処理用アルミニウム合金に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy used mainly for ships, vehicles, onshore structural materials, mechanical parts, etc., where strength is emphasized. strength relates heat treatable T6 treatment a aluminum alloy to give.

【0002】[0002]

【従来の技術】従来から、強度が重視される船舶、車
両、陸上構造材などには、溶体化処理および焼入れ後、
人工時効処理を施して所要の高強度を得るという、所謂
T6処理を施して用いる熱処理型合金が広く使用されて
いる。この種の熱処理型合金としてはAl−Mg−Si
系合金、例えば6061合金、6063合金、6151
合金等が代表的である。
2. Description of the Related Art Conventionally, for ships, vehicles, land-based structural materials, etc., for which strength is important, after solution treatment and quenching,
A heat-treatable alloy which is subjected to a so-called T6 treatment, in which a required high strength is obtained by performing an artificial aging treatment, is widely used. Al-Mg-Si is a heat-treatable alloy of this type.
Series alloys, for example, 6061 alloy, 6063 alloy, 6151
Alloys and the like are typical.

【0003】[0003]

【発明が解決しようとする課題】前述のようなAl−M
g−Si系合金について、溶体化処理−焼入れ後、直ち
に人工時効処理を行なわずに、室温に数日から数ケ月間
放置した場合、室温時効(自然時効)が生じて、その結
果としてその後の人工時効処理で充分に強度が上昇しな
いことがある。このような現象は、2段目の時効(人工
時効)に対して1段目の時効(室温時効)が負の効果を
もたらしているところから、負の2段時効と称される。
SUMMARY OF THE INVENTION The above-mentioned Al-M
When the g-Si alloy is left at room temperature for several days to several months without being subjected to artificial aging immediately after solution treatment-quenching, room temperature aging (natural aging) occurs, and as a result, The strength may not be sufficiently increased by the artificial aging treatment. Such a phenomenon is called negative two-stage aging because the first-stage aging (room temperature aging) has a negative effect on the second-stage aging (artificial aging).

【0004】このような負の時効によって最終的に充分
な高強度が得られないような事態が生じることを防止す
るためには、溶体化処理−焼入れ後、室温に放置される
時間をできるだけ短縮して、長くても2〜3日のうちに
人工時効処理を行なわなければならない。しかしながら
このように溶体化処理−焼入れから人工時効処理までの
期間が制約されることは、工業生産上の不便を招かざる
を得ない。すなわち、実際の工業的な生産現場において
は、溶体化処理−焼入れを行ってから人工時効処理まで
に長期間保管しておきたい場合があり、また需要家側で
人工時効処理を行なう場合は、溶体化処理−焼入れから
人工時効処理までの期間が長期間とならざるを得ないこ
ともある。そこで上述のような制約を受けることなく、
人工時効処理によって常に所要の高強度を得ることがで
きるAl−Mg−Si系熱処理型アルミニウム合金の開
発が強く望まれている。
In order to prevent a situation in which a sufficiently high strength is not finally obtained due to such negative aging, the time for which the alloy is left at room temperature after solution treatment and quenching is shortened as much as possible. Then, the artificial aging treatment must be performed within a few days at most. However, the restriction of the period from the solution treatment-quenching to the artificial aging treatment inevitably leads to inconvenience in industrial production. That is, in an actual industrial production site, there is a case where it is desired to store for a long time after the solution treatment-quenching to the artificial aging treatment, and when performing the artificial aging treatment on the customer side, The period from solution treatment-quenching to artificial aging may have to be long. So, without being restricted by the above,
There is a strong demand for the development of an Al-Mg-Si heat-treated aluminum alloy that can always obtain a required high strength by artificial aging.

【0005】また一般にアルミニウム合金の結晶粒が粗
大であれば、機械的諸性質や成形性、製品の外観等に悪
影響を及ぼすから、Al−Mg−Si系合金についても
結晶粒が可及的に微細であることが望まれる。
In general, when the crystal grains of an aluminum alloy are coarse, mechanical properties, formability, appearance of a product, and the like are adversely affected. Therefore, the crystal grains of an Al—Mg—Si alloy are as large as possible. Fineness is desired.

【0006】この発明は以上の事情を背景としてなされ
たもので、溶体化処理−焼入れ後、室温での放置による
自然時効の影響を受けることなく、人工時効処理によっ
て確実かつ安定して所要の高強度を得ることができるよ
うなAl−Mg−Si系熱処理型アルミニウム合金、換
言すれば溶体化処理−焼入れ後の室温での放置期間の長
短に左右されることなく、人工時効処理によって所要の
高強度を達成することができるようなAl−Mg−Si
系熱処理型アルミニウム合金を提供し、併せて結晶粒が
微細なAl−Mg−Si系熱処理型アルミニウム合金を
提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and after being subjected to solution treatment and quenching, is not affected by natural aging caused by being left at room temperature, and is reliably and stably performed by artificial aging treatment. Al-Mg-Si heat treatment type aluminum alloy capable of obtaining strength, in other words, solution treatment-required height by artificial aging treatment regardless of the length of the standing period at room temperature after quenching. Al-Mg-Si that can achieve strength
An object of the present invention is to provide a heat treatment type aluminum alloy based on Al-Mg-Si and provide a heat treatment type aluminum alloy having fine crystal grains.

【0007】[0007]

【課題を解決するための手段】前述のような課題を解決
するための方策について本発明者等が鋭意実験・検討を
重ねた結果、合金元素の含有量を適切に設定するばかり
でなく、特にSi量をMg量との関係で適切な値に設定
することによって、室温時効の影響を受けることなく、
人工時効によって確実かつ安定して高強度を得ることが
できるとともに、結晶粒も微細化し得ることを見出し、
この発明をなすに至った。
The inventors of the present invention have conducted intensive experiments and studies on measures for solving the above-mentioned problems, and as a result, not only have the content of alloying elements set appropriately, By setting the Si content to an appropriate value in relation to the Mg content, without being affected by room temperature aging,
We found that high strength can be obtained reliably and stably by artificial aging, and that crystal grains can be refined,
The present invention has been made.

【0008】 具体的には、請求項1の発明のT6処理
用アルミニウム合金は、Mg0.2〜1.2%(wt
%、以下同じ)、Si1.2〜2.6%を、 0.85<{Si(%)−Mg(%)/1.73}<2.0 を満たすように含有し、残部がAlおよび不可避的不純
物よりなることを特徴とするものである。
Specifically, the T6 processing according to the first aspect of the present invention
Use A aluminum alloy, Mg0.2~1.2% (wt
%, The same applies hereinafter), Si 1.2 to 2.6% so as to satisfy 0.85 <{Si (%)-Mg (%) / 1.73} <2.0, and the balance is Al and It is characterized by being made of unavoidable impurities.

【0009】 また請求項2の発明のT6処理用アルミ
ニウム合金は、請求項1で規定される合金元素のほか、
さらにCu0.03〜1.20%、Zn0.03〜1.
50%、Mn0.03〜0.80%、Cr0.03〜
0.30%、Zr0.03〜0.30%、V0.03〜
0.30%、Ti0.05〜0.30%、Fe0.05
〜0.60%のうちから選ばれた1種または2種以上を
含有するものである。
[0009] T6 treatment A Rumi <br/> um alloy of the invention of claim 2, in addition to the alloying elements as defined in claim 1,
Further, Cu 0.03 to 1.20%, Zn 0.03 to 1.
50%, Mn 0.03-0.80%, Cr 0.03-
0.30%, Zr 0.03-0.30%, V0.03-
0.30%, Ti 0.05 to 0.30%, Fe 0.05
One or two or more selected from the range of 0.60% to 0.60%.

【0010】[0010]

【作用】先ずこの発明における合金成分組成の限定理由
について説明する。
First, the reasons for limiting the alloy component composition in the present invention will be described.

【0011】Mg:Mgはこの発明の系の合金で基本と
なる合金元素であって、Siと共同して強度向上に寄与
する。Mg量が0.2%未満では析出硬化によって強度
向上に寄与するMgSiの生成量が少ないため、充分
な強度が得られず、一方1.2%を越えればMgSi
が固溶されなくなって、それ以上は強度向上の効果が得
られなくなるとともに、伸び、成形性が低下するから、
Mg量は0.2〜1.2%の範囲内とした。
Mg: Mg is a basic alloying element in the alloy of the present invention, and contributes to improvement in strength in cooperation with Si. Since Mg amount is small the amount of contributing Mg 2 Si for improving the strength by precipitation hardening is less than 0.2%, no sufficient strength is obtained, whereas if exceeds the 1.2% Mg 2 Si
Is no longer dissolved in solid solution, and beyond that, the effect of improving strength cannot be obtained, and elongation and moldability decrease.
The Mg content was in the range of 0.2 to 1.2%.

【0012】Si:Siもこの発明の系の合金で基本と
なる合金元素であって、Mgと共同して強度向上に寄与
する。そしてSiは析出硬化による強度向上に寄与する
MgSiの生成に必要な量(Mgに対する当量)より
も過剰に含有させることによって、MgSiの析出を
促進し、安定な人工時効性を付与するに効果がある。ま
たSiが過剰に含有されれば、その過剰なSiが鋳造時
に金属Siの晶出物として生成され、その金属Si粒子
の周囲が加工によって変形されて、溶体化処理の際に再
結晶核の生成サイトとなるため、結晶粒の微細化にも寄
与する。したがってSiは、MgSiの生成に必要な
当量すなわち[Mg(%)/1.73](%)よりも過
剰に含有させることとし、かつその過剰量が0.85%
を越え2.0%未満となるように含有させることとし
た。すなわち、Si(%)は、次式 0.85<{Si(%)−Mg(%)/1.73}<2.0 を満足させることとした。
Si: Si is also a basic alloying element in the alloy of the present invention, and contributes to improvement in strength in cooperation with Mg. And Si is added in excess of the amount required for the generation of Mg 2 Si (equivalent to Mg) which contributes to the strength improvement by precipitation hardening, thereby promoting the precipitation of Mg 2 Si and providing stable artificial aging. It is effective for you. If Si is excessively contained, the excess Si is generated as a crystal of metal Si at the time of casting, and the periphery of the metal Si particles is deformed by working, so that recrystallization nuclei are formed during solution treatment. Since it becomes a generation site, it also contributes to refinement of crystal grains. Therefore, Si should be contained in excess of the equivalent required for the generation of Mg 2 Si, that is, [Mg (%) / 1.73] (%), and the excess amount is 0.85%.
And less than 2.0%. That is, Si (%) satisfies the following equation: 0.85 <{Si (%)-Mg (%) / 1.73} <2.0.

【0013】このようにSiがMgSi生成のための
当量よりも過剰に含有されれば、室温により生成したク
ラスターが人工時効処理において強度に寄与する針状
G.P.ゾーンに移行しやすくなるため、室温時効が人
工時効に対して負の効果をもたらすおそれが少なくな
り、その結果室温時効の影響を受けずに人工時効により
安定に高強度を得ることが可能となる。Si過剰量が
0.85%以下ではその効果が充分に得られないから、
前記式の下限値は0.85%を越える必要がある。な
お、より確実に上記の効果を得るためには、Si過剰量
すなわち前記式の下限値が1.0%を越えるように定め
ることが望ましい。また同じMgの量に対し、前記式が
満たされれば、金属Siの晶出物がより多く生成され、
その結果溶体化処理時における再結晶核の生成サイトが
多くなり、溶体化処理−焼入れ後の材料で、より一層微
細な結晶粒が得られ、材料の機械的性質、成形性がより
一層向上される。
[0013] When Si is contained in excess of the equivalent amount for the generation of Mg 2 Si, the clusters formed at room temperature contribute to the strength of needle-like G. i. P. Because it is easy to move to the zone, the possibility that room temperature aging has a negative effect on artificial aging is reduced, and as a result, high strength can be obtained stably by artificial aging without being affected by room temperature aging. . If the excess amount of Si is 0.85% or less, the effect cannot be sufficiently obtained.
The lower limit of the above equation must exceed 0.85%. Note that, in order to more reliably obtain the above effect, it is desirable that the excess amount of Si, that is, the lower limit of the above expression be set to exceed 1.0%. Also, for the same amount of Mg, if the above expression is satisfied, more crystallized metal Si is produced,
As a result, the number of sites for generating recrystallization nuclei during the solution treatment increases, and finer crystal grains are obtained in the material after the solution treatment-quenching, and the mechanical properties and moldability of the material are further improved. You.

【0014】なおSiの絶対量が1.2%未満ではたと
え前記式で規定されるSi過剰量が0.85%以上であ
っても前述の各効果が充分に得られず、一方Siの絶対
量が2.6%を越えれば晶出する金属Siが粗大となっ
て合金の靱性が低下し、また成形性を劣化させるから、
Siの絶対量は1.2〜2.6%の範囲内とした。また
前記式で規定されるSi過剰量が2.0%以上となって
も、晶出する金属Siが粗大となって合金の靱性が低下
し、成形性も劣化するから、前記式の上限値は2.0%
未満とした。
If the absolute amount of Si is less than 1.2%, even if the excess amount of Si defined by the above formula is 0.85% or more, the above-mentioned effects cannot be sufficiently obtained. If the amount exceeds 2.6%, the crystallized metal Si becomes coarse and the toughness of the alloy decreases, and the formability deteriorates.
The absolute amount of Si was in the range of 1.2 to 2.6%. Further, even if the excess amount of Si specified by the above formula is 2.0% or more, the crystallized metal Si becomes coarse, the toughness of the alloy is reduced, and the formability is also deteriorated. Is 2.0%
Less than.

【0015】 Cu,Zn,Mn,Cr,Zr,V,Ti,Fe: これらは強度向上のために請求項2の発明において1種
または2種以上添加される。これらのうち、Cuは固溶
強化を通じて強度向上に有効な元素であるが、Cu量が
0.03%未満ではその効果が充分に得られず、一方
1.20%を越えれば耐食性が低下するから、Cuを添
加する場合のCu量は0.03〜1.20%の範囲内と
した。またZnは合金の時効性の向上を通じて強度向上
に寄与する元素であり、その含有量が0.03%未満で
は上記の効果が不充分であり、一方1.50%を越えれ
ば成形性および耐食性が低下するから、Znを添加する
場合のZn量は0.03〜1.50%の範囲内とした。
さらにMn,Cr,Zr,Vはいずれも結晶粒の微細化
を通じて強度向上に有効な元素であり、また組織の安定
にも効果があり、いずれも含有量が0.03%未満で
は上記の効果が充分に得られず、一方Mnが0.80
%、Cr,Zr,Vがそれぞれ0.30%を越えれば、
上記の効果が飽和するばかりでなく、巨大金属間化合物
が生成されて成形性に悪影響を及ぼすおそれがあり、し
たがってMnは0.03〜0.80%、Cr,Zr,V
はいずれも0.03〜0.30%の範囲内とした。また
Tiは鋳塊組織の微細化を通じて強度向上に寄与する元
素であり、その含有量が0.005%未満では充分な効
果が得られず、一方0.30%を越えればTi添加の効
果が飽和するばかりでなく、巨大晶出物が生じるおそれ
があるから、Tiは0.005〜0.30%の範囲内と
した。そしてまたFeも結晶粒の微細化を通じて強度向
上に寄与する元素であり、その含有量が0.05%未満
では充分な効果が得られず、一方0.60%を越えれば
成形性が低下するおそれがあり、したがってFeは0.
05〜0.60%の範囲内とした。なお0.05%未満
のFeは、通常のアルミ地金を用いれば不可避的に含有
される。
[0015] Cu, Zn, Mn, Cr, Zr, V, Ti, Fe: it is added one or more in the invention of claim 2 for the upper strength improvement. Of these, Cu is a solid solution
Is an effective element to the strength of improved by strengthening, Cu amount, the effect can not be obtained sufficiently less than 0.03%, since the corrosion resistance is reduced whereas if exceeds 1.20% when adding Cu Was in the range of 0.03 to 1.20%. Zn is an element that contributes to the strength improvement through the improvement of the aging property of the alloy. If its content is less than 0.03%, the above effects are insufficient, while if it exceeds 1.50%, the formability and corrosion resistance are increased. Therefore, the amount of Zn when Zn is added is in the range of 0.03 to 1.50%.
Further, Mn, Cr, Zr, and V all have crystal grain refinement.
Is an element effective for improving the strength of the steel through the alloy, and also has an effect on the stabilization of the structure. When the content is less than 0.03%, the above-mentioned effects cannot be sufficiently obtained.
%, Cr, Zr, and V each exceed 0.30%,
Not only the above effect is saturated, but also a giant intermetallic compound may be generated to adversely affect the formability. Therefore, Mn is 0.03 to 0.80%, Cr, Zr, and V
Were all within the range of 0.03 to 0.30%. The Ti is an element contributing to improving the strength through refining of the ingot tissue, sufficient effects can not be obtained in the content is less than 0.005%, whereas the effect of Ti addition if exceeds 0.30% In addition to saturation, there is a possibility that a giant crystal may be generated. Therefore, Ti is set in the range of 0.005 to 0.30%. In addition, Fe is also suitable for strength through refinement of crystal grains
Is an element contributing to above, sufficient effects can not be obtained in the content is less than 0.05%, whereas there may be deteriorated moldability if exceeds 0.60% thus Fe 0.
In the range of 0.05 to 0.60%. Note that Fe of less than 0.05% is inevitably contained when ordinary aluminum metal is used.

【0016】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。但し、一般にMgを
含有する系の合金においては溶湯の酸化防止のために微
量のBeを添加することがあり、この発明の合金の場合
も0.0001〜0.01%程度のBeの添加は許容さ
れる。また一般に結晶粒微細化のために前述のTiと同
時にBを添加することもあり、この発明の場合もTiと
ともに500ppm 以下のBを添加することは許容され
る。
In addition to the above elements, Al and unavoidable impurities may be basically used. However, in general, a small amount of Be may be added to a Mg-containing alloy in order to prevent oxidation of the molten metal. In the case of the alloy according to the present invention, addition of about 0.0001 to 0.01% of Be is also required. Permissible. Generally, B may be added simultaneously with the above-mentioned Ti in order to refine the crystal grains. In the case of the present invention, addition of 500 ppm or less of B together with Ti is allowable.

【0017】この発明のアルミニウム合金の製造方法と
しては、従来からJIS 6000番系のAl−Mg−
Si系合金に適用されている方法と同様な方法を適用す
ることができる。代表的には、DC鋳造法等によって鋳
造した後、均質化処理を行ない、さらに熱間圧延を行な
ってから必要に応じ冷間圧延を行なって所要の板厚と
し、その後溶体化処理−焼入れを行ない、さらにその後
人工時効処理を行なえば良い。また必要に応じて、熱間
圧延と冷間圧延との間、あるいは冷間圧延の中途におい
て中間焼鈍を行なっても良い。
As a method for producing the aluminum alloy of the present invention, there has been conventionally used a JIS No. 6000 series Al-Mg-
The same method as the method applied to the Si-based alloy can be applied. Typically, after casting by a DC casting method or the like, homogenization treatment is performed, and further hot rolling is performed, and then cold rolling is performed as necessary to obtain a required sheet thickness, and then solution treatment-quenching is performed. And then an artificial aging process. If necessary, intermediate annealing may be performed between hot rolling and cold rolling or in the middle of cold rolling.

【0018】また、上述のような圧延板のみならず、押
出材として製品に供することもできる。すなわち、常法
に従ってDC鋳造等によりビレットに鋳造し、均質化処
理後熱間押出しに供し、必要に応じて引抜加工等の冷間
加工を行ない、その後溶体化処理−焼入れを施してから
人工時効処理を施せば良い。なおこの場合、熱間押出し
直後に急冷することによって、溶体化処理−焼入れを兼
ねることができる。
In addition to the above-mentioned rolled plate, the product can be provided as an extruded material to the product. That is, it is cast into a billet by DC casting or the like according to a conventional method, subjected to hot extrusion after homogenization treatment, cold work such as drawing if necessary, and then subjected to solution treatment-quenching and then artificial aging. Processing may be performed. In this case, rapid cooling immediately after hot extrusion can serve as both solution treatment and quenching.

【0019】ここで、この発明のアルミニウム合金で
は、後の実施例でも示すように、溶体化処理−焼入れ後
に室温に放置した場合にも、室温時効の影響を受けるこ
となく、人工時効処理によって所要の高強度を確実かつ
安定して得ることができるから、溶体化処理−焼入れか
ら人工時効処理までの期間は特に制限されることはな
い。
Here, in the aluminum alloy according to the present invention, as shown in the later examples, even when the aluminum alloy is left at room temperature after solution treatment and quenching, the aluminum alloy is not affected by room temperature aging and required by artificial aging. Can be obtained reliably and stably, and the period from the solution treatment-quenching to the artificial aging treatment is not particularly limited.

【0020】[0020]

【実施例】【Example】

実施例1:表1のA1〜A6,B1〜B3に示す各合金
を常法に従ってDC鋳造し、得られた鋳塊を530℃×
10時間均質化処理した後、熱間圧延および冷間圧延を
行なって板厚1mmの圧延板とした。次いで溶体化処理−
焼入れを行なった。この溶体化処理焼入れは、バッチ焼
鈍炉もしくは連続焼鈍炉を用いて行ない、バッチ焼鈍炉
による場合は530℃×1時間溶体化処理を施して水焼
入れし、連続焼鈍炉による場合は540℃×10秒の加
熱後強制冷却した。焼入れ後の各圧延板について、それ
ぞれ半分に切分けて、一方は次の(イ)の処理を、他方
は(ロ)の処理を施した。 (イ)焼入れ後、直ちに175℃×8時間の時効処理を
施した。 (ロ)焼入れ後、室温(20℃)に20日間放置した
後、175℃×8時間の時効処理を施した。
Example 1: Each alloy shown in Tables A1 to A6 and B1 to B3 was DC-cast according to a conventional method.
After homogenizing for 10 hours, hot rolling and cold rolling were performed to obtain a rolled plate having a thickness of 1 mm. Then solution treatment-
Quenching was performed. This solution treatment quenching is performed using a batch annealing furnace or a continuous annealing furnace. In the case of a batch annealing furnace, a solution treatment is performed at 530 ° C. × 1 hour, and water quenching is performed. In the case of a continuous annealing furnace, 540 ° C. × 10 5 After heating for 2 seconds, it was forcibly cooled. Each quenched rolled plate was cut in half, and one was subjected to the following process (a) and the other was subjected to the process (b). (A) Immediately after quenching, aging treatment was performed at 175 ° C for 8 hours. (Ii) After quenching, the resultant was left at room temperature (20 ° C.) for 20 days, and then subjected to aging treatment at 175 ° C. × 8 hours.

【0021】上記(イ)もしくは(ロ)の処理後の各板
について、引張り強さを調べた結果を表2に示す。また
溶体化処理−焼入れ直後の結晶粒径を切断法によって調
べた結果を表2中に併せて示す。なおA1〜A6の合金
はいずれも合金元素含有量がこの発明で規定する範囲を
満たすと同時にSi量とMg量との関係もこの発明で規
定する関係式を満足している発明合金、B1〜B3はS
i量が不足し、前記関係式を満たしていない比較合金で
あって、特にB3は従来の6061合金に相当する合金
である。
Table 2 shows the results of examining the tensile strength of each plate after the above-mentioned treatment (a) or (b). Table 2 also shows the results obtained by examining the crystal grain size immediately after solution treatment and quenching by a cutting method. The alloys A1 to A6 each have an alloy element content satisfying the range defined in the present invention, and at the same time, the relationship between the Si amount and the Mg amount also satisfies the relational expression defined in the present invention. B3 is S
A comparative alloy having a shortage of i and not satisfying the above relational expression. In particular, B3 is an alloy corresponding to the conventional 6061 alloy.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】この実施例1は圧延材に適用したものであ
るが、表2から明らかなように、各合金元素の含有量が
この発明で規定する範囲内でしかもSi量がMg量との
関連において前記関係式を満たしている発明合金A1〜
A6は、いずれも溶体化処理−焼入れ後に室温に20日
間放置してから人工時効処理を施した場合(ロ)におい
ても、溶体化処理−焼入れ直後に人工時効処理施した場
合(イ)と同等の高強度が得られ、室温時効の影響を受
けていないことが判る。またこれらの発明合金は、結晶
粒も最大で69μmと、微細化されていることが判る。
Example 1 was applied to a rolled material. As is clear from Table 2, the content of each alloying element was within the range specified in the present invention, and the relationship between the Si content and the Mg content. Inventive alloys A1 to
A6 is the same as (a) when the artificial aging treatment is carried out immediately after the solution treatment-quenching after being left at room temperature for 20 days after the solution treatment-quenching (b). It can be seen that a high strength was obtained, and the sample was not affected by aging at room temperature. In addition, it can be seen that these invention alloys have a finer crystal grain of 69 μm at the maximum.

【0025】これに対し比較合金B1〜B3は、いずれ
もSi量がMg量との関連において前記式で規定する下
限値よりも少ないものであるが、これらの比較合金で
は、溶体化処理−焼入れ後に室温に20日間放置した場
合に人工時効処理によって充分な高強度が得られず、室
温時効の悪影響を受けていることが判る。またこれらの
比較合金は、結晶粒もさほど微細とはならなかった。
On the other hand, in the comparative alloys B1 to B3, the amount of Si is smaller than the lower limit specified by the above formula in relation to the amount of Mg. When left at room temperature for 20 days later, it was found that a sufficiently high strength could not be obtained by the artificial aging treatment, which was adversely affected by room temperature aging. Also, these comparative alloys did not have very fine crystal grains.

【0026】実施例2:表3のC1〜C4,D1,D2
に示す合金を常法にしたがって200mmφのビレットに
DC鋳造し、得られたビレットを530℃で8時間均質
化処理後、420℃で熱間押出しを行なった。このとき
の押出比は10:1である。得られた押出材について、
バッチ焼鈍炉で540℃×1時間の溶体化処理を施し、
水焼入れした。焼入れ後の各材料についてそれぞれ2分
し、実施例1と同様に一方を前記(イ)の条件で、他方
を前記(ロ)の条件で処理した。
Example 2: C1 to C4, D1 and D2 in Table 3
Was cast into a 200 mmφ billet by a conventional method, and the obtained billet was homogenized at 530 ° C. for 8 hours and then hot-extruded at 420 ° C. The extrusion ratio at this time is 10: 1. About the obtained extruded material,
Solution treatment at 540 ° C x 1 hour in a batch annealing furnace,
Water quenched. Each of the quenched materials was divided into two, and one was treated under the condition (a) and the other was treated under the condition (b) as in Example 1.

【0027】(イ)もしくは(ロ)の処理後の各材料に
ついて引張り強さを調べた結果を表4に示す。また溶体
化処理−焼入れ直後の結晶粒径を切断法により調べた結
果を表4中に併せて示す。なおここでC1〜C4の各合
金はいずれも合金元素含有量がこの発明で規定する範囲
内であると同時にSi量とMg量との関係もこの発明で
規定する関係式を満たしている発明合金であり、一方D
1,D2の合金はSi量が不足し、前記関係式を満たし
ていない比較合金である。
Table 4 shows the results of examining the tensile strength of each material after the treatment (a) or (b). The results obtained by examining the crystal grain size immediately after solution treatment and quenching by a cutting method are also shown in Table 4. Here, each of the alloys C1 to C4 has an alloy element content within the range specified in the present invention, and at the same time, the relationship between the Si amount and the Mg amount also satisfies the relational expression specified in the present invention. While D
The alloys 1 and D2 are comparative alloys that do not satisfy the above-mentioned relational expression due to insufficient amount of Si.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】この実施例2は押出材に適用したものであ
るが、表4から明らかなように、各合金元素の含有量が
この発明で規定する範囲内でしかもSi量がMg量との
関連において前記関係式を満たしている発明合金C1〜
C4は、いずれも溶体化処理−焼入れ後に室温に20日
間放置してから人工時効処理を施した場合(ロ)におい
ても、溶体化処理−焼入れ直後に人工時効処理施した場
合(イ)と同等の高強度が得られ、室温時効の影響を受
けていないことが判る。またこれらの発明合金は、結晶
粒も最大で88μmと、微細化されていることが判る。
Example 2 was applied to an extruded material. As is clear from Table 4, the content of each alloying element is within the range specified in the present invention, and the relationship between the Si content and the Mg content. In the invention alloy C1 satisfying the above relational expression
C4 is the same as (a) when the solution aging treatment is carried out and then left at room temperature for 20 days and then subjected to the artificial aging treatment (b). It can be seen that a high strength was obtained, and the sample was not affected by aging at room temperature. In addition, it can be seen that these invention alloys have a fine crystal grain of at most 88 μm.

【0031】これに対し比較合金D1,D2はいずれも
Si量がMg量との関連において前記式で規定する下限
値よりも少ないものであるが、これらの比較合金では、
溶体化処理−焼入れ後に室温に20日間放置した場合に
人工時効処理によって充分な高強度が得られず、室温時
効の悪影響を受けていることが判る。またこれらの比較
合金は、結晶粒もさほど微細とはならなかった。
On the other hand, in each of the comparative alloys D1 and D2, the amount of Si is smaller than the lower limit specified by the above equation in relation to the amount of Mg.
Solution treatment-When left at room temperature for 20 days after quenching, a sufficiently high strength was not obtained due to the artificial aging treatment, indicating that the room temperature aging was adversely affected. Also, these comparative alloys did not have very fine crystal grains.

【0032】[0032]

【発明の効果】実施例からも明らかなように、この発明
のT6処理用アルミニウム合金は、Si量をMg量に応
じて適切な範囲内に定めることによって、溶体化処理一
焼入れ後の室温時効の影響を受けることなく、人工時効
処理により所要の高強度を得ることができ、そのため溶
体化処理−焼入れから人工時効処理までの期間が特に短
く制約されることがないため、工業的な規模での製造上
極めて有利であり、また結晶粒が微細であるため機械的
性質、成形性、外観が優れる等の長所も有する。
As is clear from the embodiments, the present invention
'S T6 treatment for A aluminum alloy, by determining the amount of Si within a suitable range according to the Mg content, without being affected by the room temperature aging after solution treatment one hardening, high strength required by the artificial aging Since the period from solution treatment-quenching to artificial aging treatment is not particularly short and is not restricted, it is extremely advantageous for production on an industrial scale, and the crystal grains are fine. Therefore, it also has advantages such as excellent mechanical properties, moldability, and appearance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松原 俊雄 東京都中央区日本橋室町4丁目3番18号 スカイアルミニウム株式会社内 (56)参考文献 特開 昭63−103046(JP,A) 特開 昭64−65243(JP,A) 特開 平3−180453(JP,A) 特開 平4−231434(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Toshio Komatsubara 4-3-1-18 Nihonbashi Muromachi, Chuo-ku, Tokyo Inside Sky Aluminum Co., Ltd. (56) References JP-A-63-103046 (JP, A) JP-A Sho 64-65243 (JP, A) JP-A-3-180453 (JP, A) JP-A-4-231434 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mg0.2〜1.2%(wt%、以下同
じ)、Si1.2〜2.6%を、 0.85<{Si(%)−Mg(%)/1.73}<2.0 を満たすように含有し、残部がAlおよび不可避的不純
物よりなり、結晶粒が微細でかつ安定な人工時効性を有
るT6処理用アルミニウム合金。
1. Mg 0.2-1.2% (wt%, the same applies hereinafter), Si 1.2-2.6%, 0.85 <{Si (%)-Mg (%) / 1.73} <contained so as to satisfy 2.0, the balance being of Al and unavoidable impurities, the crystal grains are fine and have a stable artificial aging resistance <br /> be that T6 treatment a aluminum alloy.
【請求項2】 Mg0.2〜1.2%、Si1.2〜
2.6%を、 0.85<{Si(%)−Mg(%)/1.73}<2.0 を満たすように含有し、かつCu0.03〜1.20
%、Zn0.03〜1.50%、Mn0.03〜0.8
0%、Cr0.03〜0.30%、Zr0.03〜0.
30%、V0.03〜0.30%、Ti0.05〜0.
30%、Fe0.05〜0.60%のうちから選ばれた
1種または2種以上を含有し、残部がAlおよび不可避
的不純物よりなり、結晶粒が微細でかつ安定な人工時効
性を有するT6処理用アルミニウム合金。
2. Mg 0.2-1.2%, Si 1.2-
2.6% is contained so as to satisfy 0.85 <{Si (%)-Mg (%) / 1.73} <2.0, and Cu is 0.03 to 1.20.
%, Zn 0.03 to 1.50%, Mn 0.03 to 0.8
0%, Cr 0.03 to 0.30%, Zr 0.03 to 0.
30%, V 0.03-0.30%, Ti 0.05-0.
30%, one or two or more selected from 0.05 to 0.60% Fe, with the balance being Al and unavoidable impurities, having fine and stable artificial aging properties. T6 treatment for a aluminum alloy you.
JP4101762A 1992-03-27 1992-03-27 Aluminum alloy for T6 treatment with stable artificial aging Expired - Lifetime JP2663078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4101762A JP2663078B2 (en) 1992-03-27 1992-03-27 Aluminum alloy for T6 treatment with stable artificial aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4101762A JP2663078B2 (en) 1992-03-27 1992-03-27 Aluminum alloy for T6 treatment with stable artificial aging

Publications (2)

Publication Number Publication Date
JPH05271834A JPH05271834A (en) 1993-10-19
JP2663078B2 true JP2663078B2 (en) 1997-10-15

Family

ID=14309248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4101762A Expired - Lifetime JP2663078B2 (en) 1992-03-27 1992-03-27 Aluminum alloy for T6 treatment with stable artificial aging

Country Status (1)

Country Link
JP (1) JP2663078B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023266A1 (en) 1997-10-31 1999-05-14 The Furukawa Electric Co., Ltd. Extruded material of aluminum alloy for structural members of automobile body and method of manufactruing the same
JP3398085B2 (en) * 1999-04-28 2003-04-21 古河電気工業株式会社 Aluminum alloy materials for welded structures and their welded joints
JP2001181768A (en) 1999-12-17 2001-07-03 Furukawa Electric Co Ltd:The Aluminum alloy extruded material for automotive structural member and producing method therefor
JP5159196B2 (en) * 2007-07-20 2013-03-06 古河スカイ株式会社 Aluminum alloy for high pressure hydrogen gas storage container
JP2011252212A (en) * 2010-06-03 2011-12-15 Sumitomo Light Metal Ind Ltd Method for forming processing of 6000 series aluminum alloy material, and forming processed product
DE102015013540A1 (en) * 2015-10-19 2017-04-20 Trimet Aluminium Se aluminum alloy
CN112813316B (en) * 2020-12-30 2022-06-28 安徽鑫铂铝业股份有限公司 Preparation method of high-strength corrosion-resistant aluminum alloy
CN112845649A (en) * 2020-12-30 2021-05-28 安徽鑫铂铝业股份有限公司 Preparation method of high-toughness large-sized vehicle aluminum profile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103046A (en) * 1986-10-20 1988-05-07 Furukawa Alum Co Ltd Aluminum alloy for cold forging
JPH0674480B2 (en) * 1987-09-03 1994-09-21 本田技研工業株式会社 Forming and welding alloy sheet excellent in weldability, rust resistance, formability and bake hardenability, and method for producing the same
JPH03180453A (en) * 1989-12-07 1991-08-06 Kobe Steel Ltd Production of aluminum alloy stock for cold forging
JPH04231434A (en) * 1990-12-27 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy for forming excellent in baking hardenability

Also Published As

Publication number Publication date
JPH05271834A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
US4016010A (en) Preparation of high strength copper base alloy
KR100245632B1 (en) Low density high strength al-li alloy
US5888320A (en) Aluminum alloy having improved damage tolerant characteristics
US8133331B2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
US5423925A (en) Process for manufacturing Al-Mg alloy sheets for press forming
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0559477A (en) Aluminum alloy for forging
JPH0372147B2 (en)
JP2997156B2 (en) Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
CN116694969A (en) Door impact beam for a motor vehicle formed from an aluminum alloy extrusion and method for the production thereof
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
KR20210037108A (en) Aluminum alloy and method of manufacturing the same
JPH0447019B2 (en)
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPS6154853B2 (en)
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JP3684245B2 (en) Aluminum alloy for cold forging
JPH0718389A (en) Production of al-mg series alloy sheet for forming
WO2023209810A1 (en) Al-mg-si-ni alloy and al-mg-si-ni alloy material
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JP2678675B2 (en) Method for producing aluminum alloy sheet for forming having excellent deep drawability
JPH05295478A (en) Aluminum alloy extruded material excellent in bendability and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19951003

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15